JP2008193879A - Magnetic bearing device integrated with electric motor - Google Patents

Magnetic bearing device integrated with electric motor Download PDF

Info

Publication number
JP2008193879A
JP2008193879A JP2007028878A JP2007028878A JP2008193879A JP 2008193879 A JP2008193879 A JP 2008193879A JP 2007028878 A JP2007028878 A JP 2007028878A JP 2007028878 A JP2007028878 A JP 2007028878A JP 2008193879 A JP2008193879 A JP 2008193879A
Authority
JP
Japan
Prior art keywords
motor
magnetic bearing
outer peripheral
main shaft
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007028878A
Other languages
Japanese (ja)
Inventor
Nobuyuki Suzuki
伸幸 鈴木
Hiroyuki Yamada
裕之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007028878A priority Critical patent/JP2008193879A/en
Publication of JP2008193879A publication Critical patent/JP2008193879A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic bearing device integrated with a motor, capable of improving long-term durability of a ball bearing against a thrust load and enlarging the size of a permanent magnet to materialize high-speed rotation and high performance. <P>SOLUTION: Two electric magnets 17 are arranged outside in the axial direction of two thrust boards 13a, 13b mounted on a main shaft 13 in line with the axial direction to constitute a magnetic bearing unit, and an axial-gap motor 28 is disposed in between two thrust boards 13a, 13b as a motor unit. A reinforcing member HB, comprising a reinforced fiber, is provided extending from the outer periphery of a flange portion to that of a non-flange portion, on each of the outer peripheral surfaces of the thrust boards 13a, 13b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、空気サイクル冷凍冷却用タービンユニット等に用いられる磁気軸受装置に関し、スラスト板の外周面等を補強して高速回転化、高性能化したモータ一体型の磁気軸受装置に関する。   The present invention relates to a magnetic bearing device used for an air cycle refrigeration cooling turbine unit and the like, and more particularly, to a motor-integrated magnetic bearing device that reinforces the outer peripheral surface of a thrust plate and the like to achieve high speed rotation and high performance.

空気サイクル冷凍冷却システムは、冷媒として空気を用いるため、フロンやアンモニアガス等を用いる場合に比べてエネルギー効率が不足するが、環境保護の面では好ましい。また、冷凍倉庫等のように、冷媒空気を直接に吹き込むことができる施設では、庫内ファンやデフロストの省略等によってトータルコストを引下げられる可能性があり、このような用途で空気サイクル冷凍冷却システムが提案されている(例えば特許文献1)。   Since the air cycle refrigeration cooling system uses air as a refrigerant, energy efficiency is insufficient as compared with the case of using chlorofluorocarbon, ammonia gas, or the like, but it is preferable in terms of environmental protection. In addition, in facilities where refrigerant air can be directly blown into, such as a refrigerated warehouse, the total cost may be reduced by omitting the internal fan and defrost, etc. In such applications, the air cycle refrigeration cooling system Has been proposed (for example, Patent Document 1).

また、−30℃〜−60℃のディープ・コール領域では、空気冷却の理論効率は、フロンやアンモニアガスと同等以上になることが知られている。ただし、上記空気冷却の理論効率を得ることは、最適に設計された周辺装置があって、始めて成り立つとも述べられている。周辺装置は、圧縮機や膨張タービン等である。
圧縮機,膨張タービンとしては、コンプレッサ翼車および膨張タービン翼車を共通の主軸に取付けたタービンユニットが用いられている(特許文献1)。
Further, it is known that the theoretical efficiency of air cooling is equal to or higher than that of Freon or ammonia gas in a deep coal region of -30 ° C to -60 ° C. However, it is also stated that obtaining the theoretical efficiency of the air cooling is not possible until there is an optimally designed peripheral device. The peripheral device is a compressor, an expansion turbine, or the like.
As the compressor and the expansion turbine, a turbine unit in which a compressor impeller and an expansion turbine impeller are attached to a common main shaft is used (Patent Document 1).

なお、プロセスガスを処理するタービン・コンプレッサとしては、主軸の一端にタービン翼車、他端にコンプレッサ翼車を取付け、前記主軸を電磁石の電流で制御するジャーナルおよびスラスト軸受で支承した磁気軸受式タービン・コンプレッサが提案されている(特許文献2)。
また、ガスタービンエンジンにおける提案ではあるが、主軸支持用の転がり軸受に作用するスラスト荷重が軸受寿命の短縮を招くことを回避するため、転がり軸受に作用するスラスト荷重をスラスト磁気軸受により低減することが提案されている(特許文献3)。
特許第2623202号公報 特開平7−91760号公報 特開平8−261237公報
In addition, as a turbine compressor which processes process gas, a turbine impeller is attached to one end of the main shaft, a compressor impeller is attached to the other end, and the main shaft is supported by a journal and a thrust bearing that is controlled by an electromagnet current. A compressor has been proposed (Patent Document 2).
In addition, although it is a proposal for a gas turbine engine, in order to avoid the thrust load acting on the rolling bearing for supporting the main shaft from shortening the bearing life, the thrust load acting on the rolling bearing should be reduced by the thrust magnetic bearing. Has been proposed (Patent Document 3).
Japanese Patent No. 2623202 Japanese Patent Application Laid-Open No. 7-91760 JP-A-8-261237

上記のように、空気サイクル冷凍冷却システムとして、ディープ・コール領域で高効率となる空気冷却の理論効率を得るためには、最適に設計された圧縮機や膨張タービンが必要となる。
圧縮機,膨張タービンとしては、上記のようにコンプレッサ翼車および膨張タービン翼車を共通の主軸に取付けたタービンユニットが用いられている。このタービンユニットは、膨張タービンの生じる動力によりコンプレッサ翼車を駆動できることで空気サイクル冷凍機の効率を向上させている。
As described above, as the air cycle refrigeration cooling system, in order to obtain the theoretical efficiency of air cooling that is highly efficient in the deep coal region, an optimally designed compressor and expansion turbine are required.
As the compressor and the expansion turbine, a turbine unit in which the compressor wheel and the expansion turbine wheel are attached to a common main shaft as described above is used. In this turbine unit, the compressor impeller can be driven by the power generated by the expansion turbine, thereby improving the efficiency of the air cycle refrigerator.

しかし、実用的な効率を得るためには、各翼車とハウジングとの隙間を微小に保つ必要がある。この隙間の変動は、安定した高速回転の妨げとなり効率の低下を招く。
また、コンプレッサ翼車やタービン翼車に作用する空気により、主軸にスラスト力が作用し、主軸を支持する軸受にスラスト荷重が荷される。空気サイクル冷凍冷却システムにおけるタービンユニットの主軸の回転速度は、1分間に8万〜10万回転であり、一般的な用途の軸受に比べて非常に高速となる。そのため、上記のようなスラスト荷重は、主軸を支持する軸受の長期耐久性の低下、寿命低下を招き、空気サイクル冷凍冷却用タービンユニットの信頼性を低下させる。このような軸受の長期耐久性の課題を解消しなくては、空気サイクル冷凍冷却用タービンユニットの実用化が難しい。しかし、上記特許文献1に開示の技術は、この高速回転下におけるスラスト荷重の負荷に対する軸受の長期耐久性の低下については解決されるに至っていない。
However, in order to obtain practical efficiency, it is necessary to keep the gap between each impeller and the housing minute. The fluctuation of the gap hinders stable high-speed rotation and causes a decrease in efficiency.
In addition, a thrust force acts on the main shaft by the air acting on the compressor impeller and the turbine impeller, and a thrust load is applied to the bearing that supports the main shaft. The rotation speed of the main shaft of the turbine unit in the air cycle refrigeration cooling system is 80,000 to 100,000 rotations per minute, which is very high compared with a bearing for general use. For this reason, the thrust load as described above causes a decrease in long-term durability and life of the bearing supporting the main shaft, and decreases the reliability of the turbine unit for air cycle refrigeration cooling. Unless such a problem of long-term durability of the bearing is solved, it is difficult to put the air cycle refrigeration cooling turbine unit into practical use. However, the technique disclosed in Patent Document 1 has not yet been solved for the deterioration of the long-term durability of the bearing against the load of the thrust load under the high-speed rotation.

特許文献2の磁気軸受式タービン・コンプレッサのように、主軸を磁気軸受からなるジャーナル軸受およびスラスト軸受で支承したものでは、ジャーナル軸受にアキシアル方向の規制機能がない。そのため、スラスト軸受の制御の不安定要因等があると、上記翼車とディフューザ間の微小隙間を保って安定した高速回転を行うことが難しい。磁気軸受の場合は、電源停止時における接触の問題もある。   In the case where the main shaft is supported by a journal bearing made of a magnetic bearing and a thrust bearing, such as the magnetic bearing type turbine compressor of Patent Document 2, the journal bearing does not have a restriction function in the axial direction. Therefore, if there is an unstable factor in controlling the thrust bearing, it is difficult to perform stable high-speed rotation while maintaining a minute gap between the impeller and the diffuser. In the case of a magnetic bearing, there is also a problem of contact when the power is stopped.

そこで、本発明者等は、上記課題を解決するものとして、図11に示すようなモータ一体型の磁気軸受装置を開発した。このモータ一体型の磁気軸受装置は、主軸53の両端にコンプレッサ46のコンプレッサ翼車46aおよび膨張タービン47のタービン翼車47aを取付けた空気サイクル冷凍冷却用タービンユニットにおいて、主軸53のラジアル負荷を転がり軸受55,56で、アキシアル負荷を電磁石57でそれぞれ支持すると共に、主軸53に同軸に設けたモータ68による駆動力とタービン翼車47aの駆動力とでコンプレッサ翼車46aを回転駆動するようにしたものである。アキシアル負荷を支持する電磁石57は、主軸53に垂直かつ同軸に設けられたスラスト板53aに非接触で対向するように配置され、アキシアル方向の力を検出するセンサ58の出力に応じて磁気軸受用コントローラ59で制御される。モータ68はアキシアルギャップ型のものであって、主軸53に垂直かつ同軸に設けた別のスラスト板53bにモータロータ68aを形成すると共に、このモータロータ68aと軸方向に対向するようにモータステータ68bを配置して構成される。このモータ68は、電磁石57とは独立にモータ用コントローラ69で制御される。   Accordingly, the present inventors have developed a motor-integrated magnetic bearing device as shown in FIG. 11 as a solution to the above problem. This motor-integrated magnetic bearing device rolls the radial load of the main shaft 53 in an air cycle refrigeration cooling turbine unit in which a compressor impeller 46a of the compressor 46 and a turbine impeller 47a of the expansion turbine 47 are attached to both ends of the main shaft 53. The axial loads are supported by the electromagnets 57 by the bearings 55 and 56, respectively, and the compressor impeller 46a is rotationally driven by the driving force of the motor 68 provided coaxially with the main shaft 53 and the driving force of the turbine impeller 47a. Is. The electromagnet 57 that supports the axial load is disposed so as to face the thrust plate 53a that is perpendicular and coaxial with the main shaft 53 in a non-contact manner, and is used for a magnetic bearing according to the output of the sensor 58 that detects the axial force. It is controlled by the controller 59. The motor 68 is of an axial gap type, and a motor rotor 68a is formed on another thrust plate 53b provided perpendicularly and coaxially to the main shaft 53, and a motor stator 68b is disposed so as to face the motor rotor 68a in the axial direction. Configured. The motor 68 is controlled by a motor controller 69 independently of the electromagnet 57.

上記構成のモータ一体型の磁気軸受装置によると、主軸53にかかるスラスト力を電磁石57で支持するため、非接触でトルクの増大を抑えながら、転がり軸受55,56に作用するスラスト力を軽減することができる。その結果、各翼車46a,47aとハウジング46b,47bとの微小隙間を一定に保つことができ、スラスト荷重の負荷に対する転がり軸受の長期耐久性を向上させることができる。   According to the motor-integrated magnetic bearing device configured as described above, since the thrust force applied to the main shaft 53 is supported by the electromagnet 57, the thrust force acting on the rolling bearings 55 and 56 is reduced while suppressing an increase in torque without contact. be able to. As a result, the minute gaps between the respective impellers 46a and 47a and the housings 46b and 47b can be kept constant, and the long-term durability of the rolling bearing against the load of the thrust load can be improved.

しかし、上記構成のモータ一体型の磁気軸受装置では、高速回転時にスラスト板53aに接着した永久磁石の遠心力が大きく、スラスト板外周部に形成された永久磁石固定用の鍔部に大きな応力が発生する。このモータ一体型の磁気軸受装置において、更なる高速回転や高性能化のため、永久磁石の寸法を拡大する必要がある。この永久磁石の寸法拡大による遠心応力の増加に伴い、鍔部の引張り強度を高める等の対策を講じる必要がある。
また、本件出願人は、応力集中部に浸炭焼入れを施す技術を提案しているが、高速化、永久磁石の寸法拡大には引張り強度が不足である。
However, in the motor-integrated magnetic bearing device configured as described above, the centrifugal force of the permanent magnet adhered to the thrust plate 53a during high-speed rotation is large, and a large stress is applied to the collar portion for fixing the permanent magnet formed on the outer peripheral portion of the thrust plate. appear. In this motor-integrated magnetic bearing device, it is necessary to increase the size of the permanent magnet for further high-speed rotation and higher performance. As the centrifugal stress increases due to the increase in the size of the permanent magnet, it is necessary to take measures such as increasing the tensile strength of the buttocks.
Further, the applicant of the present application has proposed a technique for carburizing and quenching the stress concentration portion, but the tensile strength is insufficient for increasing the speed and expanding the size of the permanent magnet.

この発明の目的は、スラスト荷重の負荷に対する転がり軸受の長期耐久性を向上させることができ、また、永久磁石の寸法を拡大して高速回転や高性能化を図ることができるモータ一体型の磁気軸受装置を提供することである。   An object of the present invention is to improve the long-term durability of a rolling bearing against a thrust load, and to increase the size of a permanent magnet for high-speed rotation and high performance. It is to provide a bearing device.

この発明のモータ一体型の磁気軸受装置は、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、前記スラスト板は、片面に電磁石ターゲットが形成され、もう片方の面にはモータロータ用の永久磁石が配置され、この永久磁石に対向して、モータステータが配置されてスピンドルハウジングに取付けられており、前記モータロータおよび前記モータステータ間のローレンツ力により主軸を回転させるアキシアルギャップ型のコアレスモータを有するものであって、前記スラスト板の側面の外周部に、永久磁石の外周縁部を支持する鍔部を設け、前記スラスト板の外周面における鍔部の外周部から非鍔部の外周部にわたって、強化繊維材料からなる補強部材を設けたことを特徴とする。   A motor-integrated magnetic bearing device according to the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, the magnetic bearing supports one or both of an axial load and a bearing preload, and The electromagnet constituting the bearing is attached to the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner, and the thrust plate has an electromagnet target formed on one side. A permanent magnet for the motor rotor is disposed on the other surface, and a motor stator is disposed opposite to the permanent magnet and attached to the spindle housing. The main shaft is driven by the Lorentz force between the motor rotor and the motor stator. An axial gap type coreless motor that rotates the thrust plate, the thrust plate Provided on the outer peripheral part of the side surface is a flange part that supports the outer peripheral edge part of the permanent magnet, and provided with a reinforcing member made of a reinforcing fiber material from the outer peripheral part of the peripheral part of the thrust plate to the outer peripheral part of the non-protrusive part. It is characterized by that.

この構成によると、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持するものであるため、アキシアル方向の精度の良い支持が行え、また転がり軸受の長期耐久性が確保でき、磁気軸受のみの支持の場合における電源停止時の損傷も回避される。   According to this configuration, the rolling bearing and the magnetic bearing are used together, the rolling bearing supports the radial load, and the magnetic bearing supports one or both of the axial load and the bearing preload. Good support can be achieved, long-term durability of the rolling bearing can be ensured, and damage when the power supply is stopped when only the magnetic bearing is supported is avoided.

また、各スラスト板の側面の外周部に、永久磁石の外周縁部を支持する鍔部を設けている。前記各スラスト板の外周面における鍔部の外周部から非鍔部の外周部にわたって、強化繊維材料からなる補強部材を設けたので、従来技術のものより鍔部の引張り強度を高め、永久磁石の寸法を拡大して高速回転や高性能化を図ることが可能となる。高速回転時には鍔部に大きな応力が発生するが、補強部材によって、この応力を許容することができる。また、永久磁石の飛散を確実に防止することができる。   Moreover, the collar part which supports the outer peripheral part of a permanent magnet is provided in the outer peripheral part of the side surface of each thrust board. Since the reinforcing member made of the reinforcing fiber material is provided from the outer peripheral part of the flange part to the outer peripheral part of the non-protrusion part on the outer peripheral surface of each thrust plate, the tensile strength of the flange part is increased compared to the conventional one, and the permanent magnet It is possible to increase the size to achieve high speed rotation and high performance. A large stress is generated in the buttocks during high-speed rotation, but this stress can be allowed by the reinforcing member. Moreover, it is possible to reliably prevent the permanent magnets from being scattered.

この発明において、前記強化繊維材料は、フィラメント状(すなわち細糸状)またはシート状のカーボンファイバであることが望ましい。フィラメント状のカーボンファイバである場合、このカーボンファイバを、各スラスト板の外周面に形成した円周溝等に好適に巻回することができる。シート状のカーボンファイバである場合、このカーボンファイバを、スラスト板の外周面の幅内に収めて巻くことができる。   In the present invention, the reinforcing fiber material is preferably a carbon fiber in the form of a filament (that is, a fine thread) or a sheet. In the case of a filament-like carbon fiber, the carbon fiber can be suitably wound around a circumferential groove formed on the outer peripheral surface of each thrust plate. In the case of a sheet-like carbon fiber, this carbon fiber can be wound within the width of the outer peripheral surface of the thrust plate.

この発明において、前記各スラスト板の外周面に円周溝を形成し、この円周溝に強化繊維材料を巻回しても良い。この場合、強化繊維材料を迅速にかつ確実に円周溝に巻回することができ、よって作業工数の低減を図ることができる。
この発明において、前記主軸に前記スラスト板を2枚並べて設け、これら2枚のスラスト板の軸方向外側に2つの電磁石を設け、両スラスト板で挟まれる位置に前記モータステータを配置しても良い。この場合、磁気軸受ユニットとモータユニットとがコンパクトな一体構造とできる。そのため、主軸の軸長を短くでき、それだけ主軸の固有振動数が高くなって、主軸を高速回転させることができる。
In the present invention, a circumferential groove may be formed on the outer peripheral surface of each thrust plate, and a reinforcing fiber material may be wound around the circumferential groove. In this case, the reinforcing fiber material can be quickly and surely wound around the circumferential groove, so that the number of work steps can be reduced.
In the present invention, two thrust plates may be provided side by side on the main shaft, two electromagnets may be provided on the outer sides in the axial direction of the two thrust plates, and the motor stator may be disposed at a position sandwiched between the two thrust plates. . In this case, the magnetic bearing unit and the motor unit can have a compact integrated structure. Therefore, the shaft length of the main shaft can be shortened, the natural frequency of the main shaft can be increased accordingly, and the main shaft can be rotated at high speed.

また、この発明のモータ一体型の磁気軸受装置は、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、前記スラスト板は、片面に電磁石ターゲットが形成され、もう片方の面の外周部にはモータロータ用の永久磁石が配置され、この永久磁石に対向して、モータステータが配置されてスピンドルハウジングに取付けられており、前記モータロータおよび前記モータステータ間のローレンツ力により主軸を回転させるアキシアルギャップ型のコアレスモータを有するものであって、前記スラスト板の外周面から永久磁石の外周縁部にわたって、強化繊維材料からなる補強部材を設けたことを特徴とする。   The motor-integrated magnetic bearing device of the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, the magnetic bearing supports one or both of an axial load and a bearing preload, The electromagnet constituting the magnetic bearing is attached to the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft without contact, and the thrust plate has an electromagnet target on one side. A permanent magnet for the motor rotor is disposed on the outer peripheral portion of the other surface, and a motor stator is disposed opposite to the permanent magnet and attached to the spindle housing, and between the motor rotor and the motor stator. Having an axial gap type coreless motor that rotates the spindle by the Lorentz force of Over the outer peripheral edge portion of the permanent magnet from the outer peripheral surface of serial thrust plate, characterized in that a reinforcing member made of a reinforcing fiber material.

この構成によると、スラスト板の鍔部を省略したうえで、スラスト板の外周面から永久磁石の外周縁部にわたって、直接、強化繊維材料からなる補強部材を設けたので、鍔部を設けたスラスト板よりもスラスト板の構造を簡単化して、このスラスト板自体の引張り強度を高めることができる。特に、永久磁石の遠心力を補強部材で直接受けることができるので、スラスト板の構造を簡単化して製造コストの低減を図ることができる。その他、請求項1に係る発明と同様の作用、効果を奏する。   According to this configuration, since the flange portion of the thrust plate is omitted and the reinforcing member made of the reinforcing fiber material is provided directly from the outer peripheral surface of the thrust plate to the outer peripheral edge portion of the permanent magnet, the thrust member provided with the flange portion is provided. The structure of the thrust plate can be simplified as compared with the plate, and the tensile strength of the thrust plate itself can be increased. In particular, since the centrifugal force of the permanent magnet can be directly received by the reinforcing member, the structure of the thrust plate can be simplified and the manufacturing cost can be reduced. In addition, the same operations and effects as the invention according to claim 1 are provided.

この発明において、前記スラスト板の外周面から永久磁石の外周縁部にわたって、一または複数の円周溝を形成し、この円周溝に強化繊維材料を巻回しても良い。この場合、強化繊維材料を迅速にかつ確実に円周溝に巻回することができ、よって作業工数の低減を図ることができる。複数の円周溝を形成した場合、強化繊維材料を各円周溝に交互に巻くことで、引張り強度をさらに高めることが可能となる。
この発明において、前記主軸に前記スラスト板を2枚並べて設け、これら2枚のスラスト板の軸方向外側に2つの電磁石を設け、両スラスト板で挟まれる位置に前記モータステータを配置しても良い。この場合、磁気軸受ユニットとモータユニットとがコンパクトな一体構造とできる。そのため、主軸の軸長を短くでき、それだけ主軸の固有振動数が高くなって、主軸を高速回転させることができる。
In the present invention, one or a plurality of circumferential grooves may be formed from the outer peripheral surface of the thrust plate to the outer peripheral edge of the permanent magnet, and the reinforcing fiber material may be wound around the circumferential grooves. In this case, the reinforcing fiber material can be quickly and surely wound around the circumferential groove, so that the number of work steps can be reduced. When a plurality of circumferential grooves are formed, the tensile strength can be further increased by alternately winding reinforcing fiber materials around the circumferential grooves.
In the present invention, two thrust plates may be provided side by side on the main shaft, two electromagnets may be provided on the outer sides in the axial direction of the two thrust plates, and the motor stator may be disposed at a position sandwiched between the two thrust plates. . In this case, the magnetic bearing unit and the motor unit can have a compact integrated structure. Therefore, the shaft length of the main shaft can be shortened, the natural frequency of the main shaft can be increased accordingly, and the main shaft can be rotated at high speed.

この発明のモータ一体型の磁気軸受装置は、スラスト板の外周面における鍔部の外周部から非鍔部の外周部にわたって、強化繊維材料からなる補強部材を設けたので、従来技術のものより鍔部の引張り強度を高め、永久磁石の寸法を拡大して高速回転や高性能化を図ることが可能となる。また、永久磁石の飛散を確実に防止することができる。また、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持するものであるため、アキシアル方向の精度の良い支持が行え、また転がり軸受の長期耐久性が確保できる。   In the motor-integrated magnetic bearing device of the present invention, the reinforcing member made of the reinforcing fiber material is provided from the outer peripheral portion of the flange portion to the outer peripheral portion of the non-protruding portion on the outer peripheral surface of the thrust plate. It is possible to increase the tensile strength of the portion and increase the size of the permanent magnet to achieve high speed rotation and high performance. Moreover, it is possible to reliably prevent the permanent magnets from being scattered. In addition, since a rolling bearing and a magnetic bearing are used together, the rolling bearing supports a radial load, and the magnetic bearing supports one or both of an axial load and a bearing preload. It can be done and long-term durability of the rolling bearing can be secured.

この発明の一実施形態を図1ないし図5と共に説明する。図1は、この実施形態のモータ一体型の磁気軸受装置を組み込んだタービンユニット5の断面図を示す。このタービンユニット5は圧縮膨張タービンシステムを構成するものであり、コンプレッサ6および膨張タービン7を有し、コンプレッサ6のコンプレッサ翼車6aおよび膨張タービン7のタービン翼車7aが主軸13の両端にそれぞれ嵌合している。主軸13の材料には、磁気特性の良好な低炭素鋼が使用される。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a cross-sectional view of a turbine unit 5 incorporating a motor-integrated magnetic bearing device of this embodiment. The turbine unit 5 constitutes a compression / expansion turbine system, and includes a compressor 6 and an expansion turbine 7. The compressor impeller 6 a of the compressor 6 and the turbine impeller 7 a of the expansion turbine 7 are fitted to both ends of the main shaft 13. Match. The material of the main shaft 13 is low carbon steel with good magnetic properties.

図1において、コンプレッサ6は、コンプレッサ翼車6aと微小の隙間d1を介して対向するコンプレッサハウジング6bを有し、中心部の吸込口6cから軸方向に吸入した空気を、コンプレッサ翼車6aで圧縮し、外周部の出口(図示せず)から矢印6dで示すように排出する。
膨張タービン7は、タービン翼車7aと微小の隙間d2を介して対向するタービンハウジング7bを有し、外周部から矢印7cで示すように吸い込んだ空気を、タービン翼車7aで断熱膨張させ、中心部の排出口7dから軸方向に排出する。
In FIG. 1, the compressor 6 has a compressor housing 6b facing the compressor impeller 6a with a small gap d1, and compresses air sucked in the axial direction from the suction port 6c in the center by the compressor impeller 6a. And it discharges as shown by the arrow 6d from the exit (not shown) of an outer peripheral part.
The expansion turbine 7 has a turbine housing 7b that is opposed to the turbine impeller 7a via a minute gap d2, and the air sucked from the outer peripheral portion as indicated by an arrow 7c is adiabatically expanded by the turbine impeller 7a, It discharges in the axial direction from the discharge port 7d of the part.

このタービンユニット5におけるモータ一体型の磁気軸受装置は、主軸13をラジアル方向に対し複数の軸受15,16で支持し、主軸13にかかるアキシアル負荷と軸受予圧のどちらか一方または両方を磁気軸受である電磁石17により支持すると共に、主軸13を回転駆動するアキシアルギャップ型のモータ28を設けたものである。このタービンユニット5は、主軸13に作用するスラスト力を検出するセンサ18と、このセンサ18の出力に応じて前記電磁石17による支持力を制御する磁気軸受用コントローラ19と、電磁石17とは独立に前記モータ28を制御するモータ用コントローラ29とを有している。   The motor-integrated magnetic bearing device in the turbine unit 5 supports the main shaft 13 with a plurality of bearings 15 and 16 in the radial direction, and either or both of the axial load and the bearing preload applied to the main shaft 13 are magnetic bearings. An axial gap motor 28 that is supported by an electromagnet 17 and that rotates the main shaft 13 is provided. The turbine unit 5 includes a sensor 18 that detects a thrust force acting on the main shaft 13, a magnetic bearing controller 19 that controls the supporting force of the electromagnet 17 according to the output of the sensor 18, and the electromagnet 17. A motor controller 29 for controlling the motor 28;

電磁石17は、主軸13の軸方向中間部において軸方向に並ぶように主軸13に垂直かつ同軸に設けられた強磁性体からなるフランジ状の2つのスラスト板13a,13bの各片面に非接触で対向するように、一対のものがスピンドルハウジング14に設置されている。具体的には、磁気軸受ユニットを構成する一方の電磁石17は、膨張タービン7寄りに位置するスラスト板13aの膨張タービン7側に向く片面を電磁石ターゲットとして、この片面に非接触で対向するようにスピンドルハウジング14に設置される。また、磁気軸受ユニットを構成する他方の電磁石17は、コンプレッサ6寄りに位置するスラスト板13bのコンプレッサ6側に向く片面を電磁石ターゲットとして、この片面に非接触で対向するようにスピンドルハウジング14に設置される。   The electromagnet 17 is in non-contact with each surface of the two flange-shaped thrust plates 13a and 13b made of a ferromagnetic material that is provided perpendicularly and coaxially to the main shaft 13 so as to be aligned in the axial direction at the axial intermediate portion of the main shaft 13. A pair is installed in the spindle housing 14 so as to face each other. Specifically, one of the electromagnets 17 constituting the magnetic bearing unit is opposed to this one surface in a non-contact manner with the one surface facing the expansion turbine 7 of the thrust plate 13a located near the expansion turbine 7 as an electromagnet target. Installed in the spindle housing 14. Further, the other electromagnet 17 constituting the magnetic bearing unit is installed on the spindle housing 14 so as to face the one surface of the thrust plate 13b located near the compressor 6 toward the compressor 6 side, with the electromagnet target being non-contacted. Is done.

モータ28は、前記電磁石17と並んで主軸13に設けられたモータロータ28aと、このモータロータ28aに対し軸方向に対向するモータステータ28bとでなるモータユニットである。具体的には、モータユニットの一部品を構成するモータロータ28aは、主軸13における前記各スラスト板13a,13bの電磁石17が対向する側とは反対側の各片面に、円周方向に等ピッチで並ぶ永久磁石28aaを配置することで左右一対のものが構成される。このように軸方向に対向配置される永久磁石28aaの間では、その磁極が互いに異極となるように設定される。主軸13には磁気特性の良好な低炭素鋼を使用しているので、主軸13と一体構造となるように設けられる前記各スラスト板13a,13bを、永久磁石28aaのバックヨークおよび電磁石ターゲットに兼用できる。   The motor 28 is a motor unit including a motor rotor 28 a provided on the main shaft 13 along with the electromagnet 17, and a motor stator 28 b facing the motor rotor 28 a in the axial direction. Specifically, the motor rotor 28a that constitutes one part of the motor unit is arranged at a constant pitch in the circumferential direction on each side of the main shaft 13 opposite to the side where the electromagnets 17 of the thrust plates 13a and 13b face each other. By arranging the permanent magnets 28aa arranged side by side, a pair of left and right are configured. Thus, between the permanent magnets 28aa arranged opposite to each other in the axial direction, the magnetic poles are set to be different from each other. Since the main shaft 13 is made of low carbon steel having good magnetic properties, the thrust plates 13a and 13b provided so as to be integrated with the main shaft 13 are also used as the back yoke and the electromagnet target of the permanent magnet 28aa. it can.

このモータ28は、前記モータロータ28aとモータステータ28b間に作用するローレンツ力により、主軸13を回転させる。このように、このアキシアルギャップ型のモータ28はコアレスモータとされていることから、モータロータ28aとモータステータ28b間の磁気カップリングによる負の剛性はゼロとなっている。   The motor 28 rotates the main shaft 13 by Lorentz force acting between the motor rotor 28a and the motor stator 28b. Thus, since this axial gap type motor 28 is a coreless motor, the negative rigidity due to the magnetic coupling between the motor rotor 28a and the motor stator 28b is zero.

図2、図3に示すように、主軸13は、例えば、2枚のスラスト板13a,13bの間で2つの主軸分割体13A,13Bに2分割され、両主軸分割体13A,13Bが互いに結合されて一体のものとされている。一方の主軸分割体13Aは、分割面となる端面S1の軸心部に丸軸状の嵌合凸部を有し、他方の主軸分割体13Bは分割面となる端面S1に、前記嵌合凸部の外周に嵌合する円形の嵌合凹部を有している。両主軸分割体13A,13Bは、前記嵌合凸部と嵌合凹部との周面での嵌合と、前記分割面となる端面S1の突き合わせとにより、径方向および軸方向に拘束され、かつ軸心部で図示外のボルト等により互いに結合されている。前記ボルトは両切ボルトであり、一方の主軸分割体13Aの嵌合凸部の先端面中央に形成されたねじ孔と、他方の主軸分割体13Bの嵌合凹部の底面中央に形成されたねじ孔とにわたってねじ込まれている。各主軸分割体13A,13Bは、例えば鋼材の焼入等の硬化のための熱処理が施されたものとされ、前記ボルトは、硬化のための熱処理を施さない生材の鋼製のものとされている。   As shown in FIGS. 2 and 3, the main shaft 13 is divided into, for example, two main shaft divided bodies 13A and 13B between two thrust plates 13a and 13b, and both main shaft divided bodies 13A and 13B are coupled to each other. Has been integrated. One main shaft divided body 13A has a round shaft-like fitting convex portion at the axial center portion of the end surface S1 serving as a divided surface, and the other main shaft divided body 13B is formed on the end surface S1 serving as the divided surface. It has a circular fitting recess that fits on the outer periphery of the part. Both the main shaft split bodies 13A and 13B are constrained in the radial direction and the axial direction by the fitting on the peripheral surface of the fitting convex portion and the fitting concave portion and the butting of the end surface S1 serving as the split surface, and The shafts are coupled to each other by bolts or the like not shown. The bolt is a double-cut bolt, and a screw hole formed at the center of the front end surface of the fitting convex portion of one main shaft divided body 13A and a screw formed at the center of the bottom surface of the fitting concave portion of the other main shaft divided body 13B. Screwed over the hole. Each of the spindle divided bodies 13A and 13B is subjected to a heat treatment for hardening such as quenching of a steel material, for example, and the bolt is made of raw steel that is not subjected to a heat treatment for hardening. ing.

各主軸分割体13A,13Bの有するスラスト板13a,13bの対向面は、中心部付近と外周縁との間に環状の凹部43を有する形状とされ、この凹部43内に、前記モータロータ28aを構成する永久磁石28aaが接着等により取付けられている。また、各スラスト板13a,13bの側面の外周部に、各永久磁石28aaの外周縁部28abを支持する鍔部TBを設けている。   The opposing surfaces of the thrust plates 13a, 13b of the main shaft division bodies 13A, 13B are shaped to have an annular recess 43 between the vicinity of the center and the outer peripheral edge, and the motor rotor 28a is configured in the recess 43. A permanent magnet 28aa is attached by adhesion or the like. In addition, a flange TB for supporting the outer peripheral edge portion 28ab of each permanent magnet 28aa is provided on the outer peripheral portion of the side surface of each thrust plate 13a, 13b.

また、スラスト板13a,13bの外周面における鍔部TBの外周部TBaから非鍔部NTBの外周部NTBaにわたって、強化繊維材料からなる補強部材HBが設けられている。この補強部材は、特に、鍔部TBの引張り強度を高めるものである。前記強化繊維材料としては、例えば、カーボンファイバを適用することができる。ただし、強化繊維材料は、カーボンファイバに必ずしも限定されるものではなく、例えば、引張強度の高いボロンファイバやケブラーファイバ等を適用しても良い。
前記補強部材HBは、例えば、シートワインディング法またはフィラメントワインディング法によって製造される。この実施形態では、シートワインディング法が適用される。
Further, a reinforcing member HB made of a reinforcing fiber material is provided from the outer peripheral portion TBa of the flange portion TB to the outer peripheral portion NTBa of the non-protruded portion NTB on the outer peripheral surfaces of the thrust plates 13a and 13b. In particular, this reinforcing member increases the tensile strength of the flange portion TB. As the reinforcing fiber material, for example, a carbon fiber can be applied. However, the reinforcing fiber material is not necessarily limited to carbon fiber, and for example, boron fiber or Kevlar fiber having high tensile strength may be applied.
The reinforcing member HB is manufactured by, for example, a sheet winding method or a filament winding method. In this embodiment, a sheet winding method is applied.

ここで、シートワインディング法等について説明する。
カーボンファイバ等からなるシートに、例えば、熱硬化樹脂を含浸させ、半硬化状態になった材料つまりプリプレグシートを準備する。次に、このプリプレグシートを、円筒形の図示外の金型に巻きつけた後、加熱硬化炉に入れてパイプ状に成形する。このとき、複数のプリプレグシートを繊維の角度を考慮して積層することにより繊維配向方向による強度の異方性を避けることができ所望の力学的性質を得ることもできる。このように、パイプ状に成形したシート体を、鍔部TBの外周部TBaから非鍔部NTBの外周部NTBaにわたって圧入して補強部材HBを得る。この場合、プリプレグシートよりも取り扱い容易なシート体を、各スラスト板13a,13bと並行して製造することができ、量産化を図ることが可能となる。特に、シートワインディング法を適用することで、シート体をスラスト板13a,13bの外周面の幅H1内に収めて巻くことができる。換言すれば、スラスト板13a,13bの外周面の幅H1内に収まるシート体を、シートワインディング法を用いて準備しておき、このシート体を、後加工することなくスラスト板13a,13bの外周面の幅H1内に確実に収めて設けることができる。なお、シート体の内周面と、鍔部TB,非鍔部NTBの外周部との間に接着剤等を塗布して補強部材を固着させても良い。
Here, the sheet winding method and the like will be described.
For example, a sheet made of carbon fiber or the like is impregnated with a thermosetting resin to prepare a semi-cured material, that is, a prepreg sheet. Next, this prepreg sheet is wound around a cylindrical mold (not shown), and then placed in a heat curing furnace to be formed into a pipe shape. At this time, by laminating a plurality of prepreg sheets in consideration of the fiber angle, anisotropy of strength due to the fiber orientation direction can be avoided and desired mechanical properties can be obtained. In this way, the sheet body formed into a pipe shape is press-fitted from the outer peripheral portion TBa of the flange portion TB to the outer peripheral portion NTBa of the non-protruded portion NTB to obtain the reinforcing member HB. In this case, a sheet body that is easier to handle than the prepreg sheet can be manufactured in parallel with the thrust plates 13a and 13b, and mass production can be achieved. In particular, by applying the sheet winding method, the sheet body can be housed and wound within the width H1 of the outer peripheral surface of the thrust plates 13a and 13b. In other words, a sheet body that fits within the width H1 of the outer peripheral surface of the thrust plates 13a and 13b is prepared using the sheet winding method, and the outer periphery of the thrust plates 13a and 13b is processed without post-processing the sheet body. It can be securely provided within the width H1 of the surface. In addition, an adhesive etc. may be apply | coated between the inner peripheral surface of a sheet | seat body, and the outer peripheral part of eaves part TB and non eaves part NTB, and a reinforcement member may be fixed.

本実施形態では、加熱硬化炉で硬化させた後のシート体を、スラスト板13a,13bの外周面に設けているが、この方法に限定されるものではない。例えば、半硬化状態のプリプレグシートをスラスト板の外周面に巻きつけた後、硬化させて補強部材HBを得る方法を適用しても良い。この場合、シート体を圧入したり接着剤等を塗布する手間を省略でき、作業工数の低減を図ることが可能となる。さらに、プリプレグシートを、円筒形の金型でなくスラスト板13a,13bの外周面に巻き付けるので、円筒形の金型自体を省略することが可能となり、その分設備費用を低減することができる。これによって、磁気軸受装置全体の製造コストを低減することができる。   In the present embodiment, the sheet body after being cured in the heat curing furnace is provided on the outer peripheral surfaces of the thrust plates 13a and 13b, but is not limited to this method. For example, a method of obtaining a reinforcing member HB by winding a semi-cured prepreg sheet around the outer peripheral surface of a thrust plate and then curing it may be applied. In this case, the trouble of press-fitting the sheet body or applying an adhesive or the like can be omitted, and the number of work steps can be reduced. Furthermore, since the prepreg sheet is wound around the outer peripheral surface of the thrust plates 13a and 13b instead of the cylindrical mold, the cylindrical mold itself can be omitted, and the equipment cost can be reduced correspondingly. Thereby, the manufacturing cost of the whole magnetic bearing device can be reduced.

図1において、主軸13を支持する軸受15,16は転がり軸受であって、アキシアル方向位置の規制機能を有するものであり、例えば深溝玉軸受やアンギュラ玉軸受が用いられる。深溝玉軸受の場合、両方向のスラスト支持機能を有し、内外輪のアキシアル方向位置を中立位置に戻す作用を持つ。これら2個の軸受15,16は、それぞれスピンドルハウジング14におけるコンプレッサ翼車6aおよびタービン翼車7aの近傍に配置されている。   In FIG. 1, bearings 15 and 16 for supporting the main shaft 13 are rolling bearings and have a function of regulating the axial position, and for example, deep groove ball bearings or angular ball bearings are used. In the case of a deep groove ball bearing, it has a thrust support function in both directions, and has the effect of returning the axial position of the inner and outer rings to the neutral position. These two bearings 15 and 16 are arranged in the vicinity of the compressor impeller 6a and the turbine impeller 7a in the spindle housing 14, respectively.

図3に示すように、主軸13は、例えば、大径部13cと、中径部13eと、両端部の小径部13dとを有する段付き軸とされている。両側の軸受15,16は、その内輪15a,16aが小径部13dに圧入状態に嵌合し、片方の幅面が大径部13cと小径部13d間の段差面に係合する。
スピンドルハウジング14における両側の軸受15,16よりも各翼車6a,7a側の部分は、内径面が主軸13に近接する径に形成され、この内径面に非接触シール21,22が形成されている。この実施形態では、非接触シール21,22は、スピンドルハウジング14の内径面に複数の円周溝を軸方向に並べて形成したラビリンスシールとしているが、その他の非接触シール手段でも良い。
As shown in FIG. 3, the main shaft 13 is a stepped shaft having, for example, a large diameter portion 13c, a medium diameter portion 13e, and small diameter portions 13d at both ends. The bearings 15 and 16 on both sides have their inner rings 15a and 16a fitted into the small diameter portion 13d in a press-fit state, and one of the width surfaces engages with a stepped surface between the large diameter portion 13c and the small diameter portion 13d.
The portions of the spindle housing 14 closer to the impellers 6a and 7a than the bearings 15 and 16 on both sides are formed with an inner diameter surface close to the main shaft 13, and non-contact seals 21 and 22 are formed on the inner diameter surface. Yes. In this embodiment, the non-contact seals 21 and 22 are labyrinth seals in which a plurality of circumferential grooves are formed on the inner diameter surface of the spindle housing 14 in the axial direction, but other non-contact seal means may be used.

前記センサ18は、タービン翼車7a側の軸受16の近傍における静止側、つまりスピンドルハウジング14側に設けられている。このセンサ18を近傍に設けた軸受16は、その外輪16bが軸受ハウジング23内に固定状態に嵌合している。軸受ハウジング23は、リング状に形成されて一端に軸受16の外輪16bの幅面に係合する内鍔23aを有しており、スピンドルハウジング14に設けられた内径面24にアキシアル方向に移動自在に嵌合している。内鍔23aは、アキシアル方向の中央側端に設けられている。   The sensor 18 is provided on the stationary side in the vicinity of the bearing 16 on the turbine impeller 7a side, that is, on the spindle housing 14 side. The outer ring 16 b of the bearing 16 provided with the sensor 18 in the vicinity thereof is fitted in the bearing housing 23 in a fixed state. The bearing housing 23 has an inner flange 23a that is formed in a ring shape and engages with the width surface of the outer ring 16b of the bearing 16 at one end, and is movable in the axial direction on an inner diameter surface 24 provided on the spindle housing 14. It is mated. The inner collar 23a is provided at the center side end in the axial direction.

前記センサ18は、タービン翼者7a側の軸受16の近傍における静止側、つまりスピンドルハウジング14側に設けられている。このセンサ18を近傍に設けた軸受16は、その外輪16bが軸受ハウジング23内に固定状態に嵌合している。軸受ハウジング23は、リング状に形成されて一端に軸受16の外輪16bの幅面に係合する内鍔23aを有しており、スピンドルハウジング14に設けられた内径面24にアキシアル方向に移動自在に嵌合している。内鍔23aは、アキシアル方向の中央側端に設けられている。   The sensor 18 is provided on the stationary side in the vicinity of the bearing 16 on the turbine blade 7a side, that is, on the spindle housing 14 side. The outer ring 16 b of the bearing 16 provided with the sensor 18 in the vicinity thereof is fitted in the bearing housing 23 in a fixed state. The bearing housing 23 has an inner flange 23a that is formed in a ring shape and engages with the width surface of the outer ring 16b of the bearing 16 at one end, and is movable in the axial direction on an inner diameter surface 24 provided on the spindle housing 14. It is mated. The inner collar 23a is provided at the center side end in the axial direction.

センサ18は主軸13の回りの円周方向複数個所(例えば2箇所)に分配配置され、軸受ハウジング23の内鍔23a側の幅面と、スピンドルハウジング14に固定された部材である片方の電磁石17との間に介在させてある。また、センサ18は、センサ予圧ばね25により予圧が印加されている。センサ予圧ばね25は、スピンドルハウジング14に設けられた収容凹部内に収容されて軸受16の外輪16bをアキシアル方向に付勢するものとされ、外輪16bおよび軸受ハウジング23を介してセンサ18を予圧する。センサ予圧ばね25は、例えば主軸13の回りの円周方向複数箇所に設けられたコイルばね等からなる。   The sensors 18 are distributed and arranged at a plurality of locations (for example, two locations) in the circumferential direction around the main shaft 13, the width surface of the bearing housing 23 on the inner flange 23 a side, and one electromagnet 17 that is a member fixed to the spindle housing 14. It is interposed between. The sensor 18 is applied with preload by a sensor preload spring 25. The sensor preload spring 25 is housed in a housing recess provided in the spindle housing 14 and biases the outer ring 16 b of the bearing 16 in the axial direction, and preloads the sensor 18 via the outer ring 16 b and the bearing housing 23. . The sensor preload spring 25 is composed of, for example, coil springs provided at a plurality of locations in the circumferential direction around the main shaft 13.

センサ予圧ばね25による予圧は、押し付け力によってスラスト力を検出するセンサ18が、主軸13のアキシアル方向のいずれの向きの移動に対しても検出できるようにするためであり、タービンユニット5の通常の運転状態で主軸13に作用する平均的なスラスト力以上の大きさとされる。   The preload by the sensor preload spring 25 is for the sensor 18 that detects the thrust force by the pressing force to detect any movement of the main shaft 13 in the axial direction. The magnitude is greater than the average thrust force acting on the main shaft 13 in the operating state.

センサ18の非配置側の軸受15は、スピンドルハウジング14に対してアキシアル方向に移動自在に設置され、かつ軸受予圧ばね26によって弾性支持されている。この例では軸受15の外輪15bが、スピンドルハウジング14の内径面にアキシアル方向移動自在に嵌合していて、軸受予圧ばね26は、外輪15bとスピンドルハウジング14との間に介在している。軸受予圧ばね26は、内輪15aの幅面が係合した主軸13の段面に対向して外輪15bを付勢するものとされ、軸受15に予圧を与えている。軸受予圧ばね26は、主軸13回りの円周方向複数箇所に設けられたコイルばね等からなり、それぞれスピンドルハウジング14に設けられた収容凹部内に収容されている。軸受予圧ばね26は、センサ予圧ばね25よりもばね定数が小さいものとされる。   The bearing 15 on the non-arrangement side of the sensor 18 is installed so as to be movable in the axial direction with respect to the spindle housing 14 and is elastically supported by a bearing preload spring 26. In this example, the outer ring 15 b of the bearing 15 is fitted to the inner diameter surface of the spindle housing 14 so as to be movable in the axial direction, and the bearing preload spring 26 is interposed between the outer ring 15 b and the spindle housing 14. The bearing preload spring 26 biases the outer ring 15 b so as to face the step surface of the main shaft 13 with which the width surface of the inner ring 15 a is engaged, and applies a preload to the bearing 15. The bearing preload spring 26 includes coil springs and the like provided at a plurality of locations in the circumferential direction around the main shaft 13, and is accommodated in receiving recesses provided in the spindle housing 14. The bearing preload spring 26 has a smaller spring constant than the sensor preload spring 25.

上記タービンユニット5におけるモータ一体型の磁気軸受装置の力学モデルは簡単なバネ系で構成することができる。すなわち、このバネ系は、軸受15,16とこれら軸受の支持系(センサ予圧ばね25、軸受予圧ばね26、軸受ハウジング23など)とで形成される合成バネと、モータ部(電磁石17とモータ28)で形成される合成バネとが並列となった構成である。このバネ系において、軸受15,16とこれら軸受の支持系とで形成される合成バネは、変位した方向と逆の方向に変位量に比例して作用する剛性となるのに対し、電磁石17とモータ28とで形成される合成バネは、変位した方向に変位量に比例して作用する負の剛性となる。
このため、上記した両合成バネの剛性の大小関係を、
軸受等による合成バネの剛性値<電磁石・モータによる合成バネの負の剛性値…(1)とした場合、機械システムの位相は180°遅れとなり不安定な系となることから、電磁石17を制御する磁気軸受用コントローラ19において、予め位相補償回路を付加する必要が生じ、コントローラ19の構成が複雑なものになる。
The dynamic model of the motor-integrated magnetic bearing device in the turbine unit 5 can be constituted by a simple spring system. That is, the spring system includes a composite spring formed by the bearings 15 and 16 and a support system for these bearings (sensor preload spring 25, bearing preload spring 26, bearing housing 23, etc.), and a motor unit (electromagnet 17 and motor 28). ) Formed in parallel. In this spring system, the composite spring formed by the bearings 15 and 16 and the support system of these bearings has rigidity acting in proportion to the amount of displacement in the direction opposite to the displaced direction, while the electromagnet 17 and The combined spring formed by the motor 28 has a negative stiffness that acts in proportion to the amount of displacement in the displaced direction.
For this reason, the magnitude relationship between the stiffnesses of the two composite springs described above is
If the stiffness value of the composite spring by the bearing etc. <the negative stiffness value of the composite spring by the electromagnet / motor ... (1), the phase of the mechanical system is delayed by 180 ° and the system becomes unstable, so the electromagnet 17 is controlled. In the magnetic bearing controller 19, the phase compensation circuit needs to be added in advance, and the configuration of the controller 19 becomes complicated.

そこで、この実施形態のモータ一体型の磁気軸受装置では、上記した両合成バネの剛性の大小関係を、
軸受等による合成バネの剛性値>電磁石・モータによる合成バネの負の剛性値…(2)としている。とくに、このモータ一体型の磁気軸受装置では、上記したようにアキシアルギャップ型のモータ28をコアレスモータとしているので、モータ28に作用する負の剛性値をゼロとすることができ、モータ28が高負荷動作し過大なアキシアル荷重が作用した状態においても上記(2)式の大小関係を保つことができる。
その結果、制御帯域において、機械システムの位相が180°遅れとなることを防止できるので、モータ28が高負荷動作し過大なアキシアル荷重が作用した状態でも磁気軸受用コントローラ19の制御対象を安定なものとでき、コントローラ19の回路構成を図4のように比例もしくは比例積分を用いた簡単なものに構成できる。
Therefore, in the motor-integrated magnetic bearing device of this embodiment, the above-described rigidity relationship of the two composite springs is expressed as follows:
Rigidity value of the combined spring by the bearing or the like> Negative rigidity value of the combined spring by the electromagnet / motor (2). In particular, in this motor-integrated magnetic bearing device, since the axial gap type motor 28 is a coreless motor as described above, the negative rigidity value acting on the motor 28 can be made zero, and the motor 28 is high. Even in the state where the load operation is performed and an excessive axial load is applied, the magnitude relationship of the above equation (2) can be maintained.
As a result, since the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, the controlled object of the magnetic bearing controller 19 can be stabilized even when the motor 28 is operated at a high load and an excessive axial load is applied. The circuit configuration of the controller 19 can be configured as a simple one using proportional or proportional integration as shown in FIG.

ブロック図で示す図4の磁気軸受用コントローラ19では、各センサ18の検出出力P1,P2をセンサ出力演算回路30で加減算し、その演算結果を比較器31で基準値設定手段32の基準値と比較して偏差を演算し、さらに演算した偏差をPI補償回路(もしくはP補償回路)33によりタービンユニット5に応じて適宜設定される比例積分(もしくは比例)処理を行うことで、電磁石17の制御信号を演算するようにしている。PI補償回路(もしくはP補償回路)33の出力は、ダイオード34,35を介して各方向の電磁石17 1 ,17 2 を駆動するパワー回路36,37に入力される。電磁石17 1 ,17 2は、図1に示したスラスト板13aに対向する一対の電磁石17であり、吸引力しか作用しないため、予めダイオード34,35で電流の向きを決め、2個の電磁石17 1 ,17 2を選択的に駆動するようにしている。   In the magnetic bearing controller 19 of FIG. 4 shown in the block diagram, the detection outputs P1 and P2 of each sensor 18 are added and subtracted by the sensor output calculation circuit 30, and the calculation result is compared with the reference value of the reference value setting means 32 by the comparator 31. By controlling the electromagnet 17 by performing a proportional integration (or proportional) process in which the calculated deviation is appropriately set according to the turbine unit 5 by the PI compensation circuit (or P compensation circuit) 33. The signal is calculated. The output of the PI compensation circuit (or P compensation circuit) 33 is input to power circuits 36 and 37 that drive the electromagnets 17 1 and 17 2 in each direction via diodes 34 and 35. The electromagnets 17 1 and 17 2 are a pair of electromagnets 17 facing the thrust plate 13a shown in FIG. 1, and only the attractive force acts. Therefore, the direction of current is determined in advance by the diodes 34 and 35, and the two electromagnets 17 are used. 1 and 17 2 are selectively driven.

同じくブロック図で示す図5のモータ用コントローラ29では、回転同期指令信号を基に、モータロータ28aの回転角をフィードバック信号として位相調整回路38でモータ駆動電流の位相調整が行われ、その調整結果に応じたモータ駆動電流をモータ駆動回路39からモータステータ28bに供給することによって、定回転制御が行われる。前記回転同期指令信号は、モータロータ28aに設けられた回転角度検出センサ(図示せず)の出力に応じて演算される。   In the motor controller 29 of FIG. 5 also shown in the block diagram, the phase adjustment circuit 38 adjusts the phase of the motor drive current using the rotation angle of the motor rotor 28a as a feedback signal based on the rotation synchronization command signal. Constant rotation control is performed by supplying a corresponding motor drive current from the motor drive circuit 39 to the motor stator 28b. The rotation synchronization command signal is calculated according to the output of a rotation angle detection sensor (not shown) provided in the motor rotor 28a.

この構成のタービンユニット5は、例えば空気サイクル冷凍冷却システムに適用されて、冷却媒体となる空気を後段の熱交換器(ここでは図示せず)により効率良く熱交換できるように、コンプレッサ6で圧縮して温度上昇させ、さらに後段の前記熱交換器で冷却された空気を、膨張タービン7により、目標温度、例えば−30℃〜−60℃程度の極低温まで断熱膨張により冷却して排出するように使用される。   The turbine unit 5 having this configuration is applied to, for example, an air cycle refrigeration cooling system, and is compressed by a compressor 6 so that air as a cooling medium can be efficiently heat-exchanged by a heat exchanger (not shown here) at a subsequent stage. Then, the temperature is increased, and the air cooled by the heat exchanger in the subsequent stage is cooled and discharged by adiabatic expansion to a target temperature, for example, a very low temperature of about −30 ° C. to −60 ° C. by the expansion turbine 7. Used for.

このような使用例において、このタービンユニット5は、コンプレッサ翼車6aおよびタービン翼車7aが、前記スラスト板13aとモータロータ28aと共通の主軸13に嵌合し、モータ28の動力とタービン翼車7aで発生した動力のどちらか一方または両方によりコンプレッサ翼車6aを駆動するものとしている。このため、各翼車6a,7aの適切な隙間d1,d2を保って主軸13の安定した高速回転が得られ、かつ軸受15,16の長期耐久性の向上、寿命の向上が得られる。   In such a use example, the turbine unit 5 includes a compressor impeller 6a and a turbine impeller 7a fitted on the main shaft 13 common to the thrust plate 13a and the motor rotor 28a, and the power of the motor 28 and the turbine impeller 7a. The compressor impeller 6a is driven by either one or both of the power generated in the above. For this reason, stable high-speed rotation of the main shaft 13 can be obtained while maintaining appropriate gaps d1 and d2 between the impellers 6a and 7a, and the long-term durability and life of the bearings 15 and 16 can be improved.

すなわち、タービンユニット5の圧縮,膨張の効率を確保するためには、各翼車6a,7aとハウジング6b,7bとの隙間d1,d2を微小に保つ必要がある。例えば、このタービンユニット5を空気サイクル冷凍冷却システムに適用する場合には、この効率確保が重要となる。これに対して、主軸13を転がり形式の軸受15,16により支持するため、転がり軸受の持つアキシアル方向位置の規制機能により、主軸13のアキシアル方向位置がある程度規制され、各翼車6a,7aとハウジング6b,7bとの微小隙間d1,d2を一定に保つことができる。   That is, in order to ensure the efficiency of compression and expansion of the turbine unit 5, it is necessary to keep the gaps d1 and d2 between the impellers 6a and 7a and the housings 6b and 7b minute. For example, when this turbine unit 5 is applied to an air cycle refrigeration cooling system, ensuring this efficiency is important. On the other hand, since the main shaft 13 is supported by rolling type bearings 15 and 16, the axial direction position of the main shaft 13 is regulated to some extent by the restriction function of the axial direction position of the rolling bearing, and each impeller 6a, 7a and The minute gaps d1 and d2 between the housings 6b and 7b can be kept constant.

しかし、タービンユニット5の主軸13には、各翼車6a,7aに作用する空気の圧力でスラスト力がかかる。また、空気冷却システムで使用するタービンユニット5では、1分間に例えば8万〜10万回転程度の非常に高速の回転となる。そのため、主軸13を回転支持する転がり軸受15,16に上記スラスト力が作用すると、軸受15,16の長期耐久性が低下する。
この実施形態は、上記スラスト力を電磁石17で支持するため、非接触でトルクの増大を抑えながら、主軸13の支持用の転がり軸受15,16に作用するスラスト力を軽減することができる。この場合に、主軸13に作用するスラスト力を検出するセンサ18と、このセンサ18の出力に応じて前記電磁石17による支持力を制御する磁気軸受用コントローラ19とを設けたため、転がり軸受15,16を、その軸受仕様に応じてスラスト力に対し最適な状態で使用することができる。
However, a thrust force is applied to the main shaft 13 of the turbine unit 5 by the pressure of air acting on the impellers 6a and 7a. Further, the turbine unit 5 used in the air cooling system rotates at a very high speed of about 80,000 to 100,000 rotations per minute, for example. Therefore, when the thrust force acts on the rolling bearings 15 and 16 that rotatably support the main shaft 13, the long-term durability of the bearings 15 and 16 decreases.
In this embodiment, since the thrust force is supported by the electromagnet 17, the thrust force acting on the rolling bearings 15 and 16 for supporting the main shaft 13 can be reduced while suppressing an increase in torque without contact. In this case, since the sensor 18 for detecting the thrust force acting on the main shaft 13 and the magnetic bearing controller 19 for controlling the supporting force by the electromagnet 17 according to the output of the sensor 18 are provided, the rolling bearings 15 and 16 are provided. Can be used in an optimum state against the thrust force according to the bearing specifications.

軸方向に並べて主軸13に設けられた2つのスラスト板13a,13bの軸方向外側に2つの電磁石17を配置して磁気軸受ユニットを構成すると共に、前記両スラスト板13a,13bで挟まれる位置にアキシアルギャップ型のモータ28を配置してモータユニットを構成することにより、磁気軸受ユニットとモータユニットをコンパクトな一体構造としているため、主軸53の軸長を短くでき、それだけ主軸13の固有振動数が高くなって、主軸13を高速回転させることができる。   Two electromagnets 17 are arranged on the axially outer side of the two thrust plates 13a, 13b provided on the main shaft 13 side by side in the axial direction to constitute a magnetic bearing unit, and at a position sandwiched between the thrust plates 13a, 13b. By arranging the axial gap type motor 28 to constitute the motor unit, the magnetic bearing unit and the motor unit are made into a compact integrated structure. Therefore, the shaft length of the main shaft 53 can be shortened, and the natural frequency of the main shaft 13 can be reduced accordingly. It becomes high and the main shaft 13 can be rotated at high speed.

また、このモータ一体型の磁気軸受装置は、モータステータ28bが主軸13の2枚のスラスト板13a,13bの間に介在する配置のため、モータステータ28bおよび主軸13の両方が一体の部材であると装置の組み立てができないが、図2のように、主軸13が、2枚のスラスト板13a,13bの間で2分割され、両主軸分割体13A,13Bが互いに結合されたものであるため、両スラスト板13a,13b間に一体のモータステータ28bを介在させるようにモータを組み立てることが可能になる。また、主軸13を2枚のスラスト板13a,13b間で分割したため、これらスラスト板13a,13b間の隙間が狭くても、両スラスト板13a,13bに取付けられるモータロータ28aとなる永久磁石28aaを、スラスト板13a,13bに容易に貼り付けることができる。すなわち、両主軸分割体13A,13Bが離れた状態で永久磁石28aaの貼り付け作業が行え、両スラスト板13a,13b間の隙間の大きさに関係なく、永久磁石28aaの貼り付け作業が行える。   Further, in this motor-integrated magnetic bearing device, since the motor stator 28b is disposed between the two thrust plates 13a and 13b of the main shaft 13, both the motor stator 28b and the main shaft 13 are integrated members. As shown in FIG. 2, the main shaft 13 is divided into two parts between the two thrust plates 13a and 13b, and both main shaft divided bodies 13A and 13B are combined with each other. The motor can be assembled so that the integral motor stator 28b is interposed between the thrust plates 13a and 13b. Further, since the main shaft 13 is divided between the two thrust plates 13a and 13b, the permanent magnet 28aa serving as the motor rotor 28a attached to the thrust plates 13a and 13b can be obtained even if the gap between the thrust plates 13a and 13b is narrow. It can be easily attached to the thrust plates 13a and 13b. That is, the permanent magnet 28aa can be attached in a state in which the main spindle divided bodies 13A and 13B are separated, and the permanent magnet 28aa can be attached regardless of the size of the gap between the thrust plates 13a and 13b.

モータステータ28bを分割構造とする場合と異なり、主軸13を分割構造とするため、分割しながら、簡単な構成で済む。主軸13が高速回転するものであっても、主軸13自体を2枚のスラスト板間で分割された分割構造とするため、スラスト板13a,13bを主軸13と分割させる場合と異なり、堅固な結合構造が自由に設計でき、高速回転時における主軸分割部分の結合箇所が強度不足となることが解消できる。   Unlike the case where the motor stator 28b has a divided structure, the main shaft 13 has a divided structure. Even if the main shaft 13 rotates at a high speed, the main shaft 13 itself has a divided structure that is divided between two thrust plates. Therefore, unlike the case where the thrust plates 13a and 13b are divided from the main shaft 13, a firm connection is achieved. The structure can be designed freely, and it is possible to solve the problem of insufficient strength at the connecting part of the main spindle split part during high-speed rotation.

この実施形態では、両主軸分割体13A,13Bに嵌合凸部と嵌合凹部を設けて、いわゆる印籠結合とし、また分割面となる端面S1の突き合わせ面と、上記嵌合凸部,嵌合凹部の嵌合する周面との2面で拘束し、前記ボルトで締結するため、両主軸分割体13A,13Bを堅固に結合することができる。
上記ボルトは、いずれか一方の主軸分割体13A,13Bと一体に設けたものとしても良いが、両主軸分割体13A,13Bと別の独立した部品とすると、前記ボルトの材質が自由に選定できる。この例では、主軸13は剛性確保等のために焼入等の硬度向上のための熱処理が施されるが、主軸分割体13A,13Bと前記ボルトを一体構造として熱処理を行うと、ボルト部分が脆性が不足する恐れがある。しかし、前記ボルトを別部材として非焼入材としたため、脆性不足の問題が解消され、ボルトの不測の破損の問題のない信頼性の高い締結が行える。
In this embodiment, both main shaft split bodies 13A and 13B are provided with a fitting convex part and a fitting concave part to form a so-called stamped joint, and the abutting surface of the end surface S1 which becomes a split surface, the fitting convex part and the fitting Since it restrains by 2 surfaces with the surrounding surface with which a recessed part fits, and fastens with the said volt | bolt, both main shaft division bodies 13A and 13B can be couple | bonded firmly.
The bolt may be provided integrally with one of the main shaft division bodies 13A and 13B. However, if the main shaft division bodies 13A and 13B are separate parts, the material of the bolt can be freely selected. . In this example, the main shaft 13 is subjected to heat treatment for improving hardness such as quenching in order to ensure rigidity, etc. However, if heat treatment is performed with the main shaft divided bodies 13A and 13B and the bolt as an integrated structure, the bolt portion is There is a risk of lack of brittleness. However, since the bolt is made of a non-quenched material as a separate member, the problem of insufficient brittleness is solved, and highly reliable fastening without the problem of unexpected breakage of the bolt can be performed.

この実施形態では、特に、各スラスト板13a,13bの外周面における鍔部TBの外周部TBaから非鍔部NTBの外周部NTBaにわたって、カーボンファイバからなる補強部材HBを設けたので、従来技術のものより鍔部TBの引張り強度を高め、永久磁石28aaの寸法を拡大して高速回転や高性能化を図ることが可能となる。高速回転時には鍔部TBに大きな応力が発生するが、補強部材HBによって、この応力を許容することができる。また、永久磁石28aaのスラスト板13a,13bからの飛散を確実に防止することができる。   In this embodiment, in particular, the reinforcing member HB made of carbon fiber is provided from the outer peripheral portion TBa of the flange portion TB to the outer peripheral portion NTBa of the non-protruded portion NTB on the outer peripheral surface of each thrust plate 13a, 13b. It is possible to increase the tensile strength of the flange portion TB and increase the size of the permanent magnet 28aa to achieve higher speed rotation and higher performance. A large stress is generated in the flange TB during high-speed rotation, but this stress can be allowed by the reinforcing member HB. Moreover, scattering of the permanent magnet 28aa from the thrust plates 13a and 13b can be reliably prevented.

前記補強部材HBを設ける際、シートワインディング法を適用することで、シート体をスラスト板13a,13bの外周面の幅H1内、つまりこの外周面の軸方向一端部から他端部にわたる間に収めて巻くことができる。これによって、補強部材HBと、モータステータ28bや電磁石17との干渉を防止することができる。また、シート体の一側縁部および他側縁部を切除する等の後加工を不要とし、工数削減を図ることができる。   When the reinforcing member HB is provided, by applying a sheet winding method, the sheet body is accommodated within the width H1 of the outer peripheral surface of the thrust plates 13a and 13b, that is, between the axial end of the outer peripheral surface and the other end. Can be rolled. Thus, interference between the reinforcing member HB and the motor stator 28b or the electromagnet 17 can be prevented. Further, post-processing such as cutting one side edge and the other side edge of the sheet body is not required, and the number of man-hours can be reduced.

図6は、上記タービンユニット5を用いた空気サイクル冷凍冷却システムの全体の構成を示す。この空気サイクル冷凍冷却システムは、冷凍倉庫等の被冷却空間10の空気を直接に冷媒として冷却するシステムであり、被冷却空間10にそれぞれ開口した空気の取入口1aから排出口1bに至る空気循環経路1を有している。この空気循環経路1に、予圧縮手段2、第1の熱交換器3、空気サイクル冷凍冷却用タービンユニット5のコンプレッサ6、第2の熱交換器3、中間熱交換器9、および前記タービンユニット5の膨張タービン7が順に設けられている。中間熱交換器9は、同じ空気循環経路1内で取入口1aの付近の流入空気と、後段の圧縮で昇温し、冷却された空気との間で熱交換を行うものであり、取入口1aの付近の空気は熱交換器9a内を通る。   FIG. 6 shows the overall configuration of an air cycle refrigeration cooling system using the turbine unit 5. This air cycle refrigeration cooling system is a system that directly cools air in a space to be cooled 10 such as a refrigeration warehouse as a refrigerant, and circulates air from an air intake port 1a to a discharge port 1b respectively opened in the space to be cooled 10. It has path 1. In this air circulation path 1, pre-compression means 2, first heat exchanger 3, compressor 6 of air cycle refrigeration cooling turbine unit 5, second heat exchanger 3, intermediate heat exchanger 9, and the turbine unit Five expansion turbines 7 are provided in order. The intermediate heat exchanger 9 exchanges heat between the inflow air near the intake port 1a in the same air circulation path 1 and the air that has been heated by the subsequent compression and cooled. The air in the vicinity of 1a passes through the heat exchanger 9a.

予圧縮手段2はブロア等からなり、モータ2aにより駆動される。第1の熱交換器3および第2の熱交換器8は、冷却媒体を循環させる熱交換器3a,8aをそれぞれ有し、熱交換器3a,8a内の水等の冷却媒体と空気循環経路1の空気との間で熱交換を行う。各熱交換器3a,8aは、冷却塔11に配管接続されており、熱交換で昇温した冷却媒体が冷却塔11で冷却される。なお、前記予圧縮手段2を含まない構成の空気サイクル冷凍冷却システムでもよい。   The pre-compression means 2 comprises a blower or the like and is driven by a motor 2a. The first heat exchanger 3 and the second heat exchanger 8 have heat exchangers 3a and 8a for circulating a cooling medium, respectively, and a cooling medium such as water and an air circulation path in the heat exchangers 3a and 8a. Heat exchange with 1 air. Each of the heat exchangers 3 a and 8 a is connected to the cooling tower 11 by piping, and the cooling medium whose temperature is increased by heat exchange is cooled by the cooling tower 11. Note that an air cycle refrigeration cooling system that does not include the pre-compression means 2 may be used.

この空気サイクル冷凍冷却システムは、被冷却空間10を0℃〜−60℃程度に保つシステムであり、被冷却空間10から空気循環経路1の取入口1aに0℃〜−60℃程度で1気圧の空気が流入する。なお、以下に示す温度および気圧の数値は、一応の目安となる一例である。取入口1aに流入した空気は、中間熱交換器9により、空気循環経路1中の後段の空気の冷却に使用され、30℃まで昇温する。この昇温した空気は1気圧のままであるが、予圧縮手段2により1.4気圧に圧縮させられ、その圧縮により、70℃まで昇温する。第1の熱交換器3は、昇温した70℃の空気を冷却すれば良いため、常温程度の冷水であっても効率良く冷却することができ、40℃に冷却する。   This air cycle refrigeration cooling system is a system that keeps the space to be cooled 10 at about 0 ° C. to −60 ° C., and is 1 atmosphere at about 0 ° C. to −60 ° C. from the space to be cooled 10 to the inlet 1a of the air circulation path 1. Inflow of air. Note that the numerical values of temperature and atmospheric pressure shown below are examples that serve as a rough standard. The air that has flowed into the intake port 1a is used by the intermediate heat exchanger 9 to cool the downstream air in the air circulation path 1 and is heated to 30 ° C. The heated air remains at 1 atm, but is compressed to 1.4 atm by the pre-compression means 2, and the temperature is raised to 70 ° C. by the compression. Since the 1st heat exchanger 3 should just cool the air of 70 degreeC which raised temperature, even if it is cold water about normal temperature, it can cool efficiently and it cools to 40 degreeC.

熱交換により冷却された40℃,1.4気圧の空気が、タービンユニット5のコンプレッサ6により、1.8気圧まで圧縮され、この圧縮により70℃程度に昇温した状態で、第2の熱交換器8により40℃に冷却される。この40℃の空気は、中間熱交換器9で−30℃の空気により−20℃まで冷却される。気圧はコンプレッサ6から排出された1.8気圧が維持される。
中間熱交換器9で−20℃まで冷却された空気は、タービンユニット5の膨張タービン7により断熱膨張され、−55℃まで冷却されて排出口1bから被冷却空間10に排出される。この空気サイクル冷凍冷却システムは、このような冷凍サイクルを行う。
The air at 40 ° C. and 1.4 atm cooled by heat exchange is compressed to 1.8 atm by the compressor 6 of the turbine unit 5, and the second heat is increased to about 70 ° C. by this compression. It is cooled to 40 ° C. by the exchanger 8. The 40 ° C. air is cooled to −20 ° C. by the −30 ° C. air in the intermediate heat exchanger 9. The atmospheric pressure is maintained at 1.8 atmospheric pressure discharged from the compressor 6.
The air cooled to −20 ° C. by the intermediate heat exchanger 9 is adiabatically expanded by the expansion turbine 7 of the turbine unit 5, cooled to −55 ° C., and discharged from the outlet 1 b to the cooled space 10. This air cycle refrigeration cooling system performs such a refrigeration cycle.

この空気サイクル冷凍冷却システムでは、タービンユニット5において、各翼車6a,7aの適切な隙間d1,d2を保って主軸13の安定した高速回転が得られ、かつ軸受15,16の長期耐久性の向上、寿命の向上が得られることで、軸受15,16の長期耐久性が向上することから、タービンユニット5の全体として、しいては空気サイクル冷凍冷却システムの全体としての信頼性が向上する。このように、空気サイクル冷凍冷却システムのネックとなっているタービンユニット5の主軸軸受15,16の安定した高速回転、長期耐久性、信頼性が向上するため、空気サイクル冷凍冷却システムの実用化が可能となる。   In this air cycle refrigeration cooling system, in the turbine unit 5, stable high-speed rotation of the main shaft 13 can be obtained while maintaining appropriate gaps d1 and d2 between the impellers 6a and 7a, and the long-term durability of the bearings 15 and 16 can be improved. Since the long-term durability of the bearings 15 and 16 is improved by obtaining the improvement and the improvement of the life, the reliability of the turbine unit 5 as a whole and, as a whole, the air cycle refrigeration cooling system is improved. As described above, stable high-speed rotation, long-term durability, and reliability of the main shaft bearings 15 and 16 of the turbine unit 5 that are the bottleneck of the air cycle refrigeration cooling system are improved. It becomes possible.

次に、この発明の他の実施形態を図7および図8と共に説明する。図7、図8は、この実施形態のモータ一体型の磁気軸受装置に用いられる他のスラスト板等の要部の断面図である。以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。   Next, another embodiment of the present invention will be described with reference to FIGS. 7 and 8 are cross-sectional views of the main parts of other thrust plates and the like used in the motor-integrated magnetic bearing device of this embodiment. In the following description, the same reference numerals are given to portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping description may be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

この実施形態では、各スラスト板13a,13bの側面の外周部に、各永久磁石28aaの外周縁部28abを支持する鍔部TBを設けている。さらに、各スラスト板13a,13bの外周面に、断面凹形状の円周溝EMを形成し、この円周溝EMにカーボンファイバからなる補強部材HBを設けている。この実施形態では、前記補強部材HBはフィラメントワインディング法によって製造される。   In this embodiment, a collar portion TB that supports the outer peripheral edge portion 28ab of each permanent magnet 28aa is provided on the outer peripheral portion of the side surface of each thrust plate 13a, 13b. Further, a circumferential groove EM having a concave cross section is formed on the outer peripheral surface of each thrust plate 13a, 13b, and a reinforcing member HB made of carbon fiber is provided in the circumferential groove EM. In this embodiment, the reinforcing member HB is manufactured by a filament winding method.

ここで、フィラメントワインディング法等について説明する。
熱硬化樹脂を含浸させたフィラメント状のカーボンファイバを、各スラスト板13a,13bの円周溝EM内に収まるように巻き付けて成形する。次に、この成形体を加熱硬化炉で硬化させて、完成品である補強部材HBを得る。この方法によると、カーボンファイバを種々の巻き付けパターンにより円周溝EMに巻き付けることができる。これにより、補強部材HBの引張り強度等の機械的性質を容易に調整できる。したがって、鍔部TBの引張り強度を容易に高めることができる。また、この実施形態では、断面凹形状の円周溝EMに、カーボンファイバを巻き付けているので、補強部材HBの一部が軸方向一方または他方に不所望に突出することがなく、これによって、補強部材HBと、モータステータ28bや電磁石17との干渉を防止することができる。その他図2、図3等で示した前述の実施形態と同様の作用、効果を奏する。
Here, the filament winding method and the like will be described.
A filament-like carbon fiber impregnated with a thermosetting resin is wound and molded so as to fit in the circumferential groove EM of each thrust plate 13a, 13b. Next, the molded body is cured in a heat curing furnace to obtain a reinforcing member HB as a finished product. According to this method, the carbon fiber can be wound around the circumferential groove EM by various winding patterns. Thereby, mechanical properties such as tensile strength of the reinforcing member HB can be easily adjusted. Therefore, the tensile strength of the collar portion TB can be easily increased. Further, in this embodiment, since the carbon fiber is wound around the circumferential groove EM having a concave cross section, a part of the reinforcing member HB does not undesirably protrude in one or the other in the axial direction. Interference between the reinforcing member HB and the motor stator 28b or the electromagnet 17 can be prevented. Other operations and effects similar to those of the above-described embodiment shown in FIGS.

次に、この発明のさらに他の実施形態を図9および図10と共に説明する。
図9に示すように、この実施形態では、各スラスト板13a,13bの鍔部が省略され、スラスト板13a,13bの外周面と永久磁石28aaの外周縁部とが同一周面で連なるように設けている。これら各スラスト板13a,13bの外周面から永久磁石28aaの外周縁部にわたって、カーボンファイバからなる補強部材HBを設けている。この補強部材HBは、前述のシートワインディング法、フィラメントワインディング法のいずれの方法を用いて設けてもよい。また、図10に示すように、各スラスト板13a,13bの外周面から永久磁石28aaの外周縁部にわたって、複数の円周溝EMaを軸方向一定間隔おきに形成し、これら複数の円周溝EMaに、熱硬化樹脂を含浸させたフィラメント状のカーボンファイバを巻き付けて成形し、その後、この成形体を硬化させても良い。なお、複数の円周溝EMaを軸方向適当間隔おきに形成しても良い。
Next, still another embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 9, in this embodiment, the flange portion of each thrust plate 13a, 13b is omitted, and the outer peripheral surface of the thrust plate 13a, 13b and the outer peripheral portion of the permanent magnet 28aa are connected on the same peripheral surface. Provided. A reinforcing member HB made of carbon fiber is provided from the outer peripheral surface of each thrust plate 13a, 13b to the outer peripheral edge of the permanent magnet 28aa. The reinforcing member HB may be provided using any one of the above-described sheet winding method and filament winding method. Further, as shown in FIG. 10, a plurality of circumferential grooves EMa are formed at regular intervals in the axial direction from the outer peripheral surface of each thrust plate 13a, 13b to the outer peripheral edge of the permanent magnet 28aa. A filament-like carbon fiber impregnated with thermosetting resin may be wound around EMa and molded, and then the molded body may be cured. A plurality of circumferential grooves EMa may be formed at appropriate intervals in the axial direction.

この構成によると、各スラスト板13a,13bの鍔部を省略したうえで、各スラスト板13a,13bの外周面から永久磁石28aaの外周縁部にわたって、直接、補強部材HBを設けたので、鍔部を設けたスラスト板よりも各スラスト板13a,13bの構造を簡単化して、この各スラスト板自体の引張り強度を高めることができる。特に、永久磁石28aaの遠心力を補強部材HBで直接受けることができるので、各スラスト板13a,13bの構造を簡単化して製造コストの低減を図ることができる。   According to this configuration, since the flange portion of each thrust plate 13a, 13b is omitted and the reinforcing member HB is provided directly from the outer peripheral surface of each thrust plate 13a, 13b to the outer peripheral edge portion of the permanent magnet 28aa, The structure of each thrust plate 13a, 13b can be simplified as compared with the thrust plate provided with the portion, and the tensile strength of each thrust plate itself can be increased. In particular, since the centrifugal force of the permanent magnet 28aa can be directly received by the reinforcing member HB, the structure of each thrust plate 13a, 13b can be simplified and the manufacturing cost can be reduced.

また、図10に示すように、複数の円周溝EMaにカーボンファイバを巻き付ける場合、各円周溝EMaとカーボンファイバとの摩擦抵抗によって、カーボンファイバが巻回途中で溝に保持されて弛むことがなく、このカーボンファイバを迅速にかつ確実に円周溝EMaに巻回することができ、よって作業工数の低減を図ることができる。また、カーボンファイバを各円周溝EMaに交互に巻くことで、補強部材HBの引張り強度をさらに高めることが可能となる。その他図2、図3に示す前述の実施形態と同様の作用、効果を奏する。本発明の他の実施形態として、各スラスト板の外周面から永久磁石の外周縁部にわたって、複数の円周溝ではなく一つの円周溝を形成し、この円周溝に熱硬化樹脂を含浸させたカーボンファイバを巻き付けて成形しても良い。   In addition, as shown in FIG. 10, when a carbon fiber is wound around a plurality of circumferential grooves EMa, the carbon fibers are held in the grooves in the middle of winding due to the frictional resistance between the circumferential grooves EMa and the carbon fibers and loosen. Therefore, the carbon fiber can be quickly and surely wound around the circumferential groove EMa, so that the number of work steps can be reduced. Further, by alternately winding the carbon fiber around each circumferential groove EMa, it is possible to further increase the tensile strength of the reinforcing member HB. Other operations and effects similar to those of the above-described embodiment shown in FIGS. As another embodiment of the present invention, instead of a plurality of circumferential grooves, one circumferential groove is formed from the outer peripheral surface of each thrust plate to the outer peripheral edge portion of the permanent magnet, and this circumferential groove is impregnated with a thermosetting resin. You may shape by winding the made carbon fiber.

この発明の一実施形態にかかるモータ一体型の磁気軸受装置が組み込まれたタービンユニットの断面図である。1 is a cross-sectional view of a turbine unit in which a motor-integrated magnetic bearing device according to an embodiment of the present invention is incorporated. 同タービンユニットにおける主軸、スラスト板等の要部の断面図である。It is sectional drawing of the principal parts, such as a main axis | shaft and a thrust board, in the same turbine unit. 同スラスト板等の断面図であり、図3(a)はスラスト板等の要部の断面図、図3(b)は補強部材等を表す要部の拡大断面図である。FIG. 3A is a cross-sectional view of the thrust plate and the like, FIG. 3A is a cross-sectional view of a main part of the thrust plate and the like, and FIG. モータ一体型の磁気軸受装置に用いられる磁気軸受用コントローラの一例を示すブロック図である。It is a block diagram which shows an example of the controller for magnetic bearings used for a motor integrated magnetic bearing apparatus. モータ一体型の磁気軸受装置に用いられるモータ用コントローラの一例を示すブロック図である。It is a block diagram which shows an example of the controller for motors used for a motor-integrated magnetic bearing apparatus. 上記タービンユニットを適用した空気サイクル冷凍冷却システムの系統図である。It is a systematic diagram of the air cycle refrigeration cooling system to which the turbine unit is applied. この発明の実施形態にかかる他のスラスト板等の要部の断面図である。It is sectional drawing of principal parts, such as another thrust board concerning this Embodiment. 同スラスト板等の要部の断面図である。It is sectional drawing of the principal parts, such as the thrust board. この発明の実施形態にかかるさらに他のスラスト板等の要部の断面図である。It is sectional drawing of the principal parts, such as the further another thrust board concerning embodiment of this invention. 同スラスト板の外周面から永久磁石の外周縁部にわたって複数の円周溝を形成し、この円周溝にカーボンファイバを巻回した要部の断面図である。It is sectional drawing of the principal part which formed the several circumferential groove from the outer peripheral surface of the thrust plate to the outer peripheral edge part of a permanent magnet, and wound carbon fiber in this circumferential groove. 従来例の磁気軸受装置の断面図である。It is sectional drawing of the magnetic bearing apparatus of a prior art example.

符号の説明Explanation of symbols

13…主軸
13a,13b…スラスト板
14…スピンドルハウジング
15,16…軸受
17…電磁石
28…コアレスモータ
28a…モータロータ
28aa…永久磁石
28b…モータステータ
TB…鍔部
HB…補強部材
EM…円周溝
DESCRIPTION OF SYMBOLS 13 ... Main shaft 13a, 13b ... Thrust board 14 ... Spindle housing 15, 16 ... Bearing 17 ... Electromagnet 28 ... Coreless motor 28a ... Motor rotor 28aa ... Permanent magnet 28b ... Motor stator TB ... Reinforcement member EM ... Circumferential groove

Claims (7)

転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、
前記スラスト板は、片面に電磁石ターゲットが形成され、もう片方の面にはモータロータ用の永久磁石が配置され、この永久磁石に対向して、モータステータが配置されてスピンドルハウジングに取付けられており、前記モータロータおよび前記モータステータ間のローレンツ力により主軸を回転させるアキシアルギャップ型のコアレスモータを有するものであって、
前記スラスト板の側面の外周部に、永久磁石の外周縁部を支持する鍔部を設け、前記スラスト板の外周面における鍔部の外周部から非鍔部の外周部にわたって、強化繊維材料からなる補強部材を設けたことを特徴とするモータ一体型の磁気軸受装置。
A rolling bearing and a magnetic bearing are used in combination, the rolling bearing supports the radial load, the magnetic bearing supports one or both of the axial load and the bearing preload, and the electromagnet constituting the magnetic bearing is a strong force provided on the main shaft. It is attached to the spindle housing so as to face the flange-shaped thrust plate made of magnetic material without contact,
In the thrust plate, an electromagnet target is formed on one side, a permanent magnet for a motor rotor is arranged on the other side, a motor stator is arranged facing the permanent magnet, and is attached to the spindle housing. It has an axial gap type coreless motor that rotates a main shaft by Lorentz force between the motor rotor and the motor stator,
Provided on the outer peripheral portion of the side surface of the thrust plate is a flange portion that supports the outer peripheral edge portion of the permanent magnet, and is made of a reinforcing fiber material from the outer peripheral portion of the flange portion to the outer peripheral portion of the non-ridge portion on the outer peripheral surface of the thrust plate. A motor-integrated magnetic bearing device comprising a reinforcing member.
請求項1において、前記強化繊維材料は、フィラメント状またはシート状のカーボンファイバであるモータ一体型の磁気軸受装置。   2. The motor-integrated magnetic bearing device according to claim 1, wherein the reinforcing fiber material is a filament-like or sheet-like carbon fiber. 請求項1または請求項2において、前記スラスト板の外周面に円周溝を形成し、この円周溝に強化繊維材料を巻回したモータ一体型の磁気軸受装置。   3. The motor-integrated magnetic bearing device according to claim 1, wherein a circumferential groove is formed on an outer peripheral surface of the thrust plate, and a reinforcing fiber material is wound around the circumferential groove. 請求項1ないし請求項3のいずれか1項において、前記主軸に前記スラスト板を2枚並べて設け、これら2枚のスラスト板の軸方向外側に2つの電磁石を設け、両スラスト板で挟まれる位置に前記モータステータを配置したモータ一体型の磁気軸受装置。   4. The position according to claim 1, wherein two thrust plates are provided side by side on the main shaft, two electromagnets are provided on the axially outer sides of the two thrust plates, and are sandwiched between the two thrust plates. A motor-integrated magnetic bearing device in which the motor stator is disposed. 転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、
前記スラスト板は、片面に電磁石ターゲットが形成され、もう片方の面の外周部にはモータロータ用の永久磁石が配置され、この永久磁石に対向して、モータステータが配置されてスピンドルハウジングに取付けられており、前記モータロータおよび前記モータステータ間のローレンツ力により主軸を回転させるアキシアルギャップ型のコアレスモータを有するものであって、
前記スラスト板の外周面から永久磁石の外周縁部にわたって、強化繊維材料からなる補強部材を設けたことを特徴とするモータ一体型の磁気軸受装置。
A rolling bearing and a magnetic bearing are used in combination, the rolling bearing supports the radial load, the magnetic bearing supports one or both of the axial load and the bearing preload, and the electromagnet constituting the magnetic bearing is a strong force provided on the main shaft. It is attached to the spindle housing so as to face the flange-shaped thrust plate made of magnetic material without contact,
The thrust plate has an electromagnet target formed on one side, a permanent magnet for a motor rotor is arranged on the outer periphery of the other side, and a motor stator is arranged facing the permanent magnet and attached to the spindle housing. And having an axial gap type coreless motor that rotates a main shaft by Lorentz force between the motor rotor and the motor stator,
A motor-integrated magnetic bearing device comprising a reinforcing member made of a reinforcing fiber material extending from an outer peripheral surface of the thrust plate to an outer peripheral edge of a permanent magnet.
請求項5において、前記スラスト板の外周面から永久磁石の外周縁部にわたって、一または複数の円周溝を形成し、この円周溝に強化繊維材料を巻回したモータ一体型の磁気軸受装置。   6. The motor-integrated magnetic bearing device according to claim 5, wherein one or a plurality of circumferential grooves are formed from the outer peripheral surface of the thrust plate to the outer peripheral edge of the permanent magnet, and a reinforcing fiber material is wound around the circumferential grooves. . 請求項5または請求項6において、前記主軸に前記スラスト板を2枚並べて設け、これら2枚のスラスト板の軸方向外側に2つの電磁石を設け、両スラスト板で挟まれる位置に前記モータステータを配置したモータ一体型の磁気軸受装置。   7. The motor stator according to claim 5, wherein two thrust plates are provided side by side on the main shaft, two electromagnets are provided on the outer sides in the axial direction of the two thrust plates, and the motor stator is positioned between the two thrust plates. Arranged motor-integrated magnetic bearing device.
JP2007028878A 2007-02-08 2007-02-08 Magnetic bearing device integrated with electric motor Pending JP2008193879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028878A JP2008193879A (en) 2007-02-08 2007-02-08 Magnetic bearing device integrated with electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028878A JP2008193879A (en) 2007-02-08 2007-02-08 Magnetic bearing device integrated with electric motor

Publications (1)

Publication Number Publication Date
JP2008193879A true JP2008193879A (en) 2008-08-21

Family

ID=39753426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028878A Pending JP2008193879A (en) 2007-02-08 2007-02-08 Magnetic bearing device integrated with electric motor

Country Status (1)

Country Link
JP (1) JP2008193879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007393A (en) * 2011-06-22 2013-01-10 Toshiba Mach Co Ltd Air hydrostatic bearing spindle device, and rotary atomizer and coating device using the same
CN111734741A (en) * 2020-05-13 2020-10-02 山东华东风机有限公司 Axial magnetic-gas combined bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007393A (en) * 2011-06-22 2013-01-10 Toshiba Mach Co Ltd Air hydrostatic bearing spindle device, and rotary atomizer and coating device using the same
CN111734741A (en) * 2020-05-13 2020-10-02 山东华东风机有限公司 Axial magnetic-gas combined bearing device

Similar Documents

Publication Publication Date Title
US7723883B2 (en) Motor built-in magnetic bearing device
JP2007162723A (en) Motor integrated magnetic bearing device
JP2008283813A (en) Motor-integrated magnetic bearing device
JP2008190376A (en) Turbine unit for air cycle refrigerating machine
JP2007162726A (en) Motor integrated magnetic bearing device
JP2008038970A (en) Motor integrated magnetic bearing device
WO2008018167A1 (en) Motor-integrated type magnetic bearing device
JP2007162725A (en) Motor integrated magnetic bearing device
JP2007162493A (en) Compression expansion turbine system
JP2008072809A (en) Magnetic bearing arrangement integral with motor
JP2009062848A (en) Motor integrated type magnetic bearing device
JP2008082216A (en) Compression expansion turbine system
JP2007162714A (en) Magnetic bearing device
JP2008187829A (en) Motor-integrated magnetic bearing device
JP2009050066A (en) Motor-integrated magnetic bearing apparatus
JP2008193879A (en) Magnetic bearing device integrated with electric motor
JP4799159B2 (en) Motor-integrated magnetic bearing device
JP2008039228A (en) Turbine unit for air cycle refrigerating machine
JP2008072810A (en) Magnetic bearing arrangement integrated with motor
JP2007162492A (en) Compression expansion turbine system
JP4969272B2 (en) Motor-integrated magnetic bearing device
JP2007162491A (en) Compression expansion turbine system
JP2010007726A (en) Motor-integrated magnetic bearing device
JP2008045586A (en) Motor integrated magnetic bearing device
JP2008072808A (en) Magnetic bearing arrangement integrated with motor