JP2008195600A - Organic-inorganic composite material supporting metal-tropolone complex between layers and its manufacturing method - Google Patents

Organic-inorganic composite material supporting metal-tropolone complex between layers and its manufacturing method Download PDF

Info

Publication number
JP2008195600A
JP2008195600A JP2008001715A JP2008001715A JP2008195600A JP 2008195600 A JP2008195600 A JP 2008195600A JP 2008001715 A JP2008001715 A JP 2008001715A JP 2008001715 A JP2008001715 A JP 2008001715A JP 2008195600 A JP2008195600 A JP 2008195600A
Authority
JP
Japan
Prior art keywords
metal
organic
layers
inorganic composite
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008001715A
Other languages
Japanese (ja)
Other versions
JP5158858B2 (en
Inventor
Fumihiko Ohashi
文彦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008001715A priority Critical patent/JP5158858B2/en
Publication of JP2008195600A publication Critical patent/JP2008195600A/en
Application granted granted Critical
Publication of JP5158858B2 publication Critical patent/JP5158858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic-inorganic composite material having excellent persistence of physiologically active function and sustained release properties of a physiologically active substance and also water retentivity and environmental affinity, and to provide its manufacturing method and a processed product containing the material. <P>SOLUTION: In the manufacturing method of the organic inorganic composite material wherein a metal-tropolone complex having the physiologically active function is supported between the layers, an inorganic laminar compound is used as a main raw material and one or more kinds of selected metal ions and tropolones having the physiologically active function are inserted as an interlayer ion between layers of the inorganic laminar compound by cation exchange reaction in form of the metal-tropolone complex. The organic inorganic composite material prepared by the manufacturing method and the processed product using the material are provided. In the organic inorganic composite material obtained by supporting the metal-tropolone complex having the physiologically active function between the layers capable of controlling a sustained-release speed of an organic compound having the active function, a metal ion and an organic metal complex, the sustained release property of the physiologically active function is greately improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生理活性機能を有する金属−トロポロン錯体を層間担持した有機無機複合材料及びその製造方法に関するものであり、更に詳しくは、無機層状化合物を主原料とし、その層間に植物生長調節機能、病害虫防除機能、雑草防除機能、抗微生物機能等の生理活性作用を有する金属−トロポロン錯体を層間に挿入し、担持させた新規な生理活性機能を有する有機無機複合材料、その製造方法、及び該方法で作製される有機無機複合材料を含有する加工製品に関するものである。   The present invention relates to an organic-inorganic composite material in which a metal-tropolone complex having a physiological activity function is supported between layers and a method for producing the same, and more specifically, an inorganic layered compound as a main raw material, and a plant growth regulating function between the layers, Organic-inorganic composite material having a novel physiologically active function in which a metal-tropolone complex having a physiologically active action such as a pest control function, a weed control function, an antimicrobial function or the like is inserted and supported between layers, a method for producing the same, and the method The present invention relates to a processed product containing the organic-inorganic composite material produced in (1).

本発明は、生理活性機能を有する金属−トロポロン錯体を層間担持した新規有機無機複合材料とその製造方法を提供するものであり、特に、優れた生理活性機能の持続性や保水性、耐候性及び環境親和性を有し、生活環境や医療福祉環境、植物の組織培養、農業、植林をはじめとする林業全般、植物栽培などに応用可能な生理活性機能を有する有機無機複合材料、該有機無機複合材料を含有する加工製品を提供するものである。   The present invention provides a novel organic-inorganic composite material in which a metal-tropolone complex having a bioactive function is supported between layers and a method for producing the same, and in particular, has excellent bioactivity function sustainability, water retention, weather resistance, and the like. An organic-inorganic composite material having a bioactive function that has environmental affinity and can be applied to living environment, medical welfare environment, plant tissue culture, agriculture, general forestry including afforestation, plant cultivation, etc., the organic-inorganic composite A processed product containing the material is provided.

ヒノキチオールをはじめとするトロポロン類化合物は、台湾檜油、青森産檜葉油及びウェスタンレッドセダーオイル等に含有する結晶性物質である。この天然由来の化合物は、現在では、合成品としても入手可能であり、例えば、抗菌防黴剤や養毛育毛剤、アロマテラピー用芳香剤、歯磨や食品添加物等の様々な分野で広く利用されている。   Tropolones such as hinokitiol are crystalline substances contained in Taiwan coconut oil, Aomori coconut oil, Western red cedar oil, and the like. This naturally-derived compound is now available as a synthetic product, and is widely used in various fields such as antibacterial and antifungal agents, hair restorers, aromatherapy fragrances, toothpaste and food additives. Has been.

しかし、このトロポロン類化合物は、融点が52−53℃と低いことと、昇華性や光分解性が高いために、上記効果を長期間持続させることが困難であった。そのため、こうした生理活性物質あるいは薬剤が徐々に供給されるように、それらを徐放性にした内服又は外用の製剤が、徐放薬、徐放錠、徐放製剤、持効性製剤などと称されて、盛んに用いられている。   However, since this tropolone compound has a low melting point of 52-53 ° C. and high sublimation and photodegradability, it has been difficult to maintain the above effects for a long time. Therefore, internal or external preparations in which they are gradually released so that such physiologically active substances or drugs are gradually supplied are referred to as sustained-release drugs, sustained-release tablets, sustained-release preparations, sustained-release preparations, etc. It has been actively used.

これまでに、薬剤を無機層状物質と組み合わせて、徐放性、耐熱性あるいは分散性を改善する製薬に関する幾つかの手段が報告されている。トロポロン類化合物であるヒノキチオールを含む製品として、先行技術文献には、例えば、ヒノキチオール−粘土複合体を含む成形品、ヒノキチオールを含む粘土複合物、ヒノキチオールを含む殺菌剤組成物、ヒノキチオールを混合した品質保存剤(特許文献1〜4参照)や、セラミックス中の金属イオンにヒノキチオールを配位させることにより得られるセラミックス系組成物(特許文献5〜6参照)、等が報告されている。   So far, several means relating to pharmaceuticals have been reported to improve sustained release, heat resistance or dispersibility by combining a drug with an inorganic layered substance. As a product containing hinokitiol which is a tropolone compound, the prior art documents include, for example, a molded article containing hinokitiol-clay complex, a clay compound containing hinokitiol, a fungicide composition containing hinokitiol, and a quality preservation mixed with hinokitiol. Agents (see Patent Literatures 1 to 4), ceramic compositions obtained by coordinating hinokitiol to metal ions in ceramics (see Patent Literatures 5 to 6), and the like have been reported.

そこで、これらの手段について詳しくみてみると、例えば、層状粘土成分の層間空隙中に、ヒノキチオールをゲストとして導入させる手段(特許文献1参照)、が提案されている。しかし、これは、熱可塑性樹脂に配合して成形することが困難であったヒノキチオールを粘土と複合し、成形品としたものに過ぎない。   Therefore, when these means are examined in detail, for example, means for introducing hinokitiol as a guest into the interlayer void of the layered clay component has been proposed (see Patent Document 1). However, this is merely a product obtained by combining hinokitiol, which has been difficult to be molded into a thermoplastic resin, with clay.

また、例えば、ヒノキチオールを油溶性抗菌防黴剤として含む粘土複合物(特許文献2参照)、ヒノキチオールを含む殺菌剤組成物(特許文献3参照)、ヒノキチオールとニンニク成分や唐辛子成分を含む品質保存剤(特許文献4参照)、が提案されている。しかし、これらは、上記生理活性物質を混合するのみであり、徐放性について考慮されておらず、これらの成分を無機層状化合物の層間に導入するものではない。   In addition, for example, a clay composite containing hinokitiol as an oil-soluble antibacterial / antifungal agent (see Patent Document 2), a bactericidal composition containing hinokitiol (see Patent Document 3), a quality preservative containing hinokitiol and garlic components and chili components (See Patent Document 4). However, these are only mixed with the above-mentioned physiologically active substances, are not considered for sustained release, and do not introduce these components between the layers of the inorganic layered compound.

また、セラミックス中に含まれるカルシウムイオン又はマグネシウムイオンにヒノキチオールを配位させて得られるセラミックス系組成物(特許文献5参照)、が提案されている。しかし、得られたヒノキチオール包接セラミックスは、セラミックスであるトバモライト、ゾノトライト等の層間にヒノキチオールを取り込んだという相互関係が明らかとされておらず、また、組成物のヒノキチオール含有率が数%程度と極めて低い。   A ceramic composition obtained by coordinating hinokitiol to calcium ions or magnesium ions contained in ceramics (see Patent Document 5) has been proposed. However, the obtained hinokitiol inclusion ceramics have not been shown to have a mutual relationship that hinokitiol is incorporated between layers of ceramics such as tobermorite and zonotolite, and the hinokitiol content of the composition is as high as several percent. Low.

更に、セラミックス中のカルシウムイオン又はマグネシウムイオンを他の金属イオンと交換し、導入された金属イオンにヒノキチオールを配位させて得られるヒノキチオール包接セラミックス(特許文献6参照)、が提案されている。しかし、これも、同様に、セラミックスである粘土鉱物の層間にヒノキチオールが挿入されたことを示す明確な実証はなされておらず、導入されたとされる金属イオン及びヒノキチオールの含有率も数%程度であり、積極的に粘土鉱物層間に生理活性物質を挿入するものではない。   Furthermore, hinokitiol inclusion ceramics obtained by exchanging calcium ions or magnesium ions in ceramics with other metal ions and coordinating hinokitiol to the introduced metal ions (see Patent Document 6) have been proposed. However, there is no clear demonstration that hinokitiol has been inserted between the layers of ceramic clay mineral, and the content of metal ions and hinokitiol that have been introduced is about several percent. Yes, it does not actively insert physiologically active substances between clay mineral layers.

特開2004−18661号公報JP 2004-18661 A 特開2003−104719号公報JP 2003-104719 A 特開平10−265408号公報Japanese Patent Laid-Open No. 10-265408 特開平10−210958号公報Japanese Patent Laid-Open No. 10-210958 特開平11−21201号公報Japanese Patent Laid-Open No. 11-21201 特開平11−71215号公報Japanese Patent Laid-Open No. 11-71215

このような状況の中で、本発明者らは、上記従来技術に鑑みて、有効成分の長期持続性、徐放性、耐熱性及び耐候性を兼備した機能性材料を開発することを目標として鋭意研究を積み重ねた結果、無機層状化合物である粘土鉱物の層間に、生理活性機能を有するトロポロン類化合物と、抗菌防黴機能を有する金属イオンからなる有機金属錯体を層間に挿入、担持し、その層間からの有機金属錯体の放出量を制御することで、所期の目的を達成し得ることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have aimed at developing a functional material that combines the long-term sustainability, sustained release, heat resistance and weather resistance of the active ingredient in view of the above-described conventional technology. As a result of intensive research, an organometallic complex consisting of a tropolone compound having a bioactive function and a metal ion having an antibacterial and antifungal function is inserted and supported between layers of a clay mineral that is an inorganic layered compound. The inventors have found that the intended purpose can be achieved by controlling the release amount of the organometallic complex from the interlayer, and the present invention has been completed.

すなわち、本発明は、低コストでかつ安全に、目的に応じた機能を賦与させることを可能とする、新しい生理活性機能を有する有機無機複合材料とその新規製造方法、該方法で製造される、生理活性機能の優れた持続性あるいは生理活性物質の徐放性とともに、耐熱性、耐候性、保水性、環境親和性を有する新規有機無機複合材料、及びそれを用いた加工製品を提供することを目的とするものである。   That is, the present invention is an organic-inorganic composite material having a new physiologically active function and a novel production method thereof, which is capable of imparting a function according to the purpose at low cost and safely, and is produced by the method. To provide a novel organic-inorganic composite material having heat resistance, weather resistance, water retention, environmental compatibility, and a processed product using the same, as well as sustained sustainability of bioactive functions or sustained release of bioactive substances It is the purpose.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)金属−トロポロン錯体を層間担持して、その生理活性機能の徐放性を向上させた有機無機複合材料であって、無機層状化合物を主原料とし、この無機層状化合物の層間に生理活性機能を有する金属−トロポロン錯体を挿入、担持させたことを特徴とする、金属−トロポロン錯体を層間担持した有機無機複合材料。
(2)生理活性機能を有する金属−トロポロン錯体を形成する金属カチオンが、Cu、Zn、Ni及びAlあるいは遷移金属群の中から選ばれた少なくとも一種以上の金属イオンである、前記(1)に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。
(3)生理活性機能を有する金属−トロポロン錯体を形成する有機配位子が、ヒノキチオール、β−ドラブリン、α−ツヤプリシン、γ−ツヤプリシン及び4−アセチルトロポロン中から選ばれた少なくとも一種以上の有機配位子である、前記(1)に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。
(4)主原料とする無機層状化合物が、天然もしくは合成の層状粘土鉱物、又は天然もしくは合成の膨潤性雲母である、前記(1)に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。
(5)層状粘土鉱物が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティーブンサイトのスメクタイト族粘土鉱物、バーミキュライト、又は膨潤性雲母である雲母粘土鉱物あるいはフッ化雲母である、前記(4)に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。
(6)前記(1)から(5)のいずれかに記載の有機無機複合材料を製造する方法であって、無機層状化合物を主原料とし、その無機層状化合物の層間に生理活性機能を有する金属−トロポロン錯体を挿入して、この無機層状化合物の層間に存在する交換性陽イオンと、生理活性機能を有する金属−トロポロン錯体を交換することにより、金属−トロポロン錯体を層間担持した有機無機複合材料を合成することを特徴とする、金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。
(7)生理活性機能を有する金属−トロポロン錯体を形成する金属カチオンが、Cu、Zn、Ni及びAlあるいは遷移金属群の中から選ばれた少なくとも一種以上の金属イオンである、前記(6)に記載の金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。
(8)生理活性機能を有する金属−トロポロン錯体を形成する有機配位子が、ヒノキチオール、β−ドラブリン、α−ツヤプリシン、γ−ツヤプリシン及び4−アセチルトロポロン中から選ばれた少なくとも一種以上の有機配位子である、前記(6)に記載の金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。
(9)主原料とする無機層状化合物が、天然もしくは合成の層状粘土鉱物、又は天然もしくは合成の膨潤性雲母である、前記(6)に記載の金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。
(10)前記(1)から(5)のいずれかに記載の金属−トロポロン錯体を層間担持した有機無機複合材料を含有し、任意の形態に製剤加工されていることを特徴とする加工製品。
The present invention for solving the above-described problems comprises the following technical means.
(1) An organic-inorganic composite material in which a metal-tropolone complex is supported on an interlayer to improve the sustained release of the physiologically active function, using an inorganic layered compound as a main raw material, and the physiological activity between the layers of the inorganic layered compound An organic-inorganic composite material carrying a metal-tropolone complex as an interlayer, wherein a metal-tropolone complex having a function is inserted and supported.
(2) In the above (1), the metal cation forming the metal-tropolone complex having a physiologically active function is at least one or more metal ions selected from Cu, Zn, Ni and Al or a transition metal group. An organic-inorganic composite material in which the metal-tropolone complex described above is supported between layers.
(3) The organic ligand that forms the metal-tropolone complex having a physiologically active function is at least one organic compound selected from hinokitiol, β-drabrin, α-tyaprisin, γ-tyaprisin, and 4-acetyltropolone. An organic-inorganic composite material comprising a metal-tropolone complex according to (1) above, which is a ligand.
(4) An organic-inorganic composite material having an interlayer-supported metal-tropolone complex according to (1) above, wherein the inorganic layered compound as a main raw material is a natural or synthetic layered clay mineral, or a natural or synthetic swelling mica .
(5) The layered clay mineral is montmorillonite, beidellite, nontronite, saponite, hectorite, smectite group clay mineral of stevensite, vermiculite, or mica clay mineral or fluorinated mica which is a swellable mica (4) An organic-inorganic composite material in which the metal-tropolone complex described in 1) is supported between layers.
(6) A method for producing the organic-inorganic composite material according to any one of (1) to (5) above, wherein an inorganic layered compound is used as a main raw material and a metal having a physiologically active function between the layers of the inorganic layered compound -An organic-inorganic composite material in which a metal-tropolone complex is supported between layers by inserting a tropolone complex and exchanging exchangeable cations existing between layers of the inorganic layered compound with a metal-tropolone complex having a physiologically active function A method for producing an organic-inorganic composite material carrying a metal-tropolone complex as an interlayer, characterized in that
(7) In the above (6), the metal cation forming the metal-tropolone complex having a physiologically active function is at least one metal ion selected from the group consisting of Cu, Zn, Ni and Al or transition metals. The manufacturing method of the organic inorganic composite material which carry | supported the metal-tropolone complex of description to an interlayer.
(8) The organic ligand that forms the metal-tropolone complex having a physiologically active function is at least one organic compound selected from hinokitiol, β-drabrin, α-tyaprisin, γ-tyaprisin, and 4-acetyltropolone. A method for producing an organic-inorganic composite material having a metal-tropolone complex according to (6) above, which is a ligand.
(9) An organic-inorganic composite material having an interlayer-supported metal-tropolone complex according to (6), wherein the inorganic layered compound as a main raw material is natural or synthetic layered clay mineral, or natural or synthetic swellable mica Manufacturing method.
(10) A processed product comprising an organic-inorganic composite material in which the metal-tropolone complex according to any one of (1) to (5) above is supported, and being processed into a desired form.

次に、本発明について更に詳細に説明する。
本発明の生理活性機能を有する有機無機複合材料は、特に、主原料として、無機層状化合物、例えば、層状粘土鉱物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティーブンサイト等のスメクタイト族粘土鉱物、バーミキュライト、又は天然もしくは合成の膨潤性雲母である雲母粘土鉱物あるいはフッ化雲母等を用いている。本発明は、この無機層状化合物の層間に、Cu、Zn、Ni及びAl等あるいは遷移金属群の中から選ばれた少なくとも一種以上の金属イオンと、トロポロン類化合物で形成された金属−トロポロン錯体を挿入、担持したことを特徴としている。
Next, the present invention will be described in more detail.
The organic-inorganic composite material having a physiologically active function of the present invention is, in particular, an inorganic layered compound such as a layered clay mineral, montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, etc. Mineral, vermiculite, or mica clay mineral or fluorinated mica that is a natural or synthetic swelling mica is used. In the present invention, a metal-tropolone complex formed of at least one metal ion selected from Cu, Zn, Ni, Al, etc. or a transition metal group and a tropolone compound is interposed between the inorganic layered compounds. It is characterized by being inserted and carried.

本発明は、生理活性機能を有する金属−トロポロン錯体を無機層状化合物の層間に挿入することにより、その層間からの金属−トロポロン錯体の放出量を制御することを可能とし、本発明は、無機層状化合物の層間と金属−トロポロン錯体の静電的な相互作用により、生理活性機能の優れた持続性あるいは生理活性物質の徐放性を有するとともに、耐熱性、耐候性、保水性、環境親和性を有する新規有機無機複合材料、及びそれを用いた加工製品を製造し、提供することを可能とするものである。   The present invention makes it possible to control the release amount of a metal-tropolone complex from an interlayer of an inorganic layered compound by inserting a metal-tropolone complex having a bioactive function between the layers of the inorganic layered compound. Due to the electrostatic interaction between the compound layer and the metal-tropolone complex, it has excellent bioactivity and sustained release of the bioactive substance, as well as heat resistance, weather resistance, water retention and environmental compatibility. It is possible to manufacture and provide a novel organic-inorganic composite material having a processed product and a processed product using the same.

次に、本発明の無機層状化合物について詳しく説明する。粘土鉱物は、無機結晶物質であり、組成や構造によって様々な種類が存在するが、その基本構造は、どれも類似している。ここでは、これらの粘土鉱物の構造について説明する。粘土鉱物は、一部の例外を除いて、全て層状構造を有している。層状構造とは、無機結晶層が多数積み重なった積層構造である。   Next, the inorganic layered compound of the present invention will be described in detail. Clay minerals are inorganic crystal substances, and there are various types depending on the composition and structure, but the basic structures are all similar. Here, the structure of these clay minerals will be described. All clay minerals have a layered structure with some exceptions. The layered structure is a laminated structure in which a large number of inorganic crystal layers are stacked.

例えば、ベントナイトの主成分であるモンモリロナイトを代表例として説明すると、モンモリロナイトは、層状ケイ酸塩鉱物の1種であるスメクタイト族に分類される粘土鉱物である。層状ケイ酸塩鉱物の結晶構造は、イオン半径の大きい酸素原子の数と配置により決まる。ケイ酸塩鉱物の基本構造は、1個のケイ酸原子を中心とした四面体の各頂点に酸素原子を有する正四面体である。大部分のケイ酸塩鉱物は、この正四面体の3個の原子を隣接した各々の四面体と共有することにより、1次元的な六角網目状の層を形成している。   For example, montmorillonite, which is the main component of bentonite, will be described as a representative example. Montmorillonite is a clay mineral classified into the smectite group, which is a kind of layered silicate mineral. The crystal structure of the layered silicate mineral is determined by the number and arrangement of oxygen atoms having a large ionic radius. The basic structure of a silicate mineral is a regular tetrahedron having an oxygen atom at each vertex of a tetrahedron centered on one silicate atom. Most silicate minerals share the three tetrahedron atoms with each adjacent tetrahedron to form a one-dimensional hexagonal network layer.

この四面体層の他に、O2−やOHなどの陰イオンが八面体の各頂点に各々1個ずつ位置し、その中心にAl3+、Mg2+などの陽イオンが存在し、各頂点の陰イオンが隣接した八面体同士を結びつけ、二次元的な網状をなす八面体層、がある。これは、Mg、Alなどの原子を中心とし、酸素原子が六配位している八面体と、その八面体が稜共有(酸素原子と酸素原子を結んだ辺を共有している)によって、二次元的な網目状を形成している八面体層である。 In addition to this tetrahedral layer, one anion such as O 2− and OH is located at each vertex of the octahedron, and cations such as Al 3+ and Mg 2+ are present at the center. There is an octahedral layer that connects two adjacent octahedrons to form a two-dimensional network. This is because the octahedron is centered on atoms such as Mg and Al, and the oxygen atoms are six-coordinated, and the octahedron shares the edge (the side that connects the oxygen atom and the oxygen atom). It is an octahedral layer forming a two-dimensional network.

これらの四面体層と八面体層との結びつきは、各層が1枚ずつの二層構造(1:1型)、二枚の四面体層の間に八面体層が挟まった構造(2:1型)、2:1型の層間域に八面体層が位置する構造(2:1:1型)、等があり、四面体層と八面体層の様々な組み合わせ方で、一組の単位層を形成している。   The connection between these tetrahedral layers and octahedral layers is a two-layer structure (1: 1 type) in which each layer is one, and a structure in which an octahedral layer is sandwiched between two tetrahedral layers (2: 1 Type), a structure in which an octahedral layer is located in an interlayer region of 2: 1 type (2: 1: 1 type), etc., and a combination of tetrahedral layer and octahedral layer, a set of unit layers Is forming.

モンモリロナイトの結晶構造は、ケイ酸四面体層−アルミナ八面体層−ケイ酸四面体層の3層が積み重なっており(2:1型)、その単位層は、厚さ約10Å(1nm)、広がり0.1〜1μmという極めて薄い板状になっている。アルミナ八面体層の中心原子であるAl3+の1部がMg2+に置換されることで陽電荷不足となり、各結晶層自体は負に帯電しているが、結晶層間にNa、K、Ca2+、Mg2+等の陽イオンを挟むことで電荷不足を中和し、モンモリロナイトは安定状態となる。 The montmorillonite crystal structure is composed of three layers of silicate tetrahedral layer-alumina octahedral layer-silicate tetrahedral layer (2: 1 type), and the unit layer is about 10 mm (1 nm) thick and spreads. It has a very thin plate shape of 0.1 to 1 μm. A portion of Al 3+ that is the central atom of the alumina octahedral layer is replaced with Mg 2+ , resulting in insufficient positive charge, and each crystal layer itself is negatively charged, but Na + , K + , By sandwiching cations such as Ca 2+ and Mg 2+ , neutralization of charge shortage is achieved, and montmorillonite becomes stable.

そのため、モンモリロナイトは、結晶層が何層も重なり合った状態で存在しており、層と層の間には、陽イオンと空隙が存在している。層表面の負電荷及び層間陽イオンが様々な作用を起こすことによって、モンモリロナイトの特異的性質は発揮される。モンモリロナイト単位層表面の負電荷と層間陽イオンとの結合力は弱いため、他のイオンを含む溶液と接触すると、層間陽イオンと液中の陽イオンは瞬間的に交換反応を起こし、陽イオン交換反応が生じる。   Therefore, montmorillonite exists in a state where a number of crystal layers overlap each other, and cations and voids exist between the layers. The specific properties of montmorillonite are exhibited by the negative charge on the surface of the layer and interlayer cations causing various actions. Since the binding force between the negative charge on the surface of the montmorillonite unit layer and the interlayer cation is weak, when it comes into contact with a solution containing other ions, the interlayer cation and the cation in the liquid instantaneously undergo an exchange reaction, resulting in cation exchange. A reaction occurs.

水中に放出された陽イオンの量を測定すれば、モンモリロナイトの反応関与電荷量(陽イオン交換容量:CEC)を知ることができる。陽イオン交換容量は、溶液のpHや濃度によって変わり、モンモリロナイトは、pH6以上になると陽イオン交換容量が増加することが知られている。モンモリロナイトは、層状構造を成しているため、極めて大きな表面積を有している。その表面上において、層表面の酸素原子や水酸基との水素結合、層間において、層間負電荷や層間陽イオンとの静電気的結合などが生じ、吸着能を発揮し、それは、特に、極性分子に対して作用しやすい。   By measuring the amount of cations released into water, the amount of charge involved in the reaction (cation exchange capacity: CEC) of montmorillonite can be known. It is known that the cation exchange capacity varies depending on the pH and concentration of the solution, and montmorillonite is known to increase the cation exchange capacity when the pH is 6 or more. Since montmorillonite has a layered structure, it has a very large surface area. On the surface, hydrogen bonds with oxygen atoms and hydroxyl groups on the surface of the layer, and electrostatic bonds with interlayer negative charges and interlayer cations occur between layers, exhibiting adsorptive capacity, especially for polar molecules It is easy to act.

本発明において、無機層状化合物とは、層間に交換性陽イオンを有する層状ケイ酸塩鉱物を意味する。層状ケイ酸塩としては、特に限定されないが、好適には、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティーブンサイト等のスメクタイト族粘土鉱物、バーミキュライト、又は膨潤性雲母である雲母粘土鉱物あるいはフッ化雲母等が用いられる。層状ケイ酸塩及び膨潤性雲母は、天然物でも合成物であっても良く、これらの1種又は2種以上を併用して用いることも適宜可能である。   In the present invention, the inorganic layered compound means a layered silicate mineral having an exchangeable cation between layers. The layered silicate is not particularly limited, and preferably, for example, mica clay that is a smectite group clay mineral such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, vermiculite, or swelling mica. Mineral or fluorinated mica is used. The layered silicate and the swellable mica may be natural products or synthetic products, and one or more of these may be used in combination as appropriate.

上記層状ケイ酸塩の中でも、スメクタイト族のモンモリロナイト及び膨潤性雲母が好ましい。上記層状ケイ酸塩及び膨潤性雲母は、水と接触すると、水を吸着して膨らむ(膨潤する)作用があり、これは、層間陽イオンと水分子との相互作用によって生じる。上記層状ケイ酸塩及び膨潤性雲母の単位層表面の負電荷と層間陽イオンとの結合力は、層間陽イオンと水分子の相互作用エネルギーより弱いため、層間陽イオンが水分子を引き寄せる力により層間が押し広げられる。この層間陽イオンと水分子の相互作用により層間挿入反応が容易に進行しやすくなる。   Among the layered silicates, smectite montmorillonite and swellable mica are preferable. When the layered silicate and the swellable mica are in contact with water, the layered silicate and the swellable mica have an action of adsorbing and swelling (swell) the water, and this is caused by the interaction between interlayer cations and water molecules. Since the binding force between the negative charge on the unit layer surface of the layered silicate and the swellable mica and the interlayer cation is weaker than the interaction energy between the interlayer cation and water molecule, the force of the interlayer cation attracting the water molecule The layers are spread out. The intercalation reaction easily proceeds due to the interaction between the interlayer cations and water molecules.

三次元結晶層が負電荷を帯びているモンモリロナイトに代表されるスメクタイト族粘土鉱物や膨潤性雲母等は、イオン交換性、膨潤性、有機あるいは無機複合体形成能等の化学的活性が顕著であり、これらの交換反応が自然界の物質循環に果たす役割は大きく、また、粘土鉱物や膨潤性雲母の工業的利用面でも、イオン交換能は直接的間接的に用いられている。粘土鉱物や膨潤性雲母と様々な物質との複合体の形成は、極性分子の吸着や、イオン交換能等を含めた粘土層内表面による吸着現象である。代表的な複合体は、粘土と各種の有機化合物との複合体であり、スメクタイト族粘土鉱物や膨潤性雲母等の利用をはじめ、自然現象の解釈等にも広く利用されている。すなわち、モンモリロナイト以外の、イオン交換能を有するスメクタイト族粘土鉱物や、イオン交換能を有する膨潤性雲母等を本発明に用いた場合でも、本発明による金属−トロポロン錯体を層間担持した有機無機複合体を、イオン交換反応を用いて形成し得ることが可能であり、それらは、同様に実施が可能である。   Smectite clay minerals such as montmorillonite, which has a negative three-dimensional crystal layer, and swellable mica have remarkable chemical activities such as ion exchange, swelling, and organic or inorganic complex formation ability. These exchange reactions play a major role in natural material circulation, and ion exchange capacity is also used directly and indirectly in the industrial application of clay minerals and swellable mica. The formation of complexes between clay minerals and swellable mica and various substances is an adsorption phenomenon by the surface of the clay layer including the adsorption of polar molecules and ion exchange ability. A typical composite is a composite of clay and various organic compounds, and is widely used for interpretation of natural phenomena, including the use of smectite group clay minerals and swellable mica. That is, in the case where a smectite group clay mineral having ion exchange ability or a swellable mica having ion exchange ability other than montmorillonite is used in the present invention, the organic-inorganic composite having the metal-tropolone complex according to the present invention supported between layers. Can be formed using ion exchange reactions, which can be carried out as well.

層状ケイ酸塩の層間に存在する交換性陽イオンとは、結晶表面上のナトリウム、カルシウム等のイオンであり、これらのイオンは、カチオン性物質に対してイオン交換性を有するので、カチオン性を有する種々の物質を層状ケイ酸塩の層間に挿入することができる。層状ケイ酸塩の陽イオン交換容量(CEC)は、特に限定されないが、CEC=30〜400ミリ等量/100gであることが好ましい。30ミリ等量/100g未満であると、陽イオン交換によって結晶層間に挿入できる生理活性物質の量が少なくなるので、生理活性機能の発現と持続性が充分に発揮できない可能性がある。一方、400ミリ等量/100gを超えると、層状ケイ酸塩の層間の結合力が強固となり、生理活性物質の層間挿入が困難になることがある。   The exchangeable cation existing between the layers of the layered silicate is an ion such as sodium or calcium on the crystal surface, and these ions have an ion exchange property with respect to the cationic substance. Various materials can be inserted between the layered silicate layers. The cation exchange capacity (CEC) of the layered silicate is not particularly limited, but is preferably CEC = 30 to 400 milliequivalent / 100 g. If the amount is less than 30 milliequivalents / 100 g, the amount of the physiologically active substance that can be inserted between the crystal layers by cation exchange decreases, so that the expression and sustainability of the physiologically active function may not be sufficiently exhibited. On the other hand, when it exceeds 400 milliequivalents / 100 g, the bonding strength between the layers of the layered silicate becomes strong, and the intercalation of the physiologically active substance may be difficult.

無機層状化合物は、市販されているものを使用することができ、市販されているスメクタイト系層状ケイ酸塩としては、例えば、「クニピアシリーズ」、「スメクトンシリーズ」(クニミネ工業株式会社)や、市販されている膨潤性マイカやスメクタイト系層状ケイ酸塩としては、例えば、「TNシリーズ」、「TSシリーズ」、「NHTシリーズ」(トピー工業株式会社)、「ルーセンタイトシリーズ」「ミクロマイカシリーズ」「ソマシフシリーズ」(コープケミカル株式会社)等を挙げることができる。いずれの市販品も、結晶構造、陽イオン交換容量や比表面積等、その性質に応じて種々のグレードがあるが、本発明では、いずれも用いることができる。   Commercially available inorganic layered compounds can be used. Examples of commercially available smectite layered silicates include “Kunipia Series”, “Smecton Series” (Kunimine Industries Co., Ltd.) and Examples of commercially available swellable mica and smectite layered silicates include “TN series”, “TS series”, “NHT series” (Topy Industries, Ltd.), “Lucentite series” and “Micro mica series”. "Somasif series" (Coop Chemical Co., Ltd.). Each commercial product has various grades depending on the properties such as crystal structure, cation exchange capacity, specific surface area, etc., but any of them can be used in the present invention.

本発明において、生理活性機能を有する金属−トロポロン錯体については、錯体を形成する有機配位子であるトロポロン系化合物として、好適には、例えば、ヒノキチオール,β−ドラブリン,α−ツヤプリシン,γ−ツヤプリシン及び4−アセチルトロポロン等が例示される。錯体を形成する中心金属としては、Cu、Zn、Ni及びAl等あるいは遷移金属群の中から選ばれた少なくとも一種以上の金属イオンが例示される。本発明において、生理活性機能を有する金属−トロポロン錯体は、無機層状化合物の層間に物理的あるいは静電的に保持されている。すなわち、無機層状化合物の層間は、一般には、陽イオンが静電的に保持されているが、本発明においては、層間に生理活性機能を有する金属−トロポロン錯体が保持されている。   In the present invention, the metal-tropolone complex having a physiologically active function is preferably, for example, hinokitiol, β-drabrin, α-tyaprisin, γ-tyaprisin as a tropolone compound that is an organic ligand forming the complex. And 4-acetyltropolone and the like. Examples of the central metal forming the complex include Cu, Zn, Ni, Al, and the like, or at least one metal ion selected from the group of transition metals. In the present invention, the metal-tropolone complex having a physiologically active function is physically or electrostatically held between the layers of the inorganic layered compound. That is, in general, a cation is electrostatically held between layers of an inorganic layered compound, but in the present invention, a metal-tropolone complex having a physiologically active function is held between layers.

本発明の生理活性機能を有する金属−トロポロン錯体を層間に取り込んだ有機無機複合材料を製造するには、例えば、次のような方法によることができる。先ず、無機層状化合物を任意の重量分計量する。これに、脱イオン水を適量添加し、充分に撹拌を行い、無機層状化合物の重量濃度が0.1〜10wt%程度となる無機層状化合物懸濁液を調製する。次に、使用する無機層状化合物の陽イオン交換容量当量に対し、0.1〜3倍量分の脱イオン水あるいは有機溶媒の金属塩溶液を調製する。一方で、この陽イオン交換容量当量に対し、0.3〜9倍量分のトロポロン系化合物を秤量し、脱イオン水あるいは有機溶媒に溶解し、トロポロン系化合物溶液を得る。   In order to produce an organic-inorganic composite material in which the metal-tropolone complex having a physiologically active function of the present invention is incorporated between layers, for example, the following method can be used. First, the inorganic layered compound is weighed arbitrarily. An appropriate amount of deionized water is added to this and sufficiently stirred to prepare an inorganic layered compound suspension in which the inorganic layered compound has a weight concentration of about 0.1 to 10 wt%. Next, 0.1 to 3 times the amount of deionized water or an organic solvent metal salt solution is prepared with respect to the cation exchange capacity equivalent of the inorganic layered compound to be used. On the other hand, 0.3 to 9 times the amount of tropolone compound is weighed with respect to this cation exchange capacity equivalent and dissolved in deionized water or an organic solvent to obtain a tropolone compound solution.

この時、使用する有機溶媒は、金属塩あるいはトロポロン系化合物が溶解すれば良く、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール及びアセトン等が使用できる。次に、金属塩溶液とトロポロン系化合物溶液を充分に混合撹拌し、金属−トロポロン錯体を得る。必要であれば、加熱により、錯体形成反応を促進しても良い。合成された金属−トロポロン錯体は、使用する金属溶液や溶媒の種類により、溶液状態あるいは懸濁液状態として得ることができる。   At this time, the organic solvent to be used is only required to dissolve the metal salt or the tropolone compound. For example, methanol, ethanol, 1-propanol, 2-propanol, acetone and the like can be used. Next, the metal salt solution and the tropolone compound solution are sufficiently mixed and stirred to obtain a metal-tropolone complex. If necessary, the complex formation reaction may be accelerated by heating. The synthesized metal-tropolone complex can be obtained in a solution state or a suspension state depending on the type of metal solution or solvent used.

この金属−トロポロン錯体を、あらかじめ分散させておいた無機層状化合物懸濁液中に投入し、撹拌しながら陽イオン交換反応を行うことで、金属−トロポロン錯体を無機層状化合物の層間に挿入、担持する。交換反応速度は、混合した上記懸濁液を加熱することで、早めることができる。反応は、懸濁液温度が5℃付近からでも進行するが、5〜90℃付近までの加熱を行い、交換反応を円滑に進行させることが望ましい。反応時間は、設定した温度条件によって変化するが、0.5〜72時間程度が適当である。   This metal-tropolone complex is put into an inorganic layered compound suspension that has been dispersed in advance, and a cation exchange reaction is performed while stirring, so that the metal-tropolone complex is inserted and supported between layers of the inorganic layered compound. To do. The exchange reaction rate can be accelerated by heating the mixed suspension. Although the reaction proceeds even when the suspension temperature is around 5 ° C., it is desirable to heat the suspension up to about 5 to 90 ° C. to smoothly advance the exchange reaction. The reaction time varies depending on the set temperature condition, but about 0.5 to 72 hours is appropriate.

使用する中心金属イオンや有機配位子の種類によって、最適反応温度や反応時間は勿論異なる。加熱反応中には、反応系の水分が蒸発しないように、反応容器上部に水冷の冷却管を装備することが好ましい。反応終了後、固液を分離洗浄して金属−トロポロン錯体を層間に取り込んだ有機無機複合材料を得ることができる。乾燥方法は、特に限定されるものではないが、凍結乾燥、噴霧乾燥あるいは加熱乾燥等が挙げられる。更に、金属−トロポロン錯体を層間に取り込んだ有機無機複合材料懸濁液を平面に展開・乾燥し、キャスト膜として得ることもできる。   Of course, the optimum reaction temperature and reaction time vary depending on the type of central metal ion and organic ligand used. It is preferable to equip the upper part of the reaction vessel with a water-cooled cooling tube so that the water in the reaction system does not evaporate during the heating reaction. After completion of the reaction, an organic-inorganic composite material in which the solid-liquid is separated and washed to incorporate the metal-tropolone complex between the layers can be obtained. The drying method is not particularly limited, and examples thereof include freeze drying, spray drying, and heat drying. Furthermore, the organic-inorganic composite material suspension incorporating the metal-tropolone complex between the layers can be spread and dried on a plane to obtain a cast film.

本発明の生理活性機能を有する金属−トロポロン錯体を層間に担持した有機無機複合材料は、そのままでの使用も勿論可能であるが、軟膏剤、クリーム剤、乳剤、ぺレット等の、散布又は塗布に適した形態に任意に製剤加工して、加工製品とすることができる。加工製品を製造する方法は、特に限定されず、生理活性機能を有する金属−トロポロン錯体を層間に担持した有機無機複合材料を油性基剤中に混合溶解する方法や、一般に用いられる方法により製造することができる。   The organic-inorganic composite material carrying the metal-tropolone complex having a physiologically active function of the present invention between layers can of course be used as it is, but it can be applied or applied to ointments, creams, emulsions, pellets, etc. The product can be arbitrarily processed into a form suitable for a processed product. The method for producing the processed product is not particularly limited, and it is produced by a method in which an organic-inorganic composite material carrying a metal-tropolone complex having a bioactive function between layers is mixed and dissolved in an oily base or a commonly used method. be able to.

本発明の生理活性機能を有する有機無機複合材料は、無機層間に生理活性機能を有する金属−トロポロン錯体がイオン化して存在しているため、生理活性機能を有する金属−トロポロン錯体の系外への徐放速度を制御することが可能であり、生理活性効果の持続性が極めて高い。目的や使用環境に応じて、生理活性機能を有する金属−トロポロン錯体を層間に担持した有機無機複合材料と、他の有機あるいは無機材料と混合して成形体を形成して使用することも可能である。   In the organic-inorganic composite material having a physiologically active function of the present invention, a metal-tropolone complex having a physiologically active function is ionized and present between inorganic layers. The sustained release rate can be controlled, and the physiologically active effect is extremely high. Depending on the purpose and use environment, it is also possible to mix and use organic-inorganic composite materials carrying a metal-tropolone complex having a bioactive function between layers and other organic or inorganic materials to form molded products. is there.

本発明の生理活性機能を有する金属−トロポロン錯体を層間に担持した有機無機複合材料は、無機層間に金属−トロポロン錯体が、静電的に固定化されて存在している。そのため、本発明の有機無機複合材料の合成に使用する無機層状化合物を、陽イオン交換容量や結晶構造、比表面積等から適宜選択して、層の荷電量と電荷分布割合を考慮することにより、層間内における生理活性機能を有する金属−トロポロン錯体の保有量や、層間内における生理活性機能を有する金属−トロポロン錯体の保持力を制御することができる。   The organic-inorganic composite material in which the metal-tropolone complex having a physiologically active function of the present invention is supported between layers has the metal-tropolone complex electrostatically immobilized between the inorganic layers. Therefore, by appropriately selecting the inorganic layered compound used for the synthesis of the organic-inorganic composite material of the present invention from the cation exchange capacity, crystal structure, specific surface area, etc., and considering the charge amount and charge distribution ratio of the layer, It is possible to control the amount of the metal-tropolone complex having a physiologically active function in the interlayer and the holding power of the metal-tropolone complex having a physiologically active function in the interlayer.

すなわち、上記因子を選択制御することで、生理活性作用を有する金属−トロポロン錯体が徐々に放たれて行く徐放速度を制御することが可能であることから、生理活性効果の程度及び持続性・耐候性を制御することができ、また、持続性を極めて長くすることもできる。目的や使用環境に応じて、生理活性機能を有する金属−トロポロン錯体を層間担持した有機無機複合材料と、他の有機あるいは無機材料と混合して成形体を形成して使用することも可能である。   That is, by selectively controlling the above factors, it is possible to control the sustained release rate at which the metal-tropolone complex having a physiological activity is gradually released. The weather resistance can be controlled, and the durability can be very long. Depending on the purpose and use environment, it is also possible to mix and use organic-inorganic composite materials carrying a metal-tropolone complex having a physiological activity function with other organic or inorganic materials to form a molded body. .

従来、層間支柱を有する層状粘土成分と、その層間空隙中にゲストとしてヒノキチオールを導入したヒノキチオール−粘土複合体や、塩基交換能を有する膨潤性粘土に抗菌防黴剤及び塩基性物質を含有させた粘土複合物、ヒノキチオール等の殺菌剤と水膨潤性粘土鉱物との複合体、セラミックス中に含まれるカルシウムイオン又はマグネシウムイオンにヒノキチオールを配位、包接させたセラミックス系組成物等が提案されている。しかし、それらは、ヒノキチオール単体を粘土ないしセラミックスに混合又は配位させたものであり、その徐放効果は限られたものであり、高い徐放性を付与することは困難であった。   Conventionally, an antibacterial antifungal agent and a basic substance are contained in a layered clay component having interlayer struts, a hinokitiol-clay complex in which hinokitiol is introduced as a guest in the interlayer gap, and a swellable clay having base exchange ability. Clay composites, composites of fungicides such as hinokitiol and water-swellable clay minerals, ceramic compositions in which hinokitiol is coordinated and included in calcium ions or magnesium ions in ceramics, etc. have been proposed. . However, they are those in which hinokitiol alone is mixed or coordinated with clay or ceramics, and its sustained release effect is limited, and it has been difficult to impart high sustained release properties.

これに対して、本発明は、主原料として、層間に交換性陽イオンを有し、所定の陽イオン交換容量(CEC)を有する無機層状化合物を用いること、無機層状化合物の層間に生理活性機能を有する金属−トロポロン錯体を挿入して、そのカチオン交換性を利用してこの無機層状化合物の層間に存在する交換性陽イオンと、生理活性機能を有する金属−トロポロン錯体を交換すること、それにより、トロポロン類化合物を金属−トロポロン錯体の形で層間に担持させること、が重要であり、それにより、金属−トロポロン錯体を無機層状化合物の層間に安定に担持させて、著しく徐放性を向上させた有機無機複合材料を合成することを実現可能としたものである。   On the other hand, the present invention uses an inorganic layered compound having an exchangeable cation between layers and having a predetermined cation exchange capacity (CEC) as a main raw material, and a physiologically active function between layers of the inorganic layered compound. A metal-tropolone complex having a bioactive function by exchanging the exchangeable cation existing between layers of this inorganic layered compound by utilizing its cation exchange property, thereby It is important to support the tropolone compound between the layers in the form of a metal-tropolone complex, thereby stably supporting the metal-tropolone complex between the layers of the inorganic layered compound and significantly improving the sustained release property. It is feasible to synthesize organic-inorganic composite materials.

本発明により、次のような効果が奏される。
(1)本発明により、生理活性機能を有する金属−トロポロン錯体を層間担持した新規有機無機複合材料、その製造方法及びそれを用いた加工製品を提供することができる。
(2)本発明の有機無機複合材料は、優れた生理活性機能、例えば、病害虫防除機能、雑草防除機能、抗微生物機能等の持続性や保水性、耐候性及び環境親和性を有し、生活環境や医療福祉環境、植物の組織培養、農業、植林をはじめとする林業全般、植物栽培などに応用可能である。
(3)本発明の有機無機複合材料の層間では、生理活性機能を有する金属−トロポロン錯体が、ナノメートルオーダーで均一に分散しているため、有機無機複合材料を培地表面あるいは田畑などに使用する場合でも、均一に散布又は塗布し、培地あるいは土などと均一に混合できるので、植物生長調節機能、病害虫防除機能、雑草防除機能、抗微生物機能等の生理活性作用を有効に及ぼすことができる。
(4)本発明の生理活性機能を有する金属−トロポロン錯体を層間担持した有機無機複合材料は、そのままでの使用も勿論可能であるが、活性機能を有する有機物や金属イオン、有機金属錯体の徐放速度を制御できるため、生理活性効果の持続性が極めて高く、例えば、任意の製剤形態を有する加工製品とすることもできる。
(5)低コストでかつ安全に、目的に応じた機能を賦与した加工製品を製造することができる。
(6)加工製品を製造する方法は、特に限定されず、生理活性機能を有する有機無機複合材料を油性基剤中に混合溶解する方法や、一般に用いられている方法により製造することができる。
(7)加工製品は、使用環境に応じた合目的な設計が可能であるため、広範な産業分野での利用が可能となる。
The present invention has the following effects.
(1) According to the present invention, it is possible to provide a novel organic-inorganic composite material in which a metal-tropolone complex having a physiologically active function is supported between layers, a production method thereof, and a processed product using the same.
(2) The organic-inorganic composite material of the present invention has excellent physiological activity functions, such as pest control function, weed control function, antimicrobial function, etc., sustainability, water retention, weather resistance and environmental compatibility, It can be applied to environment, medical welfare environment, plant tissue culture, agriculture, general forestry including plantation, and plant cultivation.
(3) Between the layers of the organic-inorganic composite material of the present invention, the metal-tropolone complex having a physiologically active function is uniformly dispersed on the nanometer order, so the organic-inorganic composite material is used on the surface of the medium or in the field. Even in this case, since it can be uniformly sprayed or applied and mixed uniformly with a medium or soil, physiologically active effects such as a plant growth control function, a pest control function, a weed control function, and an antimicrobial function can be effectively exerted.
(4) The organic-inorganic composite material with the intercalated metal-tropolone complex having a physiologically active function of the present invention can of course be used as it is. However, the organic substance, metal ion, or organometallic complex having the active function can be used gradually. Since the release rate can be controlled, the sustainability of the physiologically active effect is extremely high, and for example, a processed product having an arbitrary preparation form can be obtained.
(5) A processed product imparted with a function according to the purpose can be manufactured at low cost and safely.
(6) The method for producing the processed product is not particularly limited, and can be produced by a method in which an organic-inorganic composite material having a physiologically active function is mixed and dissolved in an oily base, or a generally used method.
(7) The processed product can be designed in a suitable manner according to the usage environment, so that it can be used in a wide range of industrial fields.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)銅−ヒノキチオール錯体を無機層状化合物のモンモリロナイトの層間に担持した有機無機複合体の製造
モンモリロナイト粉末((株)クニミネ工業製、クニピアF)を丸底フラスコ中に所定量秤量し、脱イオン水を適量添加した後、充分に撹拌して、1〜2wt%のモンモリロナイトゾルを調製した。一方、陽イオン交換容量(CEC)当量の塩化銅2水和物水溶液と、CECに対して2倍量のヒノキチオール(C1012)エタノール溶液を混合撹拌して、黄緑色の銅−ヒノキチオール錯体を得た。
(1) Manufacture of an organic-inorganic composite in which a copper-hinokitiol complex is supported between layers of an inorganic layered compound montmorillonite A predetermined amount of montmorillonite powder (Kunimine Industries, Ltd., Kunipia F) is weighed in a round bottom flask and deionized. After adding an appropriate amount of water, the mixture was sufficiently stirred to prepare a montmorillonite sol of 1 to 2 wt%. On the other hand, a copper chloride dihydrate aqueous solution equivalent to a cation exchange capacity (CEC) and a hinokitiol (C 10 H 12 O 2 ) ethanol solution twice as much as CEC were mixed and stirred, and a yellow-green copper- A hinokitiol complex was obtained.

この銅−ヒノキチオール錯体を、あらかじめ調製しておいたモンモリロナイトゾルに添加し、40℃で撹拌しながら48時間保持して交換反応を行った。反応終了後、得られた生成物を脱イオン水により洗浄した後、40℃電気乾燥機中で乾燥させ、粉末状の銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した、生理活性機能を有する銅−ヒノキチオールを層間担持した有機無機複合体を得た。   This copper-hinokitiol complex was added to a montmorillonite sol prepared in advance, and the exchange reaction was carried out while maintaining at 40 ° C. for 48 hours. After completion of the reaction, the resulting product was washed with deionized water and then dried in an electric dryer at 40 ° C., and a copper-hinokitiol complex in powder form was supported between layers of montmorillonite, and had a physiologically active function. An organic-inorganic composite carrying hinokitiol as an interlayer was obtained.

(2)銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の確認試験
得られた銅−ヒノキチオール/粘土複合体は、原料モンモリロナイトよりも疎水性が高く、有機金属錯体の層間挿入が行われたことが示唆された。図1に、銅−ヒノキチオール錯体を層間に担持した有機無機複合体の粉末X線回折の結果を示す。図1に示した有機無機複合体の粉末X線回折の結果より、低角度側に2.28nmの(001)回折線が確認された。この時の層間内間隔は1.32nm程度であり、この層間距離は、銅−ヒノキチオール錯体が、銅を中心としてその周囲を包囲する配位子である2分子のヒノキチオールの七員環が、層平面に対して縦に直立している距離にほぼ相当する。
(2) Confirmation test of organic-inorganic complex carrying copper-hinokitiol complex between montmorillonite layers The obtained copper-hinokitiol / clay complex is more hydrophobic than raw material montmorillonite, and intercalation of organometallic complexes is performed. It was suggested that FIG. 1 shows the results of powder X-ray diffraction of an organic-inorganic composite in which a copper-hinokitiol complex is supported between layers. From the result of the powder X-ray diffraction of the organic-inorganic composite shown in FIG. 1, a (001) diffraction line of 2.28 nm was confirmed on the low angle side. The inter-layer spacing at this time is about 1.32 nm, and this inter-layer distance is such that the seven-membered ring of two molecules of hinokitiol, which is a ligand surrounding the copper-hinokitiol complex around copper, is a layer. It corresponds approximately to the distance that stands vertically with respect to the plane.

更にまた、低角度側に1.31nmの回折線が確認されるが、これは、銅−ヒノキチオール錯体が層間内で平行に配列している距離にほぼ等しい。この系においては、銅−ヒノキチオール錯体は、2種類の立体配置でモンモリロナイトの層間に存在していることが判る。また、この有機無機複合体の炭素含有率を測定した結果、銅−ヒノキチオール錯体は、陽イオン交換容量に対して、80%以上の含有率で層間内に存在していることが明らかとなった。これらのことより、銅−ヒノキチオール錯体は、モンモリロナイトの層間に確実に担持されたことが判明した。   Furthermore, a diffraction line of 1.31 nm is confirmed on the low angle side, which is almost equal to the distance at which the copper-hinokitiol complexes are arranged in parallel between the layers. In this system, it can be seen that the copper-hinokitiol complex exists between montmorillonite layers in two different configurations. Moreover, as a result of measuring the carbon content of this organic-inorganic composite, it was found that the copper-hinokitiol complex was present in the interlayer at a content of 80% or more with respect to the cation exchange capacity. . From these results, it was found that the copper-hinokitiol complex was reliably supported between montmorillonite layers.

比較のため、対照試料として、無機層間にNaのみを担持した原料モンモリロナイトのX線回折のプロファイルを図1に示した。粉末X線回折の結果より、モンモリロナイトの回折図形からは、粘土鉱物特有の回折ピークが多数確認された。基底面間隔とそれに起因する(00l)の回折線と(0kl)回折線が確認され、(001)回折線から計算された基底面間隔値は水一分子層を含む1.24nmであった。層間内の水分子のサイズを考慮すると、粘土層一層の厚さは0.96nm程度となることが判った。 For comparison, an X-ray diffraction profile of a raw material montmorillonite supporting only Na + between inorganic layers is shown in FIG. 1 as a control sample. From the results of powder X-ray diffraction, many diffraction peaks peculiar to clay minerals were confirmed from the diffraction pattern of montmorillonite. The basal plane spacing, the (00 l) diffraction line and the (0 kl) diffraction line resulting therefrom were confirmed, and the basal plane spacing value calculated from the (001) diffraction line was 1.24 nm including the water monomolecular layer. Considering the size of water molecules in the interlayer, it was found that the thickness of one clay layer was about 0.96 nm.

(アルミニウム−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の製造)
モンモリロナイト粉末((株)クニミネ工業製、クニピアF)を丸底フラスコ中に所定量秤量し、脱イオン水を適量添加した後、充分に撹拌して、1〜2wt%のモンモリロナイトゾルを調製した。一方、陽イオン交換容量(CEC)当量の塩化アルミニウム6水和物水溶液と、CECに対して3倍量のヒノキチオール(C1012)エタノール溶液を混合撹拌して、白色のアルミニウム−ヒノキチオール錯体を得た。
(Production of an organic-inorganic composite in which an aluminum-hinokitiol complex is supported between montmorillonite layers)
A predetermined amount of montmorillonite powder (Kunipia F, manufactured by Kunimine Kogyo Co., Ltd.) was weighed into a round bottom flask, and after adding an appropriate amount of deionized water, the mixture was sufficiently stirred to prepare a 1-2 wt% montmorillonite sol. On the other hand, an aluminum chloride hexahydrate aqueous solution having an equivalent cation exchange capacity (CEC) and a hinokitiol (C 10 H 12 O 2 ) ethanol solution three times as much as CEC were mixed and stirred to produce white aluminum-hinokitiol. A complex was obtained.

この錯体を、あらかじめ調製しておいたモンモリロナイトゾルに添加し、40℃で撹拌しながら48時間保持して交換反応を行った。反応終了後、得られた生成物を脱イオン水により洗浄した後、40℃電気乾燥機中で乾燥させ、粉末状のアルミニウム−ヒノキチオール錯体をモンモリロナイトの層間に担持した生理活性機能を有する有機無機複合体を得た。図2に、得られたアルミニウム−ヒノキチオール錯体を層間担持した有機無機複合体の粉末X線回折の結果を示す。   This complex was added to a montmorillonite sol prepared in advance, and the exchange reaction was carried out with stirring at 40 ° C. for 48 hours. After completion of the reaction, the obtained product is washed with deionized water and then dried in an electric dryer at 40 ° C., and an organic-inorganic composite having a physiologically active function in which a powdery aluminum-hinokitiol complex is supported between layers of montmorillonite. Got the body. FIG. 2 shows the result of powder X-ray diffraction of the obtained organic-inorganic composite carrying the aluminum-hinokitiol complex as an interlayer.

(亜鉛−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の製造)
モンモリロナイト粉末((株)クニミネ工業製、クニピアF)を丸底フラスコ中に所定量秤量し、脱イオン水を適量添加した後、充分に撹拌して、1〜2wt%のモンモリロナイドゾルを調製した。一方、陽イオン交換容量(CEC)当量の硝酸亜鉛6水和物水溶液と、CECに対して2倍量のヒノキチオール(C1012)エタノール溶液を混合撹拌して、亜鉛−ヒノキチオール錯体を得た。
(Production of an organic-inorganic composite in which a zinc-hinokitiol complex is supported between montmorillonite layers)
Montmorillonite powder (Kunimine Kogyo Co., Ltd., Kunipia F) is weighed into a round-bottomed flask, and a suitable amount of deionized water is added, followed by thorough stirring to prepare a 1-2 wt% montmorillonite sol. did. On the other hand, an aqueous solution of zinc nitrate hexahydrate having an equivalent cation exchange capacity (CEC) and a hinokitiol (C 10 H 12 O 2 ) ethanol solution twice the amount of CEC are mixed and stirred to obtain a zinc-hinokitiol complex. Obtained.

この錯体を、あらかじめ調製しておいたモンモリロナイトゾルに添加し、40℃で撹拌しながら48時間保持して交換反応を行った。反応終了後、得られた生成物を脱イオン水により洗浄した後、40℃電気乾燥機中で乾燥させ、粉末状の亜鉛−ヒノキチオール錯体をモンモリロナイトの層間に担持した生理活性機能を有する有機無機複合体を得た。図2に、得られた亜鉛−ヒノキチオール錯体を層間担持した有機無機複合体の粉末X線回折の結果を示す。   This complex was added to a montmorillonite sol prepared in advance, and the exchange reaction was carried out with stirring at 40 ° C. for 48 hours. After completion of the reaction, the obtained product is washed with deionized water, and then dried in an electric dryer at 40 ° C., and an organic-inorganic composite having a physiologically active function in which a powdery zinc-hinokitiol complex is supported between montmorillonite layers. Got the body. FIG. 2 shows the result of powder X-ray diffraction of the obtained organic-inorganic composite carrying the zinc-hinokitiol complex as an interlayer.

(1)ニッケル−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の製造
モンモリロナイト粉末((株)クニミネ工業製、クニピアF)を丸底フラスコ中に所定量秤量し、脱イオン水を適量添加した後、充分に撹拌して、1〜2wt%のモンモリロナイトゾルを調製した。一方、陽イオン交換容量(CEC)当量の硝酸ニッケル6水和物水溶液と、CECに対して3倍量のヒノキチオール(C1012)エタノール溶液を混合撹拌して、黄色のニッケル−ヒノキチオール錯体を得た。
(1) Manufacture of an organic-inorganic composite in which a nickel-hinokitiol complex is supported between montmorillonite layers A predetermined amount of montmorillonite powder (Kunimine Kogyo Co., Ltd., Kunipia F) is weighed into a round bottom flask, and an appropriate amount of deionized water is added. Then, the mixture was sufficiently stirred to prepare a montmorillonite sol of 1 to 2 wt%. On the other hand, a nickel nitrate hexahydrate aqueous solution having a cation exchange capacity (CEC) equivalent and a quinolthiol (C 10 H 12 O 2 ) ethanol solution three times as much as CEC were mixed and stirred to produce a yellow nickel-hinokitiol. A complex was obtained.

この錯体を、あらかじめ調製しておいたモンモリロナイトゾルに添加し、40℃で撹拌しながら48時間保持して交換反応を行った。反応終了後、得られた生成物を脱イオン水により洗浄した後、40℃電気乾燥機中で乾燥させ、粉末状のニッケル−ヒノキチオール錯体をモンモリロナイト層間に担持した生理活性機能を有する有機無機複合体を得た。図2に、得られたニッケル−ヒノキチオール錯体を層間担持した有機無機複合体の粉末X線回折の結果を示す。   This complex was added to a montmorillonite sol prepared in advance, and the exchange reaction was carried out with stirring at 40 ° C. for 48 hours. After completion of the reaction, the resulting product is washed with deionized water and then dried in an electric dryer at 40 ° C., and an organic-inorganic composite having a physiologically active function in which a powdered nickel-hinokitiol complex is supported between montmorillonite layers. Got. FIG. 2 shows the result of powder X-ray diffraction of the obtained organic-inorganic composite carrying the nickel-hinokitiol complex as an interlayer.

(2)実施例2、3及び4のアルミニウム、亜鉛及びニッケル−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の確認試験
図2に示した粉末X線回折の結果より、モンモリロナイトの基底面間隔値は、層間のナトリウムイオンに水分子が配位した水分子1層分にほぼ相当する1.24nmであり、(00l)と(hk0)回折線が確認された。上記金属−ヒノキチオール錯体をモンモリロナイト懸濁液に投入すると、凝集塩効果による相分離が観察されたことにより、層間挿入反応が生じたことが示唆された。
(2) Confirmation test of organic-inorganic composite in which aluminum, zinc and nickel-hinokitiol complexes of Examples 2, 3 and 4 are supported between montmorillonite layers From the result of powder X-ray diffraction shown in FIG. 2, the basal plane of montmorillonite The interval value is 1.24 nm, which corresponds to one layer of water molecules in which water molecules are coordinated to sodium ions between layers, and (00l) and (hk0) diffraction lines were confirmed. When the metal-hinokitiol complex was added to the montmorillonite suspension, it was suggested that an intercalation reaction occurred due to the observed phase separation due to the aggregated salt effect.

アルミニウム−ヒノキチオール錯体を挿入した試料は、層間距離が1.59nmにまで拡大した。この時の層間内距離は0.63nmであり、ヒノキチオールの7員環が層内に対して平行に2層配列した距離にほぼ等しい。また、長周期構造に起因する(003)回折線と原料モンモリロナイトの(hk0)回折線も確認された。   The sample in which the aluminum-hinokitiol complex was inserted expanded the interlayer distance to 1.59 nm. The distance between layers at this time is 0.63 nm, which is substantially equal to the distance in which two layers of 7-membered rings of hinokitiol are arranged in parallel to the inside of the layer. Moreover, the (003) diffraction line resulting from a long-period structure and the (hk0) diffraction line of raw material montmorillonite were also confirmed.

亜鉛−ヒノキチオール錯体を挿入した試料についても、同様の挙動が確認され、基底面間隔値は1.52nmであった。ニッケル−ヒノキチオール錯体を反応させた系では、基底面間隔値が1.51nmとなり、層構造に起因する(003)と(005)回折線も確認された。   The same behavior was confirmed for the sample in which the zinc-hinokitiol complex was inserted, and the basal plane spacing value was 1.52 nm. In the system in which the nickel-hinokitiol complex was reacted, the basal plane spacing value was 1.51 nm, and (003) and (005) diffraction lines due to the layer structure were also confirmed.

合成された複合体の基底面間隔値は、いずれも1.5nm程度であり、使用した遷移金属イオンの水和半径は、およそ水2分子に相当することを考えると、配位子が層間に対して(屈曲しながら)平行に配列した距離とほぼ等しい。この基底面間隔値は、金属錯体との反応前のモンモリロナイトの基底面間隔値である0.96nmと比較して、明らかに拡大しているため、これらの金属錯体が、モンモリロナイトの層間に挿入されたことが判明した。   Considering that the basal plane spacing values of the synthesized composites are all about 1.5 nm, and the hydration radius of the transition metal ions used is approximately equivalent to two molecules of water, the ligand is between the layers. On the other hand, it is almost equal to the distance arranged in parallel (while bending). Since this basal plane spacing value is clearly larger than 0.96 nm, which is the basal plane spacing value of montmorillonite before the reaction with the metal complex, these metal complexes are inserted between montmorillonite layers. Turned out to be.

(3)実施例1、2、3及び4の銅、アルミニウム、亜鉛及びニッケル−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の熱的挙動
実施例に準じた方法で得られた複合体の熱的挙動を調査するため、示差熱重量分析装置を用いた分析を行った。それぞれの試料について、昇温速度5℃/分、1050℃までの熱処理を行い、熱的過程における熱重量変化(TG)と、熱的過程における示差熱変化、すなわち、吸熱及び発熱挙動(DTA)をモニターした。図3に、原料モンモリロナイトの示差熱重量分析曲線を示す。また、図4に、ヒノキチオールの示差熱重量分析曲線を示す。また、図5及び図6に、銅及びアルミニウム−ヒノキチオール錯体を層間担持した有機無機複合体の示差熱重量分析曲線を示す。
(3) Thermal behavior of organic-inorganic composites carrying the copper, aluminum, zinc and nickel-hinokitiol complexes of Examples 1, 2, 3 and 4 between montmorillonite layers Composites obtained by a method according to the examples In order to investigate the thermal behavior, a differential thermogravimetric analyzer was used for analysis. Each sample was heat-treated at a heating rate of 5 ° C./min up to 1050 ° C., thermogravimetric change (TG) in the thermal process, and differential heat change in the thermal process, ie endothermic and exothermic behavior (DTA). Was monitored. FIG. 3 shows a differential thermogravimetric analysis curve of the raw material montmorillonite. FIG. 4 shows a differential thermogravimetric analysis curve of hinokitiol. 5 and 6 show differential thermogravimetric analysis curves of an organic-inorganic composite in which copper and an aluminum-hinokitiol complex are supported between layers.

図3に示した原料モンモリロナイトからは、100℃付近での急激な熱重量減少と吸熱ピークが確認された。これは、表面吸着水と、層間内に存在するナトリウムイオンに配位している水分子の離脱によるものである。また、600〜700℃付近の熱減量と吸熱ピークは、結晶構造内の水酸基の離脱に起因する。図4に示したヒノキチオールのみのTG曲線からは、150℃付近より熱減量を開始し、300℃付近で終了する。50℃付近と200℃付近の融解と分子脱離による吸熱ピークと、250〜300℃には、残存炭素質燃焼の発熱ピークが観察された。   From the raw material montmorillonite shown in FIG. 3, a rapid thermogravimetric decrease and an endothermic peak at around 100 ° C. were confirmed. This is due to the separation of water adsorbed on the surface and water molecules coordinated with sodium ions present in the interlayer. Further, the heat loss and endothermic peak around 600 to 700 ° C. are attributed to the elimination of hydroxyl groups in the crystal structure. From the TG curve of only hinokitiol shown in FIG. 4, heat loss starts from around 150 ° C. and ends at around 300 ° C. An endothermic peak due to melting and molecular desorption at around 50 ° C and around 200 ° C, and an exothermic peak of residual carbonaceous combustion were observed at 250 to 300 ° C.

図5及び図6に示した銅及びアルミニウム−ヒノキチオール担持モンモリロナイトは、類似の熱分析曲線を示した。300〜400℃付近の層間内炭素質の燃焼による発熱ピークと、300℃付近からの熱重量減少が観測された。それぞれの理論有機物含有率を計算すると、26.6wt%及び36.1wt%であり、最終熱重量減量率と吸着水率から算出した数値とほぼ一致していた。   The copper and aluminum-hinokitiol-supported montmorillonite shown in FIGS. 5 and 6 showed similar thermal analysis curves. An exothermic peak due to combustion of carbonaceous carbon in the interlayer near 300 to 400 ° C. and a decrease in thermogravimetry from around 300 ° C. were observed. When the respective theoretical organic matter contents were calculated, they were 26.6 wt% and 36.1 wt%, which almost coincided with the values calculated from the final thermogravimetric weight loss rate and the adsorbed water rate.

図7及び8に、亜鉛及びニッケル−ヒノキチオール担持モンモリロナイトの熱分析曲線を示す。亜鉛及びニッケル−ヒノキチオール錯体を担持したモンモリロナイト複合体の両試料について考察してみると、それぞれのDTA曲線より、400℃付近の発熱ピークの高さ(発熱量)が、銅及びアルミニウム−ヒノキチオール担持モンモリロナイトのそれと比較して、極めて低いことが判る。   7 and 8 show thermal analysis curves of montmorillonite supported with zinc and nickel-hinokitiol. Considering both samples of the montmorillonite complex carrying zinc and nickel-hinokitiol complex, the height of the exothermic peak around 400 ° C. (calorific value) from the respective DTA curves is copper and aluminum-hinokitiol carrying montmorillonite. It can be seen that it is extremely low compared to that.

更に、200℃付近までの低温領域において、10wt%以上の急速な熱減量が確認され、最終減量率は、共に25wt%程度であった。それぞれの理論有機物含有率は26.6wt%と35.4wt%であることを考え合わせると、亜鉛及びニッケルのヒノキチオール錯体は、粘土層間に存在してはいるが、ヒノキチオールと錯体を形成する安定度定数が銅やアルミニウムのそれと比較して低いために、低温側で離脱しているものと考えられる。   Furthermore, rapid heat loss of 10 wt% or more was confirmed in a low temperature region up to around 200 ° C., and the final weight loss rate was about 25 wt% in both cases. Considering that the respective theoretical organic substance contents are 26.6 wt% and 35.4 wt%, the hinokitiol complex of zinc and nickel is present between the clay layers, but the stability of forming a complex with hinokitiol. Since the constant is lower than that of copper or aluminum, it is considered that the constant is separated on the low temperature side.

ヒノキチオール自体は、昇華性があり、融点が低く、極めて耐熱性が低い有機物であるが、金属−ヒノキチオール錯体として無機層状化合物への層間挿入を行うと、内部有機物の燃焼開始温度は400℃付近まで上昇する。上記の結果より、トロポロン類化合物を金属−トロポロン錯体の形で無機層状化合物の層間へ挿入することで、層間内部に静電的に固定された有機配位子の耐熱性は、大幅に向上し、それにより、その生理活性機能の徐放性を向上させることができることが明らかとなった。   Hinokitiol itself is an organic substance that has sublimation, low melting point, and extremely low heat resistance. However, when intercalation into an inorganic layered compound is performed as a metal-hinokitiol complex, the combustion start temperature of the internal organic substance reaches around 400 ° C. To rise. From the above results, the heat resistance of the organic ligand electrostatically fixed inside the layer is greatly improved by inserting the tropolone compound into the layer of the inorganic layered compound in the form of a metal-tropolone complex. Thus, it has been clarified that the sustained release of the physiologically active function can be improved.

(4)実施例1の銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の熱処理後の挙動
銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した抗菌防カビ材料の耐熱性を検討するために、熱処理後の試料について、各種測定を行った。実施例1で得られた銅−ヒノキチオール粘土複合体について、電気炉を用いた熱処理(空気中、昇温速度10℃/分、保持1時間)を行った。処理温度は、それぞれ200、250、300、400及び500℃とした。
(4) Behavior after heat treatment of an organic-inorganic composite in which the copper-hinokitiol complex of Example 1 is supported between montmorillonite layers To examine the heat resistance of the antibacterial and antifungal material in which the copper-hinokitiol complex is supported between montmorillonite layers Various measurements were performed on the samples after the heat treatment. The copper-hinokitiol clay composite obtained in Example 1 was subjected to heat treatment using an electric furnace (in air, heating rate 10 ° C./min, holding 1 hour). The processing temperatures were 200, 250, 300, 400 and 500 ° C., respectively.

各熱処理温度にて得られた試料について、粉末X線回折による分析を行った。図9に、その結果を示す。粉末X線回折の結果より、未処理試料からは2.28nmの基底面間隔値を示す回折線と、それに隣接して層構造に起因すると思われる回折線が確認された。配位子であるヒノキチオールは、銅イオンと2:1型の平面錯体を形成することが知られており、層間に対し直立して配置していると仮定すると、基底面間隔値は2.45nmとなる。(001)回折線は、250℃処理まで2.2nm程度の数値を示していたが、300℃処理で1.46nmまで低下した。これに伴い、(002)と思われる回折線も高角度側にシフトした。400〜500℃処理では、層内有機物の離脱に伴い、1.3nmまで減少したが、中心化学種である銅の酸化還元状態は、X線的には確認されなかった。   Samples obtained at each heat treatment temperature were analyzed by powder X-ray diffraction. FIG. 9 shows the result. From the result of the powder X-ray diffraction, a diffraction line showing a basal plane spacing value of 2.28 nm and a diffraction line that is considered to be adjacent to the layer structure were confirmed from the untreated sample. The hinokitiol, a ligand, is known to form a 2: 1 type planar complex with copper ions, and assuming that it is placed upright with respect to the interlayer, the basal plane spacing value is 2.45 nm. It becomes. The (001) diffraction line showed a value of about 2.2 nm until the treatment at 250 ° C., but decreased to 1.46 nm after the treatment at 300 ° C. Along with this, the diffraction line considered to be (002) also shifted to the high angle side. In the treatment at 400 to 500 ° C., it decreased to 1.3 nm with the separation of organic substances in the layer, but the redox state of copper as the central chemical species was not confirmed by X-ray.

各熱処理段階における試料の構造変化を調査するために、各熱処理温度毎の試料について、CHNコーダーを用いた炭素含有率測定結果と、粉末X線回折より得られた基底面間隔値の変化を図10に示す。これによると、炭素含有率の変化は、250℃処理後までは一定の数値を保持しており、層間内有機物である銅−ヒノキチオール錯体への熱的影響は軽微であることが確認される。これは、基底面間隔値についても同様の傾向を示しており、この温度領域までの層間隔の変化は微小である。しかし、処理温度が300℃以上になると、炭素含有率、基底面間隔値とも急激な減少を開始する。500℃処理後には層間内有機物は殆ど脱離し、それに伴い層間隔も収縮する。これらのことより、内部有機物は250℃付近までの耐熱性を有することが判る。   In order to investigate the structural change of the sample in each heat treatment stage, the carbon content measurement results using a CHN coder and the change in the basal plane spacing value obtained by powder X-ray diffraction are shown for each sample at each heat treatment temperature. 10 shows. According to this, the change in the carbon content is kept constant until after treatment at 250 ° C., and it is confirmed that the thermal influence on the copper-hinokitiol complex which is an organic substance in the interlayer is slight. This also shows the same tendency with respect to the basal plane spacing value, and the change in the layer spacing up to this temperature region is very small. However, when the processing temperature is 300 ° C. or higher, both the carbon content and the basal plane spacing value start to rapidly decrease. After the treatment at 500 ° C., the organic substances in the interlayer are almost eliminated and the layer spacing is also shrunk accordingly. From these, it can be seen that the internal organic matter has heat resistance up to about 250 ° C.

(5)実施例1の銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の赤外吸収スペクトル
図11に、得られた銅−ヒノキチオール錯体を層間担持した有機無機複合体と、錯体の配位子であるヒノキチオールの赤外吸収スペクトルの結果を示す。使用した原料モンモリロナイトである粘土鉱物特有の吸収である、3624cm−1に八面体のAl−OH伸縮による吸収、3434cm−1に層間水分子のOH伸縮振動による吸収が見られた。1639cm−1の吸収も、吸着水のOH伸縮振動による。また、1038cm−1には四面体Si−O−Si伸縮振動が、914cm−1には八面体Al−OH変角振動、及び847cm−1には(Al、Mg)−OH変角振動に帰属する強い吸収が確認された。
(5) Infrared absorption spectrum of the organic-inorganic composite in which the copper-hinokitiol complex of Example 1 is supported between montmorillonite layers. FIG. 11 shows the obtained organic-inorganic composite in which the copper-hinokitiol complex is supported in an interlayer. The result of the infrared absorption spectrum of hinokitiol which is a ligand is shown. Absorption due to octahedral Al—OH stretching was observed at 3624 cm −1, and absorption due to OH stretching vibration of interlayer water molecules was observed at 3434 cm −1, which was absorption specific to the clay mineral that was the raw material montmorillonite used. The absorption at 1639 cm −1 is also due to the OH stretching vibration of the adsorbed water. Furthermore, tetrahedral Si-O-Si stretching vibration is to 1038cm -1 is octahedral Al-OH bending vibration in 914 cm -1, and the 847cm -1 (Al, Mg) -OH attributed to deformation vibration A strong absorption was confirmed.

更に、520、467cm−1にはSi−O−Al変角振動とSi−O−Mg変角振動がそれぞれ確認された。銅−ヒノキチオール担持モンモリロナイトの赤外吸収スペクトルの結果より、2965、2873cm−1にCH基及び七員環のC−H伸縮振動、1593、1513cm−1の七員環分子骨格に帰属するC=C伸縮振動が存在し、1434及び1356cm−1にCH基及び七員環のC−H変角振動、また、812、741cm−1には芳香環C−H変角振動による吸収が確認された。上記複合体の系については、挿入有機物に特有の吸収と、それらの層間担持に伴う若干のシフトが確認され、これらのことから、目的とする有機無機複合体が合成されたことが確認された。 Furthermore, Si-O-Al deformation vibration and Si-O-Mg deformation vibration were respectively confirmed at 520 and 467 cm- 1 . From the results of the infrared absorption spectrum of the copper-hinokitiol-supported montmorillonite, 2965, 2873 cm −1 CH 3 group and seven-membered CH stretching vibration, 1593, 1513 cm −1 belonging to the seven-membered ring molecular skeleton C stretching vibration is present, and absorption due to CH 3 radicals and seven-membered C—H bending vibrations are observed at 1434 and 1356 cm −1 , and aromatic ring C—H bending vibrations are observed at 812 and 741 cm −1. It was. For the above complex system, absorption specific to the inserted organic matter and slight shift accompanying their interlayer loading were confirmed, and from these, it was confirmed that the target organic-inorganic complex was synthesized. .

以上詳述したように、本発明は、生理活性機能を有する金属−トロポロン錯体を層間担持した有機無機複合材料とその製造方法に係るものであり、本発明により、優れた生理活性機能、例えば、病害虫防除機能、雑草防除機能、抗微生物機能等の持続性や保水性、環境親和性を有し、生活環境や医療福祉環境、植物の組織培養、農業、植林をはじめとする林業全般、植物栽培などに応用可能な金属−トロポロン錯体を層間担持した有機無機複合材料を提供することができる。この有機無機複合材料は、無機層状化合物の層間では、生理活性機能を有する有機金属錯体がナノメートルオーダーで均一に分散しているため、培地表面や田畑へ使用された場合でも分散性に優れているという利点を有する。   As described above in detail, the present invention relates to an organic-inorganic composite material in which a metal-tropolone complex having a physiological activity function is supported between layers and a method for producing the same, and according to the present invention, an excellent physiological activity function, for example, Pest control function, weed control function, antimicrobial function, etc., sustainability, water retention, environmental compatibility, living environment, medical welfare environment, plant tissue culture, agriculture, forestry including plantation, plant cultivation It is possible to provide an organic-inorganic composite material in which a metal-tropolone complex is supported between layers, which can be applied to, for example. This organic-inorganic composite material is excellent in dispersibility even when used on the surface of a medium or in fields because organometallic complexes having physiologically active functions are uniformly dispersed in the order of nanometers between layers of inorganic layered compounds. Has the advantage of being.

また、本発明の生理活性機能を有する金属−トロポロン錯体を層間担持した有機無機複合材料は、そのままでの使用も勿論可能であるが、活性機能を有する金属−トロポロン錯体の系外への徐放速度を制御できるため、生理活性効果の持続性が極めて高く、任意の製剤形態を有する加工製品とすることができる。加工製品を製造する方法は、特に限定されず、生理活性機能を有する有機無機複合材料を油性基剤中に混合溶解する方法や、一般に用いられる方法により適宜製造することができる。こうした加工製品は、使用環境に応じた合目的な設計及び製造が可能であるため、本発明の有機無機複合材料を含有する加工製品は、広範な産業分野での利用が可能である。   In addition, the organic-inorganic composite material in which the metal-tropolone complex having a physiologically active function of the present invention is supported on an interlayer can be used as it is, but the sustained release of the metal-tropolone complex having an active function to the outside of the system is possible. Since the speed can be controlled, the physiologically active effect is extremely high, and a processed product having any formulation form can be obtained. The method for producing the processed product is not particularly limited, and can be appropriately produced by a method of mixing and dissolving an organic-inorganic composite material having a physiologically active function in an oily base or a generally used method. Since such a processed product can be designed and manufactured according to the usage environment, the processed product containing the organic-inorganic composite material of the present invention can be used in a wide range of industrial fields.

本発明の実施例1に係る、生理活性機能を有する銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体と、対照試料である原料モンモリロナイトの粉末X線回折図形である。It is a powder X-ray diffraction pattern of the organic-inorganic composite which carry | supported the copper- hinokitiol complex which has a bioactive function based on Example 1 of this invention between the layers of montmorillonite, and the raw material montmorillonite which is a control sample. 本発明の実施例2、3及び4に係る、生理活性機能を有するアルミニウム、亜鉛及びニッケル−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体と、対照試料である原料モンモリロナイトの粉末X線回折図形である。Powder X-ray diffraction of an organic-inorganic composite in which aluminum, zinc, and nickel-hinokitiol complexes having bioactive functions are supported between montmorillonite layers and a reference montmorillonite as a control sample according to Examples 2, 3 and 4 of the present invention It is a figure. 本発明の実施例1に係る、無機層状化合物である原料モンモリロナイトの示差熱重量分析曲線である。It is a differential thermogravimetric analysis curve of the raw material montmorillonite which is an inorganic layered compound based on Example 1 of this invention. 本発明の実施例1に係る、有機配位子であるヒノキチオールの示差熱重量分析曲線である。It is a differential thermogravimetric analysis curve of hinokitiol which is an organic ligand based on Example 1 of this invention. 本発明の実施例1に係る、生理活性機能を有する銅−ヒノキチオール錯体を層間担持した有機無機複合体の示差熱重量分析曲線である。It is a differential thermogravimetric analysis curve of the organic inorganic composite which carry | supported the copper- hinokitiol complex which has a bioactivity function based on Example 1 of this invention between layers. 本発明の実施例2に係る、生理活性機能を有するアルミニウム−ヒノキチオール錯体を層間担持した有機無機複合体の示差熱重量分析曲線である。It is a differential thermogravimetric analysis curve of the organic inorganic composite which carried | supported the aluminum- hinokitiol complex which has a bioactivity function based on Example 2 of this invention between layers. 本発明の実施例3に係る、生理活性機能を有する亜鉛−ヒノキチオール錯体を層間担持した有機無機複合体の示差熱重量分析曲線である。It is a differential thermogravimetric analysis curve of the organic inorganic composite which carry | supported the zinc- hinokitiol complex which has a bioactivity function based on Example 3 of this invention between layers. 本発明の実施例4に係る、生理活性機能を有するニッケル−ヒノキチオール錯体を層間担持した有機無機複合体の示差熱重量分析曲線である。It is a differential thermogravimetric analysis curve of the organic-inorganic composite which carry | supported the nickel- hinokitiol complex which has a bioactivity function based on Example 4 of this invention. 本発明の実施例1に係る、生理活性機能を有する銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の熱処理前後の粉末X線回折図形である。It is a powder X-ray-diffraction figure before and behind heat processing of the organic inorganic composite which carry | supported the copper- hinokitiol complex which has a bioactive function based on Example 1 of this invention between the layers of montmorillonite. 本発明の実施例1に係る、生理活性機能を有する銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の熱処理前後の炭素含有率と基底面間隔値である。It is the carbon content rate before and behind heat processing of the organic-inorganic composite which carry | supported the copper- hinokitiol complex which has a bioactive function based on Example 1 of this invention between the layers of a montmorillonite, and a basal plane space | interval value. 本発明の実施例1に係る、生理活性機能を有する銅−ヒノキチオール錯体をモンモリロナイトの層間に担持した有機無機複合体の赤外吸収スペクトルである。It is an infrared absorption spectrum of the organic-inorganic composite which carry | supported the copper- hinokitiol complex which has a bioactivity function based on Example 1 of this invention between the layers of montmorillonite.

Claims (10)

金属−トロポロン錯体を層間担持して、その生理活性機能の徐放性を向上させた有機無機複合材料であって、無機層状化合物を主原料とし、この無機層状化合物の層間に生理活性機能を有する金属−トロポロン錯体を挿入、担持させたことを特徴とする、金属−トロポロン錯体を層間担持した有機無機複合材料。   An organic-inorganic composite material in which a metal-tropolone complex is supported on an interlayer to improve the sustained release of the physiologically active function, using an inorganic layered compound as a main raw material and having a physiologically active function between the layers of the inorganic layered compound An organic-inorganic composite material in which a metal-tropolone complex is supported between layers, wherein a metal-tropolone complex is inserted and supported. 生理活性機能を有する金属−トロポロン錯体を形成する金属カチオンが、Cu、Zn、Ni及びAlあるいは遷移金属群の中から選ばれた少なくとも一種以上の金属イオンである、請求項1に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。   2. The metal of claim 1, wherein the metal cation forming the metal-tropolone complex having a physiologically active function is at least one metal ion selected from Cu, Zn, Ni, Al, or a transition metal group. An organic-inorganic composite material with a tropolone complex supported between layers. 生理活性機能を有する金属−トロポロン錯体を形成する有機配位子が、ヒノキチオール、β−ドラブリン、α−ツヤプリシン、γ−ツヤプリシン及び4−アセチルトロポロン中から選ばれた少なくとも一種以上の有機配位子である、請求項1に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。   The organic ligand forming the metal-tropolone complex having a physiologically active function is at least one organic ligand selected from hinokitiol, β-drabrin, α-tyaprisin, γ-tyaprisin and 4-acetyltropolone. An organic-inorganic composite material comprising an interlayer-supported metal-tropolone complex according to claim 1. 主原料とする無機層状化合物が、天然もしくは合成の層状粘土鉱物、又は天然もしくは合成の膨潤性雲母である、請求項1に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。   The organic-inorganic composite material carrying an interlayer-supported metal-tropolone complex according to claim 1, wherein the inorganic layered compound as a main raw material is a natural or synthetic layered clay mineral or a natural or synthetic swellable mica. 層状粘土鉱物が、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティーブンサイトのスメクタイト族粘土鉱物、バーミキュライト、又は膨潤性雲母である雲母粘土鉱物あるいはフッ化雲母である、請求項4に記載の金属−トロポロン錯体を層間担持した有機無機複合材料。   The layered clay mineral is montmorillonite, beidellite, nontronite, saponite, hectorite, a smectite group clay mineral of stevensite, vermiculite, or a mica clay mineral or fluorinated mica that is a swellable mica. An organic-inorganic composite material in which a metal-tropolone complex is supported between layers. 請求項1から5のいずれかに記載の有機無機複合材料を製造する方法であって、無機層状化合物を主原料とし、その無機層状化合物の層間に生理活性機能を有する金属−トロポロン錯体を挿入して、この無機層状化合物の層間に存在する交換性陽イオンと、生理活性機能を有する金属−トロポロン錯体を交換することにより、金属−トロポロン錯体を層間担持した有機無機複合材料を合成することを特徴とする、金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。   A method for producing an organic-inorganic composite material according to any one of claims 1 to 5, wherein an inorganic layered compound is used as a main raw material, and a metal-tropolone complex having a physiologically active function is inserted between the layers of the inorganic layered compound. By exchanging exchangeable cations existing between the layers of the inorganic layered compound and metal-tropolone complex having a bioactive function, an organic-inorganic composite material carrying the metal-tropolone complex is synthesized. A method for producing an organic-inorganic composite material in which a metal-tropolone complex is supported between layers. 生理活性機能を有する金属−トロポロン錯体を形成する金属カチオンが、Cu、Zn、Ni及びAlあるいは遷移金属群の中から選ばれた少なくとも一種以上の金属イオンである、請求項6に記載の金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。   The metal- according to claim 6, wherein the metal cation forming the metal-tropolone complex having a physiologically active function is at least one metal ion selected from Cu, Zn, Ni and Al or a transition metal group. A method for producing an organic-inorganic composite material in which a tropolone complex is supported between layers. 生理活性機能を有する金属−トロポロン錯体を形成する有機配位子が、ヒノキチオール、β−ドラブリン、α−ツヤプリシン、γ−ツヤプリシン及び4−アセチルトロポロン中から選ばれた少なくとも一種以上の有機配位子である、請求項6に記載の金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。   The organic ligand forming the metal-tropolone complex having a physiologically active function is at least one organic ligand selected from hinokitiol, β-drabrin, α-tyaprisin, γ-tyaprisin and 4-acetyltropolone. The manufacturing method of the organic inorganic composite material which carry | supported the metal-tropolone complex of Claim 6 with an interlayer. 主原料とする無機層状化合物が、天然もしくは合成の層状粘土鉱物、又は天然もしくは合成の膨潤性雲母である、請求項6に記載の金属−トロポロン錯体を層間担持した有機無機複合材料の製造方法。   The method for producing an organic-inorganic composite material having an interlayer-supported metal-tropolone complex according to claim 6, wherein the inorganic layered compound as a main raw material is a natural or synthetic layered clay mineral or a natural or synthetic swellable mica. 請求項1から5のいずれかに記載の金属−トロポロン錯体を層間担持した有機無機複合材料を含有し、任意の形態に製剤加工されていることを特徴とする加工製品。   A processed product comprising an organic-inorganic composite material in which the metal-tropolone complex according to any one of claims 1 to 5 is supported between layers, and being processed into a desired form.
JP2008001715A 2007-01-17 2008-01-08 Organic-inorganic composite with metal-tropolone complex supported between layers and method Active JP5158858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001715A JP5158858B2 (en) 2007-01-17 2008-01-08 Organic-inorganic composite with metal-tropolone complex supported between layers and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007008530 2007-01-17
JP2007008530 2007-01-17
JP2008001715A JP5158858B2 (en) 2007-01-17 2008-01-08 Organic-inorganic composite with metal-tropolone complex supported between layers and method

Publications (2)

Publication Number Publication Date
JP2008195600A true JP2008195600A (en) 2008-08-28
JP5158858B2 JP5158858B2 (en) 2013-03-06

Family

ID=39754891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001715A Active JP5158858B2 (en) 2007-01-17 2008-01-08 Organic-inorganic composite with metal-tropolone complex supported between layers and method

Country Status (1)

Country Link
JP (1) JP5158858B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195709A (en) * 2007-01-17 2008-08-28 National Institute Of Advanced Industrial & Technology Antibacterial and mildewproof material having metal-tropolone complex carried between inorganic layers
JP2009084265A (en) * 2007-09-11 2009-04-23 National Institute Of Advanced Industrial & Technology Anti-legionella bacteria material carrying metal-tropolone complex between inorganic layers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210958A (en) * 1997-01-29 1998-08-11 Aramitsuku:Kk Quality keeping agent for food
JPH1121201A (en) * 1997-07-03 1999-01-26 Kanae Toryo Kk Production of hinokitiol-including ceramic
JPH1171215A (en) * 1997-07-03 1999-03-16 Kanae Toryo Kk Production of ceramic including hinokitiol
JP2002179510A (en) * 2000-12-13 2002-06-26 Asahi Kasei Corp Method for manufacturing tropolone compound-carrying porous material
JP2004058409A (en) * 2002-07-26 2004-02-26 National Institute Of Advanced Industrial & Technology Antibacterial woody composite molding material and its manufacturing method
JP2004360144A (en) * 2003-06-09 2004-12-24 Toagosei Co Ltd Inorganic compound-purine complex

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210958A (en) * 1997-01-29 1998-08-11 Aramitsuku:Kk Quality keeping agent for food
JPH1121201A (en) * 1997-07-03 1999-01-26 Kanae Toryo Kk Production of hinokitiol-including ceramic
JPH1171215A (en) * 1997-07-03 1999-03-16 Kanae Toryo Kk Production of ceramic including hinokitiol
JP2002179510A (en) * 2000-12-13 2002-06-26 Asahi Kasei Corp Method for manufacturing tropolone compound-carrying porous material
JP2004058409A (en) * 2002-07-26 2004-02-26 National Institute Of Advanced Industrial & Technology Antibacterial woody composite molding material and its manufacturing method
JP2004360144A (en) * 2003-06-09 2004-12-24 Toagosei Co Ltd Inorganic compound-purine complex

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195709A (en) * 2007-01-17 2008-08-28 National Institute Of Advanced Industrial & Technology Antibacterial and mildewproof material having metal-tropolone complex carried between inorganic layers
JP2009084265A (en) * 2007-09-11 2009-04-23 National Institute Of Advanced Industrial & Technology Anti-legionella bacteria material carrying metal-tropolone complex between inorganic layers

Also Published As

Publication number Publication date
JP5158858B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
Costantino et al. New polymeric composites based on poly (ϵ-caprolactone) and layered double hydroxides containing antimicrobial species
Makhluf et al. Microwave‐assisted synthesis of nanocrystalline MgO and its use as a bacteriocide
Wicklein et al. Bio-organoclays based on phospholipids as immobilization hosts for biological species
Youssef et al. Synthesis and utilization of poly (methylmethacrylate) nanocomposites based on modified montmorillonite
Khurana et al. Multifaceted role of clay minerals in pharmaceuticals
Pazos et al. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants
Cruces et al. Copper/silver bimetallic nanoparticles supported on aluminosilicate geomaterials as antibacterial agents
Hussein et al. Synthesis of a Layered Organic‐Inorganic Nanohybrid of 4‐Chlorophenoxyacetate‐zinc‐Layered Hydroxide with Sustained Release Properties
Ahmad et al. Significant improvement in antibacterial property of ZIF-8 decorated graphene oxide by post-synthetic modification process
MadJin et al. Synthesis and characterisation of zinc hydroxides nitrates–sodium dodecyl sulphate fluazinam nano hosts for release properties
Ahmad et al. Evaluation of controlled-release property and phytotoxicity effect of insect pheromone zinc-layered hydroxide nanohybrid intercalated with hexenoic acid
Bandla et al. Silver nanoparticles incorporated within intercalated clay/polymer nanocomposite hydrogels for antibacterial studies
JP5158858B2 (en) Organic-inorganic composite with metal-tropolone complex supported between layers and method
Choi et al. Facile room-temperature synthesis of cerium carbonate and cerium oxide nano-and microparticles using 1, 1′-carbonyldiimidazole and imidazole in a nonaqueous solvent
Ahmad et al. Modification of zeolitic imidazolate framework-8 with amine groups for improved antibacterial activity
JP5704521B2 (en) Antibacterial and antifungal material carrying metal-tropolone complex between inorganic layers
JP5704623B2 (en) Anti-Legionella material carrying metal-tropolone complex between inorganic layers
Mokhtar et al. Structural and antibacterial properties of H y Zn x Na 2− x Si 14 O 29 nH 2 O layered silicate compounds, prepared by ion-exchange reaction
Imwiset et al. Characteristics of flexible supramolecular assembly of dioleyldimethylammonium ion confined in a two dimensional nanospace studied by the host-guest reactions
JP5303771B2 (en) Organic-inorganic composite material having function of sustained release of antibiotic and method for producing the same
Thakur et al. The synergy of nanoparticles and metal-organic frameworks in antimicrobial applications: A critical review
Ruiz‐Hitzky et al. Hybrid and biohybrid materials based on layered clays
JP4997567B2 (en) Mite-proof material carrying metal-tropolone complex between inorganic layers
JP4759662B2 (en) Method for producing clay mineral composite material having bioactive function
Paul et al. Layered aluminosilicate nanoskeletons: The structure and properties of nanoherbicide formulations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5158858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250