JP2008191559A - Photoelectric converting device, focus detecting device and imaging apparatus - Google Patents

Photoelectric converting device, focus detecting device and imaging apparatus Download PDF

Info

Publication number
JP2008191559A
JP2008191559A JP2007028051A JP2007028051A JP2008191559A JP 2008191559 A JP2008191559 A JP 2008191559A JP 2007028051 A JP2007028051 A JP 2007028051A JP 2007028051 A JP2007028051 A JP 2007028051A JP 2008191559 A JP2008191559 A JP 2008191559A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
output
pair
focus detection
pixel columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007028051A
Other languages
Japanese (ja)
Inventor
Daisuke Satani
大助 佐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007028051A priority Critical patent/JP2008191559A/en
Publication of JP2008191559A publication Critical patent/JP2008191559A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correct a difference of an output signal due to an output path difference between a pair of photoelectric conversion sensors. <P>SOLUTION: A photoelectric converting device includes: a plurality of photoelectric converting elements having light-shielding pixels A1 to A3 and B1 to B3, and non-light-shielding pixels O11 to O31 and O12 to O32; output circuits (F11 to F31, M1, A1, and T1) and (F12 to F32, M2, A2, and T2) which independently output signals from the plurality of photoelectric converting elements; and a correcting means for correcting the signals output independently from the output circuits based upon signals obtained by the light-shielding pixels O11 to O31 and O12 to O32 of the plurality of photoelectric converting elements among the signals output independently from the output circuits. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光電変換装置、焦点検出装置および撮像装置に関する。   The present invention relates to a photoelectric conversion device, a focus detection device, and an imaging device.

位相差検出方式の焦点検出装置に用いられるイメージセンサーに複数の出力端子を設け、対の被写体像を受光する対の光電変換素子列からの信号列をそれぞれ別個の出力端子から取り出し、対の信号列の読み出し時間を短縮するようにした焦点検出装置が知られている(例えば、特許文献1参照)。   The image sensor used in the phase difference detection type focus detection device is provided with a plurality of output terminals, and a signal sequence from a pair of photoelectric conversion element arrays for receiving a pair of subject images is taken out from a separate output terminal, and a pair of signals A focus detection device that shortens the column readout time is known (see, for example, Patent Document 1).

この出願の発明に関連する先行技術文献としては次のものがある。
特願2005−160059号
Prior art documents related to the invention of this application include the following.
Japanese Patent Application No. 2005-160059

しかしながら、上述した従来の焦点検出装置では、対の信号列を別個の出力端子から読み出すことによって読み出し時間を短縮できるが、出力回路に設けられるアンプの増幅率のバラツキや出力回路の長さの違いや、チップ内の場所による暗時ノイズなどによって、対の光電変換素子列からの出力レベルが等しくても出力端子からの出力レベルに差が生じ、焦点検出誤差になるという問題がある。   However, in the conventional focus detection apparatus described above, the readout time can be shortened by reading out the pair of signal strings from separate output terminals, but there is a variation in the amplification factor of the amplifier provided in the output circuit and the difference in the length of the output circuit. In addition, there is a problem that a difference occurs in the output level from the output terminal even if the output levels from the pair of photoelectric conversion element rows are equal due to dark noise caused by the location in the chip, resulting in a focus detection error.

(1) 請求項1の発明は、遮光画素と非遮光画素とを有する複数の光電変換素子と、複数の光電変換素子のそれぞれからの信号を独立して出力する出力手段と、出力手段から独立して出力される信号の内、複数の光電変換素子それぞれの遮光画素で得られる信号に基づいて、出力手段から独立して出力される信号を補正する補正手段とを備え、これにより上記課題を解決する。
(2) 請求項2の発明は、請求項1に記載の光電変換装置と、補正手段によって補正された信号に基づいて光学系の焦点調節状態を演算する演算手段とを備える。
(3) 請求項3の発明は、光学的黒画素と有効画素から構成され、光学系からの光束を受光する一対の光電変換画素列を有し、一対の光電変換画素列それぞれの出力信号を独立した出力経路を介して出力する光電変換素子と、一対の光電変換画素列の光学的黒画素の出力信号に基づいて、一対の光電変換画素列の出力信号を補正する補正手段と、補正手段による補正後の一対の光電変換画素列の出力信号に基づいて、光学系の焦点調節状態を演算する演算手段とを備える。
(4) 請求項4の焦点検出装置は、補正手段によって、一対の光電変換画素列の光学的黒画素の出力信号がほぼ等しくなるように、一対の光電変換画素列の内の少なくとも一方の出力信号を補正するようにしたものである。
(5) 請求項5の焦点検出装置は、補正手段によって、一対の光電変換画素列の光学的黒画素の出力信号の比により、一対の光電変換画素列の少なくとも一方の出力経路に含まれる増幅器の増幅率を変更するようにしたものである。
(6) 請求項6の焦点検出装置は、補正手段によって、光電変換画素列の出力信号レベルと光電変換画素列の飽和出力レベルとに基づいて、補正する光電変換画素列を決定するようにしたものである。
(7) 請求項7発明は、請求項2〜6のいずれか1項に記載の焦点検出装置を備えた撮像装置である。
(1) The invention of claim 1 includes a plurality of photoelectric conversion elements having light-shielding pixels and non-light-shielding pixels, output means for independently outputting signals from the plurality of photoelectric conversion elements, and independent of the output means. Correction means for correcting the signal output independently from the output means based on the signals obtained from the light-shielding pixels of each of the plurality of photoelectric conversion elements among the signals output as described above. Resolve.
(2) The invention of claim 2 includes the photoelectric conversion device according to claim 1 and a calculation means for calculating the focus adjustment state of the optical system based on the signal corrected by the correction means.
(3) The invention of claim 3 is composed of an optical black pixel and an effective pixel, and has a pair of photoelectric conversion pixel columns that receive a light beam from the optical system, and outputs an output signal of each of the pair of photoelectric conversion pixel columns. Correction means for correcting the output signal of the pair of photoelectric conversion pixel columns based on the output signal of the optical black pixel of the pair of photoelectric conversion pixel columns and the photoelectric conversion element that outputs via an independent output path, and the correction unit And a calculation means for calculating the focus adjustment state of the optical system based on the output signals of the pair of photoelectric conversion pixel columns after correction by.
(4) In the focus detection apparatus according to claim 4, the output of at least one of the pair of photoelectric conversion pixel columns is made so that the output signals of the optical black pixels of the pair of photoelectric conversion pixel columns become substantially equal by the correcting unit. The signal is corrected.
(5) The focus detection device according to claim 5 includes an amplifier included in at least one output path of the pair of photoelectric conversion pixel columns based on a ratio of the output signals of the optical black pixels of the pair of photoelectric conversion pixel columns by the correction unit. The amplification factor is changed.
(6) In the focus detection apparatus according to the sixth aspect, the correction unit determines the photoelectric conversion pixel column to be corrected based on the output signal level of the photoelectric conversion pixel column and the saturation output level of the photoelectric conversion pixel column. Is.
(7) A seventh aspect of the present invention is an image pickup apparatus including the focus detection apparatus according to any one of the second to sixth aspects.

本発明によれば、一対の光電変換センサー列の出力経路差等に起因した出力信号の差を補正することができ、焦点検出精度を向上させることができる。   According to the present invention, it is possible to correct a difference in output signals caused by an output path difference between a pair of photoelectric conversion sensor arrays and improve focus detection accuracy.

本願発明の光電変換装置またはこの光電変換装置を有する焦点検出装置を一眼レフディジタルカメラに適用した一実施の形態を説明する。なお、本願発明は一眼レフディジタルカメラに限定されず、位相差検出方式の焦点検出装置を備えたあらゆる撮像装置に適用することができる。   An embodiment in which a photoelectric conversion device of the present invention or a focus detection device having this photoelectric conversion device is applied to a single-lens reflex digital camera will be described. Note that the present invention is not limited to a single-lens reflex digital camera, and can be applied to any imaging device including a phase difference detection type focus detection device.

図1は一実施の形態の一眼レフディジタルカメラの構成を示す。なお、本願発明と直接に関係のないカメラの機器および装置の図示と説明を省略する。一実施の形態のカメラはカメラボディ1に撮影レンズ2が装着されている。カメラボディ1にはメインミラー3およびサブミラー4、撮像素子5、焦点検出モジュール6、コントローラー7、ファインダー光学系8などが設けられている。一方、撮影レンズ2にはフォーカシングレンズ9、モーターを含むレンズ駆動機構10などが設けられている。   FIG. 1 shows a configuration of a single-lens reflex digital camera according to an embodiment. Note that illustrations and descriptions of camera devices and apparatuses that are not directly related to the present invention are omitted. In a camera according to an embodiment, a photographic lens 2 is attached to a camera body 1. The camera body 1 is provided with a main mirror 3 and a sub mirror 4, an image sensor 5, a focus detection module 6, a controller 7, a finder optical system 8, and the like. On the other hand, the taking lens 2 is provided with a focusing lens 9, a lens driving mechanism 10 including a motor, and the like.

撮影前はメインミラー3およびサブミラー4が図示のように撮影光路中に置かれ、撮影レンズ2を透過した被写体光の一部がメインミラー3を透過し、サブミラー4で反射されて焦点検出モジュール6へ導かれるとともに、被写体光の他の一部がメインミラー3で反射されてファインダー光学系8へ導かれる。一方、撮影時にはメインミラー3およびサブミラー4が撮影光路から退避され、撮影レンズ2により被写体像が撮像素子5上に結像され、撮像素子5により撮像が行われる。   Before shooting, the main mirror 3 and the sub mirror 4 are placed in the shooting optical path as shown in the figure, and part of the subject light that has passed through the shooting lens 2 passes through the main mirror 3 and is reflected by the sub mirror 4 to be reflected by the focus detection module 6. And the other part of the subject light is reflected by the main mirror 3 and guided to the finder optical system 8. On the other hand, at the time of photographing, the main mirror 3 and the sub mirror 4 are retracted from the photographing optical path, a subject image is formed on the image sensor 5 by the photographing lens 2, and an image is taken by the image sensor 5.

焦点検出モジュール6は撮像素子5の撮像面と等価な所定結像面の後方に配置され、視野マスク、コンデンサーレンズ、絞りマスク、再結像レンズなどからなる焦点検出光学系11と、光電変換素子12とを備えている。焦点検出光学系11の対の再結像レンズは、所定結像面に形成される撮影レンズ2の一次像を光電変換素子12上の対の光電変換センサー列上に再結像する。光電変換素子12は、対の光電変換センサー列上の光像を電気信号に変換し、出力回路15を介してA列信号およびB列信号として出力する。   The focus detection module 6 is disposed behind a predetermined imaging surface equivalent to the imaging surface of the image sensor 5, and includes a focus detection optical system 11 including a field mask, a condenser lens, a diaphragm mask, a re-imaging lens, and the like, and a photoelectric conversion element. 12. The pair of re-imaging lenses of the focus detection optical system 11 re-images the primary image of the photographing lens 2 formed on the predetermined imaging plane on the pair of photoelectric conversion sensor arrays on the photoelectric conversion element 12. The photoelectric conversion element 12 converts a light image on the pair of photoelectric conversion sensor columns into an electric signal, and outputs it as an A column signal and a B column signal via the output circuit 15.

コントローラー7はA/D変換回路13、マイクロコンピューターで構成される演算回路14などを備え、光電変換素子12から出力されるA列信号とB列信号をA/D変換して光像の相対的ズレ量を検出し、このズレ量に基づいて撮影レンズ2の焦点調節状態を表すデフォーカス量を演算する。   The controller 7 includes an A / D conversion circuit 13 and an arithmetic circuit 14 composed of a microcomputer. The controller 7 performs A / D conversion on the A column signal and the B column signal output from the photoelectric conversion element 12 to obtain a relative optical image. A deviation amount is detected, and a defocus amount representing a focus adjustment state of the photographic lens 2 is calculated based on the deviation amount.

図2は光電変換素子12の回路構成を示す正面図である。一実施の形態の光電変換素子12上には、4対の光電変換センサー列(A1,B1)、(A2,B2)、(A3,B3)、(A4,B4)が配設されている。光電変換センサー列A1で蓄積された信号は、フローティングディフュージョンF11、マルチプレクサーM1およびアンプA1を介して端子T1から出力される。光電変換センサー列A2およびA3で蓄積された信号も同様に出力される。一方、光電変換センサー列A1と対になる光電変換センサー列B1で蓄積された信号は、フローティングディフュージョンF12、マルチプレクサーM2およびアンプA2を介して端子T2から出力される。光電変換センサー列A2およびA3と対になる光電変換センサー列B2およびB3で蓄積された信号も同様に出力される。   FIG. 2 is a front view showing a circuit configuration of the photoelectric conversion element 12. Four pairs of photoelectric conversion sensor arrays (A1, B1), (A2, B2), (A3, B3), and (A4, B4) are arranged on the photoelectric conversion element 12 of one embodiment. The signal accumulated in the photoelectric conversion sensor array A1 is output from the terminal T1 via the floating diffusion F11, the multiplexer M1, and the amplifier A1. The signals accumulated in the photoelectric conversion sensor arrays A2 and A3 are also output in the same manner. On the other hand, the signal accumulated in the photoelectric conversion sensor array B1 paired with the photoelectric conversion sensor array A1 is output from the terminal T2 via the floating diffusion F12, the multiplexer M2, and the amplifier A2. The signals accumulated in the photoelectric conversion sensor arrays B2 and B3 that are paired with the photoelectric conversion sensor arrays A2 and A3 are also output in the same manner.

つまり、これらの対の光電変換センサー列(A1,B1)、(A2,B2)、(A3,B3)の蓄積信号は、互いに異なる経路と異なる機器、すなわちフローティングディフュージョン、マルチプレクサーおよびアンプを介して別個の端子から出力される。これに対し光電変換素子12の中央に配置された対の光電変換センサー列A4とB4の蓄積信号は、同一のフローティングディフュージョンF4、マルチプレクサーM1およびアンプA1を介して端子T1から出力される。   That is, the stored signals of these pairs of photoelectric conversion sensor arrays (A1, B1), (A2, B2), (A3, B3) are transmitted through different devices and different devices, that is, through floating diffusions, multiplexers, and amplifiers. Output from a separate terminal. On the other hand, the accumulated signals of the pair of photoelectric conversion sensor arrays A4 and B4 arranged at the center of the photoelectric conversion element 12 are output from the terminal T1 through the same floating diffusion F4, multiplexer M1 and amplifier A1.

次に、光電変換素子12の各光電変換センサー列は、撮像用の有効画素の他に光学的黒画素(オプティカルブラック;OPB)と呼ばれる暗電流補正用の遮光画素(図中のハッチング部)O11、O12、O21、O22、O31、O32、O4が設けられている。電荷蓄積型の光電変換素子では、光が入射しない状態でも熱的にCCD出力電圧(ノイズ)が発生し暗電流(暗時出力)が流れるため、有効画素の信号から光学的黒画素の信号を減じることによって暗電流の直流分を除去する。   Next, each photoelectric conversion sensor array of the photoelectric conversion element 12 includes a dark current correction light-shielded pixel (hatched portion in the drawing) O11 called an optical black pixel (optical black; OPB) in addition to an effective pixel for imaging. , O12, O21, O22, O31, O32, and O4 are provided. In a charge storage type photoelectric conversion element, a CCD output voltage (noise) is generated thermally even when light is not incident, and dark current (dark output) flows. Therefore, an optical black pixel signal is converted from an effective pixel signal. The DC component of the dark current is removed by subtracting.

この一実施の形態では、対の光電変換センサー列(A1,B1)、(A2,B2)、(A3,B3)の出力信号が、異なる経路、すなわち異なる回路長と異なる機器(フローティングディフュージョン、マルチプレクサーおよびアンプ)を介して出力されることにより生じる出力信号レベルの差やセンサー列の場所ごとの暗時出力差を、対の光学的黒画素(OPB)(O11,O12)、(O21,O22)、(O31,O32)の出力信号レベルの差により補正する。つまり、光学的黒画素(OPB)O11、O12、O21、O22、O31、O32の出力信号レベルは、どの光電変換センサー列においても同電位になることを利用し、対の光電変換センサー列の光学的黒画素(OPB)の出力信号レベルの差により、対の光電変換センサー列の内の一方の光電変換センサー列の出力信号レベルを補正する。   In this embodiment, the output signals of the pair of photoelectric conversion sensor arrays (A1, B1), (A2, B2), (A3, B3) have different paths, that is, different circuit lengths and different devices (floating diffusion, multiples). The difference in the output signal level generated by being output via the power amplifier and the amplifier and the dark output difference for each location of the sensor array are expressed as a pair of optical black pixels (OPB) (O11, O12), (O21, O22). ), (O31, O32) is corrected by the difference in output signal level. In other words, the output signal levels of the optical black pixels (OPB) O11, O12, O21, O22, O31, and O32 have the same potential in any photoelectric conversion sensor array, and the optical characteristics of the pair of photoelectric conversion sensor arrays are obtained. The output signal level of one of the pair of photoelectric conversion sensor arrays is corrected based on the difference in the output signal level of the target black pixel (OPB).

図3は対の光電変換センサー列A1、B1の出力信号例を示す。図3(a)は、光電変換センサー列A1からフローティングディフュージョンF11、マルチプレクサーM1およびアンプA1を介して端子T1へ出力された信号列を示し、横軸は光電変換センサー列A1の各画素(光学的黒画素(OPB)O11と有効画素)、縦軸は各画素の出力信号レベルを表す。また、図3(b)は、光電変換センサー列B1からフローティングディフュージョンF12、マルチプレクサーM2およびアンプA2を介して端子T2へ出力された信号列を示し、横軸は光電変換センサー列B1の各画素(光学的黒画素(OPB)O12と有効画素)、縦軸は各画素の出力信号レベルを表す。なお、図3においてMAXは各画素の飽和出力レベルを表す。   FIG. 3 shows an example of output signals from the pair of photoelectric conversion sensor arrays A1 and B1. FIG. 3A shows a signal string output from the photoelectric conversion sensor array A1 to the terminal T1 via the floating diffusion F11, the multiplexer M1, and the amplifier A1, and the horizontal axis represents each pixel (optical) in the photoelectric conversion sensor array A1. The black pixel (OPB) O11 and effective pixel), and the vertical axis represents the output signal level of each pixel. FIG. 3B shows a signal string output from the photoelectric conversion sensor array B1 to the terminal T2 via the floating diffusion F12, the multiplexer M2, and the amplifier A2, and the horizontal axis represents each pixel of the photoelectric conversion sensor array B1. (Optical black pixel (OPB) O12 and effective pixel), the vertical axis represents the output signal level of each pixel. In FIG. 3, MAX represents the saturation output level of each pixel.

図3において、光電変換センサー列A1とB1の光学的黒画素(OPB)O11とO12の出力信号レベルは、B1の方がA1よりも差(O11−O12)だけ小さくなっている。この光学的黒画素の出力差(O11−O12)は、光電変換センサー列A1とB1の各出力経路における回路長と介在機器の動作バラツキに起因するものであり、有効画素の出力信号レベルにもこの出力差(O11−O12)が含まれている。したがって、光電変換センサー列B1の各有効画素の出力信号レベルを差(O11−O12)だけオフセットする。つまり、この場合は光電変換センサー列B1の各有効画素の出力信号レベルに差(O11−O12)を加算し、図3(b)に破線で示すように信号列をオフセットする。   In FIG. 3, the output signal levels of the optical black pixels (OPB) O11 and O12 of the photoelectric conversion sensor arrays A1 and B1 are smaller in B1 than in A1 by a difference (O11-O12). This optical black pixel output difference (O11-O12) is caused by the circuit length in each output path of the photoelectric conversion sensor arrays A1 and B1 and the operation variation of the intervening device, and also in the output signal level of the effective pixel. This output difference (O11−O12) is included. Therefore, the output signal level of each effective pixel of the photoelectric conversion sensor array B1 is offset by the difference (O11−O12). That is, in this case, the difference (O11−O12) is added to the output signal level of each effective pixel of the photoelectric conversion sensor array B1, and the signal array is offset as indicated by a broken line in FIG.

これにより、光電変換センサー列A1とB1の各出力経路における回路長と介在機器の動作バラツキに起因する誤差が除去され、対の信号列の一致性が向上して像ズレ演算における誤差を低減することができる。なお、光電変換センサー列(A2,B2)、(A3,B3)においても同様な方法で各出力経路における回路長と介在機器の動作バラツキに起因する誤差を除去する。   As a result, errors due to the circuit lengths in the output paths of the photoelectric conversion sensor arrays A1 and B1 and the operation variations of the intervening devices are removed, the matching of the paired signal strings is improved, and errors in image shift calculation are reduced. be able to. In the photoelectric conversion sensor arrays (A2, B2) and (A3, B3), errors caused by circuit lengths in each output path and operation variations of intervening devices are removed in the same manner.

なお、上述した補正例では、光学的黒画素の出力信号レベル差(O11−O12)を、光学的黒画素の出力信号レベルが低い方の光電変換センサー列の有効画素の出力信号レベルに加算して補正する例を示したが、補正方法は上記実施例に限定されず、光学的黒画素の出力信号レベルが高い方の光電変換センサー列の有効画素の出力信号レベルから光学的黒画素の出力信号レベル差を減じて補正してもよいし、光電変換センサー列の有効画素の出力信号レベルが高い方から光学的黒画素の出力信号レベル差の1/2を減じ、逆に低い方へ光学的黒画素の出力信号レベル差の1/2を加算して補正してもよい。   In the correction example described above, the output signal level difference (O11-O12) of the optical black pixel is added to the output signal level of the effective pixel of the photoelectric conversion sensor array having the lower output signal level of the optical black pixel. However, the correction method is not limited to the above embodiment, and the output of the optical black pixel is determined from the output signal level of the effective pixel of the photoelectric conversion sensor array having the higher output signal level of the optical black pixel. It may be corrected by reducing the signal level difference, or ½ of the output signal level difference of the optical black pixel is reduced from the higher output signal level of the effective pixel of the photoelectric conversion sensor array, and the optical signal is lowered to the lower side. You may correct | amend by adding 1/2 of the output signal level difference of a target black pixel.

図4は一実施の形態の撮像動作を示すフローチャートである。このフローチャートにより一実施の形態の動作を説明する。レリーズボタンが半押しされることによりレリーズ半押し操作が検出されると、コントローラー7はこの撮像動作を開始する。ステップ1で測光回路(不図示)により被写体の測光を行い、被写体の輝度を検出する。続くステップ2で図5に示すサブルーチンを実行して焦点検出を行う。   FIG. 4 is a flowchart showing the imaging operation of the embodiment. The operation of the embodiment will be described with reference to this flowchart. When the release half-press operation is detected by half-pressing the release button, the controller 7 starts this imaging operation. In step 1, the subject is measured by a photometry circuit (not shown), and the luminance of the subject is detected. In the subsequent step 2, the subroutine shown in FIG. 5 is executed to detect the focus.

図5のステップ11において焦点検出モジュール6の光電変換素子12の電荷蓄積を行い、続くステップ12で光電変換素子12から蓄積結果の像信号を各光電変換センサー列ごとに読み出す。ステップ13では、対になる光電変換センサー列(A1,B1)、(A2,B2)、(A3,B3)の光学的黒画素(OPB)を出力の差を検出する。ステップ14において、光学的黒画素の出力差により対の光電変換センサー列の有効画素出力をオフセットして補正する。そして、ステップ15で補正後の対の光電変換センサー列の出力信号列に基づいて焦点検出演算を行い、撮影レンズ2のデフォーカス量を算出する。その後、図4のステップ3へリターンする。   In step 11 of FIG. 5, charge accumulation of the photoelectric conversion element 12 of the focus detection module 6 is performed, and in the subsequent step 12, an image signal of the accumulation result is read from the photoelectric conversion element 12 for each photoelectric conversion sensor array. In step 13, a difference in output is detected between the optical black pixels (OPB) of the paired photoelectric conversion sensor arrays (A1, B1), (A2, B2), and (A3, B3). In step 14, the effective pixel output of the pair of photoelectric conversion sensor arrays is offset and corrected by the output difference of the optical black pixel. In step 15, focus detection calculation is performed based on the corrected output signal sequence of the pair of photoelectric conversion sensor columns, and the defocus amount of the photographing lens 2 is calculated. Thereafter, the process returns to step 3 in FIG.

焦点検出後のステップ3では、焦点検出結果のデフォーカス量に基づいてレンズ駆動機構10によりフォーカシングレンズ9を駆動し、撮影レンズ2の焦点調節を行う。続くステップ4でレリーズボタンが全押しされることによりレリーズ操作を検出する。レリーズ操作がなされていないときはステップ5へ進み、レリーズ半押し操作が継続されているか否かを確認する。レリーズ半押し操作が継続されていないときはステップ1へ戻り上述した処理を繰り返す。レリーズ操作がなされたときはステップ6へ進み、測光結果に基づく露出演算で決定した絞りとシャッター速度により撮像を行う。撮像後のステップ7で撮像素子5から撮像信号を読み出し、画像処理後に記録媒体へ画像を記録する。   In step 3 after focus detection, the focusing lens 9 is driven by the lens driving mechanism 10 based on the defocus amount of the focus detection result, and the focus of the photographing lens 2 is adjusted. In the subsequent step 4, the release operation is detected when the release button is fully pressed. If the release operation has not been performed, the process proceeds to step 5 to check whether the release half-press operation has been continued. When the release half-press operation is not continued, the process returns to step 1 and the above-described processing is repeated. When the release operation is performed, the process proceeds to step 6 and imaging is performed with the aperture and shutter speed determined by the exposure calculation based on the photometric result. In step 7 after imaging, an imaging signal is read from the imaging element 5 and an image is recorded on a recording medium after image processing.

このように、上述した一実施の形態によれば、一対の光電変換センサー列の光学的黒画素の出力信号に基づいて一対の光電変換センサー列の出力信号を補正し、補正後の一対の光電変換センサー列の出力信号に基づいて撮影レンズの焦点調節状態を演算する、すなわち一対の光電変換センサー列の光学的黒画素の出力信号がほぼ等しくなるように、一対の光電変換センサー列の内の少なくとも一方の出力信号を補正するようにしたので、一対の光電変換センサー列の出力信号の読み出し時間を短縮しながら、一対の光電変換センサー列の出力信号の出力経路に差があっても、一対の光電変換センサー列の出力信号の差を補正することができ、焦点検出精度を向上させることができる。   Thus, according to the above-described embodiment, the output signals of the pair of photoelectric conversion sensor arrays are corrected based on the output signals of the optical black pixels of the pair of photoelectric conversion sensor arrays, and the corrected pair of photoelectric sensors is corrected. The focus adjustment state of the photographic lens is calculated based on the output signal of the conversion sensor array, that is, the output signals of the optical black pixels of the pair of photoelectric conversion sensor arrays are substantially equal. Since at least one of the output signals is corrected, even if there is a difference in the output path of the output signals of the pair of photoelectric conversion sensor arrays while reducing the readout time of the output signals of the pair of photoelectric conversion sensor arrays, The difference in the output signals of the photoelectric conversion sensor arrays can be corrected, and the focus detection accuracy can be improved.

なお、一対の光電変換センサー列の光学的黒画素の出力信号の比により、一対の光電変換センサー列の内の少なくとも一の出力経路に含まれる増幅器の増幅率を変更するようにしてもよい。これにより、一対の光電変換センサー列の出力信号の読み出し時間を短縮しながら、一対の光電変換センサー列の出力信号の差を補正することができ、焦点検出精度を向上させることができる。   Note that the amplification factor of the amplifier included in at least one output path of the pair of photoelectric conversion sensor arrays may be changed according to the ratio of the output signals of the optical black pixels of the pair of photoelectric conversion sensor arrays. As a result, the difference between the output signals of the pair of photoelectric conversion sensor arrays can be corrected while shortening the readout time of the output signals of the pair of photoelectric conversion sensor arrays, and the focus detection accuracy can be improved.

また、光電変換センサー列の出力信号レベルと光電変換センサー列の飽和出力レベルとに基づいて、補正する光電変換画素列を決定するようにしてもよい。例えば、一対の光電変換センサー列の内の一方の光電変換センサー列の出力信号レベルが飽和出力レベルに近い場合には、その光電変換センサー列の出力信号から補正値を減算して補正するか、あるいは他方の光電変換センサー列の出力信号に補正値を加算して補正することによって、補正後の一対の光電変換センサー列の出力信号が飽和出力レベル以下の適切な値になり、焦点検出精度を向上させることができる。   Further, the photoelectric conversion pixel column to be corrected may be determined based on the output signal level of the photoelectric conversion sensor column and the saturation output level of the photoelectric conversion sensor column. For example, if the output signal level of one of the pair of photoelectric conversion sensor columns is close to the saturation output level, the correction value is subtracted from the output signal of the photoelectric conversion sensor column for correction, or Alternatively, by correcting the output signal of the other photoelectric conversion sensor array by adding a correction value, the corrected output signals of the pair of photoelectric conversion sensor arrays become appropriate values below the saturation output level, and focus detection accuracy is improved. Can be improved.

一実施の形態の一眼レフデジタルカメラの構成を示す図The figure which shows the structure of the single-lens reflex digital camera of one embodiment 焦点検出用光電変換素子の正面図Front view of focus detection photoelectric conversion element 一対の光電変換センサー出力の補正方法を説明する図The figure explaining the correction method of a pair of photoelectric conversion sensor output 一実施の形態の撮像動作を示すフローチャートThe flowchart which shows the imaging operation of one embodiment 一実施の形態の焦点検出動作を示すフローチャートThe flowchart which shows the focus detection operation | movement of one Embodiment

符号の説明Explanation of symbols

7 コントローラー
11 焦点検出光学系
12 光電変換素子
14 演算回路
15 出力回路
O11、O12、O21、O22、O31、O32 光学的黒画素(OPB)
(A1,B1)、(A2,B2)、(A3,B3) 一対の光電変換センサー列
A1、A2 アンプ
7 Controller 11 Focus detection optical system 12 Photoelectric conversion element 14 Arithmetic circuit 15 Output circuit O11, O12, O21, O22, O31, O32 Optical black pixel (OPB)
(A1, B1), (A2, B2), (A3, B3) A pair of photoelectric conversion sensor arrays A1, A2 Amplifier

Claims (7)

遮光画素と非遮光画素とを有する複数の光電変換素子と、
前記複数の光電変換素子のそれぞれからの信号を独立して出力する出力手段と、
前記出力手段から独立して出力される前記信号の内、前記複数の光電変換素子それぞれの前記遮光画素で得られる信号に基づいて、前記出力手段から独立して出力される前記信号を補正する補正手段とを備えることを特徴とする光電変換装置。
A plurality of photoelectric conversion elements having light-shielding pixels and non-light-shielding pixels;
An output means for independently outputting a signal from each of the plurality of photoelectric conversion elements;
Correction that corrects the signal output independently from the output unit based on the signal obtained by the light-shielding pixel of each of the plurality of photoelectric conversion elements among the signals output independently from the output unit. And a photoelectric conversion device.
請求項1に記載の光電変換装置と、
前記補正手段によって補正された前記信号に基づいて光学系の焦点調節状態を演算する演算手段とを備えることを特徴とする焦点検出装置。
The photoelectric conversion device according to claim 1;
A focus detection apparatus comprising: a calculation unit that calculates a focus adjustment state of the optical system based on the signal corrected by the correction unit.
光学的黒画素と有効画素から構成され、光学系からの光束を受光する一対の光電変換画素列を有し、前記一対の光電変換画素列それぞれの出力信号を独立した出力経路を介して出力する光電変換素子と、
前記一対の光電変換画素列の前記光学的黒画素の出力信号に基づいて、前記一対の光電変換画素列の出力信号を補正する補正手段と、
前記補正手段による補正後の前記一対の光電変換画素列の出力信号に基づいて、前記光学系の焦点調節状態を演算する演算手段とを備えることを特徴とする焦点検出装置。
An optical black pixel and an effective pixel are included, and a pair of photoelectric conversion pixel columns that receive a light beam from the optical system are provided, and output signals of the pair of photoelectric conversion pixel columns are output via independent output paths. A photoelectric conversion element;
Correction means for correcting the output signals of the pair of photoelectric conversion pixel columns based on the output signals of the optical black pixels of the pair of photoelectric conversion pixel columns;
A focus detection apparatus comprising: a calculation unit that calculates a focus adjustment state of the optical system based on the output signals of the pair of photoelectric conversion pixel columns corrected by the correction unit.
請求項3に記載の焦点検出装置において、
前記補正手段は、前記一対の光電変換画素列の前記光学的黒画素の出力信号がほぼ等しくなるように、前記一対の光電変換画素列の内の少なくとも一方の出力信号を補正することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 3,
The correction means corrects at least one output signal of the pair of photoelectric conversion pixel columns so that output signals of the optical black pixels of the pair of photoelectric conversion pixel columns are substantially equal. Focus detection device.
請求項3に記載の焦点検出装置において、
前記補正手段は、前記一対の光電変換画素列の前記光学的黒画素の出力信号の比により、前記一対の光電変換画素列の少なくとも一方の前記出力経路に含まれる増幅器の増幅率を変更することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 3,
The correction means changes an amplification factor of an amplifier included in at least one of the output paths of the pair of photoelectric conversion pixel columns based on a ratio of output signals of the optical black pixels of the pair of photoelectric conversion pixel columns. A focus detection device.
請求項3〜5のいずれか1項に記載の焦点検出装置において、
前記補正手段は、前記光電変換画素列の出力信号レベルと前記光電変換画素列の飽和出力レベルとに基づいて、補正する前記光電変換画素列を決定することを特徴とする焦点検出装置。
In the focus detection apparatus of any one of Claims 3-5,
The focus detection apparatus, wherein the correction unit determines the photoelectric conversion pixel column to be corrected based on an output signal level of the photoelectric conversion pixel column and a saturation output level of the photoelectric conversion pixel column.
請求項2〜6のいずれか1項に記載の焦点検出装置を備えたことを特徴とする撮像装置。   An imaging apparatus comprising the focus detection apparatus according to claim 2.
JP2007028051A 2007-02-07 2007-02-07 Photoelectric converting device, focus detecting device and imaging apparatus Pending JP2008191559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028051A JP2008191559A (en) 2007-02-07 2007-02-07 Photoelectric converting device, focus detecting device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028051A JP2008191559A (en) 2007-02-07 2007-02-07 Photoelectric converting device, focus detecting device and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2008191559A true JP2008191559A (en) 2008-08-21

Family

ID=39751693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028051A Pending JP2008191559A (en) 2007-02-07 2007-02-07 Photoelectric converting device, focus detecting device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2008191559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131725A1 (en) * 2009-05-12 2010-11-18 Canon Kabushiki Kaisha Focus detection apparatus
CN102055902A (en) * 2009-10-28 2011-05-11 索尼公司 Shading correction method, shading-correction-value measuring apparatus, image capturing apparatus, and beam-profile measuring apparatus
JP2017062173A (en) * 2015-09-25 2017-03-30 日立オートモティブシステムズ株式会社 Stereo camera device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131725A1 (en) * 2009-05-12 2010-11-18 Canon Kabushiki Kaisha Focus detection apparatus
JP2010286826A (en) * 2009-05-12 2010-12-24 Canon Inc Focus detection apparatus
CN102422196A (en) * 2009-05-12 2012-04-18 佳能株式会社 Focus detection apparatus
US8704933B2 (en) 2009-05-12 2014-04-22 Canon Kabushiki Kaisha Focus detection apparatus
CN102055902A (en) * 2009-10-28 2011-05-11 索尼公司 Shading correction method, shading-correction-value measuring apparatus, image capturing apparatus, and beam-profile measuring apparatus
JP2017062173A (en) * 2015-09-25 2017-03-30 日立オートモティブシステムズ株式会社 Stereo camera device

Similar Documents

Publication Publication Date Title
JP4720508B2 (en) Imaging device and imaging apparatus
JP4007716B2 (en) Imaging device
JP5979849B2 (en) Imaging device and imaging apparatus
JP5751946B2 (en) Focus adjustment apparatus and control method thereof
US10397502B2 (en) Method and apparatus for imaging an object
JP2009284424A (en) Imaging apparatus, imaging method, and program
CN101753843A (en) Image sensing apparatus and control method therefor
JP5013811B2 (en) Imaging apparatus and correction method
JP4709247B2 (en) Focus detection apparatus and control method
US9088710B2 (en) Image processing apparatus, and method, and recording medium recording image processing program for processing output pixels utilized as phase difference detecting elements
JP6900227B2 (en) Imaging device and driving method of imaging device
JP4838175B2 (en) Focus detection device
JP5769773B2 (en) Camera system and focus detection pixel correction method
JP2007019577A (en) Solid-state image pickup device
JP2008191559A (en) Photoelectric converting device, focus detecting device and imaging apparatus
JP5775918B2 (en) Imaging apparatus, image processing method, and image processing program
JP5762768B2 (en) Imaging device
JP6311272B2 (en) Imaging apparatus and imaging method
JP6277675B2 (en) Imaging apparatus and imaging method
JP2006322970A (en) Focus detector
JP6229436B2 (en) Imaging apparatus and imaging method
JP2007166076A (en) Imaging device
JP2009053540A (en) Imaging device
JP2006133515A (en) Camera having focus detector
JP2015154153A (en) Camera with imaging apparatus