JP2008189835A - Thermally conductive composition and its manufacturing method - Google Patents

Thermally conductive composition and its manufacturing method Download PDF

Info

Publication number
JP2008189835A
JP2008189835A JP2007026774A JP2007026774A JP2008189835A JP 2008189835 A JP2008189835 A JP 2008189835A JP 2007026774 A JP2007026774 A JP 2007026774A JP 2007026774 A JP2007026774 A JP 2007026774A JP 2008189835 A JP2008189835 A JP 2008189835A
Authority
JP
Japan
Prior art keywords
inorganic filler
conductive composition
thermally conductive
coating material
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007026774A
Other languages
Japanese (ja)
Inventor
Takashi Nogami
隆 野上
Nobuhiro Shinozuka
信裕 篠塚
Takashi Gonda
貴司 権田
Toshihide Sakuta
俊秀 作田
Junya Ishida
純也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2007026774A priority Critical patent/JP2008189835A/en
Publication of JP2008189835A publication Critical patent/JP2008189835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive composition which can inhibit wear of a molding machine or a mold and its manufacturing method. <P>SOLUTION: The thermally conductive composition for being filled in a mold is prepared by mixing a thermally conductive inorganic filler with a polymeric material, wherein at least a part of the inorganic filler is coated with a coating material, to make the hardness of the resultant filler lower than that of the original inorganic filler and the thermal conductivity of the thermally conductive composition is rendered greater than that of the polymeric material. Since at least a part of the surface of the inorganic filler is coated with a coating material to make its hardness lower than the hardness of the inorganic filler, even if the hardness of the inorganic filler is so high as to take on cutting properties, such a situation that moldability, productivity, and mass production are adversely affected by the wear caused by the contact of the inorganic filler with an extruder, a molding machine or a mold can be inhibited and prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発熱を伴う各種の機器に使用され、発生した熱を速やかに系外に放出する熱伝導性組成物及びその製造方法に関するものである。   The present invention relates to a thermally conductive composition that is used in various devices that generate heat and quickly releases generated heat to the outside of the system and a method for producing the same.

近年、モバイル用燃料電池の実用化の検討、車載用電子機器の高度化、ディスプレイ用バックライトの高輝度化等に伴い、これらの機器から発生する熱を速やかに系外に排気する材料や成形品が求められている(特許文献1、2、3参照)。
係る要望を満たす手段として、従来においては、樹脂材料と熱伝導性の高い無機フィラーとを混合して成形用の組成物を調製し、この組成物を金型に充填して熱伝導性の高い成形品を成形する方法が提案されている。
特開2007‐2231号公報 特開2006‐291123号公報 特開2006‐111848号公報
In recent years, with the examination of practical use of mobile fuel cells, advancement of in-vehicle electronic devices, higher brightness of display backlights, materials and moldings that quickly exhaust heat generated from these devices out of the system Products are demanded (see Patent Documents 1, 2, and 3).
As a means for satisfying such a demand, conventionally, a resin composition and an inorganic filler having high thermal conductivity are mixed to prepare a molding composition, and this mold is filled into a mold to provide high thermal conductivity. A method for forming a molded product has been proposed.
Japanese Patent Laid-Open No. 2007-2231 JP 2006-291123 A JP 2006-111848 A

従来においては、以上のように樹脂材料と熱伝導性の高い無機フィラーとを単に混合しているが、無機フィラーの硬度が非常に高く切削性を帯びているので、成形時に成形機や金型の成形面が少なからず磨耗して成形性、生産性、量産性を損ね、結果として実用に支障を来たすという問題がある。   Conventionally, resin materials and inorganic fillers with high thermal conductivity are simply mixed as described above. However, since the inorganic fillers have extremely high hardness and machinability, molding machines and molds are used during molding. However, there is a problem that the molding surface is worn out to a great extent and the moldability, productivity, and mass productivity are impaired, resulting in hindrance to practical use.

本発明は上記に鑑みなされたもので、成形機や金型の磨耗を抑制することのできる熱伝導性組成物及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above, and an object thereof is to provide a thermally conductive composition capable of suppressing wear of a molding machine and a mold and a method for producing the same.

本発明においては上記課題を解決するため、高分子材料に熱伝導性の無機フィラーを混合して金型に充填する熱伝導性の組成物を調製したものであって、
無機フィラーの少なくとも一部を被覆材料により被覆してその硬度を無機フィラーの硬度よりも低くし、熱伝導性の組成物の熱伝導率を高分子材料の熱伝導率よりも大きくしたことを特徴としている。
In the present invention, in order to solve the above problems, a thermally conductive composition is prepared by mixing a polymer material with a thermally conductive inorganic filler and filling a mold,
It is characterized in that at least a part of the inorganic filler is coated with a coating material, the hardness of which is lower than that of the inorganic filler, and the thermal conductivity of the thermally conductive composition is greater than that of the polymer material. It is said.

なお、被覆材料を、熱硬化性の高分子材料とすることが好ましい。
また、被覆材料を無機粒子とすることができる。
また、無機粒子を、シリカ粒子と酸化チタンのいずれかとすることができる。
Note that the coating material is preferably a thermosetting polymer material.
Further, the coating material can be inorganic particles.
Further, the inorganic particles can be either silica particles or titanium oxide.

また、本発明においては上記課題を解決するため、高分子材料に熱伝導性の無機フィラーを混合して金型に充填する熱伝導性の組成物を調製するものの製造方法であって、
無機フィラーの少なくとも一部を被覆材料により被覆してその硬度を無機フィラーの硬度よりも低くし、熱伝導性の組成物の熱伝導率を高分子材料の熱伝導率よりも大きくすることを特徴としている。
Further, in the present invention, in order to solve the above problems, a manufacturing method for preparing a thermally conductive composition for mixing a polymer material with a thermally conductive inorganic filler and filling a mold,
It is characterized in that at least a part of the inorganic filler is coated with a coating material, the hardness of which is lower than that of the inorganic filler, and the thermal conductivity of the thermally conductive composition is made larger than the thermal conductivity of the polymer material. It is said.

ここで特許請求の範囲における無機フィラーや被覆材料の硬度は、例えばビッカース硬度計やモース硬度計等の各種測定機器により測定することができる。また、被覆材料の量は、無機フィラーの表面積や被覆材料の厚みにより調整することができる。被覆材料の厚みは、被覆材料の機械的強度により調整することができる。   Here, the hardness of the inorganic filler or the coating material in the claims can be measured by various measuring devices such as a Vickers hardness meter and a Mohs hardness meter. The amount of the coating material can be adjusted by the surface area of the inorganic filler and the thickness of the coating material. The thickness of the coating material can be adjusted by the mechanical strength of the coating material.

本発明によれば、被覆材料が熱伝導性の組成物を調製する無機フィラーの少なくとも一部を被覆してその表面の切削性を低下させる。   According to the present invention, the coating material coats at least a part of the inorganic filler for preparing the thermally conductive composition, thereby reducing the machinability of the surface.

本発明によれば、無機フィラーの少なくとも一部を被覆材料により被覆して硬い無機フィラーの切削性を低下させるので、成形機や金型の磨耗を抑制することができるという効果がある。   According to the present invention, since at least a part of the inorganic filler is coated with the coating material to reduce the machinability of the hard inorganic filler, there is an effect that wear of the molding machine and the mold can be suppressed.

また、被覆材料を熱硬化性の高分子材料とすれば、成形熱で被覆材料が無機フィラーから分離したり、組成変形するのを防ぐことができる。また、流動性に関する精査を特に要しない。
さらに、被覆材料を無機粒子とするとともに、この無機粒子を、シリカ粒子と酸化チタンのいずれかとすれば、無機フィラーの硬度よりも低い硬度の被覆材料を容易に得ることができる。
Further, if the coating material is a thermosetting polymer material, it is possible to prevent the coating material from being separated from the inorganic filler or compositionally deformed by molding heat. There is no particular need for scrutiny regarding liquidity.
Furthermore, if the coating material is inorganic particles and the inorganic particles are either silica particles or titanium oxide, a coating material having a hardness lower than that of the inorganic filler can be easily obtained.

以下、本発明の好ましい実施の形態を説明すると、本実施形態における熱伝導性組成物は、高分子材料と熱伝導性の無機フィラーとを混合して金型等に充填する熱伝導性の組成物を調製するとともに、無機フィラーの表面の少なくとも一部に被覆材料を薄く覆着してその硬度を無機フィラーの硬度よりも低くし、熱伝導性の組成物の熱伝導率を高分子材料の熱伝導率よりも大きくするようにしている。   Hereinafter, a preferred embodiment of the present invention will be described. The thermally conductive composition in the present embodiment is a thermally conductive composition in which a polymer material and a thermally conductive inorganic filler are mixed and filled in a mold or the like. In addition, a coating material is thinly coated on at least a part of the surface of the inorganic filler so that its hardness is lower than that of the inorganic filler, and the thermal conductivity of the thermally conductive composition It is made larger than the thermal conductivity.

高分子材料と熱伝導性の無機フィラーとを混合して熱伝導性の組成物を調製する場合には、そのまま混合しても良いが、成形品の機械的特性等を向上させる観点から、ガラス繊維、カーボン繊維、硼酸アルミニウムウィスカ、シリコーンカーバイトウィスカ等の補強材が必要に応じて添加される。   In the case of preparing a heat conductive composition by mixing a polymer material and a heat conductive inorganic filler, they may be mixed as they are, but from the viewpoint of improving the mechanical properties and the like of the molded product, A reinforcing material such as fiber, carbon fiber, aluminum borate whisker, or silicone carbide whisker is added as necessary.

高分子材料は、特に限定されるものではなく、例えばエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等の熱硬化性樹脂、シリコーンゴム、ウレタンゴム、アクリルゴム、EPDM、SBR、フッ素ゴム等のゴム材料、各種の熱可塑性エラストマー、PPS、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリスチレン、塩化ビニル、飽和ポリエステル、ABS、ポリエーテルサルフォン、ポリサルフォン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、PEEK、フッ素樹脂等の熱可塑性樹脂が使用される。高分子材料は、樹脂製の場合には、粒径が0.5μm以下であるのが一般的である。   The polymer material is not particularly limited. For example, thermosetting resins such as epoxy resin, phenol resin, unsaturated polyester resin, and silicone resin, silicone rubber, urethane rubber, acrylic rubber, EPDM, SBR, fluorine rubber, and the like Rubber materials, various thermoplastic elastomers, PPS, polycarbonate, polypropylene, polyethylene, polystyrene, vinyl chloride, saturated polyester, ABS, polyethersulfone, polysulfone, polyimide, polyamideimide, polyetherimide, PEEK, fluororesin, etc. A thermoplastic resin is used. When the polymer material is made of a resin, the particle size is generally 0.5 μm or less.

熱伝導性の無機フィラーは、例えば酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化アルミニウム、窒化ホウ素、窒化ケイ素、炭化ケイ素、アルミナ、ボロンナイトライト等、公知のフィラーが使用される。これらの無機フィラーは、モース硬度が9以上と非常に硬く、そのまま成形に使用される場合には、成形機や金型を磨耗させたり、損傷させるという課題を有している。また、無機フィラーは、成形用の材料、いわゆるペレット製造用の混練機を磨耗させたり、損傷させるという課題をも有している。   As the thermally conductive inorganic filler, known fillers such as aluminum oxide, magnesium oxide, zinc oxide, aluminum nitride, boron nitride, silicon nitride, silicon carbide, alumina, and boron nitrite are used. These inorganic fillers have a very high Mohs hardness of 9 or more, and have the problem of wearing or damaging a molding machine or a mold when used for molding as it is. In addition, inorganic fillers also have a problem of wearing or damaging molding materials, so-called pellet kneaders.

無機フィラーは、成形機や金型の磨耗、損傷を防止する観点から、角の取れた丸い形状が好ましい。また、成形品の特性、特に熱伝導性や機械的強度を確保する観点から、表面の凹凸が大きく、比表面積の大きな粉砕系タイプが好ましい。   The inorganic filler preferably has a round shape with rounded corners from the viewpoint of preventing wear and damage of the molding machine and mold. Further, from the viewpoint of ensuring the characteristics of the molded product, particularly thermal conductivity and mechanical strength, a pulverized type having a large surface irregularity and a large specific surface area is preferable.

金型は、モバイル用燃料電池、車載用電子機器、ディスプレイ用バックライトで多用され、生産性や汎用性に優れる射出成形用が主ではあるが、特に限定されるものではなく、押出成形用、プレス成形用、トランスファー成形用、注型用でも良い。   Molds are often used in mobile fuel cells, in-vehicle electronic devices, and display backlights, and are mainly used for injection molding with excellent productivity and versatility. For press molding, transfer molding, and casting.

被覆材料は、無機フィラーの表面に付着する高分子材料、特に熱硬化性の高分子材料や無機粒子が好ましいが、特に限定されるものではなく、使用する高分子材料との馴染み性、成形温度における耐熱性、必要とされる化学的性質等を考慮して適宜決定される。この被覆材料は、成形機や金型の磨耗防止の観点から、無機フィラーの表面の少なくとも30%、好ましくは100%を被覆することが要求される。   The coating material is preferably a polymer material that adheres to the surface of the inorganic filler, in particular, a thermosetting polymer material or inorganic particles, but is not particularly limited and is compatible with the polymer material used, molding temperature. The temperature is appropriately determined in consideration of the heat resistance and the required chemical properties. This coating material is required to cover at least 30%, preferably 100%, of the surface of the inorganic filler from the viewpoint of preventing wear of the molding machine and the mold.

係る被覆材料としては、具体的には、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等の熱硬化性樹脂やそのハイブリッド材料(エポキシ樹脂‐シリカ・フェノール樹脂‐シリカ・ポリイミド‐シリカ・ポリアミドイミド‐シリカ等)変性品、シリコーン樹脂等の熱硬化性樹脂やその変性品、シリコーンゴム、ウレタンゴム、アクリルゴム、EPDM、SBR、フッ素ゴム等のゴム材料、各種の熱可塑性エラストマーやその変性品、PPS、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリスチレン、塩化ビニル、飽和ポリエステル、ABS、ポリエーテルサルフォン、ポリサルフォン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、PEEK、フッ素樹脂等の熱可塑性樹脂やその変性品があげられる。   Specific examples of such coating materials include thermosetting resins such as epoxy resins, phenol resins, unsaturated polyester resins, silicone resins, and hybrid materials (epoxy resins-silica / phenol resins / silica / polyimide / silica / polyamide). Imido-silica, etc.) modified products, thermosetting resins such as silicone resins and modified products thereof, rubber materials such as silicone rubber, urethane rubber, acrylic rubber, EPDM, SBR, fluoro rubber, various thermoplastic elastomers and modified products thereof , PPS, polycarbonate, polypropylene, polyethylene, polystyrene, vinyl chloride, saturated polyester, ABS, polyethersulfone, polysulfone, polyimide, polyamideimide, polyetherimide, PEEK, fluororesin, etc. and their modified products It is.

但し、被覆材料が熱可塑性樹脂の場合には、プロセス中での成形温度、せん断力、圧力による溶融流動により、無機フィラーからの分離が生じ、十分な効果をあげられないおそれが考えられる。また、被覆材料が結晶性樹脂の場合には、融点、非結晶性樹脂の溶融開始温度等の温度特性等、流動性に関する詳細な検討が必要とされる。したがって、実用上の簡便性を考慮すると、被覆材料は熱硬化性樹脂が好ましい。   However, when the coating material is a thermoplastic resin, there is a possibility that separation from the inorganic filler occurs due to the melt flow due to the molding temperature, shearing force, and pressure in the process, and the sufficient effect cannot be obtained. Further, when the coating material is a crystalline resin, it is necessary to study in detail about the fluidity such as the temperature characteristics such as the melting point and the melting start temperature of the amorphous resin. Therefore, in consideration of practical convenience, the coating material is preferably a thermosetting resin.

被覆材料は、熱硬化性樹脂の他、無機粒子が好適に使用される。この無機粒子は、高分子材料との親和性に鑑み、公知のシランカップリング剤、チタンカップリング剤、アルミネート系カップリング剤等により表面処理の施されていることが好ましい。   In addition to the thermosetting resin, inorganic particles are preferably used as the coating material. The inorganic particles are preferably surface-treated with a known silane coupling agent, titanium coupling agent, aluminate coupling agent or the like in view of the affinity with the polymer material.

被覆材料は、無機フィラーよりも十分に小さく、しかも、無機フィラーの硬度よりも低い硬度、例えばモース硬度で2〜9、好ましくは6〜9の範囲とされる。この被覆材料として無機粒子が選択される場合には、無機フィラーの表面を均一に薄く被覆してその熱伝導特性を十分に得る観点から、平均粒径が1μm以下のナノサイズ、具体的には1〜900nm、好ましくは10〜20nmであるのが良い。また、被覆材料として無機粒子が選択される場合には、無機フィラーの硬度よりも低い硬度(例えば、モース硬度で9以下)を得る観点から、シリカ粒子と酸化チタンの少なくともいずれか一方であることが好ましい。   The coating material is sufficiently smaller than the inorganic filler and has a hardness lower than the hardness of the inorganic filler, for example, a Mohs hardness of 2 to 9, preferably 6 to 9. When inorganic particles are selected as the coating material, the nano-size with an average particle size of 1 μm or less, specifically, from the viewpoint of sufficiently obtaining the thermal conductivity by coating the surface of the inorganic filler uniformly and thinly, It may be 1 to 900 nm, preferably 10 to 20 nm. Further, when inorganic particles are selected as the coating material, it is at least one of silica particles and titanium oxide from the viewpoint of obtaining a hardness lower than the hardness of the inorganic filler (for example, Mohs hardness of 9 or less). Is preferred.

無機フィラーと被覆材料との配合は、被覆材料の形態や溶媒の有無等に応じて製造方法が決定・採用される。例えば、被覆材料がペレット状やベール状の場合には、無機フィラーと被覆材料とを押出機やニーダ等を使用して混合混練すれば、無機フィラーの表面を被覆材料により被覆することができる。また、被覆材料が溶媒に溶解している場合には、溶媒に無機フィラーを添加して攪拌し、溶媒を除去すれば、無機フィラーの表面を被覆材料により被覆することが可能になる。   The blending of the inorganic filler and the coating material is determined and adopted according to the form of the coating material, the presence or absence of a solvent, and the like. For example, when the coating material is in the form of pellets or veil, the surface of the inorganic filler can be coated with the coating material by mixing and kneading the inorganic filler and the coating material using an extruder, a kneader, or the like. Further, when the coating material is dissolved in the solvent, the surface of the inorganic filler can be coated with the coating material by adding the inorganic filler to the solvent, stirring and removing the solvent.

以上の高分子材料と熱伝導性の無機フィラーとを混合して熱伝導性の組成物が調製されるが、この熱伝導性の組成物は、熱伝導率が高分子材料の熱伝導率よりも大きいことが好ましい。具体的には、熱伝導性の組成物の熱伝導率が0.5〜30、好ましくは0.5〜15、より好ましくは0.5〜6(W/m・K)、高分子材料の熱伝導率が0.5以下が良い。熱伝導率は、例えばQTM−500(京都電子工業社製 商品名)を用いて一義的に定める熱線法、JISA1412‐2に基づく測定方法、レーザフラッシュ法等により測定することができる。   A thermal conductive composition is prepared by mixing the above polymer material and a thermal conductive inorganic filler. This thermal conductive composition has a thermal conductivity higher than that of the polymeric material. Is also preferably large. Specifically, the thermal conductivity of the thermally conductive composition is 0.5 to 30, preferably 0.5 to 15, and more preferably 0.5 to 6 (W / m · K). The thermal conductivity is preferably 0.5 or less. The thermal conductivity can be measured by, for example, a heat ray method uniquely determined using QTM-500 (trade name, manufactured by Kyoto Electronics Industry Co., Ltd.), a measurement method based on JIS A1412-2, a laser flash method, or the like.

上記において、高分子材料と熱伝導性の無機フィラーとを混合して熱伝導性の組成物を調製し、成形品を成形して製造する場合には、先ず、高分子材料がペレット状やベール状の場合には、高分子材料と被覆材料により被覆された無機フィラーとを押出機やニーダ等を使用して混合混練し、熱伝導性の組成物を調製する。こうして熱伝導性の組成物を調製したら、この組成物を金型に充填して高熱伝導性の成形品を成形すれば、成形品を製造することができる。   In the above, when a polymer material and a heat conductive inorganic filler are mixed to prepare a heat conductive composition and a molded product is formed and manufactured, first, the polymer material is in the form of pellets or veils. In the case of the shape, a polymer material and an inorganic filler coated with a coating material are mixed and kneaded using an extruder or a kneader to prepare a heat conductive composition. Once the thermally conductive composition is prepared in this way, a molded product can be produced by filling the mold into a mold and molding a molded product with high thermal conductivity.

また、高分子材料が溶媒に溶解している場合には、溶媒に被覆材料で被覆された無機フィラーを添加して攪拌し、溶媒を除去して熱伝導性の組成物を調製する。熱伝導性の組成物を調製したら、この組成物を金型に充填して高熱伝導性の成形品を成形すれば、成形品を製造することができる。   When the polymer material is dissolved in a solvent, an inorganic filler coated with a coating material is added to the solvent and stirred, and the solvent is removed to prepare a heat conductive composition. Once a heat conductive composition is prepared, a molded product can be produced by filling the mold into a mold and molding a highly heat conductive molded product.

上記によれば、無機フィラーの表面の少なくとも一部を被覆材料により被覆して無機フィラー表面の切削性を低下させるので、例え無機フィラーの硬度が非常に高く切削性を帯びていても、押出機、成形機、金型の成形面が無機フィラーとの接触により磨耗して成形性、生産性、量産性を損ねる事態を大幅に抑制したり、防止することができる。したがって、実用性の著しい向上が期待できる。   According to the above, since at least a part of the surface of the inorganic filler is coated with the coating material to reduce the machinability of the surface of the inorganic filler, even if the hardness of the inorganic filler is very high, the extruder In addition, it is possible to greatly suppress or prevent a situation in which the molding surface of the molding machine and the mold is worn by contact with the inorganic filler and the moldability, productivity and mass productivity are impaired. Therefore, a significant improvement in practicality can be expected.

また、被覆材料の硬度を無機フィラーの硬度よりも低下させるので、押出機、成形機、金型の成形面が被覆材料との接触により磨耗して成形性、生産性、量産性を損ねる事態を大幅に抑制したり、防止することができる。さらに、モバイル用燃料電池、車載用電子機器、ディスプレイ用バックライト等の機器から発生する熱を速やかに系外に排気することも可能になる。   In addition, since the hardness of the coating material is lower than the hardness of the inorganic filler, the molding surface of the extruder, molding machine, and mold is worn by contact with the coating material, and the formability, productivity, and mass productivity are impaired. It can be greatly suppressed or prevented. Furthermore, heat generated from devices such as mobile fuel cells, in-vehicle electronic devices, and display backlights can be quickly exhausted out of the system.

なお、上記実施形態では無機フィラーを単に用いたが、一種類の無機フィラーを使用しても良いし、複数種の無機フィラーを使用しても良い。また、異なる粒径、形状の無機フィラーを複数使用しても良い。また、無機フィラーの表面の一部を被覆材料により被覆して良いし、全部を被覆材料により被覆して良い。また、無機フィラーの表面に、被覆材料との親和性に鑑み、公知のシランカップリング剤、チタンカップリング剤、アルミネート系カップリング剤等により表面処理を施しても良い。   In the above embodiment, the inorganic filler is simply used, but one kind of inorganic filler may be used, or a plurality of kinds of inorganic fillers may be used. A plurality of inorganic fillers having different particle sizes and shapes may be used. Further, a part of the surface of the inorganic filler may be coated with a coating material, or the whole may be coated with a coating material. In addition, the surface of the inorganic filler may be subjected to a surface treatment with a known silane coupling agent, titanium coupling agent, aluminate coupling agent, or the like in view of the affinity with the coating material.

以下、図面を参照して本発明に係る熱伝導性組成物及びその製造方法の実施例を比較例と共に説明する。
先ず、被覆材料であるポリエーテルイミド((PEI)GE製 TG245℃)20重量部を沸点155℃の溶剤であるアニソールに溶解させた溶液と無機フィラー(昭和電工社製 商品名アルミナAS‐40)とを表1に示す配合で配合してスーパーミキサ(カワタ製)で混合し、この混合物を加圧ニーダにセットして180℃で加熱しながら8時間混合した。こうして混合物を8時間混合したら、希釈用のアニソールを揮発させて除去し、各配合品をアルミナコート品1〜5とした(図1、図2参照)。
Hereinafter, with reference to drawings, the Example of the heat conductive composition which concerns on this invention, and its manufacturing method is described with a comparative example.
First, a solution in which 20 parts by weight of polyetherimide (TG245 ° C, manufactured by (PEI) GE) as a coating material was dissolved in anisole, a solvent having a boiling point of 155 ° C, and an inorganic filler (trade name Alumina AS-40, manufactured by Showa Denko KK) Were mixed with a super mixer (manufactured by Kawata) and mixed in a pressure kneader and mixed for 8 hours while heating at 180 ° C. After the mixture was mixed for 8 hours in this way, the anisole for dilution was volatilized and removed, and each of the blended products was made into alumina coated products 1 to 5 (see FIGS. 1 and 2).

また、ポリエーテルイミド((PEI)GE製 TG245℃)20重量部を沸点204℃の溶剤であるNメチル‐2ピロドリン(NMP)に溶解させた溶液と無機フィラー(昭和電工社製 商品名アルミナAS‐40)とを表2に示す配合で配合してスーパーミキサ(カワタ製)で混合し、この混合物を加圧ニーダにセットして220℃で加熱しながら8時間混合した。混合物を8時間混合したら、NMP溶液を揮発させて除去し、各配合品をアルミナコート品6〜10とした(図3参照)。   Further, a solution obtained by dissolving 20 parts by weight of polyetherimide (TGE 245 ° C., manufactured by (PEI) GE) in N-methyl-2-pyrodrine (NMP), a solvent having a boiling point of 204 ° C., and an inorganic filler (trade name Alumina AS manufactured by Showa Denko KK -40) and the mixture shown in Table 2 were mixed with a super mixer (manufactured by Kawata), and this mixture was set in a pressure kneader and mixed for 8 hours while heating at 220 ° C. When the mixture was mixed for 8 hours, the NMP solution was volatilized and removed, and each of the blended products was made into alumina coated products 6 to 10 (see FIG. 3).

次いで、各アルミナコート品1〜10のコーティング状態をSEMにより観察してその粒子の表面からアルミナの波長が減少している様子をEPMAで確認し、SEMにより観察した層が無機フィラーであるアルミナ以外の樹脂であることを確認した(図2、図3参照)。こうして確認した各アルミナコート品1〜10を、ポリフェニルサルファイド(PPS)16meshパス粉末中に、表3、4に示す配合でボールミルにより30分間分散混合させた。   Next, the coating state of each alumina coated product 1 to 10 was observed with SEM, and the state in which the wavelength of alumina decreased from the surface of the particles was confirmed with EPMA, and the layer observed with SEM was other than alumina, which was an inorganic filler. (See FIGS. 2 and 3). Each of the alumina-coated products 1 to 10 thus confirmed was dispersed and mixed in a polyphenyl sulfide (PPS) 16 mesh pass powder by the ball mill with the formulation shown in Tables 3 and 4 for 30 minutes.

次いで、混合した粉体65gを150×150mmの大きさを有する2mm厚の金型に投入し、400℃、150kg/cm3の条件で10分間加圧成形して試験用プレートを成形した。同様に、各アルミナコート品1〜10に関し、液晶ポリマー(LCP)16meshパス粉末を使用して表5、6に示す配合で試験用プレートを成形した。 Next, 65 g of the mixed powder was put into a 2 mm-thick mold having a size of 150 × 150 mm, and pressure-molded for 10 minutes at 400 ° C. and 150 kg / cm 3 to mold a test plate. Similarly, for each of the alumina coated products 1 to 10, test plates were molded using the liquid crystal polymer (LCP) 16 mesh pass powder with the formulations shown in Tables 5 and 6.

各試験用プレートを除去した後の金型の成形面の様子を観察し、アルミナ粉による傷を発見したら×、発見しなかったら○で評価し、その評価結果を表7、8にまとめた。   The state of the molding surface of the mold after removing each test plate was observed. When a scratch due to alumina powder was found, the evaluation was evaluated as “x”, and when it was not detected, the evaluation was evaluated as “◯”.

観察の結果、無機フィラーであるアルミナの表面に樹脂をコートした場合には、金型の成形面を損傷させることなく、試験用プレートを成形することができた。これに対し、アルミナの表面に樹脂をコートしない比較例の場合には、金型の損傷を招いた。   As a result of the observation, when the resin was coated on the surface of alumina as an inorganic filler, the test plate could be molded without damaging the molding surface of the mold. On the other hand, in the case of the comparative example in which the resin was not coated on the surface of alumina, the mold was damaged.

次に、無機フィラー(昭和電工社製 商品名アルミナAS‐40)とシリカの粉末(信越シリコーン製 商品名X24‐9163A 平均粒径0.1μm、信越シリコーン製 商品名X52‐7042 平均粒径4μm)又は酸化チタンの粉末(石原産業社製 商品名R‐630 平均粒径0.24μm)とを表9に示す配合によりスーパーミキサ(カワタ製)で配合し、各配合品をアルミナコート品21〜25とした。   Next, inorganic filler (trade name Alumina AS-40, manufactured by Showa Denko KK) and silica powder (trade name: X24-9163A, average particle size: 0.1 μm, manufactured by Shin-Etsu Silicone, product name: X52-7042, average particle size: 4 μm) Alternatively, titanium oxide powder (Ishihara Sangyo Co., Ltd., trade name R-630, average particle size 0.24 μm) is blended with a super mixer (manufactured by Kawata) according to the blending shown in Table 9, and each blended product is alumina-coated 21-25 It was.

各アルミナコート品1〜10を、ポリフェニルサルファイド(PPS)16meshパス粉末中に、表10に示す配合でボールミルにより30分間分散混合させた。こうして分散混合させたら、混合した粉体65gを150×150mmの大きさを有する2mm厚の金型に投入し、400℃、150kg/cm3の条件で10分間加圧成形して試験用プレートを成形した。 Each alumina-coated product 1 to 10 was dispersed and mixed in a polyphenyl sulfide (PPS) 16 mesh pass powder by the ball mill with the formulation shown in Table 10 for 30 minutes. After being dispersed and mixed in this way, 65 g of the mixed powder is put into a 2 mm-thick mold having a size of 150 × 150 mm, and pressure-molded for 10 minutes at 400 ° C. and 150 kg / cm 3 to prepare a test plate. Molded.

各試験用プレート除去後の金型の成形面の様子を観察し、アルミナ粉による傷を発見したら×、発見しなかったら○で評価し、その評価結果を表11にまとめた。   The state of the molding surface of the mold after removal of each test plate was observed. If a scratch due to alumina powder was found, it was evaluated as “x”, and if not found, it was evaluated as “◯”.

観察の結果、アルミナに樹脂をコートした場合には、金型の成形面を損傷させることなく、試験用プレートを成形することができた。これに対し、アルミナに樹脂をコートしない比較例の場合には、金型が損傷した。   As a result of the observation, when the resin was coated on alumina, the test plate could be molded without damaging the molding surface of the mold. On the other hand, the mold was damaged in the comparative example in which the resin was not coated on alumina.

次に、被覆材料である下記のエポキシ樹脂‐シリカハイブリッド(荒川化学工業製 商品名コンポセランE102)配合溶液と無機フィラー(昭和電工社製 商品名アルミナAS‐40)とを表12に示す配合で配合して攪拌機で混合分散させ、100℃で加熱乾燥させて溶剤を除去した。こうして溶剤を除去したら、180℃、1時間の加熱処理を加えて樹脂を硬化させ、粉砕機で粉砕して各配合品をアルミナコート品26〜30とした。   Next, the following epoxy resin-silica hybrid (trade name Composeran E102 manufactured by Arakawa Chemical Industries), which is a coating material, and an inorganic filler (trade name Alumina AS-40, manufactured by Showa Denko Co., Ltd.) are blended in the formulation shown in Table 12. Then, the mixture was dispersed with a stirrer and heated and dried at 100 ° C. to remove the solvent. When the solvent was removed in this manner, the resin was cured by applying a heat treatment at 180 ° C. for 1 hour, and pulverized with a pulverizer to obtain alumina-coated products 26-30.

エポキシ樹脂‐シリカハイブリッド配合溶液
コンポセランE102 100部
フェノールのノボラック樹脂 7.5部
2‐エチル‐4‐メチルイミダゾール 0.5部
オクチル酸スズ 1部
MEK 7.5部
Epoxy resin-silica hybrid compound solution Composelan E102 100 parts Phenol novolak resin 7.5 parts 2-Ethyl-4-methylimidazole 0.5 parts Tin octylate 1 part MEK 7.5 parts

次いで、各アルミナコート品26〜30をポリフェニルサルファイド(PPS)16meshパス粉末中に表13に示す配合でボールミルにより30分間分散混合させた。ボールミルで30分間分散混合させたら、混合粉体65gを150×150mmの大きさを有する2mm厚の金型に投入し、400℃、150kg/cm3の条件で10分間加圧成形して試験用プレートを成形した。 Next, each of the alumina coated products 26 to 30 was dispersed and mixed in a polyphenyl sulfide (PPS) 16 mesh pass powder with the formulation shown in Table 13 by a ball mill for 30 minutes. After 30 minutes of dispersion and mixing with a ball mill, 65 g of the mixed powder is put into a 2 mm-thick mold having a size of 150 × 150 mm, and pressure-molded at 400 ° C. and 150 kg / cm 3 for 10 minutes for testing. Plates were molded.

各試験用プレート除去後の金型の成形面の様子を観察し、アルミナ粉による傷を発見したら×、発見しなかったら○で評価し、その評価結果を表14にまとめた。   The state of the molding surface of the mold after removal of each test plate was observed. If a scratch due to alumina powder was found, it was evaluated as “x”, and if not found, it was evaluated as “◯”.

観察の結果、アルミナに樹脂をコートしない比較例の場合には、金型の損傷を確認した。   As a result of observation, in the case of a comparative example in which alumina is not coated with resin, damage to the mold was confirmed.

本発明に係る熱伝導性組成物及びその製造方法の実施例におけるアルミナ粉末を示す拡大写真である。It is an enlarged photograph which shows the alumina powder in the Example of the heat conductive composition which concerns on this invention, and its manufacturing method. 本発明に係る熱伝導性組成物及びその製造方法の実施例におけるアニソールで希釈されたPEIコーティングを示す拡大写真である。2 is an enlarged photograph showing a PEI coating diluted with anisole in an example of a thermally conductive composition and a method for manufacturing the same according to the present invention. 本発明に係る熱伝導性組成物及びその製造方法の実施例におけるNMPで希釈されたPEIコーティングを示す拡大写真である。2 is an enlarged photograph showing a PEI coating diluted with NMP in an example of a thermally conductive composition and a method for producing the same according to the present invention.

Claims (5)

高分子材料に熱伝導性の無機フィラーを混合して金型に充填する熱伝導性の組成物を調製した熱伝導性組成物であって、
無機フィラーの少なくとも一部を被覆材料により被覆してその硬度を無機フィラーの硬度よりも低くし、熱伝導性の組成物の熱伝導率を高分子材料の熱伝導率よりも大きくしたことを特徴とする熱伝導性組成物。
A heat conductive composition prepared by mixing a polymer material with a heat conductive inorganic filler and filling a mold with a heat conductive composition,
It is characterized in that at least a part of the inorganic filler is coated with a coating material, the hardness of which is lower than that of the inorganic filler, and the thermal conductivity of the thermally conductive composition is greater than that of the polymer material. A thermally conductive composition.
被覆材料を、熱硬化性の高分子材料とした請求項1記載の熱伝導性組成物。   The thermally conductive composition according to claim 1, wherein the coating material is a thermosetting polymer material. 被覆材料を無機粒子とした請求項1記載の熱伝導性組成物。   The heat conductive composition of Claim 1 which used the coating material as the inorganic particle. 無機粒子を、シリカ粒子と酸化チタンのいずれかとした請求項3記載の熱伝導性組成物。   The thermally conductive composition according to claim 3, wherein the inorganic particles are either silica particles or titanium oxide. 高分子材料に熱伝導性の無機フィラーを混合して金型に充填する熱伝導性の組成物を調製する熱伝導性組成物の製造方法であって、
無機フィラーの少なくとも一部を被覆材料により被覆してその硬度を無機フィラーの硬度よりも低くし、熱伝導性の組成物の熱伝導率を高分子材料の熱伝導率よりも大きくすることを特徴とする熱伝導性組成物の製造方法。
A method for producing a thermally conductive composition comprising preparing a thermally conductive composition in which a polymer material is mixed with a thermally conductive inorganic filler and filled into a mold,
It is characterized in that at least a part of the inorganic filler is coated with a coating material, the hardness of which is lower than that of the inorganic filler, and the thermal conductivity of the thermally conductive composition is made larger than the thermal conductivity of the polymer material. A method for producing a thermally conductive composition.
JP2007026774A 2007-02-06 2007-02-06 Thermally conductive composition and its manufacturing method Pending JP2008189835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007026774A JP2008189835A (en) 2007-02-06 2007-02-06 Thermally conductive composition and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026774A JP2008189835A (en) 2007-02-06 2007-02-06 Thermally conductive composition and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008189835A true JP2008189835A (en) 2008-08-21

Family

ID=39750238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026774A Pending JP2008189835A (en) 2007-02-06 2007-02-06 Thermally conductive composition and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008189835A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248048A (en) * 2007-03-30 2008-10-16 Shin Kobe Electric Mach Co Ltd Molding material of high heat conductive thermoplastic resin
WO2015083340A1 (en) * 2013-12-06 2015-06-11 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
JP2019192673A (en) * 2018-04-18 2019-10-31 富士電機株式会社 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370446A (en) * 1986-09-11 1988-03-30 Nitto Electric Ind Co Ltd Semiconductor device
JPS63201047A (en) * 1987-02-14 1988-08-19 住友セメント株式会社 Minute material with characterized coating layer
JP2003040619A (en) * 2001-07-27 2003-02-13 Hitachi Metals Ltd METHOD FOR SURFACE-TREATED CaF2 POWDER, RESIN COMPOSITE AND STRUCTURAL MEMBER USING IT
JP2005146214A (en) * 2003-11-19 2005-06-09 Toray Ind Inc Resin composition and molded product obtained therefrom
JP2005306955A (en) * 2004-04-20 2005-11-04 Polyplastics Co Method for producing highly heat-conductive resin composition
JP2006328349A (en) * 2005-04-26 2006-12-07 Tokuyama Corp Filler for epoxy resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370446A (en) * 1986-09-11 1988-03-30 Nitto Electric Ind Co Ltd Semiconductor device
JPS63201047A (en) * 1987-02-14 1988-08-19 住友セメント株式会社 Minute material with characterized coating layer
JP2003040619A (en) * 2001-07-27 2003-02-13 Hitachi Metals Ltd METHOD FOR SURFACE-TREATED CaF2 POWDER, RESIN COMPOSITE AND STRUCTURAL MEMBER USING IT
JP2005146214A (en) * 2003-11-19 2005-06-09 Toray Ind Inc Resin composition and molded product obtained therefrom
JP2005306955A (en) * 2004-04-20 2005-11-04 Polyplastics Co Method for producing highly heat-conductive resin composition
JP2006328349A (en) * 2005-04-26 2006-12-07 Tokuyama Corp Filler for epoxy resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248048A (en) * 2007-03-30 2008-10-16 Shin Kobe Electric Mach Co Ltd Molding material of high heat conductive thermoplastic resin
WO2015083340A1 (en) * 2013-12-06 2015-06-11 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
JP2015110709A (en) * 2013-12-06 2015-06-18 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
JP2019192673A (en) * 2018-04-18 2019-10-31 富士電機株式会社 Semiconductor device
JP7119528B2 (en) 2018-04-18 2022-08-17 富士電機株式会社 semiconductor equipment

Similar Documents

Publication Publication Date Title
EP3419399B1 (en) Heat conductive sheet
JP6678999B2 (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
Mahmoud et al. Design and testing of high‐density polyethylene nanocomposites filled with lead oxide micro‐and nano‐particles: Mechanical, thermal, and morphological properties
EP1533337B1 (en) Thermally conductive body and method of manufacturing the same
TWI538940B (en) A heat-dissipating filler composition, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
TWI486310B (en) Zinc oxide particles, a method for producing the same, an exothermic filler, a resin composition, an exothermic grease and an exothermic coating composition
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
EP2455339A1 (en) Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
JP2012072363A (en) Heat-conductive resin composition and heat-radiating material comprising the same
JP6826544B2 (en) Thermally conductive filler composition, its use and manufacturing method
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
US11180625B2 (en) Thermally and/or electrically conductive materials and method for the production thereof
JP6057806B2 (en) COMPOSITE MATERIAL POWDER AND METHOD FOR PRODUCING MOLDED ARTICLE
JP7470051B2 (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using the same, and method for producing the same
JP6786047B2 (en) Method of manufacturing heat conductive sheet
JP4798048B2 (en) Materials and molded products with excellent electromagnetic shielding and heat dissipation
JP2017014445A (en) Aluminum nitride composite filler and resin composition containing the same
JP2008189835A (en) Thermally conductive composition and its manufacturing method
TWI679252B (en) Glass-coated aluminum nitride particles, method for producing the same, and exothermic resin composition containing the same
JP5255466B2 (en) Thermally conductive resin composition
JP2016124908A (en) Resin molded body
JPH05117447A (en) Conductive resin composition and container for electronic part
TW202104451A (en) Heat-conducting composition and heat-conducting member
JP2009279829A (en) Glass-containing heat transfer sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106