JP2008187162A - Photochemical protein complex immobilized transparent electrode and novel compound - Google Patents

Photochemical protein complex immobilized transparent electrode and novel compound Download PDF

Info

Publication number
JP2008187162A
JP2008187162A JP2007047968A JP2007047968A JP2008187162A JP 2008187162 A JP2008187162 A JP 2008187162A JP 2007047968 A JP2007047968 A JP 2007047968A JP 2007047968 A JP2007047968 A JP 2007047968A JP 2008187162 A JP2008187162 A JP 2008187162A
Authority
JP
Japan
Prior art keywords
protein complex
transparent electrode
electrode
photochemical
photochemical protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007047968A
Other languages
Japanese (ja)
Inventor
Mariko Miyaji
麻里子 宮地
Hiroshi Nishihara
寛 西原
Toru Yonezawa
徹 米澤
Yoshinori Yamanoi
慶徳 山野井
Yasunori Inoue
康則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007047968A priority Critical patent/JP2008187162A/en
Publication of JP2008187162A publication Critical patent/JP2008187162A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an photochemical protein complex immobilized on a transparent electrode. <P>SOLUTION: The present invention is characterized in that an vitamin K1 analogue compound having a pyridine ligand and a quinine as a substituent connects the photochemical protein complex with the transparent electrode. The quinine part is connected with the photochemical protein complex, and the pyridine ligand becomes coordinated complex on the transparent electrode, thereby the photochemical protein complex is immobilized on the transparent electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

電極・光電変換素子・太陽電池・センサー・バイオ素子・バイオセンサー  Electrode, photoelectric conversion element, solar cell, sensor, bio element, biosensor

Greatzelらが発明した色素増感太陽電池は、ITO上のチタニア微粒子に色素を吸着させた構造であることから、安価で簡便に作製できる次世代の太陽電池として期待されている(特許文献1)。しかし、色素増感太陽電池の変換効率は約11%程度であることから更なる変換効率の向上が望まれている。変換効率を低下させる原因として、量子収率が低いこと、逆電子移動が起きること、吸収波長が短いことなどが挙げられている。一方、光化学系蛋白複合体は光合成時に、約700nmの可視光を吸収し、量子収率が約100%という高効率な光電変換を実現している。このような高効率な特性を持つ光化学系蛋白複合体を電極中に組み込むことができれば、高効率な太陽電池が実現できると考えられる。  The dye-sensitized solar cell invented by Greatzel et al. Is expected to be a next-generation solar cell that can be easily manufactured at low cost because it has a structure in which a dye is adsorbed to titania fine particles on ITO (Patent Document 1). . However, since the conversion efficiency of the dye-sensitized solar cell is about 11%, further improvement of the conversion efficiency is desired. Reasons for lowering the conversion efficiency include low quantum yield, reverse electron transfer, and short absorption wavelength. On the other hand, the photochemical protein complex absorbs visible light of about 700 nm during photosynthesis and realizes highly efficient photoelectric conversion with a quantum yield of about 100%. If a photochemical protein complex having such high-efficiency characteristics can be incorporated into an electrode, a highly efficient solar cell can be realized.

光化学系蛋白複合体を素子として利用した例として、特許文献2、非特許文献1では、光化学系蛋白複合体へ分子を組み込み、本来の電子伝達経路とは別の経路に経路を配設した光電変換素子を考案している。
特許2664194公報 特願2004−75411 N.Terasaki,et al,BBA−Bioenergetics,in press
As an example of using a photochemical protein complex as an element, in Patent Document 2 and Non-Patent Document 1, a photoelectric is obtained by incorporating a molecule into a photochemical protein complex and arranging a path in a path different from the original electron transfer path. A conversion element has been devised.
Japanese Patent No. 2664194 Japanese Patent Application No. 2004-75411 N. Terasaki, et al, BBA-Bioenergetics, in press

しかしながら、前記発明では、前記組み込み分子の末端基をイオン性基または貴金属ナノ微粒子としており、ITOなどの透明電極と光化学系蛋白複合体とを接続することが難しかった。このため、光化学系蛋白複合体を透明電極に固定化させた電極とそれを用いた太陽電池はいまだ報告されていない。  However, in the said invention, the terminal group of the said incorporation molecule | numerator was made into the ionic group or the noble metal nanoparticle, and it was difficult to connect transparent electrodes, such as ITO, and a photochemical protein complex. For this reason, the electrode which fixed the photochemical protein complex to the transparent electrode, and the solar cell using the same have not been reported yet.

本発明は、上記課題を解決することを目的とし、光化学系蛋白複合体を透明電極に固定化することを目的とする。  An object of the present invention is to solve the above-mentioned problems, and to fix a photochemical protein complex to a transparent electrode.

本発明は、ピリジン配位子およびキノンを置換基に持つビタミンK1類似化合物によって光化学系蛋白複合体および透明電極が接続されていることを特徴とする。前記キノン部位が光化学系蛋白複合体と接続し、また、前記ピリジン配位子が、透明電極上に錯形成された金属イオンに配位することで、光化学系蛋白複合体を透明電極に固定化することができる。  The present invention is characterized in that the photochemical protein complex and the transparent electrode are connected by a vitamin K1 analog having a pyridine ligand and a quinone as a substituent. The quinone moiety is connected to the photochemical protein complex, and the pyridine ligand is coordinated to a metal ion complexed on the transparent electrode, thereby immobilizing the photochemical protein complex on the transparent electrode. can do.

本発明で用いるビタミンK1類似化合物は、一般式(1)に示され、官能基として、キノン、ピリジン配位子を有する。光化学系蛋白複合体中に存在するビタミンK1は、ナフトキノンを有しており、キノンポケット中でナフトキノンが奥に収まる形で存在している。このため、光化学系蛋白複合体中のビタミンK1をキノンポケットから抜き出すと、同じくキノンを有する前記ビタミンK1類似化合物に容易に置き換えることができる。このように、置き換えられたビタミンK1類似化合物は、末端にピリジン配位子を有するため、同じくピリジン配位子を有する分子で表面修飾した透明電極上の金属イオンと錯形成することで、透明電極上に光化学系蛋白複合体を固定化できる。  The vitamin K1 analogue used in the present invention is represented by the general formula (1) and has quinone and pyridine ligands as functional groups. Vitamin K1 present in the photochemical protein complex has naphthoquinone, and naphthoquinone is present in the quinone pocket in a form that fits in the back. For this reason, when vitamin K1 in the photochemical protein complex is extracted from the quinone pocket, it can be easily replaced with the above-mentioned vitamin K1 analog having quinone. Thus, since the replaced vitamin K1 analog has a pyridine ligand at the terminal, it is complexed with a metal ion on the transparent electrode surface-modified with a molecule having the same pyridine ligand. A photochemical protein complex can be immobilized thereon.

本発明は、光化学系蛋白複合体を透明電極上に固定化した電極とその製造方法と、固定化に必要となる新規化合物とで構成される。本発明の電極を図1に示す。本発明の電極は、光化学系蛋白複合体、一般式(1)に示される新規ビタミンK1類似化合物、ピリジン配位子を持つ透明電極表面吸着配位子、金属イオンとで構成される。本発明の電極は、図2に示すように光化学系蛋白複合体、ビタミンK1類似化合物、ピリジン配位子を持つ透明電極表面吸着配位子、金属イオンの他に、ビステルピリジン配位子を含む構造としても良い。  The present invention comprises an electrode in which a photochemical protein complex is immobilized on a transparent electrode, a production method thereof, and a novel compound required for immobilization. The electrode of the present invention is shown in FIG. The electrode of the present invention is composed of a photochemical protein complex, a novel vitamin K1 analog represented by the general formula (1), a transparent electrode surface adsorbing ligand having a pyridine ligand, and a metal ion. As shown in FIG. 2, the electrode of the present invention comprises a photochemical protein complex, a vitamin K1 analog, a transparent electrode surface adsorbing ligand having a pyridine ligand, a metal ion, and a bistelpyridine ligand. It is good also as a structure including.

製造方法を以下に示す。まず、本発明で新規に開発したビタミンK1類似化合物を、光化学系蛋白複合体の中のビタミンK1と置き換えて光化学系蛋白複合体中に前記ビタミンK1類似化合物を内包させる。上記と並行して、透明電極を修飾する。まず、ピリジン配位子を官能基として含有するカルボン酸、リン酸等の分子を溶かした溶媒に透明電極を浸漬して基板表面を修飾する。次にコバルト、鉄等の金属イオンを溶かした水溶液中に、前記修飾透明電極を浸漬して金属イオンをピリジン部位に配位させる。次に、前記のビタミンK1類似化合物を内包させた光化学系蛋白複合体の水溶液に透明電極を浸漬して光化学系蛋白複合体を透明電極表面に固定化する。以上の製造方法により、図1に示す光化学系蛋白複合体を透明電極に固定化した電極を作製できる。  The manufacturing method is shown below. First, the vitamin K1 analog compound newly developed in the present invention is replaced with vitamin K1 in the photochemical protein complex, and the vitamin K1 analog compound is encapsulated in the photochemical protein complex. In parallel with the above, the transparent electrode is modified. First, the substrate surface is modified by immersing the transparent electrode in a solvent in which molecules such as carboxylic acid and phosphoric acid containing a pyridine ligand as a functional group are dissolved. Next, the modified transparent electrode is immersed in an aqueous solution in which metal ions such as cobalt and iron are dissolved to coordinate the metal ions to the pyridine moiety. Next, the transparent electrode is immersed in an aqueous solution of the photochemical protein complex containing the vitamin K1 analog and the photochemical protein complex is immobilized on the transparent electrode surface. By the above production method, an electrode in which the photochemical protein complex shown in FIG. 1 is immobilized on a transparent electrode can be produced.

本発明で用いる透明電極は、インジウムスズ酸化物(ITO)電極またはフッ素ドープ酸化スズ(FTO)電極であることが好ましい。特に、インジウムスズ酸化物(ITO)電極であることが好ましい。  The transparent electrode used in the present invention is preferably an indium tin oxide (ITO) electrode or a fluorine-doped tin oxide (FTO) electrode. In particular, an indium tin oxide (ITO) electrode is preferable.

本発明で用いる新規ビタミンK1類似化合物は化合物1に示す一般式(1)で示される。R1は水素原子またはメチル基を示す。官能基としてキノンおよびピリジン配位子を有する。R1はメチル基であることが好ましい。R2、R3はピリジン配位子の置換基であり、水素原子またはピリジニル基であることが好ましい。特に、R2、R3はともにピリジニル基であることが好ましい。一般式(1)に示すキノンの代わりに、一般式(2)に示すナフトキノンや、一般式(3)に示すアントラキノンであっても良い。Xは直鎖構造が好ましく、直鎖アルキル鎖、直鎖分岐アルキル鎖またはオリゴエチレングリコール鎖を含むのが好ましい。  The novel vitamin K1 analogue used in the present invention is represented by the general formula (1) shown in Compound 1. R1 represents a hydrogen atom or a methyl group. Has quinone and pyridine ligands as functional groups. R1 is preferably a methyl group. R2 and R3 are substituents of the pyridine ligand, and are preferably a hydrogen atom or a pyridinyl group. In particular, both R2 and R3 are preferably pyridinyl groups. Instead of the quinone shown in the general formula (1), naphthoquinone shown in the general formula (2) or anthraquinone shown in the general formula (3) may be used. X preferably has a linear structure, and preferably contains a linear alkyl chain, a linear branched alkyl chain, or an oligoethylene glycol chain.

光化学系蛋白複合体としてPhotosystemI(PSI)をエーテルで抽出し、PSI中のビタミンK1を取り出した。続いて、化合物5で示されるビタミンK1類似化合物のエタノール/水混合溶媒に、前記ビタミンK1を取り出したPSIを加えて1日間攪拌した。攪拌終了後、遠心分離機にて前記PSIのエタノール/水溶液から限外ろ過法によりPSIを取り出して、ビタミンK1類似化合物が内包されたPSIを得た。波長701nmの光を用いて、PSIの吸光度変化を測定したところ、ビタミンK1を取り出す前のPSI(a)と、ビタミンK1類似化合物でビタミンK1を置き換えたPSI(c)とで波長701nmの光吸収が見られたが、ビタミンK1を除去したPSI(b)で吸光度減少が見られたことから、PSIがビタミンK1類似化合物で置き換えられたことを確認した(図3)。
Photosystem I (PSI) was extracted with ether as a photochemical protein complex, and vitamin K1 in PSI was extracted. Subsequently, the PSI obtained by removing the vitamin K1 was added to an ethanol / water mixed solvent of the vitamin K1 analog represented by the compound 5 and stirred for 1 day. After the stirring was completed, PSI was taken out from the PSI ethanol / water solution by ultrafiltration using a centrifuge to obtain PSI containing a vitamin K1 analog. When the absorbance change of PSI was measured using light with a wavelength of 701 nm, light absorption at a wavelength of 701 nm was obtained with PSI (a) before taking out vitamin K1 and PSI (c) in which vitamin K1 was replaced with a vitamin K1 analog. However, PSI (b) from which vitamin K1 was removed showed a decrease in absorbance, confirming that PSI was replaced with a vitamin K1 analog (FIG. 3).

次に、前記ビタミンK1類似化合物で置き換えられたPSIをITO基板に固定化した。まず、テルピリジン配位子を官能基として含有するカルボン酸分子を溶かした溶媒にITOを浸漬して基板表面を修飾した。次にコバルト、鉄等の金属イオンを溶かした水溶液中に、前記修飾ITOを浸漬して金属イオンをテルピリジン部位に配位させた。次に、前記のビタミンK1類似化合物を内包させたPSIの水溶液にITOを浸漬してPSIをITO表面に固定化した。固定化の確認は、電気化学測定法により行った。前記PSIをITO表面に固定化した電極を用いて、微分パルスボルタンメトリー法で電気化学測定を行ったところ、0.5V付近にPSI由来のポルフィリンのピークを確認することができ(図4)、ITO電極へのPSIの固定化を確認することができた。以上の方法により、図1に示す光化学系蛋白複合体を透明電極に固定化した電極を作製できた。  Next, the PSI replaced with the vitamin K1 analog was immobilized on an ITO substrate. First, the substrate surface was modified by immersing ITO in a solvent in which carboxylic acid molecules containing a terpyridine ligand as a functional group were dissolved. Next, the modified ITO was immersed in an aqueous solution in which metal ions such as cobalt and iron were dissolved to coordinate the metal ions to the terpyridine moiety. Next, ITO was immersed in an aqueous solution of PSI encapsulating the above-mentioned vitamin K1 analog and the PSI was immobilized on the ITO surface. The immobilization was confirmed by an electrochemical measurement method. When an electrochemical measurement was performed by differential pulse voltammetry using an electrode having the PSI immobilized on the ITO surface, a peak of PSI-derived porphyrin can be confirmed in the vicinity of 0.5 V (FIG. 4). It was confirmed that PSI was immobilized on the electrode. By the above method, the electrode which fixed the photochemical protein complex shown in FIG. 1 to the transparent electrode was able to be produced.

本発明の電極は、作製方法が簡便であり実用化し易い点に加えて、量子収率が約100%という従来の技術では成しえなかった光電変換部位を持つ電極を作製できるという点で、太陽電池への応用が考えられ、産業上の利用価値が高いと考えられる。作製方法は、分子の合成に必要な装置と、および光化学系蛋白複合体に分子を組み込む際に必要な遠心分離機とがあれば、あとは大掛かりな装置を必要とせず、基板を溶媒に浸漬していくだけという簡便なものである。また、光化学系蛋白複合体の量子収率が約100%であることから、量子収率が100%に満たない色素増感太陽電池等の人工太陽電池より高い性能を持つ太陽電池用電極へ応用できる可能性が高い。  In addition to the point that the production method of the present invention is simple and easy to put into practical use, it is possible to produce an electrode having a photoelectric conversion site that could not be achieved by the conventional technique with a quantum yield of about 100%. It can be applied to solar cells and has high industrial utility value. The preparation method includes the equipment required for molecule synthesis and the centrifuge required for incorporating the molecule into the photochemical protein complex. After that, the substrate is immersed in a solvent without the need for a large-scale device. It's just a simple thing to do. In addition, since the quantum yield of the photochemical protein complex is about 100%, it is applied to an electrode for a solar cell having higher performance than an artificial solar cell such as a dye-sensitized solar cell whose quantum yield is less than 100%. It is highly possible.

本発明における光化学系蛋白複合体固定化透明電極構造  Photochemical protein complex-immobilized transparent electrode structure in the present invention 本発明における光化学系蛋白複合体固定化透明電極構造  Photochemical protein complex-immobilized transparent electrode structure in the present invention 実施例1における波長701nmの光を用いた光化学系蛋白複合体の吸光度変化  Change in absorbance of photochemical protein complex using light of wavelength 701 nm in Example 1 実施例1における光化学系蛋白複合体固定化透明電極の電気化学測定結果  Electrochemical measurement result of photochemical protein complex-immobilized transparent electrode in Example 1

符号の説明Explanation of symbols

1 透明電極
2 光化学系蛋白複合体
1 Transparent electrode 2 Photochemical protein complex

Claims (9)

光化学系蛋白複合体と透明電極とが分子により接続されていることを特徴とする電極素子構造。  An electrode element structure, wherein a photochemical protein complex and a transparent electrode are connected by molecules. 光化学系蛋白複合体と透明電極とが下記一般式(1)により接続されていることを特徴とする電極素子構造。
(式中、R1、R4、R5はキノンの置換基を示す。R1は水素原子またはメチル基を示す。R2、R3はピリジン配位子の置換基を示す。Xは直鎖アルキル鎖、直鎖分岐アルキル鎖またはオリゴエチレングリコール鎖を示す。)
An electrode element structure, wherein a photochemical protein complex and a transparent electrode are connected by the following general formula (1).
(In the formula, R1, R4, and R5 each represent a quinone substituent. R1 represents a hydrogen atom or a methyl group. R2 and R3 represent a pyridine ligand substituent. X represents a linear alkyl chain and a linear chain. Indicates a branched alkyl chain or oligoethylene glycol chain.)
光化学系蛋白複合体と透明電極とが下記一般式(2)により接続されていることを特徴とする電極素子構造。
(式中、R1は水素原子またはメチル基を示す。R2、R3はピリジン配位子の置換基を示す。Xは直鎖アルキル鎖、直鎖分岐アルキル鎖またはオリゴエチレングリコール鎖を示す。)
An electrode element structure, wherein a photochemical protein complex and a transparent electrode are connected by the following general formula (2).
(In the formula, R1 represents a hydrogen atom or a methyl group. R2 and R3 represent substituents of a pyridine ligand. X represents a linear alkyl chain, a linear branched alkyl chain, or an oligoethylene glycol chain.)
光化学系蛋白複合体と透明電極とが下記一般式(3)により接続されていることを特徴とする電極素子構造。
(式中、R1は水素原子またはメチル基を示す。R2、R3はピリジン配位子の置換基を示す。Xは直鎖アルキル鎖、直鎖分岐アルキル鎖またはオリゴエチレングリコール鎖を示す。)
An electrode element structure, wherein the photochemical protein complex and the transparent electrode are connected by the following general formula (3).
(In the formula, R1 represents a hydrogen atom or a methyl group. R2 and R3 represent substituents of a pyridine ligand. X represents a linear alkyl chain, a linear branched alkyl chain, or an oligoethylene glycol chain.)
光化学系蛋白複合体と透明電極とが下記一般式(4)により接続されていることを特徴とする電極素子構造。
(式中、Rは水素原子またはメチル基を示す。Xは直鎖アルキル鎮、直鎖分岐アルキル鎖またはオリゴエチレングリコール鎖を示す。)
An electrode element structure, wherein the photochemical protein complex and the transparent electrode are connected by the following general formula (4).
(In the formula, R represents a hydrogen atom or a methyl group. X represents a linear alkyl group, a linear branched alkyl chain or an oligoethylene glycol chain.)
光化学系蛋白複合体のキノン類分子が失活、除去されて、分子が組み込まれていることを特徴とする請求項1〜5のいずれか1項に記載の電極素子構造。  6. The electrode element structure according to any one of claims 1 to 5, wherein the quinone molecule of the photochemical protein complex is deactivated and removed to incorporate the molecule. 前記光化学系蛋白複合体がラン藻植物や高等植物のPSI、PSIIまたは紅色細菌の光化学系蛋白複合体であることを特徴とする請求項1〜6のいずれか1項に記載の電極素子構造。  The electrode element structure according to any one of claims 1 to 6, wherein the photochemical protein complex is a PSI, PSII or red bacteria photochemical protein complex of cyanobacteria or higher plants. 前記透明電極がインジウムスズ酸化物(ITO)電極またはフッ素ドープ酸化スズ(FTO)電極であることを特徴とする請求項1〜7のいずれか1項に記載の電極素子構造。  The electrode element structure according to claim 1, wherein the transparent electrode is an indium tin oxide (ITO) electrode or a fluorine-doped tin oxide (FTO) electrode. 請求項1〜8のいずれか1項に記載の前記電極素子構造を光電変換素子として用いた太陽電池  The solar cell which used the said electrode element structure of any one of Claims 1-8 as a photoelectric conversion element.
JP2007047968A 2007-01-29 2007-01-29 Photochemical protein complex immobilized transparent electrode and novel compound Pending JP2008187162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047968A JP2008187162A (en) 2007-01-29 2007-01-29 Photochemical protein complex immobilized transparent electrode and novel compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047968A JP2008187162A (en) 2007-01-29 2007-01-29 Photochemical protein complex immobilized transparent electrode and novel compound

Publications (1)

Publication Number Publication Date
JP2008187162A true JP2008187162A (en) 2008-08-14

Family

ID=39729970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047968A Pending JP2008187162A (en) 2007-01-29 2007-01-29 Photochemical protein complex immobilized transparent electrode and novel compound

Country Status (1)

Country Link
JP (1) JP2008187162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077356A1 (en) * 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077356A1 (en) * 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
JP2015092442A (en) * 2012-11-16 2015-05-14 富士フイルム株式会社 Photoelectric conversion device, dye-sensitized solar battery, metal complex pigment, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar battery
US10460879B2 (en) 2012-11-16 2019-10-29 Fujifilm Corporation Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for producing dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
Saygili et al. Metal coordination complexes as redox mediators in regenerative dye-sensitized solar cells
Liu et al. Engineering of heterojunction-mediated biointerface for photoelectrochemical aptasensing: case of direct Z-scheme CdTe-Bi2S3 heterojunction with improved visible-light-driven photoelectrical conversion efficiency
Barpuzary et al. Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D− π− A-type, carbazole derivative with more than 5% power conversion
Wang et al. Amphiphilic ruthenium sensitizer with 4, 4 ‘-diphosphonic acid-2, 2 ‘-bipyridine as anchoring ligand for nanocrystalline dye sensitized solar cells
Kirner et al. Visible-light-assisted photoelectrochemical water oxidation by thin films of a phosphonate-functionalized perylene diimide plus CoO x cocatalyst
Li et al. One-pot synthesis of mesoporous TiO2 micropheres and its application for high-efficiency dye-sensitized solar cells
Lee et al. Dye sensitized solar cells: TiO2 sensitization with a bodipy-porphyrin antenna system
Park et al. Photoelectrochemical properties of doubly β-functionalized porphyrin sensitizers for dye-sensitized nanocrystalline-TiO2 solar cells
Li et al. Photoelectrochemistry for red cabbage extract as natural dye to develop a dye-sensitized solar cells
San Esteban et al. Graphene–anthocyanin mixture as photosensitizer for dye-sensitized solar cell
Colombo et al. Efficient copper mediators based on bulky asymmetric phenanthrolines for DSSCs
Pomeranc et al. Octahedral Fe (II) and Ru (II) complexes based on a new bis 1, 10-phenanthroline ligand that imposes a well defined axis
Gokilamani et al. Dye-sensitized solar cells with natural dyes extracted from rose petals
JP2009067976A (en) Dyestuff, dye-sensitized solar cell, and method for manufacturing the same
Bold et al. Spectroscopic investigations provide a rationale for the hydrogen-evolving activity of dye-sensitized photocathodes based on a cobalt tetraazamacrocyclic catalyst
Hou et al. A titanium oxo cluster model study of synergistic effect of co-coordinated dye ligands on photocurrent responses
JP2010084003A (en) Dye, dye-sensitized solar cell, and method for manufacturing the same
Subbaiyan et al. Near unity photon-to-electron conversion efficiency of photoelectrochemical cells built on cationic water-soluble porphyrins electrostatically decorated onto thin-film nanocrystalline SnO2 surface
Robinson et al. Photosystem I multilayer films for photovoltage enhancement in natural dye-sensitized solar cells
Chalkias et al. A di-carbazole-based dye as a potential sensitizer for greenhouse-integrated dye-sensitized solar cells
Bartkowiak et al. 2-Thiohydantoin moiety as a novel acceptor/anchoring group of photosensitizers for dye-sensitized solar cells
Mauri et al. Recent investigations on thiocyanate-free ruthenium (II) 2, 2′-bipyridyl complexes for dye-sensitized solar cells
CN102656236A (en) Photoelectric conversion device wherein dye consisting of binuclear ruthenium complex having substituted bipyridyl groups is used, and photochemical cell
KR20110095439A (en) Ammonium imidazolium salt and electrolyte composition for dye-sensitized sollar cells containing the salt
JP5428312B2 (en) Photoelectric conversion element and photochemical battery