JP2008190968A - Ultrasonic flaw detection device and its flaw detection method - Google Patents

Ultrasonic flaw detection device and its flaw detection method Download PDF

Info

Publication number
JP2008190968A
JP2008190968A JP2007024900A JP2007024900A JP2008190968A JP 2008190968 A JP2008190968 A JP 2008190968A JP 2007024900 A JP2007024900 A JP 2007024900A JP 2007024900 A JP2007024900 A JP 2007024900A JP 2008190968 A JP2008190968 A JP 2008190968A
Authority
JP
Japan
Prior art keywords
chamber
flaw detection
ultrasonic
ultrasonic flaw
shroud support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007024900A
Other languages
Japanese (ja)
Other versions
JP4908250B2 (en
Inventor
Hiroyuki Adachi
弘幸 安達
Yasuhiro Yuguchi
康弘 湯口
Taiji Hirasawa
泰治 平澤
Toru Otsubo
徹 大坪
Kenichi Ueno
健一 上野
Atsushi Mori
敦史 森
Toshihiro Yasuda
年廣 安田
Koichi Soma
浩一 相馬
Ikuko Kameyama
育子 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007024900A priority Critical patent/JP4908250B2/en
Publication of JP2008190968A publication Critical patent/JP2008190968A/en
Application granted granted Critical
Publication of JP4908250B2 publication Critical patent/JP4908250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and quickly perform ultrasonic flaw detection of a welding part of a shroud support cylinder and its proximity in an aerial space. <P>SOLUTION: This ultrasonic flaw detection device comprises a chamber mechanism 2 forming a closed space in contact with a surface of a part to be flaw-detected, a propagation medium filling mechanism 4 for filling the space in this chamber mechanism with ultrasonic propagation medium, a phased array ultrasonic probe 5 disposed movably inside the chamber mechanism, an ultrasonic flaw detector 6 for performing ultrasonic flaw detection by moving the probe inside the chamber mechanism, and a chamber support mechanism for supporting the chamber mechanism and moving it in the direction of flaw detection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は原子力プラントの点検・補修等の際に、原子炉内に設置されているシュラウドサポートシリンダおよびその近傍の構造部に存在する溶接部を気中雰囲気のもとで超音波探傷する超音波探傷装置および超音波探傷方法に関する。   The present invention provides an ultrasonic inspection method for inspecting a welded portion existing in a shroud support cylinder installed in a nuclear reactor and a nearby structure portion in an atmospheric atmosphere during inspection and repair of a nuclear power plant. The present invention relates to a flaw detection apparatus and an ultrasonic flaw detection method.

原子力発電プラントでは、原子炉内の健全性を確認するための点検および点検後の補修等が行われる。沸騰水型原子炉における原子炉圧力容器内の点検・補修等の際には原子炉圧力容器内の除染後に炉内機器を取外し、炉心シュラウドを支持するシュラウドサポートシリンダおよびシュラウドサポートプレート(バッフルプレート)等の炉底部近傍に対する点検が含まれる。   In nuclear power plants, inspections to confirm the integrity of the reactor and repairs after the inspections are performed. When inspecting or repairing the reactor pressure vessel in a boiling water reactor, remove the in-reactor equipment after decontamination of the reactor pressure vessel, and shroud support cylinder and shroud support plate (baffle plate) ) And other inspections near the bottom of the furnace.

図9を参照して、沸騰水型原子炉の原子炉圧力容器内における超音波探傷部位となるシュラウドサポートおよびその近傍の構造部を簡単に説明する。図9に示すように、原子炉圧力容器100の炉壁101の内方には炉心を構成する炉心シュラウド102が配置されている。この炉心シュラウド102は、炉壁101の底部から立上るシュラウドサポートレグ103およびその上に配置されるシュラウドサポートシリンダ104を介して、下方から順に溶接により支持されている。以下、炉壁101の底部とシュラウドサポートレグ103との溶接部を「H11溶接部」と称し、図に符号「111」を付す。また、シュラウドサポートレグ103とシュラウドサポートシリンダ104との溶接部を「H10溶接部」と称し、図に符号「110」を付す。   With reference to FIG. 9, the shroud support used as the ultrasonic flaw detection site | part in the reactor pressure vessel of a boiling water reactor and the structure part of the vicinity of it are demonstrated easily. As shown in FIG. 9, a core shroud 102 constituting the core is disposed inside the reactor wall 101 of the reactor pressure vessel 100. The core shroud 102 is supported by welding sequentially from below through a shroud support leg 103 rising from the bottom of the furnace wall 101 and a shroud support cylinder 104 disposed on the shroud support leg 103. Hereinafter, a welded portion between the bottom of the furnace wall 101 and the shroud support leg 103 is referred to as an “H11 welded portion”, and a reference numeral “111” is attached to the drawing. Further, a welded portion between the shroud support leg 103 and the shroud support cylinder 104 is referred to as an “H10 welded portion”, and a reference numeral “110” is attached to the drawing.

また、炉底部から立上る炉壁101と炉心シュラウド102との間にはシュラウドサポートプレート105が溶接により接合されている。シュラウドサポートプレート105には、原子炉再循環ポンプであるジェットポンプ(図示省略)のデフューザ部を支持するためのジェットポンプデフューザ孔106が形成されている。以下、炉壁101と炉心シュラウド102との溶接部を「H9溶接部」と称し、図に符号「H109」を付す。さらに炉心シュラウド102とシュラウドサポートプレート105との溶接部を「H8溶接部」と称し、図に符号「108」を付す。   A shroud support plate 105 is joined by welding between the furnace wall 101 rising from the furnace bottom and the core shroud 102. The shroud support plate 105 is formed with a jet pump diffuser hole 106 for supporting a diffuser portion of a jet pump (not shown) that is a nuclear reactor recirculation pump. Hereinafter, a welded portion between the furnace wall 101 and the core shroud 102 is referred to as an “H9 welded portion”, and a symbol “H109” is attached to the drawing. Further, a welded portion between the core shroud 102 and the shroud support plate 105 is referred to as an “H8 welded portion”, and a reference numeral “108” is attached to the drawing.

このような溶接部の点検に関し、従来ではシュラウドサポートシリンダの溶接部とその近傍の健全性を確認するため超音波探傷が行われている。原子炉内の超音波探傷としては水中ビークルを使用した水中での探傷検査等が提案されている(例えば特許文献1等参照)。一方、シュラウドサポートシリンダおよびシュラウドサポートプレート等の溶接部とその近傍を超音波探傷する場合には、気中において単プローブを用いた直接接触方式による探傷も行われている。この気中空間におけるシュラウドサポートの溶接部とその近傍を超音波探傷する際には、単プローブを用いた直接接触方式の探傷が行われている。
特開2005−30773号公報
With regard to such inspection of welded parts, conventionally, ultrasonic flaw detection has been performed in order to confirm the soundness of the welded part of the shroud support cylinder and the vicinity thereof. As ultrasonic flaw detection in a nuclear reactor, underwater flaw inspection using an underwater vehicle has been proposed (see, for example, Patent Document 1). On the other hand, when ultrasonic flaw detection is performed on a welded portion such as a shroud support cylinder and a shroud support plate and the vicinity thereof, flaw detection by a direct contact method using a single probe is also performed in the air. When ultrasonic flaw detection is performed on the welded portion of the shroud support and its vicinity in the air space, direct flaw detection using a single probe is performed.
JP 2005-30773 A

上述したように、気中空間において原子炉内に存在するシュラウドサポートシリンダの溶接部とその近傍を超音波探傷する際には、単プローブを用いた直接接触方式で探傷が行われているが、この手法では、対象物の表面形状の影響を受けて正確なひびの深さのサイジングが困難であることや、全ての溶接部に対して超音波探傷を行なうと検査時間が非常に長くなる等の課題がある。   As described above, when ultrasonic flaw detection is performed on the welded portion of the shroud support cylinder existing in the reactor in the air space and the vicinity thereof, flaw detection is performed by a direct contact method using a single probe. With this method, it is difficult to accurately size the crack depth due to the influence of the surface shape of the object, and when all the welds are subjected to ultrasonic testing, the inspection time becomes very long. There is a problem.

本発明はこのような課題を解決するためになされたものであり、気中空間において、シュラウドサポートシリンダの溶接部およびその近傍を正確かつ迅速に超音波探傷することを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to accurately and quickly ultrasonically detect a welded portion of a shroud support cylinder and its vicinity in an air space.

前記の目的を達成するため、本発明では原子炉内に設置されているシュラウドサポートシリンダおよびその近傍の構造部に存在する溶接部を気中雰囲気のもとで超音波探傷する超音波探傷装置であって、被探傷部位の表面に接して閉じた空間を形成するチャンバー機構と、このチャンバー機構内の空間に超音波伝播媒体を充填する伝播媒体充填機構と、前記チャンバー機構の内部に移動可能に設けられたフェーズドアレイ超音波探触子と、この探触子を前記チャンバー機構内で移動させて超音波探傷を行う超音波探傷器と、前記チャンバー機構を支持して探傷方向に移動させるチャンバー支持機構とを備えたことを特徴とする超音波探傷装置を提供する。   In order to achieve the above object, the present invention provides an ultrasonic flaw detection apparatus that ultrasonically flaws a welded portion existing in a shroud support cylinder installed in a nuclear reactor and a structure portion in the vicinity thereof in an air atmosphere. A chamber mechanism that forms a closed space in contact with the surface of the site to be inspected, a propagation medium filling mechanism that fills the space in the chamber mechanism with an ultrasonic propagation medium, and is movable inside the chamber mechanism. A provided phased array ultrasonic probe, an ultrasonic flaw detector that performs ultrasonic flaw detection by moving the probe in the chamber mechanism, and a chamber support that supports the chamber mechanism and moves in the flaw detection direction. An ultrasonic flaw detector provided with a mechanism is provided.

また、本発明では、この超音波探傷装置を使用して、原子炉点検時に原子炉内に設置されているシュラウドサポートシリンダおよびその近傍の構造部に存在する溶接部を気中雰囲気のもとで超音波探傷する超音波探傷方法であって、前記シュラウドサポートシリンダおよびその近傍の構造部にチャンバー機構、伝播媒体充填機構、フェーズドアレイ超音波探触子、超音波探傷器およびチャンバー支持機構を搬入して設置する機器設置工程と、前記チャンバー機構を被探傷部位の表面に接触させて閉じた空間を形成し、このチャンバー機構の内部に超音波伝播媒体を充満させる探傷準備工程と、前記チャンバー機構を前記チャンバー支持機構により被探傷部位に沿って移動させ気中において前記フェーズドアレイ超音波探触子による超音波探傷を行う探傷工程とを備えることを特徴とする超音波探傷方法を提供する。   Further, in the present invention, using this ultrasonic flaw detector, the shroud support cylinder installed in the nuclear reactor at the time of the nuclear reactor inspection and the welded portion existing in the structure portion in the vicinity thereof under an atmospheric atmosphere. An ultrasonic flaw detection method for ultrasonic flaw detection, in which a chamber mechanism, a propagation medium filling mechanism, a phased array ultrasonic probe, an ultrasonic flaw detector, and a chamber support mechanism are carried into the shroud support cylinder and the structure in the vicinity thereof. An instrument installation step, a chamber-mechanism is brought into contact with the surface of the flaw detection site to form a closed space, and the chamber mechanism is filled with an ultrasonic propagation medium. Ultrasonic flaw detection by the phased array ultrasonic probe in the air moved along the inspection target site by the chamber support mechanism To provide an ultrasonic flaw detection method characterized by comprising a inspection step of performing.

本発明によれば原子炉、特に沸騰水型原子炉の原子炉圧力容器内におけるシュラウドサポートシリンダの溶接部およびその近傍を、気中空間にて水浸フェーズドアレイ探傷により、正確かつ迅速に超音波探傷を行うことが可能となる。   According to the present invention, ultrasonic welding of a shroud support cylinder and its vicinity in a nuclear reactor pressure vessel of a nuclear reactor, particularly a boiling water reactor, is performed accurately and quickly by water immersion phased array flaw detection in an air space. It is possible to perform flaw detection.

以下、図面を参照して本発明に係る超音波探傷装置および超音波探傷方法の実施形態を沸騰水型原子炉の原子炉圧力容器に適用する場合について説明する。   Hereinafter, a case where an embodiment of an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method according to the present invention is applied to a reactor pressure vessel of a boiling water reactor will be described with reference to the drawings.

[第1実施形態(図1,2,3)]
図1は本発明の第1実施形態による超音波探傷装置の設置状態を示す概略説明図である。この図1には、原子炉圧力容器100内に設置されているシュラウドサポートシリンダ104の上側近傍の炉心シュラウド102とシュラウドサポートプレート105との溶接部(H8溶接部)108の検査、およびシュラウドサポートプレート105と炉壁101との溶接部(H9溶接部)109等の検査を下方から上向きに探傷する状態が示してある。
[First Embodiment (FIGS. 1, 2 and 3)]
FIG. 1 is a schematic explanatory view showing an installation state of the ultrasonic flaw detector according to the first embodiment of the present invention. FIG. 1 shows the inspection of the welded portion (H8 welded portion) 108 between the core shroud 102 and the shroud support plate 105 near the upper side of the shroud support cylinder 104 installed in the reactor pressure vessel 100, and the shroud support plate. A state is shown in which an inspection of a welded portion (H9 welded portion) 109 between 105 and the furnace wall 101 is inspected upward from below.

図1に示すように、超音波探傷装置1は被探傷部位であるH8溶接部108の下側表面に接して閉じた空間を形成するチャンバー機構2を備えている。このチャンバー機構2はシュラウドサポートシリンダ102とその近傍の構造部であるシュラウドサポートプレート105に存在する溶接部、すなわちH8溶接部108に対応して斜め上向きなる配置に設定されている。また、チャンバー機構2内の空間に超音波伝播媒体として水3を注入して充填し、あるいは排水するために伝播媒体充填機構としての注排水機構4が備えてある。チャンバー機構2の内部にはフェーズドアレイ超音波探触子(以下、「超音波探触子」と略称する。)5が移動可能に設けられている。   As shown in FIG. 1, the ultrasonic flaw detector 1 includes a chamber mechanism 2 that forms a closed space in contact with the lower surface of the H8 weld 108 that is a flaw detection site. The chamber mechanism 2 is set to be disposed obliquely upward corresponding to a welded portion existing in the shroud support cylinder 102 and a shroud support plate 105 which is a structure portion in the vicinity thereof, that is, an H8 welded portion 108. In addition, a water injection / drainage mechanism 4 as a propagation medium filling mechanism is provided to fill or drain water 3 as an ultrasonic propagation medium into the space in the chamber mechanism 2. A phased array ultrasonic probe (hereinafter abbreviated as “ultrasonic probe”) 5 is movably provided inside the chamber mechanism 2.

また、超音波探触子5をチャンバー機構2内で移動させる指令や超音波発信および受信等を行い探傷結果を得る超音波探傷を行うための超音波探傷器6と、チャンバー機構2を支持して探傷方向に移動させるチャンバー支持機構としての台車7を備えている。さらに、チャンバー機構2の内部の超音波探触子5を移動させるスキャナ8が備えられるとともに、このスキャナ8を制御部操作するためのスキャナ制御盤14が設けられている。また、チャンバー機構2は台車7にばね機構9を介して支持されており、被探傷部の向きに押圧力が付与されるようになっている。以上の装置は原子炉圧力容器100の炉底部に組立てられた作業架台10に支持されている。   Further, an ultrasonic flaw detector 6 for performing an ultrasonic flaw for obtaining a flaw detection result by performing an instruction to move the ultrasonic probe 5 within the chamber mechanism 2, an ultrasonic transmission and reception, and a chamber mechanism 2 are supported. A carriage 7 is provided as a chamber support mechanism that moves in the flaw detection direction. Further, a scanner 8 for moving the ultrasonic probe 5 inside the chamber mechanism 2 is provided, and a scanner control panel 14 for operating the scanner 8 is also provided. The chamber mechanism 2 is supported on the carriage 7 via a spring mechanism 9 so that a pressing force is applied in the direction of the flaw detection part. The above apparatus is supported by a work platform 10 assembled at the bottom of the reactor pressure vessel 100.

なお、作業架台10は制御棒駆動機構ハウジング(CRDハウジング)107等を利用して設置され、上方に立上ってシュラウドサポートシリンダ104の開口部104a等を介して炉壁101側に伸びている。そして、作業架台10はシュラウドサポートプレート105の下方位置に作業フロア11を有するとともに、作業フロア11の側方および上方に伸びた支持部12,13を有し、これらの支持部12,13が炉壁101およびシュラウドサポートプレート105に固定支持されている。   The work platform 10 is installed using a control rod drive mechanism housing (CRD housing) 107 or the like, and rises upward and extends toward the furnace wall 101 through the opening 104a of the shroud support cylinder 104 or the like. . The work platform 10 has a work floor 11 at a position below the shroud support plate 105, and has support parts 12 and 13 extending sideways and upward of the work floor 11, and these support parts 12 and 13 are furnaces. The wall 101 and the shroud support plate 105 are fixedly supported.

図2は図1に示した超音波探傷装置1を拡大して示している。この図2に示すように、チャンバー機構2は例えば直方体上の筐体15の一部(図2の左上の二辺部分)を切除した開口部16を有し、この開口部16を柔軟素材からなる水密保持機構17により閉塞する構成としたものである。この水密保持機構17によりチャンバー機構2内には水3を充満させて保持することができる。また、チャンバー機構2には注排水機構4が注排水用チューブ18を介して接続してあり、探傷に必要な水量を供給し、点検後には排水を行うことができる。   FIG. 2 is an enlarged view of the ultrasonic flaw detector 1 shown in FIG. As shown in FIG. 2, the chamber mechanism 2 has an opening 16 in which, for example, a part of the casing 15 on the rectangular parallelepiped (the upper left two parts in FIG. 2) is cut, and the opening 16 is made of a flexible material. The watertight holding mechanism 17 is configured to be closed. By this watertight holding mechanism 17, the chamber mechanism 2 can be filled with water 3 and held. The chamber mechanism 2 is connected to the water injection / drainage mechanism 4 via the water injection / drainage tube 18 so that the water amount necessary for flaw detection can be supplied and drained after the inspection.

チャンバー機構2の内部に設けられた超音波探触子5はスキャナ8に連結具19を介して移動可能に支持されている。スキャナ8は例えば円弧状のガイド部材20を有しており、このガイド部材20に移動コマ21を介して超音波探触子5の連結具19が支持されている。これにより、図2に矢印aで示すように、超音波探触子5は被探傷部であるH8溶接部108を探傷することができる。   The ultrasonic probe 5 provided inside the chamber mechanism 2 is supported by the scanner 8 through a connector 19 so as to be movable. The scanner 8 has, for example, an arcuate guide member 20, and a connecting tool 19 of the ultrasonic probe 5 is supported on the guide member 20 via a moving piece 21. Thereby, as indicated by an arrow a in FIG. 2, the ultrasonic probe 5 can detect the H8 welded portion 108 which is a flaw detection portion.

チャンバー機構2を台車7に支持するばね機構9は、チャンバー機構2の筐体15の外側面を例えば金属ばね22により筐体15の開口部16側に向って三次元方向に弾性力をもって押圧することができる。なお、金属ばね22に代えてシリンダ機構による流体ばね機構を設けてもよい。このようなばね機構9により、チャンバー機構2は首振り可能な状態でH8溶接部108に水密保持機構17を介して密接することができる。超音波探触子
5超音波探傷器6とはコード23により接続され、スキャナ8とスキャナ制御盤14とはコード24により接続されている。
The spring mechanism 9 that supports the chamber mechanism 2 on the carriage 7 presses the outer surface of the casing 15 of the chamber mechanism 2 with an elastic force in a three-dimensional direction toward the opening 16 of the casing 15 by, for example, a metal spring 22. be able to. A fluid spring mechanism using a cylinder mechanism may be provided instead of the metal spring 22. By such a spring mechanism 9, the chamber mechanism 2 can be brought into close contact with the H8 welded portion 108 via the watertight holding mechanism 17 in a state in which the chamber mechanism 2 can swing. The ultrasonic probe 5 is connected to the ultrasonic flaw detector 6 by a cord 23, and the scanner 8 and the scanner control panel 14 are connected by a cord 24.

図3はチャンバ機構2におけるエア溜り除去機構25を示している。フェーズドアレイ超音波探触子による超音波探傷を行う場合、超音波探触子5から発信される超音波の伝播空間である水3中に空気(エア)溜りが生じると、超音波が伝播しないために支障が生じる。この解決案として本実施形態ではエア溜り除去機構25を設けてある。例えば、図4に示すように、チャンバー機構2の上部に空気孔26を設け、この空気孔26よりエアを外部に除去する手段が設けてある。なお、エアを空気孔26の方向へ誘導するために、超音波探触子5の近傍に水噴射ノズル(図示せず)等を設け、注排水機構4から空気孔26に水中のエアが誘導される構成とすることが望ましい。   FIG. 3 shows an air reservoir removing mechanism 25 in the chamber mechanism 2. When performing an ultrasonic flaw detection using a phased array ultrasonic probe, if an air (air) pool is generated in the water 3 which is a propagation space of the ultrasonic wave transmitted from the ultrasonic probe 5, the ultrasonic wave does not propagate. This causes trouble. As a solution, in this embodiment, an air reservoir removing mechanism 25 is provided. For example, as shown in FIG. 4, an air hole 26 is provided in the upper part of the chamber mechanism 2, and means for removing air from the air hole 26 to the outside is provided. In order to guide air in the direction of the air hole 26, a water injection nozzle (not shown) or the like is provided in the vicinity of the ultrasonic probe 5 so that underwater air is guided from the pouring / draining mechanism 4 to the air hole 26. It is desirable to have a configuration.

以上の実施形態においては、原子炉点検時に原子炉圧力容器100内に設置されているシュラウドサポートシリンダ104およびその近傍の構造部に存在するH8溶接部108およびH9溶接部109を気中雰囲気のもとで超音波探傷することができる。この場合の手順としては、下記の工程を行う。   In the above embodiment, the H8 welded portion 108 and the H9 welded portion 109 existing in the shroud support cylinder 104 installed in the reactor pressure vessel 100 at the time of the nuclear reactor inspection and the structural portion in the vicinity thereof are maintained in the atmosphere. And can be ultrasonic flaw detection. As a procedure in this case, the following steps are performed.

すなわち、シュラウドサポートシリンダ104およびその近傍の構造部であるH8溶接部108およびH9溶接部109にチャンバー機構2、伝播媒体充填機構注排水機構4、超音波探触子5、超音波探傷器6およびチャンバー支持機構としての台車7を搬入して設置する機器設置工程を行う。次に、チャンバー機構2を被探傷部位の表面に接触させて閉じた空間を形成し、このチャンバー機構2の内部に超音波伝播媒体である水3を充満させる探傷準備工程を行う。そして、チャンバー機構2をチャンバー支持機構である台車7により被探傷部位であるH8溶接部108およびH9溶接部109に沿って移動させ、気中において超音波探触子5による超音波探傷を行う。具体的には下記の(1)〜(4)の工程を実施する。   That is, the chamber mechanism 2, the propagation medium filling mechanism pouring / draining mechanism 4, the ultrasonic probe 5, the ultrasonic flaw detector 6, An equipment installation process for carrying in and installing a carriage 7 as a chamber support mechanism is performed. Next, a closed space is formed by bringing the chamber mechanism 2 into contact with the surface of the flaw detection site, and a flaw detection preparation step is performed in which the chamber mechanism 2 is filled with water 3 as an ultrasonic propagation medium. Then, the chamber mechanism 2 is moved along the H8 welded portion 108 and the H9 welded portion 109, which are to-be-detected parts, by the carriage 7 which is a chamber support mechanism, and ultrasonic flaw detection by the ultrasonic probe 5 is performed in the air. Specifically, the following steps (1) to (4) are performed.

(1)探傷部位に到達後、チャンバー押し付け機構であるバネ機構9により、チャンバー機構2を対象部位に押し付ける。 (1) After reaching the flaw detection site, the chamber mechanism 2 is pressed against the target site by the spring mechanism 9 which is a chamber pressing mechanism.

(2)その後、注排水機構4を用いて、チャンバー機構2の内部に水3を充填する。このとき、チャンバー機構2と対象構造物との間隙には水密保持機構17があるため、チャンバー機構2の内部は常時、水3で充填させることが可能である。 (2) After that, the chamber mechanism 2 is filled with water 3 using the pouring / draining mechanism 4. At this time, since there is a watertight holding mechanism 17 in the gap between the chamber mechanism 2 and the target structure, the inside of the chamber mechanism 2 can be always filled with water 3.

(3)水3をチャンバー機構2の内部に充填後、スキャナ制御盤14により探触子5を駆動させて、探傷を行う。この際、スキャナ8は、スキャナ制御盤14により駆動方向や駆動速度等を制御することが可能である。 (3) After filling the chamber mechanism 2 with water 3, the probe 5 is driven by the scanner control panel 14 to perform flaw detection. At this time, the scanner 8 can control the driving direction, the driving speed, and the like by the scanner control panel 14.

(4)探傷が終了後、注排水機構4を用いて、チャンバー内部の水3を排水する。排水後、装置を次の対象部位まで移動させ、次の対象部位に到達後、上記の手順を繰り返すことで探傷を行う。 (4) After the flaw detection, the water 3 inside the chamber is drained by using the pouring / draining mechanism 4. After draining, the device is moved to the next target site, and after reaching the next target site, the above procedure is repeated to perform flaw detection.

以上の本実施形態によれば、超音波探傷器6、スキャナ制御盤14、注排水機構4を作業架台10の作業フロア11に置くことが可能になり、作業員が装置の監視等を行いながら、超音波探傷器6に映し出される探傷画像やスキャナ8の制御を行うことが可能になる。   According to the present embodiment described above, it is possible to place the ultrasonic flaw detector 6, the scanner control panel 14, and the pouring / draining mechanism 4 on the work floor 11 of the work platform 10, while an operator monitors the apparatus and the like. The flaw detection image displayed on the ultrasonic flaw detector 6 and the scanner 8 can be controlled.

[第2実施形態(図4)]
本実施形態では、H10溶接部110やH11溶接部111を探傷する場合に好適な超音波探傷装置について説明する。図4にはH10溶接部110を点検する構成の要部を拡大して示している。
[Second Embodiment (FIG. 4)]
In the present embodiment, an ultrasonic flaw detection apparatus suitable for flaw detection of the H10 weld 110 and the H11 weld 111 will be described. FIG. 4 is an enlarged view of a main part of the configuration for inspecting the H10 welded part 110.

図4に示すように、本実施形態の構成は基本的に第1実施形態とほぼ同様であるが、装置の向きおよび設置位置が第1実施形態と異なっている。すなわち、本実施形態では超音波探傷装置1が被探傷部位であるH10溶接部110の上側表面に接して閉じた空間を形成するチャンバー機構2を備えている。このチャンバー機構2はシュラウドサポートシリンダ102に吊下機構31を装着し、この吊下機構31にばね機構9を介してチャンバー機構2を吊下げた構成となっている。その他の構成は向きが異なるだけで構成は第1実施形態と略同様であるから、図4に第1実施形態と同様の符号を付して説明を省略する。   As shown in FIG. 4, the configuration of the present embodiment is basically the same as that of the first embodiment, but the orientation and installation position of the apparatus are different from those of the first embodiment. That is, in this embodiment, the ultrasonic flaw detection apparatus 1 includes the chamber mechanism 2 that forms a closed space in contact with the upper surface of the H10 weld 110 that is the flaw detection site. The chamber mechanism 2 has a configuration in which a suspension mechanism 31 is attached to the shroud support cylinder 102 and the chamber mechanism 2 is suspended from the suspension mechanism 31 via a spring mechanism 9. The other configurations are substantially the same as those in the first embodiment except for the orientation, and therefore, the same reference numerals as those in the first embodiment are given to FIG.

本実施形態によれば、斜め下方に下向く傾斜状態に向きを設定して、H10溶接部110やH11溶接部111を探傷することができる。   According to the present embodiment, the H10 welded part 110 and the H11 welded part 111 can be flaw-detected by setting the direction in an inclined state that is inclined obliquely downward.

[第3実施形態(図5,6,7)]
図5は本実施形態の全体構成および炉内配置構成を示す全体図である。図6は図5に示した作業架台10を示す拡大図であり、図7は図5に示したレール部分を示す拡大図である。
[Third Embodiment (FIGS. 5, 6, and 7)]
FIG. 5 is an overall view showing the overall configuration and the in-furnace arrangement configuration of the present embodiment. FIG. 6 is an enlarged view showing the work platform 10 shown in FIG. 5, and FIG. 7 is an enlarged view showing the rail portion shown in FIG.

図5に示すように、本実施形態が前記実施形態と異なる点は、チャンバー支持機構が原子炉圧力容器100内に設置された作業架台上で走行する台車ではなく、シュラウドサポートシリンダ104もしくはその近傍の構造部にレール吊下機構41により吊下げられたレール42を適用した構成にある。すなわち、本実施形態では、シュラウドサポートシリンダ104の近傍の構造部であるシュラウドサポートプレート105に設けられたレール42に沿って移動する軌道車両構造が適用されている。他の構成については前記実施形態と略同様である。   As shown in FIG. 5, this embodiment differs from the above embodiment in that the chamber support mechanism is not a carriage that runs on a work platform installed in the reactor pressure vessel 100, but the shroud support cylinder 104 or its vicinity. In this structure, a rail 42 suspended by a rail suspension mechanism 41 is applied. That is, in this embodiment, a tracked vehicle structure that moves along the rail 42 provided on the shroud support plate 105 that is a structural portion in the vicinity of the shroud support cylinder 104 is applied. About another structure, it is substantially the same as that of the said embodiment.

図6には、作業架台の構成が示されている。この図6に示すように、作業架台10はシュラウドサポートプレート105の下方位置に作業フロア11を有するとともに、作業フロア11の側方および上方に伸びた支持部12,13を有し、これらの支持部12,13が炉壁101およびシュラウドサポートプレート105に固定支持されている。   FIG. 6 shows the configuration of the work platform. As shown in FIG. 6, the work platform 10 has a work floor 11 below the shroud support plate 105, and has support portions 12 and 13 extending sideways and upward of the work floor 11. The parts 12 and 13 are fixedly supported by the furnace wall 101 and the shroud support plate 105.

図7にはレール42の構成が拡大して示してある。レール42はシュラウドサポートプレート105のジェットポンプデフューザ孔106に支持され、H8溶接部108に沿って図5に示したチャンバー機構2を移動させることができる。すなわち、図5に示したように、原子炉圧力容器100の円周方向に設置される。   FIG. 7 shows the configuration of the rail 42 in an enlarged manner. The rail 42 is supported by the jet pump diffuser hole 106 of the shroud support plate 105, and the chamber mechanism 2 shown in FIG. 5 can be moved along the H8 weld 108. That is, as shown in FIG. 5, it is installed in the circumferential direction of the reactor pressure vessel 100.

本実施形態によれば、探傷する範囲が広大の場合には、レール42を設置することにより、探傷時間を短縮することが可能である。本実施形態の超音波探傷装置1は、レール42を通すための取り合い部(図示せず)を超音波探傷ヘッドであるチャンバ機構2に別途設置することにより、レール42を通して原子炉圧力容器100の円周方向に超音波探触子5を容易に駆動させることが可能になる。レール42による駆動は、電動または手動の方法が考えられる。本実施形態により、超音波探傷作業を迅速に行うことが可能になる。   According to the present embodiment, when the flaw detection range is wide, the flaw detection time can be shortened by installing the rail 42. In the ultrasonic flaw detector 1 of the present embodiment, a joint portion (not shown) for passing the rail 42 is separately installed in the chamber mechanism 2 that is an ultrasonic flaw detection head, so that the reactor pressure vessel 100 is passed through the rail 42. The ultrasonic probe 5 can be easily driven in the circumferential direction. The driving by the rail 42 may be an electric or manual method. According to the present embodiment, it is possible to quickly perform an ultrasonic flaw detection work.

なお、本実施形態による超音波探傷装置1を用いる際には、ジェットポンプデフューザ孔106およびアクセスホールカバー孔(図示せず)を閉止蓋等で閉止する。本閉止蓋を設置することにより、ジェットポンプデフューザ孔106およびアクセスホールカバー孔近傍でも、チャンバー機構2の内部を水密に保つことが可能になる。なお、ジェットポンプデフューザ孔106を閉止する際には、レール42の取り合い部と干渉しないように配慮した閉止蓋にする必要がある。検査時には、事前に、レール42、作業架台10またはジェットポンプデフューザ(図示せず)やアクセスホールカバーへの閉止蓋の設置を行い、第1実施形態と同様の操作を行う。   When the ultrasonic flaw detector 1 according to the present embodiment is used, the jet pump diffuser hole 106 and the access hole cover hole (not shown) are closed with a closing lid or the like. By installing this closing lid, the inside of the chamber mechanism 2 can be kept watertight even in the vicinity of the jet pump diffuser hole 106 and the access hole cover hole. Note that when closing the jet pump diffuser hole 106, it is necessary to provide a closing lid so as not to interfere with the joint portion of the rail 42. At the time of inspection, the lid 42 is installed in advance on the rail 42, the work platform 10, the jet pump diffuser (not shown), and the access hole cover, and the same operation as in the first embodiment is performed.

本架台を用いることにより、超音波探傷器6、スキャナ制御盤14、注排水機構4を架台に置くことが可能になり、作業員が装置の監視等を行いながら、探傷器に映し出される探傷画像やスキャナの制御を行うことが可能になる。   By using this gantry, it is possible to place the ultrasonic flaw detector 6, the scanner control panel 14, and the water injection / drainage mechanism 4 on the gantry, and the flaw detection image displayed on the flaw detector while an operator monitors the apparatus. And the scanner can be controlled.

[第4実施形態(図8)]
図8は本発明の第4実施形態を示している。本実施形態においては、台車等により移動することを前提としているが、代替法案として超音波探傷ヘッドに自走機構を具備する方策も考えられる。超音波探傷ヘッドを2本のアーム50,51と駆動機構53により、原子炉圧力容器100の円周方向に駆動させる手段である。アーム51の先端には図示しないモータ等により駆動する駆動車輪52が具備されている。駆動機構53の内部には駆動車輪の動源となるモータやアーム50,51を伸縮させるための図示しないシリンダ機構等が具備されている。なお、本装置を用いる場合には図示省略の探傷器、装置の制御盤、注排水機構等については、炉底部またはオペレーションフロアに設置する。
[Fourth Embodiment (FIG. 8)]
FIG. 8 shows a fourth embodiment of the present invention. In the present embodiment, it is premised that the vehicle is moved by a carriage or the like. However, as an alternative measure, a method of providing a self-propelled mechanism in the ultrasonic flaw detection head is also conceivable. This is means for driving the ultrasonic testing head in the circumferential direction of the reactor pressure vessel 100 by means of two arms 50 and 51 and a drive mechanism 53. A drive wheel 52 that is driven by a motor or the like (not shown) is provided at the tip of the arm 51. The drive mechanism 53 is provided with a motor that serves as a drive source for the drive wheels, a cylinder mechanism (not shown) for expanding and contracting the arms 50 and 51, and the like. When this device is used, a flaw detector (not shown), a control panel of the device, a water injection / drainage mechanism, etc. are installed on the furnace bottom or the operation floor.

本実施形態により、作業員等により装置を駆動させることなく、超音波探傷を行うことが可能になる。   According to the present embodiment, ultrasonic flaw detection can be performed without driving the apparatus by an operator or the like.

本発明の第1実施形態による超音波探傷装置を示す概略構成図。1 is a schematic configuration diagram showing an ultrasonic flaw detector according to a first embodiment of the present invention. 図1の要部を拡大して示す説明図。Explanatory drawing which expands and shows the principal part of FIG. 図2をさらに拡大して示す拡大断面図。The expanded sectional view which expands and shows FIG. 2 further. 本発明の第2実施形態による超音波探傷装置を示す概略構成図。The schematic block diagram which shows the ultrasonic flaw detector by 2nd Embodiment of this invention. 本発明の第3実施形態による超音波探傷装置を示す概略構成図。The schematic block diagram which shows the ultrasonic flaw detector by 3rd Embodiment of this invention. 図5に示した架台を拡大して示す説明図。Explanatory drawing which expands and shows the mount frame shown in FIG. 図5に示したレールを拡大して示す説明図。Explanatory drawing which expands and shows the rail shown in FIG. 本発明の第4実施形態による超音波探傷装置を示す構成図。The block diagram which shows the ultrasonic flaw detector by 4th Embodiment of this invention. ABWRの原子炉圧力容器内構成を示す横断面図。The cross-sectional view which shows the structure in the reactor pressure vessel of ABWR.

符号の説明Explanation of symbols

1‥チャンバー機構、2‥チャンバー機構、3‥水、4‥注排水機構、5‥超音探触子、6‥超音波探傷器、7‥台車、8‥スキャナ、9‥ばね機構、10‥作業架台、11‥作業フロア、12‥支持部、13‥支持部、14‥スキャナ制御盤、12‥筐体、16‥開口部、17‥水密保持機構、16‥開口部、18‥注水用チューブ、19‥連結具、20‥ガイド部材、21‥移動コマ、22‥金属ばね、23‥コード、24‥コード、25‥コード、25‥エア溜り除去機構、26‥空気孔、100‥原子炉圧力容器、102‥炉壁、102‥炉心シュラウド、103‥シュラウドサポートレグ、104‥シュラウドサポートシリンダ、105‥シュラウドサポートプレート。 DESCRIPTION OF SYMBOLS 1 ... Chamber mechanism, 2 ... Chamber mechanism, 3 ... Water, 4 ... Drainage mechanism, 5 ... Ultrasonic probe, 6 ... Ultrasonic flaw detector, 7 ... Dolly, 8 ... Scanner, 9 ... Spring mechanism, 10 ... Work platform, 11 ... Work floor, 12 ... Supporting part, 13 ... Supporting part, 14 ... Scanner control panel, 12 ... Housing, 16 ... Opening part, 17 ... Watertight holding mechanism, 16 ... Opening part, 18 ... Water injection tube , 19, connector, 20 guide member, 21 moving piece, 22 metal spring, 23 cord, 24 cord, 25 cord, 25 air trap removal mechanism, 26 air hole, 100 reactor pressure Vessel, 102, furnace wall, 102, core shroud, 103, shroud support leg, 104, shroud support cylinder, 105, shroud support plate.

Claims (4)

原子炉内に設置されているシュラウドサポートシリンダおよびその近傍の構造部に存在する溶接部を気中雰囲気のもとで超音波探傷する超音波探傷装置であって、被探傷部位の表面に接して閉じた空間を形成するチャンバー機構と、このチャンバー機構内の空間に超音波伝播媒体を充填する伝播媒体充填機構と、前記チャンバー機構の内部に移動可能に設けられたフェーズドアレイ超音波探触子と、この探触子を前記チャンバー機構内で移動させて超音波探傷を行う超音波探傷器と、前記チャンバー機構を支持して探傷方向に移動させるチャンバー支持機構とを備えたことを特徴とする超音波探傷装置。 An ultrasonic flaw detection apparatus that performs ultrasonic flaw detection in an air atmosphere on a shroud support cylinder installed in a nuclear reactor and a structure near the shroud support cylinder. A chamber mechanism for forming a closed space, a propagation medium filling mechanism for filling the space in the chamber mechanism with an ultrasonic propagation medium, and a phased array ultrasonic probe movably provided in the chamber mechanism; An ultrasonic flaw detector that performs ultrasonic flaw detection by moving the probe in the chamber mechanism, and a chamber support mechanism that supports the chamber mechanism and moves it in the flaw detection direction. Sonic flaw detector. 前記チャンバー支持機構は、原子炉内に設置された作業架台上で走行する台車、前記シュラウドサポートシリンダもしくはその近傍の構造部に設けられたレールに支持されて移動する軌道車両、または前記シュラウドサポートもしくはその近傍の構造部表面に沿って移動する無軌道車両である請求項1記載の超音波探傷装置。 The chamber support mechanism is a carriage that runs on a work platform installed in a nuclear reactor, a track vehicle that is supported by a rail provided on the shroud support cylinder or a structure in the vicinity thereof, or the shroud support or 2. The ultrasonic flaw detector according to claim 1, wherein the ultrasonic flaw detector is a trackless vehicle that moves along the surface of the structure portion in the vicinity thereof. 前記チャンバー機構は前記シュラウドサポートシリンダおよびその近傍の構造部に存在する溶接部に対応して、上向き、下向き、横向きもしくは傾斜状態に向きを設定されている請求項1または2記載の超音波探傷装置。 The ultrasonic flaw detector according to claim 1 or 2, wherein the chamber mechanism is oriented in an upward, downward, lateral, or inclined state corresponding to a welded portion present in the shroud support cylinder and a structure portion in the vicinity thereof. . 請求項1ないし請求項3のいずれか1項に記載の超音波探傷装置を使用して、原子炉点検時に原子炉内に設置されているシュラウドサポートシリンダおよびその近傍の構造部に存在する溶接部を気中雰囲気のもとで超音波探傷する超音波探傷方法であって、前記シュラウドサポートシリンダおよびその近傍の構造部にチャンバー機構、伝播媒体充填機構、フェーズドアレイ超音波探触子、超音波探傷器およびチャンバー支持機構を搬入して設置する機器設置工程と、前記チャンバー機構を被探傷部位の表面に接触させて閉じた空間を形成し、このチャンバー機構の内部に超音波伝播媒体を充満させる探傷準備工程と、前記チャンバー機構を前記チャンバー支持機構により被探傷部位に沿って移動させ気中において前記フェーズドアレイ超音波探触子による超音波探傷を行う探傷工程とを備えることを特徴とする超音波探傷方法。 The ultrasonic flaw detector according to any one of claims 1 to 3, wherein a welded portion present in a shroud support cylinder installed in the nuclear reactor during a nuclear inspection and a structural portion in the vicinity thereof. Is an ultrasonic flaw detection method in an air atmosphere, wherein a chamber mechanism, a propagation medium filling mechanism, a phased array ultrasonic probe, and an ultrasonic flaw detection are provided in the shroud support cylinder and the structure in the vicinity thereof. A device installation process in which a chamber and a chamber support mechanism are carried in, and a flaw detection method in which a closed space is formed by bringing the chamber mechanism into contact with the surface of the site to be inspected and the chamber mechanism is filled with an ultrasonic propagation medium. A phased array ultrasonic wave in the air by moving the chamber mechanism along the inspection site by the chamber support mechanism; Ultrasonic flaw detection method characterized by comprising a inspection step of performing ultrasonic flaw detection by probe.
JP2007024900A 2007-02-02 2007-02-02 Ultrasonic flaw detector and flaw detection method Expired - Fee Related JP4908250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024900A JP4908250B2 (en) 2007-02-02 2007-02-02 Ultrasonic flaw detector and flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024900A JP4908250B2 (en) 2007-02-02 2007-02-02 Ultrasonic flaw detector and flaw detection method

Publications (2)

Publication Number Publication Date
JP2008190968A true JP2008190968A (en) 2008-08-21
JP4908250B2 JP4908250B2 (en) 2012-04-04

Family

ID=39751210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024900A Expired - Fee Related JP4908250B2 (en) 2007-02-02 2007-02-02 Ultrasonic flaw detector and flaw detection method

Country Status (1)

Country Link
JP (1) JP4908250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535653A (en) * 2015-01-20 2015-04-22 中国人民解放军装甲兵工程学院 Phased-array ultrasonic detection device for the inner-hole defects of hole parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288728A (en) * 1992-04-07 1993-11-02 Toshiba Corp Measuring apparatus for ultrasonic wave sound speed
JPH0989851A (en) * 1995-09-19 1997-04-04 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic probe
JPH11109082A (en) * 1997-09-30 1999-04-23 Toshiba Corp Device for inspecting inside of reactor
JP2002168992A (en) * 2000-11-30 2002-06-14 Hitachi Ltd Method for repair of inside reactor pressure vessel, and repairing device
JP2005195596A (en) * 2003-12-31 2005-07-21 General Electric Co <Ge> Method and device for detecting crack of weld part
JP2006308547A (en) * 2005-03-31 2006-11-09 Toshiba Corp Working apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288728A (en) * 1992-04-07 1993-11-02 Toshiba Corp Measuring apparatus for ultrasonic wave sound speed
JPH0989851A (en) * 1995-09-19 1997-04-04 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic probe
JPH11109082A (en) * 1997-09-30 1999-04-23 Toshiba Corp Device for inspecting inside of reactor
JP2002168992A (en) * 2000-11-30 2002-06-14 Hitachi Ltd Method for repair of inside reactor pressure vessel, and repairing device
JP2005195596A (en) * 2003-12-31 2005-07-21 General Electric Co <Ge> Method and device for detecting crack of weld part
JP2006308547A (en) * 2005-03-31 2006-11-09 Toshiba Corp Working apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535653A (en) * 2015-01-20 2015-04-22 中国人民解放军装甲兵工程学院 Phased-array ultrasonic detection device for the inner-hole defects of hole parts

Also Published As

Publication number Publication date
JP4908250B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US11205522B2 (en) Apparatus and method to remotely inspect piping and piping attachment welds
JP6332871B2 (en) Repair method for reactor-mounted instrumentation nozzle
JP5260410B2 (en) Method and apparatus for preventive maintenance of in-furnace equipment
JP2008216012A (en) Maintenance and repair device for structure inside nuclear reactor
KR200438808Y1 (en) Inspecting apparatus of penetration tube under reactor vessel
JP5113012B2 (en) Underwater remote surface inspection method for reactor components and its underwater remote surface inspection device
JP2007003442A (en) Ut inspection method and device for nozzle weld zone of reactor vessel
US8848857B2 (en) Preventive maintenance/repair device and preventive mainenance/repair method for cylindrical structure
JP2011052966A (en) Method for managing internal equipment in reactor pressure vessel and apparatus thereof
JP6243855B2 (en) Inspection apparatus and method for inspecting nuclear reactor parts using the inspection apparatus
KR101377448B1 (en) Welding bead part immersion ultrasonic scanning device of small and narrow place
JP2003337192A (en) Inspection and preventive maintenance apparatus for structure within reactor pressure vessel, and inspection method
JP4908250B2 (en) Ultrasonic flaw detector and flaw detection method
JP3245067B2 (en) Inspection device for girth welds
JP2007003400A (en) Inspection device for control rod through-hole member
US9318226B2 (en) Apparatus and method to inspect, modify, or repair nuclear reactor core shrouds
US6904817B2 (en) Method and apparatus for examining obstructed welds
JP2000046987A (en) Maintaining device of piping part in core of reactor
JP2000075080A (en) Jet pump inspection device and treatment device
JPH11326291A (en) Apparatus and method for ultrasonic examination of narrow part of reactor
JP2002148385A (en) In-reactor line inspection apparatus
Baque Review of in-service inspection and repair technique developments for French liquid metal fast reactors
JP2854778B2 (en) Ultrasonic testing equipment for L-shaped bolts
EP2907140B1 (en) Apparatus and method to inspect, modify, or repair nuclear reactor core shrouds
JP2008203203A (en) Method of accessing jet pump riser pipe welded portion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111107

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4908250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees