JP2008190962A - Three-dimensional measurement apparatus - Google Patents
Three-dimensional measurement apparatus Download PDFInfo
- Publication number
- JP2008190962A JP2008190962A JP2007024650A JP2007024650A JP2008190962A JP 2008190962 A JP2008190962 A JP 2008190962A JP 2007024650 A JP2007024650 A JP 2007024650A JP 2007024650 A JP2007024650 A JP 2007024650A JP 2008190962 A JP2008190962 A JP 2008190962A
- Authority
- JP
- Japan
- Prior art keywords
- fringe pattern
- positional deviation
- amount
- pixel
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は、位相シフト法を用いた3次元計測装置に関する。 The present invention relates to a three-dimensional measurement apparatus using a phase shift method.
被写体の3次元形状を非接触で計測する3次元計測装置における計測手段として、位相シフト法が知られている(例えば、特許文献1、2)。この位相シフト法は、次のようなものである。まず、被写体の表面に輝度が正弦波状に変化する縞パターンを投影するとともに、その画像を別の方向から撮影するプロセスを、順次縞パターンの位相を所定角度(π/2或いは2π/3)ずつシフトさせて1周期分だけ行うことにより、1組(4枚或いは3枚)の撮影画像を得る。次に、それらの撮影画像間の輝度差から、被写体の表面形状に応じて変化した縞パターンの位相値を算出するなどの一連の画像処理を行って被写体上の縞パターンの位相を再現し、それを基に被写体の表面形状の計測が行われる。 A phase shift method is known as a measuring means in a three-dimensional measuring apparatus that measures a three-dimensional shape of a subject without contact (for example, Patent Documents 1 and 2). This phase shift method is as follows. First, a process of projecting a fringe pattern whose luminance changes in a sine wave shape onto the surface of the subject and photographing the image from another direction is performed by sequentially shifting the phase of the fringe pattern by a predetermined angle (π / 2 or 2π / 3). By shifting and performing only one cycle, one set (four or three) of captured images is obtained. Next, from the brightness difference between these captured images, the phase of the fringe pattern on the subject is reproduced by performing a series of image processing such as calculating the phase value of the fringe pattern that has changed according to the surface shape of the subject, Based on this, the surface shape of the subject is measured.
ところで、3次元計測装置は様々な分野で用いられており、例えば、工場施設におけるパイプなどの部品を3次元計測することで、腐食による形状変化を調べその耐用残年数の検査を行うものがある。本願出願人は、先の出願(特願2005―329448)において、工場施設におけるパイプなどの部品を現場で簡便に計測できるように、1組の各々の画像を短い時間で撮影し、それを順繰りに何回も繰り返し行うことにより、手振れによる影響を低減した3次元計測装置を提案している。 By the way, the three-dimensional measuring apparatus is used in various fields. For example, there is an apparatus that examines a shape change due to corrosion by three-dimensionally measuring a part such as a pipe in a factory facility and inspects its remaining service life. . In the previous application (Japanese Patent Application No. 2005-329448), the applicant of the present application took a set of images in a short time so that parts such as pipes in a factory facility can be easily measured in the field. The three-dimensional measurement device has been proposed in which the influence of camera shake is reduced by repeating the operation many times.
しかし、前記先の出願では、例えば約1ミリ秒といった短い時間の撮影を繰り返し行うためには、投影部は高速に動作する高性能なものである必要があり、かつ、撮影部は高速に動作する高性能なもの或いは複数の受光素子を切り換えて用いる特別なものである必要があり、その結果、高価格にならざるを得なかった。 However, in the above-mentioned previous application, in order to repeatedly perform imaging for a short time such as about 1 millisecond, for example, the projection unit needs to be a high-performance one that operates at high speed, and the imaging unit operates at high speed. It must be a high-performance device or a special device that switches between a plurality of light-receiving elements, and as a result, the price has to be high.
本発明は上記事由に鑑みてなしたもので、その目的とするところは、投影部及び撮影部が高速に動作するものでなくても、手振れによる影響を十分に低減できる3次元計測装置を提供することにある。 The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a three-dimensional measurement apparatus that can sufficiently reduce the influence of camera shake even when the projection unit and the photographing unit do not operate at high speed. There is to do.
上記の課題を解決するために、請求項1に係る3次元計測装置は、所定角度ずつ位相をシフトして1組の縞パターンを被写体に投影する投影部と、各縞パターンが投影された被写体を撮影して1組の縞パターン画像を得る撮影部と、1組の縞パターン画像から画素ごとに位相値を復元する画像処理部と、を備えて被写体の表面形状を計測する3次元計測装置において、前記画像処理部は、1組の縞パターン画像相互の位置ずれ量を算出する位置ずれ量算出手段と、該位置ずれ量分だけ画素の位置を移動し、かつ、位置ずれ量を縞パターンの波長と比較して得られる位相ずれ量を縞パターンの位相に加算する位置ずれ量補正手段と、を有してなることを特徴とする。 In order to solve the above-described problem, a three-dimensional measurement apparatus according to claim 1 includes a projection unit that shifts a phase by a predetermined angle and projects a set of stripe patterns onto a subject, and a subject on which each stripe pattern is projected. A three-dimensional measuring apparatus for measuring a surface shape of a subject, including an imaging unit that captures a pair of stripe pattern images and an image processing unit that restores a phase value for each pixel from the set of stripe pattern images In the image processing unit, a positional deviation amount calculating means for calculating a positional deviation amount between a pair of stripe pattern images, a pixel position is moved by the positional deviation amount, and the positional deviation amount is converted into a fringe pattern. And a positional deviation amount correcting means for adding the phase deviation amount obtained by comparison with the wavelength of the first to the phase of the fringe pattern.
請求項2に係る3次元計測装置は、請求項1に記載された3次元計測装置において、前記位置ずれ量補正手段の縞パターンの波長は、平面又は略平面の部分で縞パターン画像にフィッティングする正弦波を当てはめて求めたものであることを特徴とする。 A three-dimensional measurement apparatus according to a second aspect is the three-dimensional measurement apparatus according to the first aspect, wherein the wavelength of the fringe pattern of the misalignment correction unit is fitted to a fringe pattern image at a plane or substantially plane portion. It is obtained by applying a sine wave.
請求項3に係る3次元計測装置は、請求項1に記載された3次元計測装置において、前記位置ずれ量補正手段の縞パターンの波長は、縞パターン画像を2次元フーリエ変換し、投影した縞パターンの波長の近傍のピーク値が現れる座標から求めたものであることを特徴とする。 The three-dimensional measurement apparatus according to claim 3 is the three-dimensional measurement apparatus according to claim 1, wherein the fringe pattern wavelength of the misregistration amount correction means is a fringe pattern obtained by two-dimensional Fourier transform of the fringe pattern image and projected. It is obtained from the coordinates at which the peak value near the wavelength of the pattern appears.
請求項4に係る3次元計測装置は、請求項3に記載された3次元計測装置において、前記位置ずれ量算出手段では縞パターン画像の2次元フーリエ変換を行い、前記位置ずれ量補正手段の縞パターンの波長は、位置ずれ量算出手段で行った縞パターン画像の2次元フーリエ変換結果を用いて求めることを特徴とする。 A three-dimensional measurement apparatus according to a fourth aspect is the three-dimensional measurement apparatus according to the third aspect, wherein the misregistration amount calculation means performs a two-dimensional Fourier transform of a fringe pattern image, and the misregistration amount correction means has a fringe pattern. The wavelength of the pattern is obtained using a two-dimensional Fourier transform result of the fringe pattern image performed by the positional deviation amount calculation means.
請求項5に係る3次元計測装置は、請求項1乃至4のいずれかに記載された3次元計測装置において、前記位置ずれ量の算出と補正は画素ごとに行い、前記位置ずれ量算出手段は、画素iを中心としたウィンドウ内の縞パターン画像から画素iの位置ずれ量を算出することを特徴とする。 A three-dimensional measurement apparatus according to a fifth aspect is the three-dimensional measurement apparatus according to any one of the first to fourth aspects, wherein the positional deviation amount is calculated and corrected for each pixel, and the positional deviation amount calculating means includes: The positional deviation amount of the pixel i is calculated from the stripe pattern image in the window with the pixel i as the center.
本発明の3次元計測装置は、画像処理部の位置ずれ量補正手段が、算出された位置ずれ量分だけ画素の位置を移動し、かつ、位置ずれ量を縞パターンの波長と比較して得られる位相ずれ量を縞パターンの位相に加算するので、投影部及び撮影部をそれほど高速に動作させずとも、手振れによる影響を十分に低減できるものとなる。 In the three-dimensional measurement apparatus of the present invention, the positional deviation amount correcting means of the image processing unit obtains the positional deviation amount by comparing the calculated positional deviation amount with the wavelength of the fringe pattern. Since the phase shift amount to be added is added to the phase of the fringe pattern, the influence of camera shake can be sufficiently reduced without operating the projection unit and the imaging unit so fast.
以下、本発明の最良の実施形態を図面を参照しながら説明する。図1は本発明の実施形態に係る3次元計測装置1の使用状態を示す斜視図である。3次元計測装置1は、位相シフト法によって測定すべき被写体2の表面形状を計測するものであり、持ち可能なようにコンパクトな筐体には、後述する投影部4、撮影部5、画像処理部6などが収容されている。筐体は、例えば、横幅が約25cm、高さが約10cm、奥行きが約15cmである。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best embodiment of the invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a use state of a three-dimensional measuring apparatus 1 according to an embodiment of the present invention. The three-dimensional measurement apparatus 1 measures the surface shape of the subject 2 to be measured by the phase shift method, and has a projection unit 4, an imaging unit 5, and image processing, which will be described later, in a compact housing that can be held. Part 6 and the like are accommodated. The casing has, for example, a width of about 25 cm, a height of about 10 cm, and a depth of about 15 cm.
図2は、3次元計測装置1の全体構成を示す模式図である。3次元計測装置1は、所定角度ずつ位相を順次シフトして1組の縞パターンを被写体2に投影する投影部4と、各縞パターンが投影された被写体2を順次撮影して1組の縞パターン画像(縞パターンを含む被写体2の画像)を得る撮影部5と、一連の画像処理を行って1組の縞パターン画像から画素ごとに位相値を復元する画像処理部6と、を備える。この復元された画素ごとの位相値を基に、被写体2の表面形状の計測が行われる。 FIG. 2 is a schematic diagram showing the overall configuration of the three-dimensional measuring apparatus 1. The three-dimensional measuring apparatus 1 sequentially shifts the phase by a predetermined angle and projects a set of stripe patterns onto the subject 2 and sequentially shoots the subject 2 on which each of the stripe patterns is projected and sets a set of stripes. An imaging unit 5 that obtains a pattern image (an image of the subject 2 including a fringe pattern) and an image processing unit 6 that performs a series of image processing and restores a phase value for each pixel from a set of fringe pattern images. Based on the restored phase value of each pixel, the surface shape of the subject 2 is measured.
投影部4が投影する縞パターンは、輝度(連続的な階調)が正弦波状に変化するものである。投影する縞パターンの波長λ0は、本実施形態の例では16画素(16個の画素分の長さ)とする。撮影部5は、受光素子(例えばCCD)を有し、被写体2に縞パターンが投影されている時間(投影時間)内に被写体2からの1枚の縞パターン画像を取り込みそれを保持する。本実施形態の例では1枚の縞パターン画像の画素数は1024×768とする。 The stripe pattern projected by the projection unit 4 has a luminance (continuous gradation) that changes in a sine wave shape. The wavelength λ 0 of the fringe pattern to be projected is 16 pixels (length of 16 pixels) in the example of this embodiment. The photographing unit 5 includes a light receiving element (for example, a CCD), and captures and holds a single fringe pattern image from the subject 2 within the time during which the fringe pattern is projected onto the subject 2 (projection time). In the example of the present embodiment, the number of pixels of one striped pattern image is 1024 × 768.
投影部4において位相シフトの所定角度は、例えば、π/2(90度)か2π/3(120度)にすることができ、それに応じて1組の縞パターン画像は4枚か3枚の縞パターン画像からなる。本実施形態では、所定角度をπ/2とし、1組の縞パターン画像を4枚の縞パターン画像からなるものとしている。投影部4は、1個の縞パターンを所定時間TE経過するごとに順に1回ずつ投影する。例えば、所定時間TEを60ミリ秒とすると、1個目の縞パターンを投影して1枚目の縞パターン画像を得、1枚目の投影開始から60ミリ秒後に2個目の縞パターンを投影して2枚目の縞パターン画像を得、2枚目の投影開始から60ミリ秒後に3個目の縞パターンを投影して3枚目の縞パターン画像を得、3枚目の投影開始から60ミリ秒後に4個目の縞パターンを投影して4枚目の縞パターン画像を得る。 The predetermined angle of the phase shift in the projection unit 4 can be, for example, π / 2 (90 degrees) or 2π / 3 (120 degrees), and a set of four or three fringe pattern images accordingly. It consists of a fringe pattern image. In the present embodiment, the predetermined angle is π / 2, and one set of stripe pattern images is composed of four stripe pattern images. The projection unit 4 projects one stripe pattern once in order every time the predetermined time TE has elapsed. For example, if the predetermined time TE is 60 milliseconds, the first stripe pattern is obtained by projecting the first stripe pattern, and the second stripe pattern is obtained 60 milliseconds after the start of the first projection. Is projected to obtain a second striped pattern image, and the third striped pattern is projected 60 milliseconds after the second projection starts to obtain a third striped pattern image. A fourth stripe pattern is projected 60 milliseconds after the start to obtain a fourth stripe pattern image.
所定時間TEは、投影部4における縞パターンの設定時間及び投影時間、画像処理部6による撮影部5が保持する縞パターン画像のデータの読み出し時間などを総合した1枚の縞パターン画像を得るために必要とされる時間である。この所定時間TEは、投影部4と撮影部5のハードウェアの性能に依存する。所定時間TEが長いと、手振れの影響により1組の縞パターン画像相互の位置ずれ量が大きくなり易い。 The predetermined time T E, the setting time and the projection time of the fringe pattern in the projection portion 4, obtain one fringe pattern image capturing section 5 has comprehensive and data read time of the fringe pattern image holding by the image processing section 6 Is the time needed for. The predetermined time T E is dependent on the hardware performance of the projection unit 4 and the imaging unit 5. When the predetermined time TE is long, the amount of positional deviation between a pair of stripe pattern images tends to increase due to the influence of camera shake.
1、2、3、4枚目の縞パターン画像の画素iの輝度値をそれぞれP1i、P2i、P3i、P4iとすると、これらは次の(1)〜(4)式で表される。
P1i=Ki×(IBASE+IS×cos(Φi))
P2i=Ki×(IBASE+IS×cos(Φi+θ2i))
P3i=Ki×(IBASE+IS×cos(Φi+θ3i))
P4i=Ki×(IBASE+IS×cos(Φi+θ4i))
Assuming that the luminance values of the pixel i of the first, second, third, and fourth stripe pattern images are P 1i , P 2i , P 3i , and P 4i , these are expressed by the following equations (1) to (4). The
P 1i = K i × (I BASE + I S × cos (Φ i ))
P 2i = K i × (I BASE + I S × cos (Φ i + θ 2i ))
P 3i = K i × (I BASE + I S × cos (Φ i + θ 3i ))
P 4i = K i × (I BASE + I S × cos (Φ i + θ 4i ))
ここで、Kiは画素iに対応した被写体2の反射率、IBASEは縞パターンの光量の中心値、ISは縞パターンの光量の振幅値、Φiは画素iの復元しようとする位相値である。θ2i、θ3i、θ4iは位相シフト量であり、1組の縞パターン画像相互の位置ずれがないとすると、次式(5)〜(7)に示される定数である。
θ2i=π/2
θ3i=π
θ4i=3π/2
Here, K i is the reflectivity of the object 2 corresponding to the pixel i, I BASE is the central value of the light intensity of the fringe pattern, I S is the amplitude value of the light amount of the fringe pattern, [Phi i is the phase to be restored pixel i Value. θ 2i , θ 3i , and θ 4i are phase shift amounts, and are constants represented by the following equations (5) to (7) assuming that there is no positional shift between a pair of stripe pattern images.
θ 2i = π / 2
θ 3i = π
θ 4i = 3π / 2
画像処理部6は、画像読み出し手段60により所定時間TE内に撮影部5が保持する各縞パターン画像のデータを読み出す。そして、位置ずれ量算出手段61により1組の縞パターン画像相互の位置ずれ量を算出し、位置ずれ量補正手段62により位置ずれ量を補正する。位置ずれ量の算出及びその補正は、縞パターン画像全体ごとの場合と画素ごとの場合がある。縞パターン画像全体ごとの場合は、縞パターン画像相互間での相対的な平行移動の位置ずれに対応することができる。画素ごとの場合は、縞パターン画像相互間での相対的な平行移動と回転の位置ずれに対応することができる。なお、1組の縞パターン画像相互の位置ずれ量は1組のいずれかが基準の縞パターン画像となるが、本実施形態では、1枚目の縞パターン画像を基準の縞パターン画像とする。また、後述のn枚目の縞パターン画像、位置ずれ量(δnX、δnY)、位相シフト量θni等は、本明細書の表記において、nは2、3、4の整数を表すものとする。位置ずれ量の算出及びその補正の後は、位相復元手段63により各画素の位相値を復元する。 The image processing unit 6, the image reading means 60 is shooting unit 5 within a predetermined time T E reads the data of the fringe pattern image to be maintained. Then, the positional deviation amount calculating means 61 calculates the positional deviation amount between a pair of stripe pattern images, and the positional deviation amount correcting means 62 corrects the positional deviation amount. The calculation of the amount of positional deviation and the correction thereof may be performed for the entire stripe pattern image or for each pixel. In the case of the entire fringe pattern image, it is possible to deal with a relative translational displacement between the fringe pattern images. In the case of each pixel, it is possible to cope with a relative translation and a rotational misalignment between the stripe pattern images. In addition, in the present embodiment, the first fringe pattern image is used as the reference fringe pattern image, although one set of the amount of positional deviation between the pair of fringe pattern images is the reference fringe pattern image. In addition, an n-th striped pattern image, a positional deviation amount (δ nX , δ nY ), a phase shift amount θ ni, and the like, which will be described later, are represented by n in the notation of the present specification. And After the calculation and correction of the positional deviation amount, the phase restoring unit 63 restores the phase value of each pixel.
縞パターン画像全体ごとの位置ずれ量(δnX、δnY)は、縞パターン画像全体又は設定したウィンドウ内の縞パターン画像を使った位相相関法等により算出する。位相相関法のように画像を変換して位置ずれ量を算出するものは、計算量を少なくするために、ウィンドウを設定するのが望ましい。ウィンドウの大きさは、計算量と計算精度を考慮して設定すればよく、本実施形態では、256×256画素としている。ウィンドウを設定する箇所は、被写体2の表面形状に特徴ある部分とする。位相相関法は、2枚の画像についてそれぞれの画像を2次元フーリエ変換し、それらを合成して2次元逆フーリエ変換するものである。2枚の画像が近似している場合には急峻なピーク値を示す座標が存在し、その座標が2枚の画像相互の位置ずれ量を示す。 The amount of positional deviation (δ nX , δ nY ) for each entire fringe pattern image is calculated by a phase correlation method using the entire fringe pattern image or the fringe pattern image in the set window. It is preferable to set a window in order to reduce the amount of calculation when the amount of positional deviation is calculated by converting an image like the phase correlation method. The size of the window may be set in consideration of the calculation amount and the calculation accuracy, and is set to 256 × 256 pixels in the present embodiment. The part where the window is set is a part characteristic of the surface shape of the subject 2. In the phase correlation method, two images are subjected to two-dimensional Fourier transform for two images, and they are combined to perform two-dimensional inverse Fourier transform. When the two images are approximated, there is a coordinate indicating a steep peak value, and the coordinate indicates the amount of positional deviation between the two images.
また、ジャイロを3次元計測装置1に取り付けて、位置ずれ量(δnX、δnY)を算出することも可能である。ジャイロを用いると、被写体2の表面形状の変化が少なく縞パターン画像から位置ずれ量を算出するのが難しい場合でも、容易に位置ずれ量を算出することができる。 It is also possible to attach the gyro to the three-dimensional measuring apparatus 1 and calculate the amount of displacement (δ nX , δ nY ). When the gyro is used, even when it is difficult to calculate the displacement amount from the stripe pattern image with little change in the surface shape of the subject 2, the displacement amount can be easily calculated.
縞パターン画像全体ごとの位置ずれ量(δnX、δnY)の補正は次の2段階で行う。第1の位置ずれ量補正では、縞パターンを除いて1枚目の縞パターン画像に一致するように位置ずれ量(δnX、δnY)だけn枚目の縞パターン画像をX軸及びY軸方向に移動する。図3は、この状態の具体例の説明図である。(A1)〜(A4)は補正前の1〜4枚目のウィンドウの縞パターン画像であり、(B1)〜(B4)は第1の位置ずれ量補正後の1〜4枚目のウィンドウ内の縞パターン画像である。1枚目の縞パターン画像に対する2、3、4枚目の縞パターン画像の位置ずれ量(δ2X、δ2Y)、(δ3X、δ3Y)、(δ4X、δ4Y)はそれぞれ、(−2.96、−9.52)、(−8.45、−4.04)、(−10.95、7.44)が算出されている。そして、2、3、4枚目の縞パターン画像をそれぞれ、(2.96、9.52)、(8.45、4.04)、(10.95、−7.44)だけ移動することで第1の位置ずれ量補正を行っている。 Correction of the positional deviation amount (δ nX , δ nY ) for each of the stripe pattern images is performed in the following two stages. In the first misregistration correction, the n-th fringe pattern image is shifted by the misalignment amount (δ nX , δ nY ) so as to match the first fringe pattern image except for the fringe pattern. Move in the direction. FIG. 3 is an explanatory diagram of a specific example of this state. (A 1 ) to (A 4 ) are the stripe pattern images of the first to fourth windows before correction, and (B 1 ) to (B 4 ) are 1 to 4 sheets after the first positional deviation amount correction. It is a stripe pattern image in the window of the eye. The positional deviation amounts (δ 2X , δ 2Y ), (δ 3X , δ 3Y ), (δ 4X , δ 4Y ) of the second, third, and fourth striped pattern images with respect to the first striped pattern image are ( -2.96, -9.52), (-8.45, -4.04), and (-10.95, 7.44) are calculated. The second, third, and fourth stripe pattern images are moved by (2.96, 9.52), (8.45, 4.04), and (10.95, −7.44), respectively. Thus, the first misalignment correction is performed.
第2の位置ずれ量補正では、n枚目の縞パターン画像の縞パターンの位相シフト量θniを補正する。位相シフト量θniは、縞パターンがX軸に対して完全に(或いはほぼ完全に)垂直に投影されたとするとY軸方向についての補正は必要ない。この場合、X軸方向の位置ずれ量δnXを縞パターンの波長λと比較して位相ずれ量を得、それを加算することで、次式(5.1)〜 (7.1)に示すように位相シフト量θniを補正する。
θ2i=π/2+δ2X/λ×2π
θ3i=π+δ3X/λ×2π
θ4i=3π/2+δ4X/λ×2π
図3の例では、第2の位置ずれ量補正は、次式(5.1’) 〜(7.1’)のようになる。
θ2i=π/2+2.96/16×2π
θ3i=π+8.45/16×2π
θ4i=3π/2+10.95/16×2π
In the second positional deviation amount correction, the phase shift amount θ ni of the fringe pattern of the nth fringe pattern image is corrected. The phase shift amount θ ni need not be corrected in the Y-axis direction if the fringe pattern is projected completely (or almost completely) perpendicular to the X-axis. In this case, the amount of phase shift δ nX in the X-axis direction is compared with the wavelength λ of the fringe pattern to obtain the phase shift amount, which is added to obtain a phase shift as shown in the following equations (5.1) to (7.1) The amount θ ni is corrected.
θ 2i = π / 2 + δ 2X / λ × 2π
θ 3i = π + δ 3X / λ × 2π
θ 4i = 3π / 2 + δ 4X / λ × 2π
In the example of FIG. 3, the second positional deviation amount correction is expressed by the following equations (5.1 ′) to (7.1 ′).
θ 2i = π / 2 + 2.96 / 16 × 2π
θ 3i = π + 8.45 / 16 × 2π
θ 4i = 3π / 2 + 10.95 / 16 × 2π
また、縞パターンがX軸に対して斜めに投影されたとすると、波長λがX軸方向とY軸方向の成分(λX、λY)からなるものと考える。この場合、X軸及びY軸方向の位置ずれ量(δnX、δnY)を縞パターンの波長(λX、λY)と比較して位相ずれ量を得、それを加算することで、次式(5.2) 〜(7.2)に示すように位相シフト量θniを補正する。
θ2i=π/2+(δ2X/λX+δ2Y/λY)×2π
θ3i=π+(δ3X/λX+δ3Y/λY)×2π
θ4i=3π/2+(δ4X/λX+δ4Y/λY)×2π
これらは、縞パターンがX軸に対して完全に垂直ならばλYは無限大となるので、(5.1)〜(7.1)式に一致する。
If the fringe pattern is projected obliquely with respect to the X axis, the wavelength λ is considered to be composed of components (λ X , λ Y ) in the X axis direction and the Y axis direction. In this case, the amount of phase shift (δ nX , δ nY ) in the X-axis and Y-axis directions is compared with the fringe pattern wavelength (λ X , λ Y ) to obtain the phase shift amount, The phase shift amount θ ni is corrected as shown in equations (5.2) to (7.2).
θ 2i = π / 2 + (δ 2X / λ X + δ 2Y / λ Y ) × 2π
θ 3i = π + (δ 3X / λ X + δ 3Y / λ Y ) × 2π
θ 4i = 3π / 2 + (δ 4X / λ X + δ 4Y / λ Y ) × 2π
Since these fringe patterns if perfectly perpendicular to the X axis lambda Y becomes infinite, matching (5.1) - (7.1) below.
第2の位置ずれ量補正の精度を高めるためには、縞パターンの波長λの補正を行う。被写体2に縞パターンを投影する角度と被写体2を撮影する角度は異なるため、投影した縞パターンの波長λ0の近傍に撮影した縞パターンの波長λはあるけれども、厳密には異なるからである。 In order to improve the accuracy of the second positional deviation correction, the fringe pattern wavelength λ is corrected. This is because the angle at which the fringe pattern is projected onto the subject 2 is different from the angle at which the subject 2 is photographed, and therefore there is a wavelength λ of the captured fringe pattern in the vicinity of the wavelength λ 0 of the projected fringe pattern.
縞パターンの波長λの補正を行う1つの方式は、1枚の縞パターン画像の平面の部分には投影された縞パターンの正弦波のみが観測されることを利用するものである。この観測される正弦波にフィッティングする正弦波を当てはめて行けば、縞パターンの波長λの値を得ることができる。このためには、図4に示すように、平面である基準板7を被写体2の端に置き、被写体2と一緒に撮影する。そして、基準板7における1枚の縞パターン画像(例えば、1枚目の縞パターン画像)から、縞パターンの波長λの値を得る。また、基準板7を用いず、1枚の縞パターン画像の略平面の部分でフィッティングする正弦波を当てはめ、縞パターンの波長λの値を求めることも可能である。 One method for correcting the wavelength λ of the fringe pattern utilizes the fact that only the sine wave of the projected fringe pattern is observed on the plane portion of one fringe pattern image. By applying a fitting sine wave to the observed sine wave, the value of the wavelength λ of the fringe pattern can be obtained. For this purpose, as shown in FIG. 4, a flat reference plate 7 is placed at the end of the subject 2 and is photographed together with the subject 2. Then, the value of the wavelength λ of the stripe pattern is obtained from one stripe pattern image (for example, the first stripe pattern image) on the reference plate 7. It is also possible to obtain the value of the wavelength λ of the fringe pattern by applying a sine wave that fits in a substantially plane portion of one fringe pattern image without using the reference plate 7.
縞パターンの波長λの補正を行うもう1つの方式は、2次元フーリエ変換の結果を用いるものである。所定のウィンドウ(例えば、256×256画素)の縞パターン画像の2次元フーリエ変換の結果には、被写体2の表面形状が複雑なものであっても、投影した縞パターンの波長λ0に相当する座標の近傍にピーク値が現れる。この方式は、位置ずれ量の算出に2次元フーリエ変換を用いたならば、その2次元フーリエ変換の結果を再度用いることができるので、位相相関法による位置ずれ量の算出の場合に特に有効である。 Another method for correcting the wavelength λ of the fringe pattern uses the result of a two-dimensional Fourier transform. The result of the two-dimensional Fourier transform of the fringe pattern image of a predetermined window (for example, 256 × 256 pixels) corresponds to the wavelength λ 0 of the projected fringe pattern even if the surface shape of the subject 2 is complicated. A peak value appears near the coordinates. This method is particularly effective in the case of calculating the amount of misalignment by the phase correlation method because if the two-dimensional Fourier transform is used for calculating the amount of misalignment, the result of the two-dimensional Fourier transform can be used again. is there.
図5は、2次元フーリエ変換の結果を用いて縞パターンの波長を求める方式の説明図である。なお、図5に示す具体例は図3とは別の例である。図5において、(A)は縞パターンの投影画像(256×256画素)を示し、(B)はその2次元フーリエ変換の結果を示す。(B)においては、明度が係数の大きさを表し、(−17、−3)、(17、3)の座標にピーク値が現れる。従って、縞パターンはX軸に対して斜めに投影されていて、X軸方向の波長λXは128÷17=7.53画素、Y軸方向の波長λYは128÷3=42.67画素と求められる。 FIG. 5 is an explanatory diagram of a method for obtaining the wavelength of the fringe pattern using the result of the two-dimensional Fourier transform. The specific example shown in FIG. 5 is a different example from FIG. 5A shows a projected image (256 × 256 pixels) of a stripe pattern, and FIG. 5B shows the result of the two-dimensional Fourier transform. In (B), the brightness represents the magnitude of the coefficient, and the peak value appears at the coordinates (-17, -3), (17, 3). Therefore, the fringe pattern is projected obliquely with respect to the X axis, the wavelength λ X in the X axis direction is 128 ÷ 17 = 7.53 pixels, and the wavelength λ Y in the Y axis direction is 128 ÷ 3 = 42.67 pixels. Is required.
位置ずれ量の算出と補正との間には、位置ずれ量の評価を行うことが望ましい。図6は、位置ずれ量の評価を示す処理フロー図である。位置ずれ量の算出(S101)の後、X軸方向の位置ずれ量δnXを位置ずれ評価最小値K1(例えば、1/20画素)及び位置ずれ評価最大値K2(例えば、20画素)と比較する(S102)。X軸方向の位置ずれ量δnXが位置ずれ評価最小値K1以下の場合は、十分な復元精度が得られるので、計算量を抑えるため位置ずれ量の補正は行わない(S103)。位置ずれ量δnXが位置ずれ評価最大値K2以上の場合は、適切な補正が行えないので、位相シフト法による3次元計測は行わない。K2の値は、通常の注意力で3次元計測装置1を使用するとき、位置ずれ量δnXがこれより十分小さくなるような値とする。位置ずれ量δnXが位置ずれ評価最大値K2以上の場合、そこで画像処理は中止することもできるが、簡易な3次元計測をかわりに行うことも可能である。本実施形態では、詳細は省略するが、1枚目の縞パターン画像のみを用い空間的に位相値を算出する方法で3次元計測を行っている(S104)。位置ずれ量δnXが位置ずれ評価最小値K1よりも大きく位置ずれ評価最大値K2よりも小さい場合は、位置ずれ量の補正を行う(S105)。 It is desirable to evaluate the positional deviation amount between the calculation and correction of the positional deviation amount. FIG. 6 is a processing flowchart showing the evaluation of the amount of misalignment. After the calculation of the positional deviation amount (S101), the positional deviation amount δ nX in the X-axis direction is converted into the positional deviation evaluation minimum value K 1 (for example, 1/20 pixel) and the positional deviation evaluation maximum value K 2 (for example, 20 pixels). (S102). If positional shift amount [delta] nX of the X-axis direction is less positional shift evaluation minimum K 1, since sufficient reconstruction accuracy can be obtained, not performed the correction of positional deviation amount for suppressing the amount of calculation (S103). If the position deviation amount [delta] nX is above positional deviation evaluation maximum value K 2, since not perform appropriate correction is not performed three-dimensional measurement by the phase shift method. The value of K 2, when using ordinary attention in three-dimensional measurement device 1, to a value such as position shift amount [delta] nX is than this sufficiently small. If the position deviation amount [delta] nX is above positional deviation evaluation maximum value K 2, where the image processing can be canceled, it is also possible to perform instead a simple three-dimensional measurement. Although details are omitted in the present embodiment, three-dimensional measurement is performed by a method of spatially calculating a phase value using only the first striped pattern image (S104). When the positional deviation amount δ nX is larger than the positional deviation evaluation minimum value K 1 and smaller than the positional deviation evaluation maximum value K 2 , the positional deviation amount is corrected (S 105).
次に、画素ごとの位置ずれ量(δnXi、δnYi)の算出及びその補正について説明する。 Next, calculation and correction of the positional deviation amount (δ nXi , δ nYi ) for each pixel will be described.
n枚目の縞パターン画像の画素iの位置ずれ量(δnXi、δnYi)は、具体的には、画素iを中心としたウインドウ(例えば64×64画素)を設定し、このウィンドウの縞パターン画像を使って算出した位置ずれ量を画素iの位置ずれ量とする。そして、縞パターンを除いて1枚目の縞パターン画像に一致するように位置ずれ量(δnXi、δnYi)だけn枚目の縞パターン画像をX軸及びY軸方向に移動して第1の位置ずれ量補正を行う。次に、画素iにおける縞パターンの波長(λnXi、λnYi)を求める。具体的には、位置ずれ量(δnXi、δnYi)の算出で使用したウィンドウの2次元フーリエ変換の結果を用い、そこで算出した波長を画素iにおける縞パターンの波長とする。従って、2次元フーリエ変換の結果が共用できる位相相関法で位置ずれ量の算出を行うのが望ましい。 For the positional deviation amount (δ nXi , δ nYi ) of the pixel i in the nth striped pattern image, specifically, a window (for example, 64 × 64 pixels) centered on the pixel i is set, and the stripe of this window The positional deviation amount calculated using the pattern image is set as the positional deviation amount of the pixel i. Then, the first striped pattern image is moved in the X-axis and Y-axis directions by the amount of displacement (δ nXi , δ nYi ) so as to coincide with the first striped pattern image excluding the striped pattern. The amount of misalignment is corrected. Next, the wavelength (λ nXi , λ nYi ) of the stripe pattern in the pixel i is obtained. Specifically, the result of the two-dimensional Fourier transform of the window used in the calculation of the positional deviation amounts (δ nXi , δ nYi ) is used, and the calculated wavelength is set as the wavelength of the fringe pattern in the pixel i. Therefore, it is desirable to calculate the amount of displacement by a phase correlation method that can share the result of the two-dimensional Fourier transform.
それから、位置ずれ量(δnXi、δnYi)を縞パターンの波長(λnXi、λnYi)と比較して位相ずれ量を得、それを加算することで、次式(5.3) 〜(7.3)に示すように位相シフト量θniを補正する。
θ2i=π/2+(δ2Xi/λ2Xi+δ2Yi/λ2Yi)×2π
θ3i=π+(δ3Xi/λ3Xi+δ3Yi/λ3Yi)×2π
θ4i=3π/2+(δ4Xi/λ4Xi+δ4Yi/λ4Yi)×2π
Then, the positional shift amounts (δ nXi , δ nYi ) are compared with the fringe pattern wavelengths (λ nXi , λ nYi ) to obtain a phase shift amount, and adding them, the following equations (5.3) to (7.3) The phase shift amount θ ni is corrected as shown in FIG.
θ 2i = π / 2 + (δ 2Xi / λ 2Xi + δ 2Yi / λ 2Yi ) × 2π
θ 3i = π + (δ 3Xi / λ 3Xi + δ 3Yi / λ 3Yi ) × 2π
θ 4i = 3π / 2 + (δ 4Xi / λ 4Xi + δ 4Yi / λ 4Yi ) × 2π
以上のようにして位相シフト量θniが補正されると、位相復元手段63により、Ki、IBASE、IS、Φiを変数とした連立方程式である上記(1)〜(4)式から画素iの位相値Φiを復元する。具体的には、以下のようにして、Φiの値を求めることができる。先ず、αi、βi、γiを次式(8) 〜(10)のように定義する。
αi=Ki×IS×cos(Φi)
βi=Ki×IS×sin(Φi)
γi=Ki×IBASE
そうすると、(1)〜(4)式は次式(11)〜(14)に変形される。
P1i=γi+αi
P2i=γi+αi×cos(θ2i)−βi×sin(θ2i)
P3i=γi+αi×cos(θ3i)−βi×sin(θ3i)
P4i=γi+αi×cos(θ4i)−βi×sin(θ4i)
(11)〜(14)式からαi、βi、γiが求まる。そして、次式(15)
Φi=arctan(βi/αi)
であるから、画素iの位相値Φiが求まる。
When the phase shift amount θ ni is corrected as described above, the equations (1) to (4), which are simultaneous equations with K i , I BASE , I S , and Φ i as variables, are obtained by the phase restoring means 63. To restore the phase value Φ i of the pixel i. Specifically, the value of Φ i can be obtained as follows. First, α i , β i , and γ i are defined as in the following equations (8) to (10).
α i = K i × I S × cos (Φ i )
β i = K i × I S × sin (Φ i )
γ i = K i × I BASE
Then, the equations (1) to (4) are transformed into the following equations (11) to (14).
P 1i = γ i + α i
P 2i = γ i + α i × cos (θ 2i ) −β i × sin (θ 2i )
P 3i = γ i + α i × cos (θ 3i ) −β i × sin (θ 3i )
P4i = [gamma] i + [alpha] i * cos ([theta] 4i )-[beta] i * sin ([theta] 4i ).
Α i , β i , and γ i are obtained from the equations (11) to (14). And the following formula (15)
Φ i = arctan (β i / α i )
Therefore, the phase value Φ i of the pixel i is obtained.
なお、仮に位置ずれがない場合は、位置ずれ量(δnXi、δnYi)の値は0であるから、Φiは次式(15.1)のようになる。
Φi=arctan((P4i−P2i)/(P1i−P3i))
If there is no displacement, the displacement amounts (δ nXi , δ nYi ) are 0, so Φ i is expressed by the following equation (15.1).
Φ i = arctan ((P 4i -P 2i ) / (P 1i -P 3i ))
このようにして、画像処理部6により1組の縞パターン画像相互の位置ずれ量が補正され、画素iの位相値であるΦiが適切に復元される。従って、投影部4と撮影部5が高速に動作可能なハードウェアでなく所定時間TEが長くても、手振れによる影響を十分に低減できる。また、機械振動などによるぶれが起こる状況で使用されてもその影響を十分に低減できる。 In this manner, the image processing unit 6 corrects the amount of positional deviation between a pair of stripe pattern images, and Φ i that is the phase value of the pixel i is appropriately restored. Therefore, even if the projection unit 4 and the photographing unit 5 are not hardware capable of operating at high speed and the predetermined time TE is long, the influence of camera shake can be sufficiently reduced. Moreover, even if it is used in a situation where vibration due to mechanical vibration or the like occurs, the influence can be sufficiently reduced.
以上、本発明の実施形態に係る3次元計測装置について説明したが、本発明は、実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、上記の画素ごとに位置ずれ量の算出と補正を行うものは最も精度の高い補正が可能であるが、それに要する計算量は非常に多い。従って、縞パターンの波長を画素ごとに求めず縞パターン画像全体で共通の値とするなどして、計算量を減らすこともできる。 The three-dimensional measurement apparatus according to the embodiment of the present invention has been described above. However, the present invention is not limited to the one described in the embodiment, and various designs within the scope of the matters described in the claims. It can be changed. For example, the one that calculates and corrects the amount of misalignment for each pixel described above can perform the correction with the highest accuracy, but requires a large amount of calculation. Therefore, the amount of calculation can be reduced by obtaining a common value for the entire stripe pattern image without obtaining the wavelength of the stripe pattern for each pixel.
1 3次元計測装置
2 被写体
4 投影部
5 撮影部
6 画像処理部
60 画像読み出し手段
61 位置ずれ量算出手段
62 位置ずれ量補正手段
63 位相復元手段
DESCRIPTION OF SYMBOLS 1 3D measuring device 2 Subject 4 Projection part 5 Imaging | photography part 6 Image processing part 60 Image reading means 61 Position shift amount calculation means 62 Position shift amount correction means 63 Phase restoration means
Claims (5)
前記画像処理部は、1組の縞パターン画像相互の位置ずれ量を算出する位置ずれ量算出手段と、該位置ずれ量分だけ画素の位置を移動し、かつ、位置ずれ量を縞パターンの波長と比較して得られる位相ずれ量を縞パターンの位相に加算する位置ずれ量補正手段と、を有してなることを特徴とする3次元計測装置。 A projection unit that shifts the phase by a predetermined angle and projects a set of stripe patterns onto a subject, a photographing unit that captures a subject on which each stripe pattern is projected and obtains a set of stripe pattern images, and a set of stripes An image processing unit that restores a phase value for each pixel from a pattern image; and a three-dimensional measurement apparatus that measures the surface shape of a subject,
The image processing unit is configured to calculate a positional deviation amount between a pair of fringe pattern images, move a pixel position by the positional deviation amount, and change the positional deviation amount to the wavelength of the fringe pattern. And a misregistration amount correction means for adding the misregistration amount obtained by comparison to the phase of the fringe pattern.
前記位置ずれ量補正手段の縞パターンの波長は、平面又は略平面の部分で縞パターン画像にフィッティングする正弦波を当てはめて求めたものであることを特徴とする3次元計測装置。 The three-dimensional measuring apparatus according to claim 1,
The three-dimensional measuring apparatus according to claim 1, wherein the wavelength of the fringe pattern of the misregistration amount correcting means is obtained by applying a sine wave that fits the fringe pattern image in a plane or substantially plane portion.
前記位置ずれ量補正手段の縞パターンの波長は、縞パターン画像を2次元フーリエ変換し、投影した縞パターンの波長の近傍のピーク値が現れる座標から求めたものであることを特徴とする3次元計測装置。 The three-dimensional measuring apparatus according to claim 1,
The wavelength of the fringe pattern of the misregistration amount correction means is obtained by coordinates obtained by performing a two-dimensional Fourier transform on the fringe pattern image and the peak value near the wavelength of the projected fringe pattern appears. Measuring device.
前記位置ずれ量算出手段では縞パターン画像の2次元フーリエ変換を行い、
前記位置ずれ量補正手段の縞パターンの波長は、位置ずれ量算出手段で行った縞パターン画像の2次元フーリエ変換結果を用いて求めることを特徴とする3次元計測装置。 In the three-dimensional measuring apparatus described in Claim 3,
The misregistration amount calculation means performs a two-dimensional Fourier transform of the fringe pattern image,
The three-dimensional measuring apparatus characterized in that the wavelength of the fringe pattern of the misregistration amount correcting means is obtained using a two-dimensional Fourier transform result of the fringe pattern image performed by the misregistration amount calculating means.
前記位置ずれ量の算出と補正は画素ごとに行い、
前記位置ずれ量算出手段は、画素iを中心としたウィンドウ内の縞パターン画像から画素iの位置ずれ量を算出することを特徴とする3次元計測装置。 The three-dimensional measurement apparatus according to any one of claims 1 to 4,
The calculation and correction of the displacement amount is performed for each pixel,
The three-dimensional measuring apparatus characterized in that the positional deviation amount calculating means calculates the positional deviation amount of the pixel i from a stripe pattern image in the window with the pixel i as the center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007024650A JP2008190962A (en) | 2007-02-02 | 2007-02-02 | Three-dimensional measurement apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007024650A JP2008190962A (en) | 2007-02-02 | 2007-02-02 | Three-dimensional measurement apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008190962A true JP2008190962A (en) | 2008-08-21 |
Family
ID=39751205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007024650A Withdrawn JP2008190962A (en) | 2007-02-02 | 2007-02-02 | Three-dimensional measurement apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008190962A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010096568A (en) * | 2008-10-15 | 2010-04-30 | Fujifilm Corp | Distance measurement apparatus, distance measurement method and program |
JP2010181299A (en) * | 2009-02-06 | 2010-08-19 | Ckd Corp | Three-dimensional measuring instrument |
JP2010188119A (en) * | 2008-12-19 | 2010-09-02 | Sirona Dental Systems Gmbh | Method and device for optical scanning of three-dimensional object by means of dental 3d camera using triangulation method |
JP2010281665A (en) * | 2009-06-04 | 2010-12-16 | Yamaha Motor Co Ltd | Phase shift imaging device, component transfer device, and phase shift imaging method |
EP2198780A3 (en) * | 2008-12-19 | 2011-06-29 | Sirona Dental Systems GmbH | Method and device for optical scanning of three-dimensional objects by means of a dental 3D camera using a triangulation method |
JP2011179877A (en) * | 2010-02-26 | 2011-09-15 | Olympus Corp | Method of measuring shape and shape measuring device |
US20110270562A1 (en) * | 2010-04-26 | 2011-11-03 | Nikon Corporation | Profile measuring apparatus |
JP2012521005A (en) * | 2009-03-19 | 2012-09-10 | ゼネラル・エレクトリック・カンパニイ | Optical gauge and three-dimensional surface profile measuring method |
WO2013035847A1 (en) * | 2011-09-09 | 2013-03-14 | 株式会社ニコン | Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, shape measurement program, and computer-readable recording medium |
CN109990731A (en) * | 2019-01-21 | 2019-07-09 | 深圳市易尚展示股份有限公司 | The bearing calibration of nonlinear phase error based on digital projection three-dimension measuring system |
CN110849290A (en) * | 2019-11-25 | 2020-02-28 | 南昌航空大学 | Three-dimensional measurement method for segmented quantization coding intensity based on morphological operation |
CN111998800A (en) * | 2020-08-20 | 2020-11-27 | 四川大学 | Three-dimensional surface shape measuring method and system based on speckle embedded stripe |
-
2007
- 2007-02-02 JP JP2007024650A patent/JP2008190962A/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010096568A (en) * | 2008-10-15 | 2010-04-30 | Fujifilm Corp | Distance measurement apparatus, distance measurement method and program |
JP4629136B2 (en) * | 2008-10-15 | 2011-02-09 | 富士フイルム株式会社 | Ranging device, ranging method and program |
JP2010188119A (en) * | 2008-12-19 | 2010-09-02 | Sirona Dental Systems Gmbh | Method and device for optical scanning of three-dimensional object by means of dental 3d camera using triangulation method |
US8830303B2 (en) | 2008-12-19 | 2014-09-09 | Sirona Dental Systems Gmbh | Method and device for optical scanning of three-dimensional objects by means of a dental 3D camera using a triangulation method |
EP2198780A3 (en) * | 2008-12-19 | 2011-06-29 | Sirona Dental Systems GmbH | Method and device for optical scanning of three-dimensional objects by means of a dental 3D camera using a triangulation method |
US8334894B2 (en) | 2008-12-19 | 2012-12-18 | Sirona Dental Systems Gmbh | Method and device for optical scanning of three-dimensional objects by means of a dental 3D camera using a triangulation method |
JP2010181299A (en) * | 2009-02-06 | 2010-08-19 | Ckd Corp | Three-dimensional measuring instrument |
JP2012521005A (en) * | 2009-03-19 | 2012-09-10 | ゼネラル・エレクトリック・カンパニイ | Optical gauge and three-dimensional surface profile measuring method |
JP2010281665A (en) * | 2009-06-04 | 2010-12-16 | Yamaha Motor Co Ltd | Phase shift imaging device, component transfer device, and phase shift imaging method |
JP2011179877A (en) * | 2010-02-26 | 2011-09-15 | Olympus Corp | Method of measuring shape and shape measuring device |
US20110270562A1 (en) * | 2010-04-26 | 2011-11-03 | Nikon Corporation | Profile measuring apparatus |
US9335160B2 (en) * | 2010-04-26 | 2016-05-10 | Nikon Corporation | Profile measuring apparatus |
WO2013035847A1 (en) * | 2011-09-09 | 2013-03-14 | 株式会社ニコン | Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, shape measurement program, and computer-readable recording medium |
CN109990731A (en) * | 2019-01-21 | 2019-07-09 | 深圳市易尚展示股份有限公司 | The bearing calibration of nonlinear phase error based on digital projection three-dimension measuring system |
CN110849290A (en) * | 2019-11-25 | 2020-02-28 | 南昌航空大学 | Three-dimensional measurement method for segmented quantization coding intensity based on morphological operation |
CN110849290B (en) * | 2019-11-25 | 2021-04-02 | 南昌航空大学 | Three-dimensional measurement method for segmented quantization coding intensity based on morphological operation |
CN111998800A (en) * | 2020-08-20 | 2020-11-27 | 四川大学 | Three-dimensional surface shape measuring method and system based on speckle embedded stripe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008190962A (en) | Three-dimensional measurement apparatus | |
EP3238447B1 (en) | Updating calibration of a three-dimensional measurement system | |
JP5576726B2 (en) | Three-dimensional measuring apparatus, three-dimensional measuring method, and program | |
JP4830871B2 (en) | 3D shape measuring apparatus and 3D shape measuring method | |
JP4873485B2 (en) | Shape measuring method and shape measuring apparatus using a number of reference surfaces | |
JP5032943B2 (en) | 3D shape measuring apparatus and 3D shape measuring method | |
US11300402B2 (en) | Deriving topology information of a scene | |
US20150271466A1 (en) | Measuring device, measuring method, and computer program product | |
KR101562467B1 (en) | 3 dimensional measurement device using smart phone | |
TW201439498A (en) | System and method of adjusting matching image | |
CN103942830B (en) | Directly utilize and there is the method that the phase place of nonlinearity erron realizes scene three-dimensional reconstruction | |
KR101445831B1 (en) | 3D measurement apparatus and method | |
JP3871309B2 (en) | Phase shift fringe analysis method and apparatus using the same | |
JP4516949B2 (en) | Three-dimensional shape measuring apparatus and three-dimensional shape measuring method | |
JP3921547B2 (en) | Shape measuring method and apparatus using line sensor and line projector | |
KR100982051B1 (en) | moire measurement device using digital micromirror device | |
JP4797109B2 (en) | Three-dimensional shape measuring apparatus and three-dimensional shape measuring method | |
KR101001894B1 (en) | Apparatus and method for 3-D profilometry using color projection moire technique | |
JP2006214785A (en) | Three-dimensional geometry measuring system and measuring method | |
KR100982050B1 (en) | moire measurement device using digital micromirror device | |
KR100714821B1 (en) | Method for range imaging from a single image | |
KR100585272B1 (en) | Monochrome sinusoidal pattern phase shifting based system and method for range imaging from two images | |
JP2008170282A (en) | Shape measuring device | |
JP2016109580A (en) | Measuring device and measurement method | |
JP6884393B2 (en) | A method and device for performing phase analysis by converting a deformation grid into a rectangular grid or a square grid using projective transformation. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100406 |