JP2008190680A - Floating bush bearing structure - Google Patents

Floating bush bearing structure Download PDF

Info

Publication number
JP2008190680A
JP2008190680A JP2007027869A JP2007027869A JP2008190680A JP 2008190680 A JP2008190680 A JP 2008190680A JP 2007027869 A JP2007027869 A JP 2007027869A JP 2007027869 A JP2007027869 A JP 2007027869A JP 2008190680 A JP2008190680 A JP 2008190680A
Authority
JP
Japan
Prior art keywords
floating bush
bush
weight
floating
bearing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007027869A
Other languages
Japanese (ja)
Other versions
JP5082477B2 (en
Inventor
Hiroshi Saiura
寛 采浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007027869A priority Critical patent/JP5082477B2/en
Publication of JP2008190680A publication Critical patent/JP2008190680A/en
Application granted granted Critical
Publication of JP5082477B2 publication Critical patent/JP5082477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce vibration and noise caused by the self-excited vibration of a rotating shaft by changing the shape of a floating bush. <P>SOLUTION: In this floating bush bearing structure, the cylindrical floating bush is disposed between the rotating shaft and a housing, and the rotating shaft is rotatably supported on the housing through the oil film formed on the inner peripheral side and the outer peripheral side of the floating bush. The floating bush 8 is reduced in thickness by forming oil supply holes 10b radially extending through a floating bush body 11 at unequal intervals B in addition to oil supply holes 10 radially extending therethrough at equal intervals A therethrough. Since the left side weight of the floating bush body is reduced and the weight unbalance amount in the circumferential direction is formed, a bush 12 with unbalanced weight is formed. Since the center of gravity W is displaced to the right side of a reference line 13 passing through the center O of the floating bush body 11 due to a lateral weight unbalance, the self-excited vibration can be suppressed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転軸の自励振動による振動及び騒音を低減できるようにした浮動ブッシュ軸受構造に関する。   The present invention relates to a floating bush bearing structure capable of reducing vibration and noise due to self-excited vibration of a rotating shaft.

図12は、ターボチャージャの全体構成を示しており、ターボチャージャは、ハウジング1内に、タービン2を収容するタービン室3と、コンプレッサ4を収容するコンプレッサ室5と、タービン2とコンプレッサ4を連結する回転軸6が配置される回転軸室7とを有しており、前記回転軸6は回転軸室7のタービン2側とコンプレッサ4側とに間隔を隔てて配置した浮動ブッシュ8からなる軸受構造によってハウジング1に回転可能に支持されている。そして、エンジンからの排気ガスのエネルギによってタービン2が駆動され、このタービン2と一体的に回転するコンプレッサ4によってエンジンに送る吸気を圧縮してエンジンに送給するようになっている。   FIG. 12 shows the overall configuration of the turbocharger. In the turbocharger, the turbine chamber 3 for accommodating the turbine 2, the compressor chamber 5 for accommodating the compressor 4, and the turbine 2 and the compressor 4 are connected in the housing 1. A rotating shaft chamber 7 in which the rotating shaft 6 is disposed, and the rotating shaft 6 is a bearing comprising a floating bush 8 disposed at a distance from the turbine 2 side and the compressor 4 side of the rotating shaft chamber 7. The structure is rotatably supported by the housing 1. The turbine 2 is driven by the energy of the exhaust gas from the engine, and the intake air sent to the engine is compressed and supplied to the engine by the compressor 4 that rotates integrally with the turbine 2.

前記ハウジング1には、図示しないオイル供給源であるオイルポンプからの潤滑用オイルを前記浮動ブッシュ8に供給するためのオイル供給路9が形成されている。   The housing 1 is formed with an oil supply path 9 for supplying lubricating oil from an oil pump, which is an oil supply source (not shown), to the floating bush 8.

前記浮動ブッシュ8は、回転軸6の外周面とハウジング1の内周面の夫々に僅かな隙間(例えば直径で40〜60μm程度、半径で20〜30μm程度で、浮動ブッシュ8と回転軸6の隙間は浮動ブッシュ8とハウジング1の隙間より小さくなっている。)を有して嵌合する略筒形の浮動ブッシュ本体11により構成されており、更に図13、図14に示すように、浮動ブッシュ本体11における筒形の軸線方向長さの中心位置には、周方向に等間隔Aで且つ同一口径を有して半径方向に貫通した複数の給油穴10が形成されている。そして、前記ハウジング1のオイル供給路9から分岐した供給口9aが前記各浮動ブッシュ8の給油穴10に対向するように開口している。   The floating bush 8 has a slight gap between the outer peripheral surface of the rotary shaft 6 and the inner peripheral surface of the housing 1 (for example, a diameter of about 40 to 60 μm and a radius of about 20 to 30 μm). The gap is smaller than the gap between the floating bush 8 and the housing 1.) and is formed by a substantially cylindrical floating bush main body 11 that fits and is further floated as shown in FIGS. At the center position of the cylindrical axial length of the bush main body 11, a plurality of oil supply holes 10 are formed at equal intervals A in the circumferential direction and having the same diameter and penetrating in the radial direction. A supply port 9 a branched from the oil supply path 9 of the housing 1 is opened so as to face the oil supply hole 10 of each floating bush 8.

従って、オイル供給路9から供給口9aを介して各浮動ブッシュ8に供給された潤滑オイルは、先ず浮動ブッシュ8の外周に供給されて浮動ブッシュ8の外周面と回転軸室7の内周面との隙間に外周側の油膜を形成し、一部は該隙間から回転軸室7に流出し、残部は前記給油穴10を通して浮動ブッシュ8の内周面と回転軸6の外周面との間の隙間に供給されて内周側の油膜を形成した後、回転軸室7に流出する。   Accordingly, the lubricating oil supplied from the oil supply passage 9 to each floating bush 8 via the supply port 9 a is first supplied to the outer periphery of the floating bush 8, and the outer peripheral surface of the floating bush 8 and the inner peripheral surface of the rotary shaft chamber 7. An oil film on the outer peripheral side is formed in a gap between the inner surface of the floating bush 8 and the outer peripheral surface of the rotary shaft 6 through the oil supply hole 10. The oil film is supplied to the gap and forms an oil film on the inner peripheral side, and then flows into the rotating shaft chamber 7.

従って、浮動ブッシュ8は、外周側の油膜と内周側の油膜により回転軸6とハウジング1間に浮動状態を保持され、回転軸6の回転に伴って、回転軸6の回転数より小さい回転数で回転(連れ回り)しながら油膜を介して回転軸6をハウジング1に対して回転可能に支持する。   Accordingly, the floating bush 8 is held in a floating state between the rotary shaft 6 and the housing 1 by the outer peripheral oil film and the inner peripheral oil film, and rotates less than the rotational speed of the rotary shaft 6 as the rotary shaft 6 rotates. The rotating shaft 6 is rotatably supported with respect to the housing 1 via an oil film while rotating (rotating) by a number.

従来のこの種の浮動ブッシュ8は、上記したように周方向の等間隔A位置に複数の給油穴10が形成されており、従って、従来の浮動ブッシュ8はその中心Oと重心Wとが一致して周方向の重量がバランスしており、浮動ブッシュ8自身は振動しないようにしている。   As described above, the conventional floating bush 8 has a plurality of oil supply holes 10 formed at equal circumferential positions A as described above. Therefore, the conventional floating bush 8 has a center O and a center of gravity W that are the same. Thus, the circumferential weight is balanced, and the floating bush 8 itself is prevented from vibrating.

上記した浮動ブッシュ軸受構造としては、特許文献1及び特許文献2に示されるものがある。
特開2002−332864号公報 特開2006−177487号公報
As the above-mentioned floating bush bearing structure, there are those shown in Patent Document 1 and Patent Document 2.
JP 2002-332864 A JP 2006-177487 A

近年、特に自動車用ターボチャージャでは高過給、高速化が進んでおり、その回転速度は20〜30万rpmにまで達するようになってきている。   In recent years, turbochargers for automobiles, in particular, have been increased in supercharging and speeding up, and their rotational speed has reached 200 to 300,000 rpm.

このように高速回転する回転軸及びその軸受系では、機械的なアンバランスに起因したモード特性(回転一次振動等)とは異なり、系の持つ固有振動特性に従って持続的に振動するオイルホワール(oil-whirl)、オイルホイップ(oil-whip)等と呼ばれる自励振動が発生する問題がある。この自励振動は、従来の浮動ブッシュ軸受構造のように、主に回転軸6と、浮動ブッシュ8と、ハウジング1の軸心を一致させた、即ち偏心率を小さくした場合に発生している。   Unlike the mode characteristics (such as rotational primary vibration) caused by mechanical unbalance, the rotating shaft and its bearing system that rotate at high speeds like this have an oil whirl that continuously vibrates according to the natural vibration characteristics of the system (oil -whirl) and self-excited vibration called oil-whip. This self-excited vibration is mainly generated when the shafts of the rotary shaft 6, the floating bush 8 and the housing 1 are made to coincide with each other, that is, when the eccentricity ratio is reduced as in the conventional floating bush bearing structure. .

従って、図13、図14に示したように周方向の重量がバランスした浮動ブッシュ8を用いて自励振動の発生防止或いは低減を図ろうとしても限界があり、自励振動を効果的に低減させることはできない。このため、高速化と静粛性が求められている自動車用ターボチャージャにおいては、自励振動とそれに伴う振動騒音が搭乗者に不快感を与えるという問題がある。   Therefore, as shown in FIGS. 13 and 14, there is a limit in trying to prevent or reduce the occurrence of self-excited vibration by using the floating bush 8 having a balanced weight in the circumferential direction, and the self-excited vibration is effectively reduced. I can't let you. For this reason, in a turbocharger for automobiles that requires high speed and quietness, there is a problem that the self-excited vibration and the vibration noise accompanying it cause discomfort to the passenger.

本発明は、上記実情に鑑みてなしたもので、浮動ブッシュの形状を変更することによって回転軸の自励振動による振動及び騒音を低減できるようにした浮動ブッシュ軸受構造を提供しようとするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a floating bush bearing structure in which vibration and noise due to self-excited vibration of the rotating shaft can be reduced by changing the shape of the floating bush. is there.

本発明は、回転軸とハウジングとの間に筒形の浮動ブッシュを配置し、該浮動ブッシュの内周側と外周側に形成される油膜を介して回転軸をハウジングに回転可能に支持する浮動ブッシュ軸受構造であって、前記浮動ブッシュを、浮動ブッシュ本体に周方向の重量アンバランス量を備えた重量アンバランスブッシュにより構成したことを特徴とする浮動ブッシュ軸受構造、に係るものである。   In the present invention, a cylindrical floating bush is disposed between a rotating shaft and a housing, and the rotating shaft is rotatably supported on the housing via an oil film formed on the inner peripheral side and the outer peripheral side of the floating bush. The present invention relates to a bush bearing structure, wherein the floating bush is constituted by a weight unbalance bush having a weight unbalance amount in a circumferential direction in a floating bush body.

上記浮動ブッシュ軸受構造において、重量アンバランスブッシュは、該重量アンバランスブッシュの回転による遠心力によって回転軸及びハウジングに接触しない周方向の重量アンバランス量を有することは好ましい。   In the floating bush bearing structure, it is preferable that the weight unbalance bush has a circumferential weight unbalance amount that does not contact the rotating shaft and the housing due to a centrifugal force generated by the rotation of the weight unbalance bush.

又、上記浮動ブッシュ軸受構造において、重量アンバランスブッシュは、浮動ブッシュ本体に、均一口径を有し且つ周方向に不等間隔を有して半径方向に貫通する給油穴を形成することにより周方向の重量アンバランス量を備えることができる。   Further, in the above floating bush bearing structure, the weight unbalance bush is formed in the floating bush body by forming an oil supply hole having a uniform aperture and having a uniform aperture in the circumferential direction and penetrating in the radial direction. The weight unbalance amount can be provided.

又、上記浮動ブッシュ軸受構造において、重量アンバランスブッシュは、浮動ブッシュ本体に、周方向に等間隔で且つ不等口径を有して半径方向に貫通する給油穴を形成することにより周方向の重量アンバランス量を備えることができる。   In the above-described floating bush bearing structure, the weight unbalance bush has a circumferential weight by forming, in the floating bush body, oil supply holes that are circumferentially spaced at equal intervals and unequal in diameter. An unbalance amount can be provided.

又、上記浮動ブッシュ軸受構造において、重量アンバランスブッシュは、周方向に等間隔で且つ均一口径を有して半径方向に貫通する給油穴を形成した浮動ブッシュ本体に、該浮動ブッシュ本体を貫通した又は貫通しない重量調整用穴を形成することにより周方向の重量アンバランス量を備えることができる。   In the above-described floating bush bearing structure, the weight unbalance bush penetrates the floating bush main body into a floating bush main body formed with oil supply holes having a uniform bore and a uniform diameter in the circumferential direction and penetrating in the radial direction. Alternatively, it is possible to provide a weight unbalance amount in the circumferential direction by forming a weight adjusting hole that does not penetrate.

又、上記浮動ブッシュ軸受構造において、重量アンバランスブッシュは、周方向に等間隔で且つ均一口径を有して半径方向に貫通する給油穴を形成した浮動ブッシュ本体に、重量調整用切欠部を形成することにより周方向の重量アンバランス量を備えることができる。   Further, in the above-described floating bush bearing structure, the weight unbalance bush has a weight adjustment notch formed in the floating bush main body formed with oil supply holes that penetrate in the radial direction and have a uniform aperture in the circumferential direction. By doing so, a weight unbalance amount in the circumferential direction can be provided.

又、上記浮動ブッシュ軸受構造において、重量アンバランスブッシュは、周方向に等間隔で且つ均一口径を有して半径方向に貫通する給油穴を形成した浮動ブッシュ本体に、重量調整用異種部材を取り付けることにより周方向の重量アンバランス量を備えることができる。   In the above-described floating bush bearing structure, the weight unbalanced bush is mounted with a weight adjusting dissimilar member on a floating bush main body having a uniform bore in the circumferential direction and an oil supply hole penetrating in the radial direction. Thus, a weight unbalance amount in the circumferential direction can be provided.

又、上記浮動ブッシュ軸受構造において、ターボチャージャの軸受構造に適用することができる。   The floating bush bearing structure can be applied to a turbocharger bearing structure.

本発明の浮動ブッシュ軸受構造によれば、浮動ブッシュを周方向に重量アンバランス量を備えた重量アンバランスブッシュで構成するようにしたので、重量アンバランスブッシュは回転による遠心力によって回転軸中心に対して偏心して振れ回るようになる。このため、回転軸と重量アンバランスブッシュとの間には隙間が小さくなる部分が生じ、この隙間が小さくなった部分の油膜のスクィーズ効果によって圧力が発生し、これにより回転軸を半径方向に押す力が発生する。更に、浮動ブッシュは高速回転する回転軸に連れて回転軸より小さい回転数で回転しているため、前記スクィーズ効果によって回転軸を押す力が、回転軸の周方向の別の位置で次々に作用するので、回転軸は自励振動とは異なる周期で周方向外部からの力を受けることになるために自励振動が抑制され、よって振動及び騒音が大幅に低減されるという優れた効果を奏し得る。   According to the floating bush bearing structure of the present invention, since the floating bush is constituted by the weight unbalance bush having the weight unbalance amount in the circumferential direction, the weight unbalance bush is centered on the rotating shaft by the centrifugal force caused by the rotation. On the other hand, it becomes eccentric and swings. For this reason, a portion where the gap becomes small occurs between the rotating shaft and the weight unbalance bush, and pressure is generated by the squeeze effect of the oil film in the portion where the gap becomes small, thereby pushing the rotating shaft in the radial direction. Force is generated. Further, since the floating bush rotates at a rotational speed smaller than that of the rotating shaft along with the rotating shaft rotating at a high speed, the force pushing the rotating shaft by the squeeze effect acts in succession at different positions in the circumferential direction of the rotating shaft. Therefore, since the rotating shaft receives a force from the outside in the circumferential direction at a different period from the self-excited vibration, the self-excited vibration is suppressed, and therefore, an excellent effect that the vibration and noise are greatly reduced is achieved. obtain.

又、重量アンバランスブッシュは、浮動ブッシュ本体を加工して簡単に形成できるため、自励振動による振動及び騒音が低減できる浮動ブッシュ軸受構造を安価に実施できる効果がある。   Further, since the weight unbalance bush can be easily formed by processing the floating bush body, there is an effect that the floating bush bearing structure capable of reducing vibration and noise due to self-excited vibration can be implemented at low cost.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する浮動ブッシュである重量アンバランスブッシュの一例を示す正面図、図2は図1のII−II方向断面図であり、真円の略筒形を有している浮動ブッシュ本体11における筒形の軸線方向長さの中心位置に、等間隔Aを有して半径方向に貫通する給油穴10と、等間隔Aより小さい間隔である不等間隔Bを有して半径方向に貫通する給油穴10a,10bとを形成することにより周方向の重量アンバランス量を備えた、即ち、浮動ブッシュ本体11の中心Oに対して重心Wの位置が所要量ずれた重量アンバランスブッシュ12を形成している。   FIG. 1 is a front view showing an example of a weight unbalance bush which is a floating bush embodying the present invention, and FIG. 2 is a cross-sectional view in the II-II direction of FIG. At the center of the cylindrical axial length of the bush body 11, the oil supply hole 10 that penetrates in the radial direction with an equal interval A, and the radius with an unequal interval B that is smaller than the equal interval A By forming the oil supply holes 10a and 10b penetrating in the direction, the weight unbalance amount in the circumferential direction is provided, that is, the weight unbalance in which the position of the center of gravity W is shifted from the center O of the floating bush body 11 by a required amount. A bush 12 is formed.

この重量アンバランスブッシュ12は、図1に示すように浮動ブッシュ本体11の中心Oを通る仮想の基準線13に対して、給油穴10a,10bが左側に位置するようにしたときに、左側は軽量側、右側は重量側となって左右の重量のアンバランスが最も大きくなる。即ち、この重量アンバランスブッシュ12では、等間隔Aよりも小さい間隔の不等間隔Bで給油穴10a,10bを形成した部分が、他の部分よりも減肉されて重量が軽減されるために重量のアンバランスが生じる。   As shown in FIG. 1, when the oil supply holes 10a and 10b are positioned on the left side of the weight unbalance bush 12 with respect to a virtual reference line 13 passing through the center O of the floating bush body 11, the left side is The light weight side and the right side become the weight side, and the left and right weight imbalance becomes the largest. That is, in this weight unbalanced bush 12, the portions where the oil supply holes 10a and 10b are formed at the unequal intervals B smaller than the equal intervals A are reduced in thickness than the other portions, and the weight is reduced. A weight imbalance occurs.

そして、前記給油穴10a,10bの不等間隔Bの長さを短くすると、前記左右のアンバランスは大きくなり、又、不等間隔Bの長さを前記等間隔Aの長さに近付けると、前記左右のアンバランスは小さくなる。又、給油穴10a,10bの口径を大きくすると前記左右のアンバランスは大きくなり、又、給油穴10a,10bの口径を小さくすると、前記左右のアンバランスは小さくなる。尚、図1では隣接する2つの給油穴10a,10bを不等間隔Bで形成する場合について示したが、隣接する3つ以上の給油穴を不等間隔Bで形成するようにしてもよい。   When the length of the unequal interval B of the oil supply holes 10a, 10b is shortened, the left and right imbalance increases, and when the length of the unequal interval B is brought closer to the length of the equal interval A, The left and right imbalance is reduced. Further, when the diameters of the oil supply holes 10a and 10b are increased, the left and right imbalances are increased, and when the diameters of the oil supply holes 10a and 10b are decreased, the left and right imbalances are decreased. Although FIG. 1 shows a case where two adjacent oil supply holes 10a and 10b are formed at unequal intervals B, three or more adjacent oil supply holes may be formed at unequal intervals B.

図3は本発明を実施する浮動ブッシュである重量アンバランスブッシュの他の例を示す正面図、図4は図3のIV−IV方向断面図であり、真円の略筒形を有している浮動ブッシュ本体11に、周方向に等間隔Aで且つ且つ均一口径を有して半径方向に貫通する給油穴10を形成し、更に、隣接する2つの給油穴10c,10dの中間位置(A/2の位置)に半径方向に貫通する重量調整用穴14を形成することにより周方向の重量アンバランス量を備えた、即ち、浮動ブッシュ本体11の中心Oに対して重心Wの位置が所要量ずれた重量アンバランスブッシュ12を形成している。   FIG. 3 is a front view showing another example of a weight unbalance bushing which is a floating bush embodying the present invention, and FIG. 4 is a sectional view in the IV-IV direction of FIG. The floating bush body 11 is formed with oil supply holes 10 having a uniform aperture A in the circumferential direction and having a uniform diameter and penetrating in the radial direction, and further, an intermediate position (A The weight adjusting hole 14 penetrating in the radial direction is formed at the position / 2) to provide a weight unbalance amount in the circumferential direction, that is, the position of the center of gravity W with respect to the center O of the floating bush body 11 is required. An unbalanced weight unbalance bush 12 is formed.

この重量アンバランスブッシュ12は、図3に示すように浮動ブッシュ本体11の中心Oを通る仮想の基準線13に対して、重量調整用穴14が左側に位置するようにしたときに、左側は軽量側、右側は重量側となって左右の重量のアンバランスが最も大きくなる。即ち、この重量アンバランスブッシュ12では、給油穴10c,10dの中間位置に重量調整用穴14が形成された部分が、他の部分よりも減肉されて重量が軽減されるために重量のアンバランスが生じる。   As shown in FIG. 3, when the weight adjusting hole 14 is positioned on the left side with respect to a virtual reference line 13 passing through the center O of the floating bush body 11, the weight unbalanced bush 12 The light weight side and the right side become the weight side, and the left and right weight imbalance becomes the largest. That is, in the weight unbalance bush 12, the portion where the weight adjusting hole 14 is formed at the intermediate position between the oil supply holes 10c and 10d is thinner than the other portions and the weight is reduced. Balance arises.

そして、前記重量調整用穴14の口径を大きくすると、前記左右のアンバランスは大きくなり、又、重量調整用穴14の口径を小さくすると、前記左右のアンバランスは小さくなる。尚、図3では重量調整用穴14を浮動ブッシュ本体11の半径方向に貫通させた場合について示したが、浮動ブッシュ本体11を貫通させることなく浮動ブッシュ本体11の外周側又は内周側に所要の深さの重量調整用穴14を形成するようにしてもよく、又、隣接する2つの給油穴10c,10dの等間隔Aの1/2(A/2)の位置からずれた位置に上記重量調整用穴14を形成するようにしてもよい。更に、図3、図4に仮想線で示すように、浮動ブッシュ本体11に、該浮動ブッシュ本体11の軸線と平行な重量調整用穴14’を形成することによって重量アンバランスブッシュ12を構成してもよい。   When the diameter of the weight adjusting hole 14 is increased, the left and right unbalance is increased, and when the diameter of the weight adjusting hole 14 is decreased, the left and right unbalance is decreased. Although FIG. 3 shows the case where the weight adjusting hole 14 is penetrated in the radial direction of the floating bush main body 11, it is required on the outer peripheral side or inner peripheral side of the floating bush main body 11 without penetrating the floating bush main body 11. The weight adjusting hole 14 having a depth of 5 mm may be formed, and the position may be shifted from a position of 1/2 (A / 2) of the equal interval A between the two adjacent oiling holes 10c and 10d. The weight adjusting hole 14 may be formed. Further, as shown in phantom lines in FIGS. 3 and 4, the weight unbalance bush 12 is configured by forming a weight adjusting hole 14 ′ in the floating bush body 11 parallel to the axis of the floating bush body 11. May be.

図5は本発明を実施する浮動ブッシュである重量アンバランスブッシュの更に他の例を示す正面図、図6は図5のVI−VI方向断面図であり、真円の略筒形を有している浮動ブッシュ本体11の周方向位置において、等間隔Aを有して半径方向に貫通する給油穴10を形成し、更に、浮動ブッシュ本体11の外周側において、1つの給油穴10を所要の深さで座ぐるようにして大径部15を形成することにより周方向の重量アンバランス量を備えた、即ち、浮動ブッシュ本体11の中心Oに対して重心Wの位置が所要量ずれた重量アンバランスブッシュ12を形成している。   FIG. 5 is a front view showing still another example of a weight unbalance bush which is a floating bush embodying the present invention, and FIG. 6 is a sectional view in the VI-VI direction of FIG. 5 and has a substantially circular cylindrical shape. In the circumferential position of the floating bush main body 11, an oil supply hole 10 that penetrates in the radial direction with an equal interval A is formed, and further, one oil supply hole 10 is provided on the outer peripheral side of the floating bush main body 11. By forming the large diameter portion 15 so as to sit down at a depth, a weight unbalance amount in the circumferential direction is provided, that is, a weight in which the position of the center of gravity W deviates from the center O of the floating bush body 11 by a required amount. An unbalanced bush 12 is formed.

この重量アンバランスブッシュ12は、図5に示すように浮動ブッシュ本体11の中心Oを通る仮想の基準線13に対して、大径部15を形成した給油穴10が左側に位置するようにした場合のときに、左側は軽量側、右側は重量側となって左右の重量のアンバランス量が最も大きくなる。即ち、この重量アンバランスブッシュ12では、給油穴10に大径部15が形成された部分が、他の部分よりも減肉されて重量が軽減されるために重量のアンバランスが生じる。   In the weight unbalance bush 12, as shown in FIG. 5, the oil supply hole 10 in which the large diameter portion 15 is formed is located on the left side with respect to a virtual reference line 13 passing through the center O of the floating bush body 11. In such a case, the left side is the lightweight side and the right side is the weight side, and the left and right weight imbalance is the largest. That is, in this weight unbalance bush 12, the portion where the large-diameter portion 15 is formed in the oil supply hole 10 is thinner than the other portions and the weight is reduced, so that the weight is unbalanced.

そして、前記大径部15の口径を大きくする或いは形成する深さを大きくすると、前記左右のアンバランスは大きくなり、又、大径部の口径を小さくする或いは形成する深さを小さくすると、前記左右のアンバランスは小さくなる。尚、図5では浮動ブッシュ本体11の外周側において1つの給油穴10に大径部15を形成した場合を示しているが、浮動ブッシュ本体11の内周側において1つの給油穴10に大径部15を形成するようにしてもよく、又隣接する給油穴10の2つ以上に上記大径部15を形成してもよい。更に、前記給油穴10に座ぐり等によって大径部15を形成することに代えて、1つ或いは隣接する2つ以上の給油穴10自体の口径を、他の給油穴10の口径よりも大きく形成するようにしてもよい。   When the diameter of the large diameter portion 15 is increased or the depth to be formed is increased, the left and right imbalance is increased, and when the diameter of the large diameter portion is decreased or the depth to be formed is reduced, The left and right imbalance becomes smaller. 5 shows the case where the large-diameter portion 15 is formed in one oil supply hole 10 on the outer peripheral side of the floating bush main body 11, but the large diameter is provided in one oil supply hole 10 on the inner peripheral side of the floating bush main body 11. The portion 15 may be formed, or the large-diameter portion 15 may be formed in two or more adjacent oil supply holes 10. Furthermore, instead of forming the large-diameter portion 15 by spot facing or the like in the oil supply hole 10, the diameter of one or two or more adjacent oil supply holes 10 itself is larger than the diameter of the other oil supply holes 10. You may make it form.

図7は本発明を実施する浮動ブッシュである重量アンバランスブッシュの更に他の例を示す正面図、図8は図7のVIII−VIII方向断面図であり、真円の略筒形を有している浮動ブッシュ本体11の周方向位置において、等間隔Aを有して半径方向に貫通する給油穴10を形成し、更に、隣接する2つの給油穴10e,10fの間の部分を、給油穴10e,10fの径と同じ幅で長孔状に切除した重量調整用切欠部16を形成することにより周方向の重量アンバランス量を備えた、即ち、浮動ブッシュ本体11の中心Oに対して重心Wの位置が所要量ずれた重量アンバランスブッシュ12を形成している。   FIG. 7 is a front view showing still another example of a weight unbalance bush which is a floating bush embodying the present invention, and FIG. 8 is a sectional view taken along the line VIII-VIII of FIG. In the circumferential position of the floating bush body 11, an oil supply hole 10 that penetrates in the radial direction with an equal interval A is formed, and further, a portion between two adjacent oil supply holes 10 e and 10 f is provided as an oil supply hole. The weight adjusting notch 16 is cut in the shape of a long hole with the same width as the diameters of 10e and 10f, thereby providing a weight unbalance amount in the circumferential direction, that is, the center of gravity with respect to the center O of the floating bush body 11 A weight unbalance bush 12 is formed in which the position of W is shifted by a required amount.

この重量アンバランスブッシュ12は、図7に示すように浮動ブッシュ本体11の中心Oを通る仮想の基準線13に対して、重量調整用切欠部16が左側に位置するようにした場合のときに、左側は軽量側、右側は重量側となって左右の重量のアンバランスが最も大きくなる。即ち、この重量アンバランスブッシュ12では、重量調整用切欠部16が形成された部分は、他の部分よりも減肉されて重量が低減することにより重量のアンバランスが生じる。   The weight unbalance bush 12 is obtained when the weight adjustment notch 16 is positioned on the left side with respect to a virtual reference line 13 passing through the center O of the floating bush body 11 as shown in FIG. The left side is the lightweight side, the right side is the heavy side, and the left and right weight imbalance is the largest. That is, in this weight unbalance bush 12, the portion where the weight adjusting notch 16 is formed is thinner than the other portions and the weight is reduced, resulting in a weight imbalance.

そして、前記重量調整用切欠部16の幅を大きくすると、前記左右のアンバランスは大きくなり、又、重量調整用切欠部16の幅を小さくすると、前記左右のアンバランスは小さくなる。尚、図7では給油穴10e,10f間に長孔状の重量調整用切欠部16を形成した場合について示したが、1つの給油穴10の部分を長孔状に加工することによって重量調整用切欠部16を形成してもよい。   When the width of the weight adjustment notch 16 is increased, the left and right imbalance increases, and when the width of the weight adjustment notch 16 is reduced, the left and right imbalance decreases. Although FIG. 7 shows the case where the elongated hole-shaped weight adjustment notch 16 is formed between the oil supply holes 10e, 10f, the weight adjustment is performed by processing one oil supply hole 10 into a long hole shape. The notch 16 may be formed.

図9は本発明を実施する浮動ブッシュである重量アンバランスブッシュの更に他の例を示す正面図、図10は図9のX−X方向断面図であり、真円の略筒形を有している浮動ブッシュ本体11の周方向位置において、等間隔Aを有して半径方向に貫通する給油穴10を形成し、更に、浮動ブッシュ本体11の内周側において、隣接する2つの給油穴10g,10hの中間位置に所要の径と深さを有する貫通しない穴部17を形成し、該穴部17に、浮動ブッシュ本体11より比重が大きい材料にて形成した重量調整用異種部材18を挿入して固定することにより周方向の重量アンバランス量を備えた、即ち、浮動ブッシュ本体11の中心Oに対して重心Wの位置が所要量ずれた重量アンバランスブッシュ12を形成している。   9 is a front view showing still another example of a weight unbalance bush which is a floating bush embodying the present invention, and FIG. 10 is a sectional view taken along the line XX of FIG. 9 and has a substantially circular cylindrical shape. In the circumferential position of the floating bush main body 11, an oil supply hole 10 that penetrates in the radial direction with an equal interval A is formed, and two adjacent oil supply holes 10 g are formed on the inner peripheral side of the floating bush main body 11. , 10h, a non-penetrating hole 17 having a required diameter and depth is formed, and a weight adjusting heterogeneous member 18 formed of a material having a specific gravity greater than that of the floating bush body 11 is inserted into the hole 17. Thus, the weight unbalance bush 12 having a circumferential weight unbalance amount, that is, the center of gravity W being displaced from the center O of the floating bush main body 11 by a required amount is formed.

この重量アンバランスブッシュ12は、図9に示すように浮動ブッシュ本体11の中心Oを通る仮想の基準線13に対して、重量調整用異種部材18が右側に位置するようにした場合のときに、左側は軽量側、右側は重量側となって左右の重量のアンバランスが最も大きくなる。即ち、この重量アンバランスブッシュ12では、重量調整用異種部材18が固定された部分は、他の部分よりも重量が増加することにより重量のアンバランスが生じる。   This weight unbalance bush 12 is obtained when the weight adjusting heterogeneous member 18 is positioned on the right side with respect to a virtual reference line 13 passing through the center O of the floating bush body 11 as shown in FIG. The left side is the lightweight side, the right side is the heavy side, and the left and right weight imbalance is the largest. In other words, in this weight unbalance bush 12, the portion where the weight adjusting heterogeneous member 18 is fixed increases in weight as compared with the other portions, thereby causing weight imbalance.

そして、浮動ブッシュ本体11より比重がより大きい重量調整用異種部材18を固定する或いは重量調整用異種部材18の体積を大きくすると、前記左右のアンバランスは大きくなり、又、浮動ブッシュ本体11より僅かに比重が大きい重量調整用異種部材18を固定する或いは重量調整用異種部材18の体積を小さくすると、前記左右のアンバランスは小さくなる。尚、上記重量調整用異種部材18には遠心力が作用するために浮動ブッシュ本体11の内周側に設けることが好ましいが、確実な固定が可能な場合には浮動ブッシュ本体11の外周側に設けてもよく、又、重量調整用異種部材18の大きさ、形状、取り付け位置等は任意に選定することができる。   When the weight adjusting different member 18 having a specific gravity larger than that of the floating bush main body 11 is fixed or the volume of the weight adjusting different member 18 is increased, the left and right imbalance becomes larger, and slightly more than the floating bush main body 11. When the weight adjusting dissimilar member 18 having a large specific gravity is fixed or the volume of the weight adjusting dissimilar member 18 is reduced, the left and right unbalance is reduced. The weight adjusting dissimilar member 18 is preferably provided on the inner peripheral side of the floating bush main body 11 because centrifugal force acts on the weight adjusting different member 18, but if it can be securely fixed, it is provided on the outer peripheral side of the floating bush main body 11. It may be provided, and the size, shape, mounting position, etc. of the weight adjusting different member 18 can be arbitrarily selected.

図11は、上記した各形態の重量アンバランスブッシュ12による作用を模式的に示した正面図であり、図11では説明を簡略化するために浮動ブッシュ本体11に黒点で示す重量増加部19を備えて重量のアンバランスを生じさせた重量アンバランスブッシュ12を回転軸6の外周面との間に油膜20が形成されるようにして嵌合した場合を示している。   FIG. 11 is a front view schematically showing the operation of the weight unbalance bush 12 of each embodiment described above. In FIG. 11, a weight increasing portion 19 indicated by a black dot is provided on the floating bush main body 11 in order to simplify the explanation. The case where the weight unbalance bush 12 which is provided and caused the weight unbalance is fitted to the outer peripheral surface of the rotating shaft 6 so as to form the oil film 20 is shown.

回転軸6が矢印方向に高速で回転すると、この回転軸6の回転に連れて重量アンバランスブッシュ12は回転軸6より小さい回転速度で同方向に回転する。重量アンバランスブッシュ12は周方向に重量アンバランスを有している(浮動ブッシュ本体11の中心Oに対して重心Wの位置がずれている)ために回転による遠心力によって回転軸6中心に対して振れ回るようになる。図11では浮動ブッシュ本体11の中心Oを通る仮想の基準線13に対して重量増加部19が右側に位置しており、左側は軽量側、右側は重量側となって重量アンバランスブッシュ12は回転軸6の軸心Zに対して重量側に偏心している。   When the rotary shaft 6 rotates at a high speed in the direction of the arrow, the weight unbalance bush 12 rotates in the same direction at a rotational speed smaller than the rotary shaft 6 as the rotary shaft 6 rotates. Since the weight unbalance bush 12 has a weight unbalance in the circumferential direction (the position of the center of gravity W is shifted with respect to the center O of the floating bush body 11), the centrifugal force caused by the rotation causes the center of the rotary shaft 6 to be rotated. To start swinging. In FIG. 11, the weight increasing portion 19 is located on the right side with respect to the virtual reference line 13 passing through the center O of the floating bush body 11, the left side is the lightweight side, the right side is the weight side, and the weight unbalance bush 12 is It is eccentric to the weight side with respect to the axis Z of the rotating shaft 6.

このとき、前記各形態例の重量アンバランスブッシュ12に備える周方向の重量アンバランス量は、回転軸6中心に対して偏心して振れ回る重量アンバランスブッシュ12が回転軸6及びハウジング1に接触しない重量アンバランス量となるように設定されている。   At this time, the weight unbalance amount in the circumferential direction provided in the weight unbalance bush 12 of each embodiment is such that the weight unbalance bush 12 that swings eccentrically with respect to the center of the rotation shaft 6 does not contact the rotation shaft 6 and the housing 1. It is set to be a weight unbalance amount.

重量アンバランスブッシュ12が偏心して振れ回ると、重量アンバランスブッシュ12の軽量側の内周面が回転軸6の外周面に接近するため、図11のように左側に回転軸6との隙間が小さくなった部分21が生じる。回転軸6と重量アンバランスブッシュ12との間には油膜20が形成されているために、前記隙間が小さくなった部分21による油膜20のスクィーズ効果によって圧力Pが発生し、この圧力Pによって軸心Zを中心に高速回転している回転軸6を半径方向(重量側)に押す力Fが発生する。このとき、重量アンバランスブッシュ12は重量側の外周面がハウジング1の内周面に接近することによる油膜のスクィーズ効果によってハウジング1との間に圧力pを生じて、重量アンバランスブッシュ12は半径方向(軽量側)に押されるが、もともとハウジング1と重量アンバランスブッシュ12との隙間は、回転軸6と重量アンバランスブッシュ12との隙間より大きいため、P>pとなり、F=P−pの力が回転軸6に作用するようになる。   When the weight unbalance bush 12 is eccentric and swings, the inner peripheral surface on the light weight side of the weight unbalance bush 12 approaches the outer peripheral surface of the rotary shaft 6, so that there is a gap with the rotary shaft 6 on the left side as shown in FIG. A reduced portion 21 is produced. Since the oil film 20 is formed between the rotating shaft 6 and the weight unbalance bush 12, the pressure P is generated by the squeeze effect of the oil film 20 by the portion 21 where the gap is reduced. A force F that pushes the rotating shaft 6 rotating at high speed around the center Z in the radial direction (weight side) is generated. At this time, the weight unbalance bush 12 generates a pressure p between the weight unbalance bush 12 and the housing 1 due to the squeeze effect of the oil film due to the weight-side outer peripheral surface approaching the inner peripheral surface of the housing 1. However, since the clearance between the housing 1 and the weight unbalance bush 12 is originally larger than the clearance between the rotary shaft 6 and the weight unbalance bush 12, P> p, and F = P−p This acts on the rotating shaft 6.

更に、重量アンバランスブッシュ12は、高速回転している回転軸6に連れて回転軸6より小さい回転数で回転しているため、前記スクィーズ効果によって回転軸6を押す力Fは回転軸6の周方向の別の位置に次々に作用することになるので、回転軸6は自励振動とは異なる周期で周方向外部からの力Fを受けることになるために自励振動が抑制される。これによって自励振動による振動及び騒音が大幅に低減されるようになる。   Furthermore, since the weight unbalance bush 12 rotates at a rotational speed smaller than the rotational shaft 6 along with the rotational shaft 6 rotating at high speed, the force F pushing the rotational shaft 6 by the squeeze effect is applied to the rotational shaft 6. Since the rotary shafts 6 are successively applied to different positions in the circumferential direction, the rotating shaft 6 receives the force F from the outside in the circumferential direction at a period different from the self-excited vibration, and thus the self-excited vibration is suppressed. As a result, vibration and noise due to self-excited vibration are greatly reduced.

又、前記各形態で示したように、重量アンバランスブッシュ12は、浮動ブッシュ本体11を加工して簡単に形成できるため、自励振動による振動及び騒音が低減される浮動ブッシュ軸受構造を安価に実施することができる。   Further, as shown in the above embodiments, the weight unbalance bush 12 can be easily formed by processing the floating bush body 11, so that the floating bush bearing structure in which vibration and noise due to self-excited vibration are reduced can be made inexpensive. Can be implemented.

又、前記重量アンバランスブッシュ12は、その全体重量に対して重量側が軽量側よりも数パーセント(例えば2パーセント程度)大きい重量を有するアンバランス量とした場合においても、重量アンバランスブッシュ12が例えば5〜10万rpm程度の高速で回転すると重量アンバランスブッシュ12に作用する遠心力は大きく、重量アンバランスブッシュ12が振れ回ることにより前記スクィーズ効果によって回転軸6を半径方向に押す力Fは大きくなり回転軸6の自励振動を抑制できるので、重量アンバランスブッシュ12の重量アンバランス量は、軽量側と重量側の重量の差が数パーセント〜重量アンバランスブッシュ12が回転軸6及びハウジング1に接触しない範囲の重量アンバランス量とすることができる。   In addition, the weight unbalance bush 12 may have an unbalance amount in which the weight side is larger by several percent (for example, about 2 percent) than the lightweight side with respect to the entire weight. When rotating at a high speed of about 500,000 to 100,000 rpm, the centrifugal force acting on the weight unbalance bush 12 is large, and when the weight unbalance bush 12 swings, the force F pushing the rotating shaft 6 in the radial direction by the squeeze effect is large. Since the self-excited vibration of the rotating shaft 6 can be suppressed, the weight unbalanced amount of the weight unbalanced bush 12 is a few percent difference between the weight on the light side and the weight side to the weight unbalanced bush 12 is the rotating shaft 6 and the housing 1. The amount of weight unbalance in a range that does not come into contact with can be made.

なお、本発明の浮動ブッシュ軸受構造は、ターボチャージャの軸受構造以外にも適用できること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Of course, the floating bush bearing structure of the present invention can be applied to other than the turbocharger bearing structure, and various modifications can be made without departing from the scope of the present invention.

本発明を実施する重量アンバランスブッシュの一例を示す正面図である。It is a front view which shows an example of the weight unbalance bush which implements this invention. 図1のII−II方向断面図である。It is the II-II direction sectional drawing of FIG. 本発明を実施する重量アンバランスブッシュの他の例を示す正面図である。It is a front view which shows the other example of the weight imbalance bush which implements this invention. 図3のIV−IV方向断面図である。FIG. 4 is a cross-sectional view in the IV-IV direction of FIG. 3. 本発明を実施する重量アンバランスブッシュの更に他の例を示す正面図である。It is a front view which shows the further another example of the weight imbalance bush which implements this invention. 図5のVI−VI方向断面図である。FIG. 6 is a cross-sectional view in the VI-VI direction of FIG. 5. 本発明を実施する重量アンバランスブッシュの他の更に例を示す正面図である。It is a front view which shows the further another example of the weight imbalance bush which implements this invention. 図7のVIII−VIII方向断面図である。It is a VIII-VIII direction sectional view of Drawing 7. 本発明を実施する重量アンバランスブッシュの更に他の例を示す正面図である。It is a front view which shows the further another example of the weight imbalance bush which implements this invention. 図9のX−X方向断面図である。It is XX direction sectional drawing of FIG. 本発明における重量アンバランスブッシュによる作用を模式的に示した正面図である。It is the front view which showed typically the effect | action by the weight unbalance bush in this invention. ターボチャージャの全体構成を示す側断面図である。It is a sectional side view which shows the whole structure of a turbocharger. 従来の浮動ブッシュの一例を示す正面図である。It is a front view which shows an example of the conventional floating bush. 図13のXIV−XIV方向断面図である。It is the XIV-XIV direction sectional drawing of FIG.

符号の説明Explanation of symbols

1 ハウジング
6 回転軸
8 浮動ブッシュ
10 給油穴
10a,10b 給油穴
10c,10d 給油穴
10e,10f 給油穴
10g,10h 給油穴
11 浮動ブッシュ本体
12 重量アンバランスブッシュ
14 重量調整用穴
15 大径部
16 重量調整用切欠部
18 重量調整用異種部材
20 油膜
A 等間隔
B 不等間隔
DESCRIPTION OF SYMBOLS 1 Housing 6 Rotating shaft 8 Floating bush 10 Oil supply hole 10a, 10b Oil supply hole 10c, 10d Oil supply hole 10e, 10f Oil supply hole 10g, 10h Oil supply hole 11 Floating bush body 12 Weight unbalance bush 14 Weight adjustment hole 15 Large diameter part 16 Weight adjustment notch 18 Weight adjustment heterogeneous member 20 Oil film A Equal spacing B Unequal spacing

Claims (8)

回転軸とハウジングとの間に筒形の浮動ブッシュを配置し、該浮動ブッシュの内周側と外周側に形成される油膜を介して回転軸をハウジングに回転可能に支持する浮動ブッシュ軸受構造であって、前記浮動ブッシュを、浮動ブッシュ本体に周方向の重量アンバランス量を備えた重量アンバランスブッシュにより構成したことを特徴とする浮動ブッシュ軸受構造。   A floating bush bearing structure in which a cylindrical floating bush is disposed between the rotating shaft and the housing, and the rotating shaft is rotatably supported on the housing via an oil film formed on the inner and outer peripheral sides of the floating bush. A floating bush bearing structure, wherein the floating bush is constituted by a weight unbalance bush having a weight unbalance amount in a circumferential direction on a floating bush body. 重量アンバランスブッシュは、該重量アンバランスブッシュの回転による遠心力によって回転軸及びハウジングに接触しない周方向の重量アンバランス量を有することを特徴とする請求項1に記載の浮動ブッシュ軸受構造。   2. The floating bush bearing structure according to claim 1, wherein the weight unbalance bush has a weight unbalance amount in a circumferential direction that does not contact the rotating shaft and the housing due to a centrifugal force generated by the rotation of the weight unbalance bush. 重量アンバランスブッシュは、浮動ブッシュ本体に、均一口径を有し且つ周方向に不等間隔を有して半径方向に貫通する給油穴を形成することにより周方向の重量アンバランス量を備えたことを特徴とする請求項1又は2に記載の浮動ブッシュ軸受構造。   The weight unbalance bush has a weight unbalance amount in the circumferential direction by forming a lubrication hole in the floating bush main body that has a uniform bore and unequal spacing in the circumferential direction and penetrates in the radial direction. The floating bush bearing structure according to claim 1 or 2. 重量アンバランスブッシュは、浮動ブッシュ本体に、周方向に等間隔で且つ不等口径を有して半径方向に貫通する給油穴を形成することにより周方向の重量アンバランス量を備えたことを特徴とする請求項1又は2に記載の浮動ブッシュ軸受構造。   The weight unbalance bush has a weight unbalance amount in the circumferential direction by forming oil supply holes in the floating bush body at equal intervals in the circumferential direction and having unequal apertures and penetrating in the radial direction. The floating bush bearing structure according to claim 1 or 2. 重量アンバランスブッシュは、周方向に等間隔で且つ均一口径を有して半径方向に貫通する給油穴を形成した浮動ブッシュ本体に、該浮動ブッシュ本体を貫通した又は貫通しない重量調整用穴を形成することにより周方向の重量アンバランス量を備えたことを特徴とする請求項1又は2に記載の浮動ブッシュ軸受構造。   The weight unbalance bush has a weight adjustment hole that penetrates or does not pass through the floating bush body in a floating bush body that has a uniform bore in the circumferential direction and has a uniform bore and that penetrates in the radial direction. The floating bush bearing structure according to claim 1 or 2, further comprising a weight unbalance amount in a circumferential direction. 重量アンバランスブッシュは、周方向に等間隔で且つ均一口径を有して半径方向に貫通する給油穴を形成した浮動ブッシュ本体に、重量調整用切欠部を形成することにより周方向の重量アンバランス量を備えたことを特徴とする請求項1又は2に記載の浮動ブッシュ軸受構造。   The weight unbalance bush is a weight unbalance in the circumferential direction by forming a weight adjustment notch in the floating bush body with a uniform bore in the circumferential direction and an oil supply hole penetrating in the radial direction. The floating bush bearing structure according to claim 1, wherein the floating bush bearing structure is provided with an amount. 重量アンバランスブッシュは、周方向に等間隔で且つ均一口径を有して半径方向に貫通する給油穴を形成した浮動ブッシュ本体に、重量調整用異種部材を取り付けることにより周方向の重量アンバランス量を備えたことを特徴とする請求項1又は2に記載の浮動ブッシュ軸受構造。   The weight unbalance bush is a weight unbalance amount in the circumferential direction by attaching a different weight adjusting member to the floating bush body that has a uniform bore in the circumferential direction and has an oil hole that penetrates in the radial direction. The floating bush bearing structure according to claim 1 or 2, further comprising: ターボチャージャの軸受構造に適用したことを特徴とする請求項1〜7のいずれか1つに記載の浮動ブッシュ軸受構造。
The floating bush bearing structure according to claim 1, wherein the floating bush bearing structure is applied to a turbocharger bearing structure.
JP2007027869A 2007-02-07 2007-02-07 Floating bush bearing structure Expired - Fee Related JP5082477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027869A JP5082477B2 (en) 2007-02-07 2007-02-07 Floating bush bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027869A JP5082477B2 (en) 2007-02-07 2007-02-07 Floating bush bearing structure

Publications (2)

Publication Number Publication Date
JP2008190680A true JP2008190680A (en) 2008-08-21
JP5082477B2 JP5082477B2 (en) 2012-11-28

Family

ID=39750958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027869A Expired - Fee Related JP5082477B2 (en) 2007-02-07 2007-02-07 Floating bush bearing structure

Country Status (1)

Country Link
JP (1) JP5082477B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102700A (en) * 2010-11-12 2012-05-31 Mitsubishi Heavy Ind Ltd Rotary shaft support structure for electric supercharger
WO2013002142A1 (en) * 2011-06-30 2013-01-03 三菱重工業株式会社 Bearing device for turbocharger
CN103075425A (en) * 2012-08-27 2013-05-01 浙江富春江水电设备股份有限公司 Radial sliding bearing
WO2013178558A1 (en) * 2012-05-29 2013-12-05 Continental Automotive Gmbh Radial sliding bearing comprising a floating bush body
CN104132066A (en) * 2014-07-15 2014-11-05 浙江荣发动力有限公司 Floating bearing structure used for small turbochargers
CN104334837A (en) * 2012-05-29 2015-02-04 大陆汽车有限公司 Turbocharger comprising a floating bush bearing
CN105465190A (en) * 2015-12-16 2016-04-06 上海大学 Hydrostatic semi-active-control radial sliding bearing
JPWO2015190364A1 (en) * 2014-06-12 2017-04-20 株式会社Ihi Bearing structure and turbocharger
CN109113856A (en) * 2018-07-20 2019-01-01 中车大连机车研究所有限公司 Turbocharger with bearing self-return function
DE102017213502A1 (en) * 2017-08-03 2019-02-07 Continental Automotive Gmbh Floating bush bearing for an exhaust gas turbocharger
CN113007283A (en) * 2019-12-20 2021-06-22 现代坦迪斯株式会社 Planetary gear device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104044U (en) * 1974-02-05 1975-08-27
JPS5943640U (en) * 1982-09-14 1984-03-22 日産自動車株式会社 Turbocharger bearing device
JPS61206823A (en) * 1985-03-07 1986-09-13 Mitsubishi Heavy Ind Ltd Manufacture of bush for floating bush bearing
JPH09215349A (en) * 1996-02-05 1997-08-15 Nikon Corp Vibrating actuator and adjustment thereof
JP2002176787A (en) * 2000-12-11 2002-06-21 Asmo Co Ltd Ultrasonic motor and method for changing resonance frequency thereof
JP2002213450A (en) * 2001-01-23 2002-07-31 Hitachi Ltd Floating bush bearing and turbocharger having the bearing
JP2002332864A (en) * 2001-05-02 2002-11-22 Nippon Soken Inc Lubricating device of turbocharger
JP2006177487A (en) * 2004-12-24 2006-07-06 Ishikawajima Harima Heavy Ind Co Ltd Bearing structure of rotary machine, rotary machine, method of manufacturing bearing structure, and method of manufacturing rotary machine
JP2008111502A (en) * 2006-10-31 2008-05-15 Toyota Motor Corp Bearing structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104044U (en) * 1974-02-05 1975-08-27
JPS5943640U (en) * 1982-09-14 1984-03-22 日産自動車株式会社 Turbocharger bearing device
JPS61206823A (en) * 1985-03-07 1986-09-13 Mitsubishi Heavy Ind Ltd Manufacture of bush for floating bush bearing
JPH09215349A (en) * 1996-02-05 1997-08-15 Nikon Corp Vibrating actuator and adjustment thereof
JP2002176787A (en) * 2000-12-11 2002-06-21 Asmo Co Ltd Ultrasonic motor and method for changing resonance frequency thereof
JP2002213450A (en) * 2001-01-23 2002-07-31 Hitachi Ltd Floating bush bearing and turbocharger having the bearing
JP2002332864A (en) * 2001-05-02 2002-11-22 Nippon Soken Inc Lubricating device of turbocharger
JP2006177487A (en) * 2004-12-24 2006-07-06 Ishikawajima Harima Heavy Ind Co Ltd Bearing structure of rotary machine, rotary machine, method of manufacturing bearing structure, and method of manufacturing rotary machine
JP2008111502A (en) * 2006-10-31 2008-05-15 Toyota Motor Corp Bearing structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777739B2 (en) 2010-11-12 2017-10-03 Mitsubishi Heavy Industries, Ltd. Rotation shaft supporting structure for electric supercharger
JP2012102700A (en) * 2010-11-12 2012-05-31 Mitsubishi Heavy Ind Ltd Rotary shaft support structure for electric supercharger
US9587515B2 (en) 2011-06-30 2017-03-07 Mitsubishi Heavy Industries, Ltd. Bearing device for turbocharger
WO2013002142A1 (en) * 2011-06-30 2013-01-03 三菱重工業株式会社 Bearing device for turbocharger
JP2013011331A (en) * 2011-06-30 2013-01-17 Mitsubishi Heavy Ind Ltd Bearing device for turbocharger
CN103597227A (en) * 2011-06-30 2014-02-19 三菱重工业株式会社 Bearing device for turbocharger
WO2013178558A1 (en) * 2012-05-29 2013-12-05 Continental Automotive Gmbh Radial sliding bearing comprising a floating bush body
CN104334837A (en) * 2012-05-29 2015-02-04 大陆汽车有限公司 Turbocharger comprising a floating bush bearing
US9664063B2 (en) 2012-05-29 2017-05-30 Continental Automotive Gmbh Turbocharger comprising a floating bush bearing
CN103075425A (en) * 2012-08-27 2013-05-01 浙江富春江水电设备股份有限公司 Radial sliding bearing
JPWO2015190364A1 (en) * 2014-06-12 2017-04-20 株式会社Ihi Bearing structure and turbocharger
CN104132066A (en) * 2014-07-15 2014-11-05 浙江荣发动力有限公司 Floating bearing structure used for small turbochargers
CN105465190A (en) * 2015-12-16 2016-04-06 上海大学 Hydrostatic semi-active-control radial sliding bearing
CN105465190B (en) * 2015-12-16 2017-12-22 上海大学 Static pressure semi- active control bush(ing) bearing
DE102017213502A1 (en) * 2017-08-03 2019-02-07 Continental Automotive Gmbh Floating bush bearing for an exhaust gas turbocharger
CN109113856A (en) * 2018-07-20 2019-01-01 中车大连机车研究所有限公司 Turbocharger with bearing self-return function
CN113007283A (en) * 2019-12-20 2021-06-22 现代坦迪斯株式会社 Planetary gear device

Also Published As

Publication number Publication date
JP5082477B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5082477B2 (en) Floating bush bearing structure
WO2015128978A1 (en) Floating bush bearing device, and turbocharger provided with said bearing device
US9599119B2 (en) Bearing device for turbocharger
JP5730436B2 (en) Floating bush bearing device and supercharger provided with the same
JP2011153668A (en) Bearing device
EP2085578A2 (en) Shaft bearing assembly
KR101990883B1 (en) Turbocharger with thrust bearing providing combined journal and thrust bearing functions
JP2013011251A5 (en)
KR20150074036A (en) Fluid film hydrodynamic flexure pivot tilting pad semi-floating ring journal bearing with compliant dampers
JP2008111502A (en) Bearing structure
JP2013544335A (en) Bearing arrangement for turbine wheel shaft
JP2002213450A (en) Floating bush bearing and turbocharger having the bearing
JP2017207044A (en) Bearing mechanism for turbocharger
JP2016191465A (en) Bearing device and exhaust gas turbocharger
JP5359206B2 (en) Floating bush bearing type bearing device and internal combustion engine supercharger having the same
JP2008286050A (en) Turbocharger
JP2002332864A (en) Lubricating device of turbocharger
JP2010138753A (en) Bearing device for supercharger
JP2017501340A (en) Bearing device for exhaust gas turbocharger and exhaust gas turbocharger
JP2010133530A (en) Bearing structure and supercharger with the bearing structure
JP2008215453A (en) Floating bush bearing structure
JP6079058B2 (en) Rolling bearing device for turbocharger
JP2002138846A (en) Bearing device for turbocharger
JP2019167833A (en) Exhaust turbine apparatus and supercharger provided with exhaust turbine apparatus
JP2009030474A (en) Bearing structure for turbocharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R151 Written notification of patent or utility model registration

Ref document number: 5082477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees