JP2008195997A - Steel for low strain vacuum carburizing gas quenching, and low strain carburized component produced therefrom - Google Patents

Steel for low strain vacuum carburizing gas quenching, and low strain carburized component produced therefrom Download PDF

Info

Publication number
JP2008195997A
JP2008195997A JP2007031244A JP2007031244A JP2008195997A JP 2008195997 A JP2008195997 A JP 2008195997A JP 2007031244 A JP2007031244 A JP 2007031244A JP 2007031244 A JP2007031244 A JP 2007031244A JP 2008195997 A JP2008195997 A JP 2008195997A
Authority
JP
Japan
Prior art keywords
steel
less
low strain
gas quenching
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007031244A
Other languages
Japanese (ja)
Inventor
Toshiyuki Morita
敏之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007031244A priority Critical patent/JP2008195997A/en
Publication of JP2008195997A publication Critical patent/JP2008195997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for low strain vacuum carburizing gas quenching capable of obtaining a carburized component having reduced strain, in case hardening steel used for producing a machine component used after being subjected to carburizing such as a gear. <P>SOLUTION: The steel has an alloy composition comprising, by weight, 0.10 to 0.30% C, 0.50 to 3.00% Si, 0.30 to 3.00% Mn, ≤0.03% P, ≤0.03% S, 0.01 to 1.00% Cu, 0.01 to 3.00% Ni and 0.30 to 1.00% Cr, and further comprising one or more kinds selected from ≤0.20% Al, ≤0.20% Nb, ≤0.20% Ti, ≤0.05% N and ≤0.01% B, and the balance Fe with inevitable impurities, and satisfying the condition of [Si%]+[Ni%]+[Cu%]-[Cr%]>0.30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浸炭部品の製造に当たり、従来の油焼入れに代わって高圧のガスで冷却して焼入れをすることにより、歪みの小さい製品を得ることができる低歪真空浸炭ガス焼入れ用鋼に関する。本発明はまた、この鋼から低歪の浸炭部品を製造する方法と、得られた低歪浸炭部品にも関する。 The present invention relates to a steel for low strain vacuum carburizing gas quenching that can obtain a product with low distortion by cooling with high pressure gas and quenching instead of conventional oil quenching in the manufacture of carburized parts. The invention also relates to a method for producing low strain carburized parts from this steel and the resulting low strain carburized parts.

鋼を機械部品、たとえばギアの形状に成形し、浸炭して製品とする場合、製品の衝撃強度を確保するためには、浸炭時の粒界酸化層の深さを浅くし、焼戻し軟化抵抗性を高めることが望ましい。このような観点から、比較的多い(0.40〜1.50%)Si量を選択し、特定量のTi、BおよびNを添加した肌焼鋼が開示されている(特許文献1)。焼戻し軟化抵抗性に関しては、Si+0.2Cr+0.01Moの値が1.3%を超過する合金組成の提案がある(特許文献2)。
特開2004−300550 特開2003−231943
When steel is formed into machine parts, such as gears, and carburized into products, in order to ensure the impact strength of the products, the depth of the grain boundary oxide layer during carburizing should be reduced and temper softening resistance It is desirable to increase. From such a point of view, a case hardening steel is disclosed in which a relatively large amount (0.40 to 1.50%) of Si is selected and specific amounts of Ti, B and N are added (Patent Document 1). Regarding temper softening resistance, there is a proposal of an alloy composition in which the value of Si + 0.2Cr + 0.01Mo exceeds 1.3% (Patent Document 2).
JP 2004-300550 A JP2003-231943

浸炭方法としては、従来慣用されてきたガス浸炭法に代って、最近は、真空浸炭法が採用されるようになってきた。真空浸炭法には、ガス浸炭法に対して、つぎのような利点があり、
1)真空中で処理を行なうため材料の酸化が起こらないから、ガス浸炭法では生じやすい粒界酸化が避けられ、強度の向上に寄与する。
2)浸炭装置の構造上、高温浸炭を行ないやすく、そのために迅速な浸炭が可能である。
3)使用する浸炭ガスが少量で済み、ランニングコストが安い。
それを買われて、各種のギアやシャフトの製造に利用されている。しかし真空浸炭には、部品の部分によって、浸炭の度合に大きな差が生じるという難点がある。具体的には、エッジ形状の部分は、平面の部分に比べて炭素濃度が高まり、その結果として、エッジの部分が張り出すという傾向である。
As a carburizing method, a vacuum carburizing method has recently been adopted in place of the conventionally used gas carburizing method. The vacuum carburizing method has the following advantages over the gas carburizing method:
1) Since the material is not oxidized because the treatment is performed in a vacuum, grain boundary oxidation, which is likely to occur in the gas carburizing method, is avoided, which contributes to improvement in strength.
2) Due to the structure of the carburizing device, it is easy to perform high-temperature carburizing, which enables quick carburizing.
3) The carburizing gas used is small, and the running cost is low.
It is bought and used to manufacture various gears and shafts. However, vacuum carburization has a drawback in that there is a large difference in the degree of carburization depending on the parts. Specifically, the edge-shaped portion tends to have a higher carbon concentration than the planar portion, and as a result, the edge portion protrudes.

浸炭操作は、それに続いて浸炭製品を急冷する焼入れを伴う。この焼入れは、従来、もっぱら冷却油中に投入する油焼入れによっていた。近年、焼入れを、高圧の気体を吹き付けることによって行なうガス焼入れが普及しつつある。ガス焼入れには、
1)冷却ガスの圧力や、吹き付ける風速を変化させることにより冷却速度が調節できるため、冷却速度をコントロールできる範囲が広く、それぞれの部品に最適な冷却条件を選択することができる。
2)油槽やピットが不要であり、設備の設置場所に関する制約が少ない。
3)危険物である焼き入れ油を使用しないから、危険物の管理が不要である。
4)作業環境が改善される。
などの利点がある。
The carburizing operation is followed by quenching to quench the carburized product. Conventionally, this quenching has been based on oil quenching which is exclusively put into the cooling oil. In recent years, gas quenching, in which quenching is performed by blowing high-pressure gas, is becoming popular. For gas quenching,
1) Since the cooling rate can be adjusted by changing the pressure of the cooling gas and the wind speed to be blown, the range in which the cooling rate can be controlled is wide, and the optimum cooling condition for each component can be selected.
2) No oil tank or pit is required, and there are few restrictions on the installation location of equipment.
3) Since quenching oil, which is a dangerous material, is not used, it is not necessary to manage dangerous materials.
4) The working environment is improved.
There are advantages such as.

しかし、ガス焼入れには、油焼入れに比べて、焼入れに伴う歪みが大きいという欠点がある。しかも、その歪みの生じ方は、エッジ部分が大きい。その主な理由は、焼入れ後の残留オーステナイト相の差にある。よく知られているように、オーステナイト相は膨張量が小さい。油焼入れであれば、冷却後の部品の到達温度は100℃程度であり、残留オーステナイト相が多量に存在するから、高い炭素濃度の部分でもさしたる膨張が生じないのに対し、ガス焼入れをすると、常温まで冷却されてしまい、オーステナイト相の残留量が小さいから、高炭素の部分は顕著に膨張し、歪みが大きくなるわけである。 However, gas quenching has a disadvantage that distortion caused by quenching is larger than oil quenching. In addition, the edge is large in how the distortion occurs. The main reason is the difference in the retained austenite phase after quenching. As is well known, the austenite phase has a small expansion. In the case of oil quenching, the reached temperature of the parts after cooling is about 100 ° C., and since there is a large amount of residual austenite phase, no significant expansion occurs even in parts with high carbon concentration, whereas when gas quenching is performed, Since it is cooled to room temperature and the residual amount of the austenite phase is small, the high carbon portion expands significantly and the strain increases.

このようなわけで、真空浸炭とガス焼入れとは、どちらも利点のある処理技術でありながら、組み合わせて実施することは、浸炭焼き入れ後の製品の歪みが顕著になるという問題が隘路になって、行なわれていなかった。発明者は、この隘路を打開することを企て、その方策として、部品のエッジ形状の部分に生じる過剰な浸炭を防ぐことが抜本的な解決となると考え、過剰な浸炭が生じにくい合金組成を追求した。その結果、炭化物を形成しやすいCrが過剰な浸炭を引き起こす主要な原因であること、それに対してSi、NiおよびCuは、過剰な浸炭を防ぐ作用があることを知り、これらの間に特定の関係のある合金組成を選択すべきことを見いだした。 For this reason, vacuum carburization and gas quenching are both advantageous processing technologies, but performing them in combination becomes a bottleneck because the distortion of the product after carburizing and quenching becomes significant. It was not done. The inventor attempts to break this bottleneck, and as a measure, the inventors believe that preventing excessive carburization that occurs in the edge-shaped part of the component will be a fundamental solution, and an alloy composition that is unlikely to cause excessive carburization. Pursued. As a result, it is known that Cr, which tends to form carbides, is a major cause of excessive carburization, whereas Si, Ni, and Cu have an action to prevent excessive carburization, and in particular, there are specific We found that the relevant alloy composition should be selected.

本発明の目的は、上記した発明者の知見を活用し、真空浸炭に続いてガス焼入れを行なっても部品に生じる歪みが小さくて済み、その結果、この二つの操作を組み合わせることが可能な低歪真空浸炭ガス焼入れ用鋼を提供することにある。この鋼を材料として低歪の浸炭部品を製造する方法と、その浸炭部品を提供することも、本発明の目的に含まれる。 The object of the present invention is to utilize the above-described knowledge of the inventor, and even if gas quenching is performed following vacuum carburization, the distortion generated in the components can be reduced, and as a result, the two operations can be combined. It is to provide a steel for strained vacuum carburizing gas quenching. It is also included in the object of the present invention to provide a low strain carburized part using this steel as a material and to provide the carburized part.

本発明の低歪真空浸炭ガス焼入れ用鋼は、重量%で、C:0.10〜0.30%、Si:0.50〜3.00%、Mn:0.30〜3.00%、P:0.03%以下、S:0.03%以下、Cu:0.01〜1.00%、Ni:0.01〜3.00%およびCr:0.30〜1.00%を含有し、さらに、Al:0.20%以下、Nb:0.20%以下、Ti:0.20%以下、N:0.05%以下およびB:0.01%以下の1種または2種以上を含有し、残部がFeおよび不可避な不純物からなり、
[Si%]+[Ni%]+[Cu%]−[Cr%]>0.30
の条件を満たす合金組成を有する鋼である。
The steel for low-distortion vacuum carburizing gas quenching of the present invention is, by weight, C: 0.10 to 0.30%, Si: 0.50 to 3.00%, Mn: 0.30 to 3.00%, P: 0.03% or less, S: 0.03% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00% and Cr: 0.30 to 1.00% Furthermore, one or more of Al: 0.20% or less, Nb: 0.20% or less, Ti: 0.20% or less, N: 0.05% or less, and B: 0.01% or less And the balance consists of Fe and inevitable impurities,
[Si%] + [Ni%] + [Cu%]-[Cr%]> 0.30
This steel has an alloy composition that satisfies the following conditions.

本発明の低歪真空浸炭ガス焼入れ用鋼を使用して浸炭部品を製造すれば、前記した真空浸炭に固有の効果、すなわち、粒界酸化の回避、迅速な浸炭および低コスト、という利益を得たうえで、ガス焼入れの有利さ、すなわち、それぞれの部品に最適な冷却条件を選択でき、設備に関する制約が少なく、危険物の管理が不要で、作業環境が改善される、というメリットを、あわせて享受できる。 If carburized parts are manufactured using the low-distortion vacuum carburizing gas quenching steel of the present invention, the advantages inherent in the vacuum carburization described above, that is, avoidance of grain boundary oxidation, rapid carburizing and low cost are obtained. In addition, the advantages of gas quenching, that is, the optimal cooling conditions for each part, the few restrictions on equipment, the management of dangerous goods is unnecessary, and the working environment is improved. You can enjoy it.

本発明の低歪真空浸炭ガス焼入れ用鋼は、前記した基本的な合金成分に加えて、さらに、Mo:2.00%以下を含有することができる。 In addition to the basic alloy components described above, the low-distortion vacuum carburizing gas quenching steel of the present invention can further contain Mo: 2.00% or less.

本発明の浸炭部品の製造は、真空浸炭によって実施するかぎり、アセチレン、エチレン、プロパンなど、種々の炭化水素ガスを浸炭ガスとして使用することができる。浸炭パターンも、任意である。当業者は、後記する実施例を参考にして、適切な真空浸炭の条件を、容易に決定することができるであろう。ガス焼入れもまた、この分野で既知の技術にしたがって実施することができる。 As long as the carburized parts of the present invention are manufactured by vacuum carburizing, various hydrocarbon gases such as acetylene, ethylene, and propane can be used as the carburizing gas. The carburization pattern is also arbitrary. Those skilled in the art will be able to easily determine appropriate vacuum carburizing conditions with reference to the examples described below. Gas quenching can also be performed according to techniques known in the art.

以下、本発明で材料として使用する浸炭用鋼の合金組成について、必須成分および任意成分の順に説明する。
C:0.10〜0.30%
機械部品として必要な強度を得る上で適切な範囲である。C量が下限値0.10%を下回ると、部品の心部にフェライトが生成して、強度が低くなる。一方、上限値0.30%を超えると、加工性とくに被削性が低くなって、部品の成形に不利になる。
Hereinafter, the alloy composition of the carburizing steel used as a material in the present invention will be described in the order of essential components and optional components.
C: 0.10 to 0.30%
This is an appropriate range for obtaining the strength required for machine parts. When the amount of C is less than the lower limit of 0.10%, ferrite is generated at the core of the component, and the strength is lowered. On the other hand, if it exceeds the upper limit of 0.30%, the workability, particularly the machinability, is lowered, which is disadvantageous for the molding of parts.

Mn:0.30〜3.00%
Mnは脱酸剤として鋼の溶製時に添加されるが、炭化物の生成にはあまり影響を与えないから、その量は広い範囲から選ぶことができる。ただし、0.30%に達しない少量では、心部にフェライトが生成して強度が低くなるし、3.00%を超える過大な量では、加工性とくに被削性が低くなることは、C量の限定理由と同じである。
Mn: 0.30 to 3.00%
Mn is added as a deoxidizer during the melting of steel, but since it does not significantly affect the formation of carbides, the amount can be selected from a wide range. However, if a small amount does not reach 0.30%, ferrite forms in the core and the strength decreases, and if it exceeds 3.00%, the workability, particularly machinability, decreases. The same as the reason for limiting the amount.

P:0.03%以下、S:0.03%以下
これらは不純物であって、脆化を招くなど、部品の機械的性質にとって好ましくない成分であるから、その量は低い方がよい。上記の値は、ともに許容限度である。
P: 0.03% or less, S: 0.03% or less These are impurities and are undesirable components for the mechanical properties of the parts, such as causing embrittlement. Therefore, the amount is preferably low. Both of the above values are acceptable limits.

Si:0.50〜3.00%、Ni:0.01〜3.00%、Cu:0.01〜1.00%
これらの元素は、前述したように、炭化物の生成を抑制する成分であって、それぞれ上記の下限値以上であって、かつ、それらの量の合計からCrの量を差し引いた値が0.30、好ましくは0.50を上回るように添加しなければならない。しかし、大量の添加は、いずれも熱間加工性を低下させる。Siは加工性とくに被削性を低下させ、またNiおよびCuは、過大になると炭化物の析出量があまりに低くなって、部品の強度が不足する。これらの観点から、それぞれに上記の上限を設けた。
Si: 0.50 to 3.00%, Ni: 0.01 to 3.00%, Cu: 0.01 to 1.00%
As described above, these elements are components that suppress the formation of carbides, each of which is not less than the above lower limit value, and a value obtained by subtracting the amount of Cr from the total of these amounts is 0.30. , Preferably above 0.50. However, a large amount of addition all decreases hot workability. Si deteriorates workability, particularly machinability, and if Ni and Cu are too large, the amount of carbide deposited becomes too low, resulting in insufficient strength of the part. From these viewpoints, the above upper limit is set for each.

Cr:0.30〜1.00%
Crは炭化物の生成を促進する成分であるから、本発明の浸炭用鋼においては、多量に存在させることができない。1.00%は、炭化物の生成を抑制する成分であるSi、NiおよびCuが多量である場合に可能な、Cr量の上限である。1.00%より高いCr量は、加工性とくに被削性の観点からも、添加することができない。ただし、あまり低減しすぎると焼入れ性が低くなって、製品の機械的特性が不満足になるので、下限値として0.30%を設けた。
Cr: 0.30 to 1.00%
Since Cr is a component that promotes the formation of carbides, it cannot be present in large quantities in the carburizing steel of the present invention. 1.00% is the upper limit of the amount of Cr that can be achieved when Si, Ni, and Cu, which are components that suppress the formation of carbides, are abundant. A Cr amount higher than 1.00% cannot be added from the viewpoint of workability, particularly machinability. However, if it is reduced too much, the hardenability becomes low and the mechanical properties of the product become unsatisfactory, so 0.30% was set as the lower limit.

Al:0.20%以下
結晶粒の粗大化を抑制するはたらきがあり、その効果を得たい場合は、0.005%以上を添加するとよい。過大な添加は、鋼中にアルミナが形成され強度の低下を招くから、避けなければならい。またアルミナの形成は、加工性を損なう点でも好ましくない。このようなわけで、0.20%までのAl添加量を選ぶ。
Al: 0.20% or less There is a function of suppressing the coarsening of crystal grains, and when it is desired to obtain the effect, 0.005% or more is added. Excessive addition must be avoided because alumina is formed in the steel, resulting in a decrease in strength. Also, the formation of alumina is not preferable from the viewpoint of impairing workability. For this reason, an Al addition amount of up to 0.20% is selected.

Nb:0.20%以下、Ti:0.20%以下
これらの成分は、浸炭時に生じる結晶粒の成長を抑制し、整粒組織を保つという目的にとって有効である。過大な添加は加工性に悪影響を及ぼすので、それぞれ上記の限界内の添加量に止める。
Nb: 0.20% or less, Ti: 0.20% or less These components are effective for the purpose of suppressing the growth of crystal grains generated during carburizing and maintaining a sized structure. Excessive addition has an adverse effect on processability, so the addition amount is limited to the above limit.

N:0.05%以下
Nが存在すると結晶粒の粗大化を防止する作用があるので、少なくとも0.001%を存在させることが好ましい。この効果は0.05%程度で飽和するので、この限界を超えて存在させる意味はない。
N: 0.05% or less When N is present, there is an effect of preventing the coarsening of crystal grains. Therefore, it is preferable that at least 0.001% be present. Since this effect is saturated at about 0.05%, it does not make it exist beyond this limit.

B:0.01%以下
Bは、焼入れ性の向上に効果があるので、所望により添加する。大量の存在は加工性にとって有害であるから、0.01%以下の添加量をえらぶ。
B: 0.01% or less B is effective in improving hardenability, so is added as desired. Since the presence of a large amount is harmful to processability, an addition amount of 0.01% or less is selected.

Mo:2.00%以下
焼入れ性を向上させ、焼戻し軟化抵抗性を高めるために添加することができる。多量になると鋼の加工性を悪くするので、2.00%以下の適切な添加量をえらぶべきである。
Mo: 2.00% or less It can be added to improve hardenability and increase temper softening resistance. When the amount is too large, the workability of steel deteriorates, so an appropriate amount of addition of 2.00% or less should be selected.

表1(実施例)および表2(比較例)に示す合金組成の肌焼鋼を溶製した。表に、[Si%]+[Ni%]+[Cu%]−[Cr%]の値を併せて示す。各肌焼鋼を、下記の試験用ヘリカルギアの形状に機械加工した。
モジュール:2.5
歯数:26
ピッチ円径:71.7mm
歯幅:20mm
Case-hardened steels having the alloy compositions shown in Table 1 (Examples) and Table 2 (Comparative Examples) were melted. The table also shows the value of [Si%] + [Ni%] + [Cu%]-[Cr%]. Each case-hardened steel was machined into the shape of the following test helical gear.
Module: 2.5
Number of teeth: 26
Pitch circle diameter: 71.7mm
Teeth width: 20mm

950℃に120分間の真空浸炭の工程と、それに続く850℃で30分間の拡散工程とを経て、1×10KPaのNガスを風速1m/秒で吹き付けて冷却する、ガス焼入れを行なった。真空浸炭に使用したガスは、表1および表2に示すように、プロパン(P)またはアセチレン(A)である。得られた真空浸炭ガス焼入れの製品である試験用ギアの歯面の歪みを、アラサ計により測定した。結果を、表1および表2に、合わせて示す。 Gas quenching is performed by performing vacuum carburization at 950 ° C. for 120 minutes, followed by a diffusion step at 850 ° C. for 30 minutes, and cooling by blowing N 2 gas of 1 × 10 3 KPa at a wind speed of 1 m / second. It was. As shown in Tables 1 and 2, the gas used for vacuum carburization is propane (P) or acetylene (A). The distortion of the tooth surface of the test gear, which was the product of the obtained carburizing gas quenching, was measured with an Arasa meter. The results are shown in Table 1 and Table 2 together.

比較例1〜4は、[Si%]+[Ni%]+[Cu%]−[Cr%]>0.30の条件を満たしていない。比較例5および6は、この条件を満たしてはいるが、前者はCr量が過大であって、後者はSi量が不足であり、ともに本発明の合金組成の範囲外である。比較例では歪み量が30〜70μmに達したのに対し、本発明の実施例では、20μmをさほど超えない程度におさまっており、真空浸炭−ガス焼入れの組み合わせを用いても、歪みの小さい浸炭部品が得られた。 Comparative Examples 1 to 4 do not satisfy the condition of [Si%] + [Ni%] + [Cu%] − [Cr%]> 0.30. Although Comparative Examples 5 and 6 satisfy this condition, the former has an excessive amount of Cr and the latter has an insufficient amount of Si, both of which are outside the range of the alloy composition of the present invention. In the comparative example, the strain amount reached 30 to 70 μm, whereas in the examples of the present invention, the strain amount was not much higher than 20 μm, and carburization with small strain was achieved even when using a combination of vacuum carburization and gas quenching. Parts were obtained.

Figure 2008195997
Figure 2008195997

Figure 2008195997
Figure 2008195997

Claims (3)

重量%で、C:0.10〜0.30%、Si:0.50〜3.00%、Mn:0.30〜3.00%、P:0.03%以下、S:0.03%以下、Cu:0.01〜1.00%、Ni:0.01〜3.00%およびCr:0.30〜1.00%を含有し、さらに、Al:0.20%以下、Nb:0.20%以下、Ti:0.20%以下、N:0.05%以下およびB:0.01%以下の1種または2種以上を含有し、残部がFeおよび不可避な不純物からなり、
[Si%]+[Ni%]+[Cu%]−[Cr%]>0.30
の条件を満たす合金組成を有する低歪真空浸炭ガス焼入れ用鋼。
% By weight, C: 0.10 to 0.30%, Si: 0.50 to 3.00%, Mn: 0.30 to 3.00%, P: 0.03% or less, S: 0.03 %: Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00% and Cr: 0.30 to 1.00%, Al: 0.20% or less, Nb : 0.20% or less, Ti: 0.20% or less, N: 0.05% or less, and B: 0.01% or less, containing one or more, the balance being Fe and inevitable impurities ,
[Si%] + [Ni%] + [Cu%]-[Cr%]> 0.30
Steel for low strained vacuum carburizing gas quenching having an alloy composition that satisfies the following conditions.
さらに、Mo:2.00%以下を含有する請求項1の低歪真空浸炭ガス焼入れ用鋼。 Furthermore, the steel for low distortion vacuum carburizing gas quenching of Claim 1 containing Mo: 2.00% or less. 請求項1または2に記載の鋼を部品形状に成形し、真空浸炭を行なった後、ガス焼入れを行なうことからなる低歪浸炭部品の製造方法。 A method for producing a low-distortion carburized part comprising forming the steel according to claim 1 or 2 into a part shape, performing vacuum carburizing, and then performing gas quenching.
JP2007031244A 2007-02-09 2007-02-09 Steel for low strain vacuum carburizing gas quenching, and low strain carburized component produced therefrom Pending JP2008195997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031244A JP2008195997A (en) 2007-02-09 2007-02-09 Steel for low strain vacuum carburizing gas quenching, and low strain carburized component produced therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031244A JP2008195997A (en) 2007-02-09 2007-02-09 Steel for low strain vacuum carburizing gas quenching, and low strain carburized component produced therefrom

Publications (1)

Publication Number Publication Date
JP2008195997A true JP2008195997A (en) 2008-08-28

Family

ID=39755210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031244A Pending JP2008195997A (en) 2007-02-09 2007-02-09 Steel for low strain vacuum carburizing gas quenching, and low strain carburized component produced therefrom

Country Status (1)

Country Link
JP (1) JP2008195997A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041561A1 (en) * 2008-10-08 2010-04-15 アイシン・エィ・ダブリュ株式会社 Process for production of carburized part and steel part
JP2015123471A (en) * 2013-12-26 2015-07-06 マツダ株式会社 Bonding method combining press-fit and blazing
CN109338280A (en) * 2018-11-21 2019-02-15 中国航发哈尔滨东安发动机有限公司 Nitriding method after a kind of three generations's carburizing steel carburizing
JP2020041199A (en) * 2018-09-12 2020-03-19 大同特殊鋼株式会社 High surface pressure resistant component and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041561A1 (en) * 2008-10-08 2010-04-15 アイシン・エィ・ダブリュ株式会社 Process for production of carburized part and steel part
JP2010090437A (en) * 2008-10-08 2010-04-22 Aisin Aw Co Ltd Method for manufacturing carburized part and steel part
US8123873B2 (en) 2008-10-08 2012-02-28 Aisin Aw Co., Ltd. Method for manufacturing carburized part, and steel part
KR101244134B1 (en) 2008-10-08 2013-03-14 아이신에이더블류 가부시키가이샤 Process for production of carburized part and steel part
JP2015123471A (en) * 2013-12-26 2015-07-06 マツダ株式会社 Bonding method combining press-fit and blazing
JP2020041199A (en) * 2018-09-12 2020-03-19 大同特殊鋼株式会社 High surface pressure resistant component and manufacturing method therefor
WO2020054522A1 (en) * 2018-09-12 2020-03-19 大同特殊鋼株式会社 High surface-pressure resistant component and production method therefor
CN112689686A (en) * 2018-09-12 2021-04-20 大同特殊钢株式会社 High surface pressure resistant member and method for manufacturing same
CN112689686B (en) * 2018-09-12 2022-08-30 大同特殊钢株式会社 High surface pressure resistant member and method for manufacturing same
JP7154073B2 (en) 2018-09-12 2022-10-17 大同特殊鋼株式会社 High surface pressure resistant parts and manufacturing method thereof
CN109338280A (en) * 2018-11-21 2019-02-15 中国航发哈尔滨东安发动机有限公司 Nitriding method after a kind of three generations's carburizing steel carburizing

Similar Documents

Publication Publication Date Title
JP5777090B2 (en) Steel for machine structural use with excellent surface fatigue strength
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP5432105B2 (en) Case-hardened steel and method for producing the same
JPWO2010082454A1 (en) Induction hardening steel
JP5541418B2 (en) Spring steel and spring
JP6468402B2 (en) Case-hardened steel, method for producing the same, and method for producing gear parts
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP2007308772A (en) Carburized parts and manufacturing method therefor
JP2009263763A (en) Method for manufacturing steel material to be carburized
JP5804832B2 (en) Steel material made of carburizing steel with excellent torsional fatigue properties
JP2008195997A (en) Steel for low strain vacuum carburizing gas quenching, and low strain carburized component produced therefrom
JP6078008B2 (en) Case-hardening steel and method for manufacturing machine structural parts
JP6301145B2 (en) Sleeve dog gear
KR102165228B1 (en) Case hardening steel, method of producing case hardening steel, and method of producing gear part
WO2017209180A1 (en) Case-hardened steel and manufacturing method therefor as well as gear component manufacturing method
JP5332410B2 (en) Manufacturing method of carburizing steel
JP6078007B2 (en) Case-hardening steel and method for manufacturing machine structural parts
JP2014210941A (en) Powder high-speed tool steel excellent in high-temperature temper hardness
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP2011026688A (en) STEEL FOR CARBURIZING HAVING EXCELLENT STRENGTH WITHOUT ADDING Mo AND CARBURIZED COMPONENT USING THE SAME
JP6256416B2 (en) Case-hardened steel
KR101302693B1 (en) Plastic mold steel with uniform hardness and workability by reducing segregation
KR102245226B1 (en) High manganese steel having excellent oxygen cutting property and manufacturing method for the same
JP2012132077A (en) Steel excellent in pitting-resistant strength, bending fatigue-resistant strength and torsional fatigue-resistant strength
JP2022080598A (en) Carburized component