JP2008198661A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008198661A
JP2008198661A JP2007029596A JP2007029596A JP2008198661A JP 2008198661 A JP2008198661 A JP 2008198661A JP 2007029596 A JP2007029596 A JP 2007029596A JP 2007029596 A JP2007029596 A JP 2007029596A JP 2008198661 A JP2008198661 A JP 2008198661A
Authority
JP
Japan
Prior art keywords
conductor
blocking
power semiconductor
heater
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007029596A
Other languages
Japanese (ja)
Other versions
JP4579259B2 (en
Inventor
Yasushi Nakajima
泰 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007029596A priority Critical patent/JP4579259B2/en
Publication of JP2008198661A publication Critical patent/JP2008198661A/en
Application granted granted Critical
Publication of JP4579259B2 publication Critical patent/JP4579259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device for electric power in which sensitivity of interruption function to interrupt excess current can be adjusted. <P>SOLUTION: The semiconductor device for electric power is provided with: a power semiconductor element 14; a first wiring conductor 21 connected to the power semiconductor element 14; a second wiring conductor 22 to supply electric power; an interruption conductor 23 that connects the first and second wiring conductors 21 and 22, and melts them at a specified temperature or more; a heater 26 to supply a heat to the interruption conductor 23; a heat sink 13 to cool the interruption conductor 23; a coolant supply means 27 to supply a coolant to the heat sink 13; and a control means 28 to control electric conduction to the heater 26 and also to control a quantity of coolant to be supplied by the coolant supply means 27. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、数十から数百Aの電流を通電する電力用半導体装置に関し、特に過電流を遮断する遮断機能の感度調整を行うことができる電力用半導体装置に関するものである。   The present invention relates to a power semiconductor device that supplies a current of several tens to several hundreds A, and more particularly to a power semiconductor device capable of adjusting sensitivity of a cutoff function that cuts off an overcurrent.

電力用半導体装置は、電力用半導体素子のゲート電圧のオン・オフに応じて、数十から数百Aという大きな電流を通電・遮断する。即ち、電力用半導体装置は、小さなエネルギーの制御信号によって、大きなエネルギーの制御を行う。そして、電力用半導体素子は、一般にSi基板の表面に微細に作り込んだ構造を有し、電極間に電圧を印加してキャリアをコントロールするものである。従って、許容範囲外の電圧や電流が印加されて極端にエネルギー密度が高くなると、半導体素子の表面が破壊され、意図せずに電流が流れる可能性があるため、電流遮断が必要となる。   The power semiconductor device energizes and cuts off a large current of several tens to several hundreds of A depending on whether the gate voltage of the power semiconductor element is on or off. That is, the power semiconductor device performs large energy control by a small energy control signal. The power semiconductor element generally has a structure that is finely formed on the surface of the Si substrate, and controls carriers by applying a voltage between the electrodes. Therefore, if a voltage or current outside the allowable range is applied and the energy density becomes extremely high, the surface of the semiconductor element is destroyed and current may flow unintentionally, so that current interruption is necessary.

一般的な電流遮断の方策としては、ノーヒューズブレーカーやヒューズが挙げられる。しかし、これらは体積が大きいという問題がある。特に、自動車用の電力用半導体装置などでは、燃費効率の観点などから軽量化が求められている。これに対し、電力用半導体装置の電流遮断機能を小さな体積及びコストで実現するヒューズ機構が提案されている(例えば、特許文献1,2参照)。このヒューズ機構は、過電流により金属線又は配線が溶断するものである。   Common current interruption measures include no-fuse breakers and fuses. However, there is a problem that these have a large volume. In particular, power semiconductor devices for automobiles and the like are required to be lightweight from the viewpoint of fuel efficiency. On the other hand, a fuse mechanism that realizes a current interrupting function of a power semiconductor device with a small volume and cost has been proposed (for example, see Patent Documents 1 and 2). In this fuse mechanism, a metal wire or wiring is melted by an overcurrent.

特開2005−175439号公報JP 2005-175439 A 特開2006−120970号公報JP 2006-120970 A

自動車が走行中に故障し、その後惰性で止まる場合に、車両の移動による車軸の回転が発電機で電力にエネルギー変換される。通常であれば、この電力は電池に回生する。しかし、例えばクラッチ機構などを持たず車軸に直結した発電機の場合、車両のパワエレシステムがダウンして電池への経路が遮断されると、エネルギーの持って行き先が無くなる。このため、予期せぬ大電流が無制御に電力用半導体装置に与えられ、過熱するなどの不具合が生じる可能性がある。このような時に電力用半導体装置と発電機との間を遮断する必要がある。   When an automobile breaks down while traveling and then stops due to inertia, the rotation of the axle caused by the movement of the vehicle is converted into electric power by the generator. Normally, this power is regenerated to the battery. However, for example, in the case of a generator that does not have a clutch mechanism or the like and is directly connected to the axle, when the vehicle power electronics system goes down and the path to the battery is cut off, there is no destination for energy. For this reason, an unexpectedly large current is applied to the power semiconductor device without control, and there is a possibility that problems such as overheating may occur. In such a case, it is necessary to interrupt between the power semiconductor device and the generator.

一方、通常動作領域の電流値であっても、パワエレシステムがダウンした場合には、同様にエネルギーの持って行き先が無く、電力用半導体装置の過熱が問題となる場合がある。このようにどの程度の電流値で遮断すべきかは状況によって異なるため、状況に応じて遮断機能の感度調整を行うことができれば安全性が高まる。しかし、従来の電力用半導体装置は遮断機能の感度調整を行うことはできなかった。   On the other hand, even if the current value is in the normal operation region, if the power electronics system goes down, there is no destination for energy, and overheating of the power semiconductor device may become a problem. As described above, the current value at which the current should be interrupted varies depending on the situation. Therefore, if the sensitivity adjustment of the interrupt function can be performed according to the situation, safety is improved. However, conventional power semiconductor devices cannot adjust the sensitivity of the cutoff function.

本発明は、上述のような課題を解決するためになされたもので、その目的は、過電流を遮断する遮断機能の感度調整を行うことができる電力用半導体装置を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power semiconductor device capable of adjusting the sensitivity of a blocking function for blocking an overcurrent.

本発明に係る電力用半導体装置は、電力用半導体素子と、電力用半導体素子に接続された第1配線導体と、電力を供給する第2配線導体と、第1配線導体と第2配線導体とを連結し、所定以上の温度で溶断する遮断導体と、遮断導体に熱を供給するヒーターと、遮断導体を冷却するヒートシンクと、ヒートシンクに冷媒を供給する冷媒供給手段と、ヒーターへの通電を制御し、冷媒供給手段による冷媒の供給量を制御する制御手段とを備えている。   A power semiconductor device according to the present invention includes a power semiconductor element, a first wiring conductor connected to the power semiconductor element, a second wiring conductor that supplies power, a first wiring conductor, and a second wiring conductor. And a heater that supplies heat to the interrupting conductor, a heat sink that cools the interrupting conductor, a refrigerant supply means that supplies refrigerant to the heat sink, and control of energization to the heater And a control means for controlling the amount of refrigerant supplied by the refrigerant supply means.

本発明により、過電流を遮断する遮断機能の感度調整を行うことができる。   According to the present invention, it is possible to adjust the sensitivity of the interruption function for interrupting overcurrent.

実施の形態1.
図1は、本発明の実施の形態1に係る電力用半導体装置を示す断面図である。例えば銅からなるヒートスプレッダ11が、例えばエポキシ樹脂からなる絶縁シート12を介して、ヒートシンク13上に搭載されている。ヒートスプレッダ11上に、IGBT等の電力用半導体素子14が半田接合されている。電力用半導体素子14は、アルミニウムワイヤ15によりリードフレーム16と接続されている。これらのヒートスプレッダ11等は、トランスファーモールド法を用いて、例えばエポキシ樹脂からなるモールド樹脂17で封止されている。
Embodiment 1 FIG.
FIG. 1 is a sectional view showing a power semiconductor device according to the first embodiment of the present invention. For example, a heat spreader 11 made of copper is mounted on a heat sink 13 via an insulating sheet 12 made of, for example, an epoxy resin. On the heat spreader 11, a power semiconductor element 14 such as an IGBT is soldered. The power semiconductor element 14 is connected to the lead frame 16 by an aluminum wire 15. These heat spreaders 11 and the like are sealed with a mold resin 17 made of, for example, an epoxy resin by using a transfer molding method.

第1配線導体21は、リードフレーム16にネジにより連結されている。従って、第1配線導体21は、リードフレーム16及びアルミニウムワイヤ15を介して電力用半導体素子14に接続されている。第1配線導体21と第2配線導体22とは遮断導体23により連結されている。第2配線導体22は、遮断導体23、第1配線導体21及びリードフレーム16を介して、外部の電力源(不図示)からの電力を電力用半導体素子14に供給する。   The first wiring conductor 21 is connected to the lead frame 16 by screws. Accordingly, the first wiring conductor 21 is connected to the power semiconductor element 14 via the lead frame 16 and the aluminum wire 15. The first wiring conductor 21 and the second wiring conductor 22 are connected by a blocking conductor 23. The second wiring conductor 22 supplies power from an external power source (not shown) to the power semiconductor element 14 via the blocking conductor 23, the first wiring conductor 21 and the lead frame 16.

ここで、第1配線導体21,第2配線導体22は、例えば厚み1mm程度のCu又はCu合金からなる。遮断導体23は、第1配線導体21や第2配線導体22よりも融点の低いSn,半田,Zn,Alなどの低融点材料からなり、所定以上の温度で溶断する。遮断導体23は、遮断性能を確保するために細長い形状とするのが好ましい。また、図のように、断面積の小さい部分を設けることで遮断導体23の遮断性能が向上する。   Here, the first wiring conductor 21 and the second wiring conductor 22 are made of, for example, Cu or a Cu alloy having a thickness of about 1 mm. The blocking conductor 23 is made of a low melting point material such as Sn, solder, Zn, Al or the like having a lower melting point than those of the first wiring conductor 21 and the second wiring conductor 22 and is melted at a predetermined temperature or higher. The blocking conductor 23 is preferably in an elongated shape in order to ensure blocking performance. Moreover, the interruption | blocking performance of the interruption | blocking conductor 23 improves by providing a part with a small cross-sectional area like a figure.

遮断導体23が溶融すると、表面エネルギーを小さくするように、第1配線導体21,第2配線導体22にそれぞれ接する2つの球に近い形状に分断される。これにより、第1配線導体21と第2配線導体22とが遮断される。従って、遮断が容易となるように、遮断導体23の体積の1/2の球の直径が第1配線導体21と第2配線導体22の間の距離よりも小さくなるようにするのが好ましい。   When the blocking conductor 23 is melted, it is divided into a shape close to two spheres in contact with the first wiring conductor 21 and the second wiring conductor 22 so as to reduce the surface energy. Thereby, the 1st wiring conductor 21 and the 2nd wiring conductor 22 are interrupted | blocked. Therefore, it is preferable that the diameter of the sphere having a half of the volume of the blocking conductor 23 is smaller than the distance between the first wiring conductor 21 and the second wiring conductor 22 so that the blocking is facilitated.

ヒートシンク13上に基板24が搭載されている。基板24の材料として、例えばエポキシ樹脂、ガラスエポキシ樹脂やPPS(ポリフェニレンサルファイド)を所定の形に成型した板や、マイカ紙、ポリイミドシートなど、耐熱性と絶縁性を有する材料が用いられる。端子台25は、耐熱性を有する絶縁性の樹脂からなり、ヒートシンク13に接着、かしめ、ねじ止めなどで固定されている。第1配線導体21と第2配線導体22は、接着やネジ固定などにより基板24上に固着され、端子台25に内包されたナットにネジで締結されている。遮断導体23は基板24に直接接するように配置されている。   A substrate 24 is mounted on the heat sink 13. As the material of the substrate 24, for example, a material having heat resistance and insulating properties, such as a plate obtained by molding an epoxy resin, glass epoxy resin or PPS (polyphenylene sulfide) into a predetermined shape, mica paper, polyimide sheet, or the like is used. The terminal block 25 is made of an insulating resin having heat resistance, and is fixed to the heat sink 13 by bonding, caulking, screwing, or the like. The first wiring conductor 21 and the second wiring conductor 22 are fixed on the substrate 24 by adhesion, screw fixing, or the like, and are fastened with screws to nuts included in the terminal block 25. The blocking conductor 23 is disposed so as to be in direct contact with the substrate 24.

遮断導体23に熱を供給するヒーター26が、遮断導体23に近接して設けられている。ヒーター26としては、セラミックヒーターなどの平坦面を有するヒーターを用いるのが好ましい。平坦面を有するヒーターであれば遮断導体23に対する熱抵抗を小さくすることができるため、不必要に発熱量を大きくしなくても確実に遮断導体23を溶融させることができる。また、ヒーター26は遮断導体23に直接接してもよいし、絶縁性の被膜などを介して接していてもよい。ただし、遮断導体23が溶融した後に第1配線導体21と第2配線導体22との間の絶縁性を保つために、ヒーター26の遮断導体23と接する面は少なくとも絶縁性の材料で構成されるか又は絶縁性の被覆で覆われている必要がある。   A heater 26 for supplying heat to the blocking conductor 23 is provided in the vicinity of the blocking conductor 23. As the heater 26, a heater having a flat surface such as a ceramic heater is preferably used. Since a heater having a flat surface can reduce the thermal resistance to the interrupting conductor 23, the interrupting conductor 23 can be reliably melted without unnecessarily increasing the amount of heat generation. The heater 26 may be in direct contact with the blocking conductor 23 or may be in contact with an insulating film or the like. However, in order to maintain the insulation between the first wiring conductor 21 and the second wiring conductor 22 after the breaking conductor 23 is melted, the surface of the heater 26 that contacts the breaking conductor 23 is made of at least an insulating material. Or covered with an insulating coating.

また、ヒーター26は、遮断導体23に対してヒートシンク13とは反対側に配置されている。これにより、遮断導体23を基板24上に直接配置して放熱性を確保することができる。ただし、ヒーター26を遮断導体23よりもヒートシンク13側に配置することもできる。この場合、遮断導体23からヒーター26を通ってヒートシンク13へ放熱される。そこで、放熱性を確保するために、ヒーター26の材料として熱伝導率が例えば10W/mK以上の良熱伝導性の材料を用いる。   Further, the heater 26 is disposed on the opposite side of the heat sink 13 with respect to the blocking conductor 23. Thereby, the interruption | blocking conductor 23 can be arrange | positioned directly on the board | substrate 24, and heat dissipation can be ensured. However, the heater 26 can also be disposed closer to the heat sink 13 than the blocking conductor 23. In this case, heat is radiated from the blocking conductor 23 to the heat sink 13 through the heater 26. Therefore, in order to ensure heat dissipation, a material with good thermal conductivity having a thermal conductivity of, for example, 10 W / mK or more is used as the material of the heater 26.

冷媒供給手段27は、ヒートシンク13に冷却水や冷却風などの冷媒を供給する。制御手段28は、ヒーター26への通電を制御し、冷媒供給手段27による冷媒の供給量を制御する。   The coolant supply means 27 supplies coolant such as cooling water and cooling air to the heat sink 13. The control means 28 controls energization to the heater 26 and controls the amount of refrigerant supplied by the refrigerant supply means 27.

次に、上記の構成を有する電力用半導体装置の動作について説明する。まず、遮断機能の感度を上げる場合、制御手段28は、ヒーター26に通電し、かつ冷媒供給手段27による冷媒の供給量を絞るか又は冷媒の供給をストップさせる。これにより、遮断導体23は加熱されるため、定格電流以下でも溶断される。一方、遮断機能の感度を下げる場合、制御手段28は、ヒーター26に通電せず、かつ冷媒供給手段27による冷媒の供給量を増やす。これにより、遮断導体23は冷却されるため、大きな電流が流れても溶断され難い。このように、本実施の形態に係る電力用半導体装置は、過電流を遮断する遮断機能の感度調整を行うことができる。   Next, the operation of the power semiconductor device having the above configuration will be described. First, when increasing the sensitivity of the blocking function, the control unit 28 energizes the heater 26 and reduces the supply amount of the refrigerant by the refrigerant supply unit 27 or stops the supply of the refrigerant. Thereby, since the interruption | blocking conductor 23 is heated, it melts even below a rated current. On the other hand, when lowering the sensitivity of the blocking function, the control means 28 does not energize the heater 26 and increases the amount of refrigerant supplied by the refrigerant supply means 27. Thereby, since the interruption | blocking conductor 23 is cooled, even if a big electric current flows, it is hard to melt | fuse. As described above, the power semiconductor device according to the present embodiment can adjust the sensitivity of the interruption function for interrupting the overcurrent.

また、本実施の形態によれば、抵抗値が小さい遮断導体23でも遮断することができる。逆に言うと、抵抗値が小さい遮断導体23を用いることができるため、遮断機構の体積を小さくすることができる。また、一般的に電力用半導体装置には電力用半導体素子14を冷やすためのヒートシンク13が設けられている。従って、このヒートシンク13を遮断導体23を冷やすのに流用すれば、本実施の形態を実現するためのコストの増加を抑えることができる。   Moreover, according to this Embodiment, it can interrupt | block also with the interruption | blocking conductor 23 with small resistance value. In other words, since the blocking conductor 23 having a small resistance value can be used, the volume of the blocking mechanism can be reduced. In general, the power semiconductor device is provided with a heat sink 13 for cooling the power semiconductor element 14. Therefore, if this heat sink 13 is used to cool the blocking conductor 23, an increase in cost for realizing the present embodiment can be suppressed.

実施の形態2.
図2は、本発明の実施の形態2に係る電力用半導体装置を示す断面図である。実施の形態1と同様の構成については説明を省略し、実施の形態1と異なる構成について説明する。
Embodiment 2. FIG.
FIG. 2 is a sectional view showing a power semiconductor device according to the second embodiment of the present invention. A description of the same configuration as that of the first embodiment will be omitted, and a configuration different from that of the first embodiment will be described.

遮断導体23及びヒーター26が、例えばエポキシ樹脂やポリフェニレンサルファイド(PPS)樹脂などのモールド樹脂31で一括封止されている。遮断導体23は、モールド樹脂31の表面から露出しているか、又は0.1mm程度の薄皮を介して表面に近接して配置されている。モールド樹脂31の中に配線パターンを細く波打たせるようにヒーター26を形成している。   The blocking conductor 23 and the heater 26 are collectively sealed with a mold resin 31 such as an epoxy resin or a polyphenylene sulfide (PPS) resin. The blocking conductor 23 is exposed from the surface of the mold resin 31 or is arranged close to the surface through a thin skin of about 0.1 mm. A heater 26 is formed in the mold resin 31 so that the wiring pattern is thinly corrugated.

このように遮断機構をユニット型とすることで、遮断機構の取り付け性が増し、かつ小型軽量化が可能となった。   Thus, by making the shut-off mechanism a unit type, the mountability of the shut-off mechanism is increased, and the size and weight can be reduced.

また、遮断導体23がモールド樹脂31の表面から露出しているか又は表面に近接して配置されていることで、溶融した遮断導体23はモールド樹脂31の外部空間へ流出する。このため、第1配線導体21と第2配線導体22を遮断するための空隙を形成することができる。   Further, since the blocking conductor 23 is exposed from the surface of the mold resin 31 or arranged close to the surface, the molten blocking conductor 23 flows out to the external space of the mold resin 31. For this reason, the space | gap for interrupting | blocking the 1st wiring conductor 21 and the 2nd wiring conductor 22 can be formed.

ヒーター26は、フレームと異なる厚みの部材で構成されているが、適切な抵抗値を実現できるのであればフレームの一部で構成してもよい。   The heater 26 is composed of a member having a thickness different from that of the frame, but may be composed of a part of the frame as long as an appropriate resistance value can be realized.

遮断導体23の断面積を不必要に大きくしないために、遮断導体23からヒートシンク13への放熱性を確保する必要がある。そこで、ICなどで一般的に用いられる0.7W/mK程度の熱伝導率を有するモールド樹脂31よりも、シリカなどのフィラーの含有率を大きくして3W/mK程度の熱伝導率を有するモールド樹脂31を用いるのが好ましい。   In order not to unnecessarily increase the cross-sectional area of the blocking conductor 23, it is necessary to ensure heat dissipation from the blocking conductor 23 to the heat sink 13. Therefore, a mold having a thermal conductivity of about 3 W / mK by increasing the content of a filler such as silica, rather than a mold resin 31 having a thermal conductivity of about 0.7 W / mK, which is generally used in ICs and the like. It is preferable to use the resin 31.

なお、遮断導体23を熱伝導グリスなどでヒートシンク13に密着させることで、遮断導体23の温度上昇特性を安定化することができる。   In addition, the temperature rise characteristic of the interruption | blocking conductor 23 can be stabilized by sticking the interruption | blocking conductor 23 to the heat sink 13 with heat conductive grease.

実施の形態3.
図3は、本発明の実施の形態3に係る電力用半導体装置を示す断面図であり、図4は、本発明の実施の形態3に係る遮断機構を示す平面図である。実施の形態1と同様の構成については説明を省略し、実施の形態1と異なる構成について説明する。
Embodiment 3 FIG.
FIG. 3 is a cross-sectional view showing a power semiconductor device according to the third embodiment of the present invention, and FIG. 4 is a plan view showing a blocking mechanism according to the third embodiment of the present invention. A description of the same configuration as that of the first embodiment will be omitted, and a configuration different from that of the first embodiment will be described.

ヒーター26は、遮断導体23に対して絶縁性と熱伝導性を両立する距離で垂直方向にオーバーラップして配置され、ヒーター電極33を介して制御手段28に接続されている。遮断導体23及びヒーター26が、例えばエポキシ樹脂やポリフェニレンサルファイド(PPS)樹脂などのモールド樹脂31で一括封止されている。   The heater 26 is disposed so as to overlap in the vertical direction with a distance that achieves both insulation and thermal conductivity with respect to the blocking conductor 23, and is connected to the control means 28 via the heater electrode 33. The blocking conductor 23 and the heater 26 are collectively sealed with a mold resin 31 such as an epoxy resin or a polyphenylene sulfide (PPS) resin.

遮断導体23とヒートシンク13との間のモールド樹脂31の厚さは0.3mm以上1mm以下である。この部分の厚さを0.3mm以上とすることで、ピンホールやボイドなどによる不良発生を防いで絶縁性を確保することができ、かつ生産に不都合のない厚みのモールド樹脂31を底面側に確保することができる。一方、この部分の厚さを1mm以下とすることで、遮断導体23からヒートシンク13への放熱性が向上するため、遮断導体23の抵抗値の選択可能範囲が増大する。   The thickness of the mold resin 31 between the blocking conductor 23 and the heat sink 13 is 0.3 mm or more and 1 mm or less. By making the thickness of this part 0.3 mm or more, it is possible to prevent the occurrence of defects due to pinholes or voids, to ensure insulation, and to provide a mold resin 31 having a thickness that is not inconvenient for production on the bottom side. Can be secured. On the other hand, by setting the thickness of this portion to 1 mm or less, the heat dissipation from the blocking conductor 23 to the heat sink 13 is improved, and the selectable range of the resistance value of the blocking conductor 23 is increased.

モールド樹脂31には、遮断導体23上に0.1mm程度の薄皮を残して凹部32が設けられている。これにより、溶融した遮断導体23はモールド樹脂31の外部空間へ流出する。このため、第1配線導体21と第2配線導体22を遮断するための空隙を形成することができる。なお、凹部32の上方に絶縁性を確保する必要のある部材はなく、ピンホールなどがあっても構わないため、凹部32上のモールド樹脂31は更に薄くてもよい。   The mold resin 31 is provided with a recess 32 on the blocking conductor 23 leaving a thin skin of about 0.1 mm. As a result, the melted blocking conductor 23 flows out to the external space of the mold resin 31. For this reason, the space | gap for interrupting | blocking the 1st wiring conductor 21 and the 2nd wiring conductor 22 can be formed. In addition, since there is no member which needs to ensure insulation above the recessed part 32 and there may be a pinhole etc., the mold resin 31 on the recessed part 32 may be thinner.

実施の形態4.
図5は、本発明の実施の形態4に係る電力用半導体装置を示す断面図である。図示のように、電力用半導体素子14、ヒーター26及び遮断導体23がモールド樹脂34で一括封止されている。即ち、樹脂封止型パワーモジュールの一部に遮断機構及びヒーターを内蔵している。その他の構成は実施の形態2又は3と同様である。これにより、実施の形態2又は3と同様の効果を奏する他、電力用半導体装置の組み立て性が向上し、小型・軽量・低コスト化することができる。特に、図示のようにモールド樹脂34がヒーター26の下に回りこむことで、基板が不要となり低コストとなる。
Embodiment 4 FIG.
FIG. 5 is a sectional view showing a power semiconductor device according to the fourth embodiment of the present invention. As illustrated, the power semiconductor element 14, the heater 26, and the blocking conductor 23 are collectively sealed with a mold resin 34. That is, a blocking mechanism and a heater are incorporated in a part of the resin-encapsulated power module. Other configurations are the same as those in the second or third embodiment. Thereby, in addition to the same effects as those of the second or third embodiment, the assembling property of the power semiconductor device can be improved, and the size, weight, and cost can be reduced. In particular, as shown in the figure, the mold resin 34 wraps under the heater 26, so that the substrate is not required and the cost is reduced.

本発明の実施の形態1に係る電力用半導体装置を示す断面図である。1 is a cross-sectional view showing a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態2に係る電力用半導体装置を示す断面図である。It is sectional drawing which shows the power semiconductor device which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電力用半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device for electric power which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る遮断機構を示す平面図である。It is a top view which shows the interruption | blocking mechanism which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る電力用半導体装置を示す断面図である。It is sectional drawing which shows the power semiconductor device which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

13 ヒートシンク
14 電力用半導体素子
21 第1配線導体
22 第2配線導体
23 遮断導体
26 ヒーター
27 冷媒供給手段
28 制御手段
31,34 モールド樹脂
32 凹部
13 Heat sink 14 Power semiconductor element 21 First wiring conductor 22 Second wiring conductor 23 Breaking conductor 26 Heater 27 Refrigerant supply means 28 Control means 31, 34 Mold resin 32 Recess

Claims (4)

電力用半導体素子と、
前記電力用半導体素子に接続された第1配線導体と、
電力を供給する第2配線導体と、
前記第1配線導体と前記第2配線導体とを連結し、所定以上の温度で溶断する遮断導体と、
前記遮断導体に熱を供給するヒーターと、
前記遮断導体を冷却するヒートシンクと、
前記ヒートシンクに冷媒を供給する冷媒供給手段と、
前記ヒーターへの通電を制御し、前記冷媒供給手段による冷媒の供給量を制御する制御手段とを備えたことを特徴とする電力用半導体装置。
A power semiconductor element;
A first wiring conductor connected to the power semiconductor element;
A second wiring conductor for supplying power;
A blocking conductor that connects the first wiring conductor and the second wiring conductor and melts at a predetermined temperature or more;
A heater for supplying heat to the blocking conductor;
A heat sink for cooling the blocking conductor;
Refrigerant supply means for supplying refrigerant to the heat sink;
A power semiconductor device comprising: control means for controlling energization to the heater and controlling the amount of refrigerant supplied by the refrigerant supply means.
前記ヒーター及び前記遮断導体は樹脂で一括封止されており、前記遮断導体は樹脂の表面から露出しているか又は表面に近接して配置されていることを特徴とする請求項1記載の電力用半導体装置。   2. The electric power device according to claim 1, wherein the heater and the interrupting conductor are collectively sealed with a resin, and the interrupting conductor is exposed from the surface of the resin or arranged close to the surface. Semiconductor device. 前記ヒーター及び前記遮断導体は樹脂で一括封止されており、前記遮断導体と前記ヒートシンクとの間の前記樹脂の厚さは0.3mm以上1mm以下であり、前記樹脂には前記遮断導体上に凹部が設けられていることを特徴とする請求項1記載の電力用半導体装置。   The heater and the blocking conductor are collectively sealed with a resin, and the thickness of the resin between the blocking conductor and the heat sink is not less than 0.3 mm and not more than 1 mm. The power semiconductor device according to claim 1, wherein a recess is provided. 前記電力用半導体素子、前記ヒーター及び前記遮断導体が前記樹脂で一括封止されていることを特徴とする請求項2又は3に記載の電力用半導体装置。   4. The power semiconductor device according to claim 2, wherein the power semiconductor element, the heater, and the blocking conductor are collectively sealed with the resin. 5.
JP2007029596A 2007-02-08 2007-02-08 Semiconductor device Active JP4579259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029596A JP4579259B2 (en) 2007-02-08 2007-02-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029596A JP4579259B2 (en) 2007-02-08 2007-02-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2008198661A true JP2008198661A (en) 2008-08-28
JP4579259B2 JP4579259B2 (en) 2010-11-10

Family

ID=39757363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029596A Active JP4579259B2 (en) 2007-02-08 2007-02-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4579259B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903693A (en) * 2011-07-25 2013-01-30 三星电机株式会社 Power device package module and manufacturing method thereof
US9832872B2 (en) 2014-09-22 2017-11-28 Denso Corporation Method for manufacturing electronic device, and electronic device
WO2018193581A1 (en) * 2017-04-20 2018-10-25 三菱電機株式会社 Power conversion device
JP2018182220A (en) * 2017-04-20 2018-11-15 三菱電機株式会社 Electric power conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101474610B1 (en) * 2012-10-29 2014-12-18 삼성전기주식회사 Heat sink and cooling system with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286148U (en) * 1988-12-22 1990-07-09
JPH0621588A (en) * 1992-07-03 1994-01-28 Hitachi Ltd Circuit board
JP2003068967A (en) * 2001-08-29 2003-03-07 Denso Corp Semiconductor device
JP2004103936A (en) * 2002-09-11 2004-04-02 Mitsubishi Electric Corp Power semiconductor device and manufacturing method thereof
JP2005175439A (en) * 2003-11-20 2005-06-30 Toyota Motor Corp Semiconductor device and automobile comprising it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286148U (en) * 1988-12-22 1990-07-09
JPH0621588A (en) * 1992-07-03 1994-01-28 Hitachi Ltd Circuit board
JP2003068967A (en) * 2001-08-29 2003-03-07 Denso Corp Semiconductor device
JP2004103936A (en) * 2002-09-11 2004-04-02 Mitsubishi Electric Corp Power semiconductor device and manufacturing method thereof
JP2005175439A (en) * 2003-11-20 2005-06-30 Toyota Motor Corp Semiconductor device and automobile comprising it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903693A (en) * 2011-07-25 2013-01-30 三星电机株式会社 Power device package module and manufacturing method thereof
JP2013026627A (en) * 2011-07-25 2013-02-04 Samsung Electro-Mechanics Co Ltd Power element package module and method for manufacturing the same
US9832872B2 (en) 2014-09-22 2017-11-28 Denso Corporation Method for manufacturing electronic device, and electronic device
WO2018193581A1 (en) * 2017-04-20 2018-10-25 三菱電機株式会社 Power conversion device
JP2018182220A (en) * 2017-04-20 2018-11-15 三菱電機株式会社 Electric power conversion device
JPWO2018193581A1 (en) * 2017-04-20 2019-11-07 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JP4579259B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US10505106B1 (en) Encapsulated PCM switching devices and methods of forming the same
JP2008235502A (en) Resin-sealed semiconductor device
JP4579259B2 (en) Semiconductor device
JP2005136018A (en) Semiconductor device
JP6824422B2 (en) Power converter
JPWO2019043807A1 (en) Power converter
JP6486526B1 (en) Power converter
WO2022215357A1 (en) Semiconductor device
US9249961B2 (en) Light-emitting device
US10109603B2 (en) Semiconductor device
JP4679526B2 (en) Power semiconductor device having shut-off mechanism
JP2012212689A (en) Power semiconductor device having breaking mechanism
JP2019175923A (en) Semiconductor package
JP4876934B2 (en) Electrical circuit device
JP2010177619A (en) Semiconductor module
JP6395164B1 (en) Power converter
US20210126513A1 (en) Power conversion device and power conversion device-integrated rotary electric machine
JP4593518B2 (en) Semiconductor device with fuse
JP5111592B2 (en) Power semiconductor device having shut-off mechanism
JP6797289B2 (en) Power converter
JP7337214B1 (en) power converter
JP2009094293A (en) Semiconductor device
JP2006073810A (en) Power semiconductor module and manufacturing method thereof
WO2022215352A1 (en) Power module
EP3534397B1 (en) Resin-sealed semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4579259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250