JP2008187114A - Chip-type solid electrolytic capacitor and manufacturing method therefor - Google Patents

Chip-type solid electrolytic capacitor and manufacturing method therefor Download PDF

Info

Publication number
JP2008187114A
JP2008187114A JP2007021114A JP2007021114A JP2008187114A JP 2008187114 A JP2008187114 A JP 2008187114A JP 2007021114 A JP2007021114 A JP 2007021114A JP 2007021114 A JP2007021114 A JP 2007021114A JP 2008187114 A JP2008187114 A JP 2008187114A
Authority
JP
Japan
Prior art keywords
anode
cathode
metal
anode lead
cathode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007021114A
Other languages
Japanese (ja)
Inventor
Junichi Sawayama
淳一 澤山
Takehisa Kitamura
武久 北村
Masayoshi Maruyama
雅義 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2007021114A priority Critical patent/JP2008187114A/en
Publication of JP2008187114A publication Critical patent/JP2008187114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein when a side surface of a cathode layer of a capacitor element is connected to a cathode side-surface terminal plate using a conductive adhesive, the conductive adhesive spreads wider than the width of a cathode terminal to seep out from coating of a coating resin because of the variations in the quantity of the conductive adhesive or variation of pressing force to the cathode terminal, in a chip-type solid electrolytic capacitor of a side electrode, which is insulated by the coating resin and is provided with an external connection terminal on a side surface side thereof. <P>SOLUTION: To provide a chip-type solid electrolytic capacitor, wherein a dam-like resin material is provided to the periphery of four sides of the inner surface of the cathode side-surface terminal plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、チップ形固体電解コンデンサおよびその製造方法に関するものである。特に両側面に外部接続端子を設けた側面電極のチップ形固体電解コンデンサおよびその製造方法に関するものである。   The present invention relates to a chip-type solid electrolytic capacitor and a method for manufacturing the same. In particular, the present invention relates to a chip-type solid electrolytic capacitor having a side electrode provided with external connection terminals on both sides and a method for manufacturing the same.

側面電極のチップ形固体電解コンデンサは、陽極端子と陰極端子がコンデンサの側面にあるもので、陽極用リードの一端を埋め込んだコンデンサ素子の、陽極用リードとは反対端面の最外層の陰極層に、導電性接着剤を介して陰極端子に接続するとともに、陽極用リードの引き出し方向とは直角方向の陽極端子と接続し、コンデンサ素子等を絶縁樹脂等からなる外装により被覆していた(特許文献1)。
特開2000−348975号公報
The side electrode chip type solid electrolytic capacitor has an anode terminal and a cathode terminal on the side surface of the capacitor. The capacitor element in which one end of the anode lead is embedded is formed on the outermost cathode layer opposite to the anode lead. In addition to being connected to the cathode terminal via a conductive adhesive, it was connected to the anode terminal in a direction perpendicular to the lead-out direction of the anode lead, and the capacitor element was covered with an exterior made of an insulating resin or the like (Patent Document) 1).
JP 2000-348975 A

解決しようとする問題点は、導電性接着剤の量のばらつき、または陰極端子に押し付ける力のばらつきにより、導電性接着剤が、陰極端子幅以上に広がって、外装樹脂の被覆からはみ出してしまう場合が発生する点である。多数個の側面電極のコンデンサを同時に製造する場合、特にこのばらつきが発生しやすい。導電性接着剤の外装樹脂の被覆からのはみ出しにより、陰極端子の端子強度や耐食性に悪い影響が起こる点である。
The problem to be solved is that the conductive adhesive spreads beyond the width of the cathode terminal due to variations in the amount of the conductive adhesive or the pressing force on the cathode terminal, and protrudes from the coating of the exterior resin. This is the point where this occurs. This variation is particularly likely to occur when a large number of side electrode capacitors are manufactured simultaneously. The protrusion of the conductive adhesive from the coating of the exterior resin has a negative effect on the terminal strength and corrosion resistance of the cathode terminal.

本発明は、弁作用金属の陽極用リードの一端を埋め込んで、弁作用金属の微粉末に、バインダーを混合した粉末をプレス加圧成形し、焼結して形成した陽極焼結体と、この焼結体に陽極酸化皮膜と、固体電解質層と、陰極層とを順次設けたコンデンサ素子と、前記陽極用リードに直接または引き出し金属を介して接続される陽極側面端子と、前記陰極層の側面に導電性接着剤により接続される陰極側面端子板と、前記コンデンサ素子を包み、前記陽極側面端子と前記陰極側面端子板を分離する外装樹脂とを有する固体電解コンデンサにあって、前記陰極側面端子板の内面四方周辺に、ダム状の樹脂材を設けたことを特徴とするチップ形固体電解コンデンサを提供することである。
また、本発明は、金属板表面に格子状樹脂材を設けて、前記金属板を上面開放の容器の底面側に配置する工程と、前記金属板の上方に、弁作用金属の陽極用リードの一端を埋め込んで、弁作用金属の微粉末に、バインダーを混合した粉末をプレス加圧成形し、焼結して形成した陽極焼結体と、この焼結体に陽極酸化皮膜と、固体電解質層と、陰極層とを順次設けたコンデンサ素子を、前記陽極用リード側を上方にして前記格子の位置に合わせて複数つり下げる工程と、前記格子状樹脂材の格子内に、または前記陽極用リード側とは反対面の前記陰極層の表面に設けた導電性接着剤で、前記金属板と前記陰極層とを接続固化する工程と、前記陰極層が埋没するように前記容器内に外装用絶縁樹脂を充填する工程と、途中で前記陽極用リード側を切断しながら前記陽極用リード側と電気的に接続する陽極側面端子を設ける工程と、前記金属板上の前記コンデンサ素子の隣り合う領域を切断する工程とを有するチップ形固体電解コンデンサの製造方法を提供することである。
The present invention includes an anode sintered body formed by embedding one end of a valve action metal anode lead, press-pressing a powder obtained by mixing a binder into a fine powder of a valve action metal, and sintering the powder. A capacitor element in which an anodized film, a solid electrolyte layer, and a cathode layer are sequentially provided on the sintered body, an anode side terminal connected to the anode lead directly or via a lead metal, and a side surface of the cathode layer A cathode side terminal plate connected by a conductive adhesive, and a solid electrolytic capacitor that wraps the capacitor element and has an exterior resin that separates the anode side terminal and the cathode side terminal plate. Another object is to provide a chip-type solid electrolytic capacitor characterized in that a dam-like resin material is provided around the inner surface of the plate.
Further, the present invention provides a step of providing a lattice-shaped resin material on the surface of the metal plate and disposing the metal plate on the bottom surface side of the container with the upper surface open, and an anode lead for valve action metal above the metal plate. An anode sintered body formed by embedding one end, press-pressing and sintering a powder obtained by mixing a binder with a fine powder of a valve action metal, an anodized film, and a solid electrolyte layer And a plurality of capacitor elements sequentially provided with a cathode layer, with the anode lead side facing upward, in accordance with the position of the grid, and in the grid of the grid-like resin material or the anode lead A conductive adhesive provided on the surface of the cathode layer opposite to the side, a step of connecting and solidifying the metal plate and the cathode layer, and insulation for the exterior in the container so that the cathode layer is buried The step of filling the resin and the anode lead side in the middle A method for manufacturing a chip-type solid electrolytic capacitor, comprising: a step of providing an anode side surface terminal electrically connected to the anode lead side while cutting; and a step of cutting adjacent regions of the capacitor element on the metal plate. Is to provide.

本発明のチップ形固体電解コンデンサは、陰極側面端子板の内面四方周辺に、ダム状の樹脂材を設けたことにより、導電性接着剤の、外装樹脂の被覆からのはみ出しを防止することができる。
また、個別の分離は、全て組立後に実施できるので、個別に外部端子の取付が必要なく、その分製造コストの低減をすることができる。
The chip-type solid electrolytic capacitor of the present invention can prevent the conductive adhesive from protruding from the coating of the exterior resin by providing a dam-shaped resin material around the inner surface of the cathode side surface terminal plate. .
In addition, since individual separation can be performed after assembly, it is not necessary to separately attach external terminals, and the manufacturing cost can be reduced correspondingly.

本発明に述べる陽極用リードは、線状または短冊状のタンタル、ニオブ等の弁作用金属からなり、陽極焼結体の一端面より導出させたものである。
本発明に述べる導電性接着剤は、一般的なものが使用可能で、たとえば、有機物からなるバインダを金、銀、銅、ニッケルまたはカーボン等の導電粒子を分散したもので、固化後に導電性が得られるものである。
本発明に述べる陰極側面端子板は、銅、鉄、亜鉛、ニッケル、またはそれらの合金、およびそれらにニッケル、亜鉛、錫などをメッキしたものからなる。合金の例としては真鍮、42アロイなど、メッキ例としてはトタン、ブリキなども含まれる。いずれの金属も延性展性等の加工性に富み、かつ、はんだや錫等のめっき性、導電ペーストとの接続性が良好なものが選択できる。
本発明に述べるダム状の樹脂材は、上記導電接着が外側に広がるのを防止するためのもので、封止材、外装材などから適宜選択できる。樹脂としては、本発明の外装樹脂と同じ樹脂材が好ましく、外装樹脂よりも無機粉末充填率等を上げ、流動性を押さえたものが好ましい。
The anode lead described in the present invention is made of a valve action metal such as linear or strip-shaped tantalum or niobium, and is led out from one end face of the anode sintered body.
As the conductive adhesive described in the present invention, a general adhesive can be used. For example, a conductive binder such as gold, silver, copper, nickel or carbon is dispersed in a binder made of an organic substance. It is obtained.
The cathode side surface terminal plate described in the present invention is made of copper, iron, zinc, nickel, or an alloy thereof, and those obtained by plating them with nickel, zinc, tin or the like. Examples of alloys include brass and 42 alloy, and examples of plating include tin and tinplate. Any metal can be selected which is rich in workability such as ductility and has good plating properties such as solder and tin, and good connectivity with the conductive paste.
The dam-shaped resin material described in the present invention is for preventing the conductive adhesive from spreading outward, and can be appropriately selected from a sealing material, an exterior material, and the like. As the resin, the same resin material as that of the exterior resin of the present invention is preferable, and a resin that increases the filling rate of the inorganic powder and the like and suppresses the fluidity than the exterior resin is preferable.

次に、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明に係るチップ形固体電解コンデンサの概略断面図を示している。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a chip-type solid electrolytic capacitor according to the present invention.

1は、コンデンサ素子で、弁作用金属の線状や短冊薄板状からなる陽極用リード2の一端を埋め込んで、弁作用金属の微粉末に、バインダーを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の陽極焼結体と、この焼結体に陽極酸化皮膜と、二酸化マンガンや導電性高分子等の固体電解質層と、カーボン層や銀層の陰極層とを順次設けたものからなる。固体電解質は、上記陽極酸化皮膜の表面に設けたもので、材質として、二酸化マンガンや導電性高分子を用いることができる。導電性高分子には、チオフェンモノマーを化学酸化重合させて得たポリチオフェンのほか、例えばポリピロール或いはポリアニリンなどを用いることもできる。また、形成方法についても、化学酸化重合に限らず、電解酸化重合によって形成することもできる。   Reference numeral 1 denotes a capacitor element, in which one end of an anode lead 2 made of a valve action metal wire or strip thin plate is embedded, and a powder obtained by mixing a binder with a fine powder of the valve action metal is press-press molded, Sponge-like anode sintered body formed by sintering in vacuum, anodized film on this sintered body, solid electrolyte layer such as manganese dioxide and conductive polymer, cathode layer of carbon layer or silver layer Are sequentially provided. The solid electrolyte is provided on the surface of the anodic oxide film, and manganese dioxide or a conductive polymer can be used as the material. As the conductive polymer, in addition to polythiophene obtained by chemical oxidative polymerization of a thiophene monomer, for example, polypyrrole or polyaniline can be used. The forming method is not limited to chemical oxidative polymerization, and can be formed by electrolytic oxidative polymerization.

3は、陰極側面端子板で、厚さが50μmから500μm程度の、銅、鉄、亜鉛、ニッケル、またはそれらの合金、およびそれらにニッケル、亜鉛、錫などをメッキしたものからなる。合金の例としては真鍮、42アロイなど、メッキ例としてはトタン、ブリキなども含まれる。いずれの金属も延性展性等の加工性に富み、かつ、はんだや錫等のめっき性が良好なものが選択できる。導電性接着剤4により、陽極用リード2側とは反対のコンデンサ素子端面と電気的に接続している。陰極側面端子板の内面は、平面でもかまわないが、数十μm程度の凹凸があると、コンデンサ素子端面と機械的な接続が良好になり好ましい。   Reference numeral 3 denotes a cathode side surface terminal plate made of copper, iron, zinc, nickel, or an alloy thereof having a thickness of about 50 μm to 500 μm, and those plated with nickel, zinc, tin or the like. Examples of alloys include brass and 42 alloy, and examples of plating include tin and tinplate. Any metal can be selected which has excellent workability such as ductility and good plating properties such as solder and tin. The conductive adhesive 4 is electrically connected to the end face of the capacitor element opposite to the anode lead 2 side. The inner surface of the cathode side surface terminal plate may be a flat surface. However, it is preferable that the inner surface of the cathode side surface terminal plate has unevenness of about several tens of μm because mechanical connection with the capacitor element end surface is improved.

5は、ダム状の樹脂材で、陰極側面端子板3の内面端部四方を取り囲むように設け、高さが10μmから500μm程度のもので、導電性接着剤4が陰極側面端子板3からはみ出さないように設けたものである。ダム状の樹脂材の樹脂は、外装樹脂と同系統の材質が好ましく、特に、外装樹脂よりも固化前の粘度が大きいほうが、少ない面積で高い高さが得られるので好ましい。そのため樹脂材に充填剤を多めに混合するか、より高分子化した樹脂を使用するのが好ましい。
また、頂上より陰極側面端子板3の中央に向かって広がった形状にすると、それがカイドとなって、陽極用リード2側とは反対のコンデンサ素子端面側が、陰極側面端子板3(金属板11)との接続のため陰極側面端子板3(金属板11)に接近するとき、陰極側面端子板3の中央に寄りやすくなりこの点において好ましい。
Reference numeral 5 denotes a dam-shaped resin material which is provided so as to surround the inner side end four sides of the cathode side surface terminal plate 3 and has a height of about 10 μm to 500 μm. The conductive adhesive 4 protrudes from the cathode side surface terminal plate 3. It is provided so that it does not. The resin of the dam-like resin material is preferably a material of the same system as the exterior resin. In particular, a higher viscosity before solidification than the exterior resin is preferable because a high height can be obtained with a smaller area. For this reason, it is preferable to add a larger amount of filler to the resin material or to use a polymer having a higher molecular weight.
Further, when the shape expands from the top toward the center of the cathode side surface terminal plate 3, it becomes a guide, and the capacitor element end surface side opposite to the anode lead 2 side is the cathode side surface terminal plate 3 (metal plate 11). ), When approaching the cathode side terminal plate 3 (metal plate 11), it tends to be closer to the center of the cathode side terminal plate 3, which is preferable in this respect.

6は、引き出し金属で、陽極用リード2と溶接などで電気的に接続したものである。板材または線材からなる、銅、鉄、亜鉛、ニッケル、またはそれらの合金、およびそれらにニッケル、亜鉛、錫などをめっきしたものからなる。合金の例としては真鍮、42アロイなど、メッキ例としてはトタン、ブリキなども含まれる。いずれの金属も延性展性等の加工性に富み、かつ、はんだや錫等のめっき性が良好なものが選択できる。図1では、引き出し金属6は板材の例を示しているが、陽極用リード2との接続部分に貫通孔7を設け、陽極用リード2の先端が切断しやすいようにしてもかまわない。引き出し金属6は必ずしも必要ではないが、そのためには、プラズマ処理による酸化被膜の除去や表面にめっきしやすい金属の溶射するなど、陽極用リード2の表面をめっきしやすい状態にする必要がある。   A lead metal 6 is electrically connected to the anode lead 2 by welding or the like. It consists of copper, iron, zinc, nickel, or alloys thereof made of a plate or wire, and those plated with nickel, zinc, tin or the like. Examples of alloys include brass and 42 alloy, and examples of plating include tin and tinplate. Any metal can be selected which has excellent workability such as ductility and good plating properties such as solder and tin. In FIG. 1, the lead metal 6 is an example of a plate material, but a through hole 7 may be provided in a connection portion with the anode lead 2 so that the tip of the anode lead 2 can be easily cut. The lead metal 6 is not necessarily required, but for this purpose, it is necessary to make the surface of the anode lead 2 easy to plate, such as removal of an oxide film by plasma treatment or thermal spraying of a metal that can be easily plated.

8は、外装樹脂で、エポキシ樹脂等の一般的な封止材を用いるが、特に、粘度の低いものほうが樹脂充填のしやすさから好ましい。   8 is an exterior resin, and a general sealing material such as an epoxy resin is used. In particular, a resin having a low viscosity is preferable from the viewpoint of easy resin filling.

9は、陽極側面端子で、厚さが50μmから500μm程度の金属からなる。金属板でもかまわないが、電解めっきにより形成する。その場合、下地に無電解めっき層10を設ける。   Reference numeral 9 denotes an anode side surface terminal made of a metal having a thickness of about 50 μm to 500 μm. Although it may be a metal plate, it is formed by electrolytic plating. In that case, the electroless plating layer 10 is provided on the base.

図2は、本発明に係るチップ形固体電解コンデンサの製造に使用する金属板を示している。
11は、金属板で、切断加工後、陰極側面端子板3となるものである。
12は、格子状樹脂材で、切断加工後、ダム状の樹脂材5となるものである。
FIG. 2 shows a metal plate used for manufacturing a chip-type solid electrolytic capacitor according to the present invention.
Reference numeral 11 denotes a metal plate that becomes the cathode side surface terminal plate 3 after cutting.
Reference numeral 12 denotes a lattice-shaped resin material that becomes a dam-shaped resin material 5 after cutting.

図3は、本発明に係るチップ形固体電解コンデンサの製造方法の一例を示している。
図3(a)は、金属板表面に格子状樹脂材を設け、金属板を上面開放の容器の底面側に配置し、その間に格子内に導電性接着剤を設ける工程と、金属板の上方に、コンデンサ素子を、前記陽極用リード側を上方にして前記格子の位置に合わせて複数つり下げる工程とを示している。
図3(b)は、導電性接着剤と、陰極層とを、接続固化し、陰極層が埋没するように容器内に外装用の絶縁樹脂を充填する工程を示している。
図3(c)は、途中で前記陽極用リードまたは前記引き出し金属を切断しながら陽極側面端子を設ける工程を示している。
図3(d)は、金属板上のコンデンサ素子の隣り合う領域を切断する工程を示している。
FIG. 3 shows an example of a method for manufacturing a chip-type solid electrolytic capacitor according to the present invention.
FIG. 3 (a) shows a step of providing a lattice-shaped resin material on the surface of the metal plate, disposing the metal plate on the bottom surface side of the open container, and providing a conductive adhesive in the lattice therebetween, And a step of hanging a plurality of capacitor elements in accordance with the position of the lattice with the anode lead side facing upward.
FIG. 3B shows a process in which the conductive adhesive and the cathode layer are connected and solidified, and the container is filled with an insulating resin so that the cathode layer is buried.
FIG. 3C shows a step of providing an anode side surface terminal while cutting the anode lead or the lead metal in the middle.
FIG. 3D shows a step of cutting adjacent regions of the capacitor element on the metal plate.

まず、図3(a)に示すように、スクリーン印刷等により金属板11の表面に格子状樹脂材12を印刷し、固化する。
次に、金属板11を上面開放の容器13の内底面側に配置する。なお、容器13は、底部と側面部とに分割できるほうが使用しやすい。また、容器13の側面部底部にパッキン14を介して金属板11の周辺部を押さえることにより外装樹脂の流出を防止するのが容易となる。容器13の材質には特に限定はないが、側面部にシリコーン樹脂系の成形体を使用するとパッキン14を省略することができるし、外装樹脂とのはく離性が良好となる。
次に、格子状樹脂材12の個々の格子内に導電性接着剤4をポッテングにより設ける。金属板11を容器13に入れる前にスクリーン印刷等により設けてもかまわない。
コンデンサ素子1は、弁作用金属の陽極用リードの一端を埋め込んで、弁作用金属の微粉末に、バインダーを混合した粉末をプレス加圧成形し、焼結して形成した陽極焼結体に、陽極酸化皮膜と、固体電解質層と、カーボン層や銀層の陰極層とを順次設けた一般的なコンデンサ素子で、格子状樹脂材12の格子の位置に合わせてくし形に成形した引き出し金属6のくし先端側に、陽極用リード2の先端側を溶接し、間を空けて一列に並べ、つり下げる。この列は生産効率により複数列設ける。引き出し金属6を使用しない場合は、板状のステンレス板にコンデンサ素子1の陽極用リードの先端側を溶接し、間を空けて一列に並べ、つり下げる。
First, as shown in FIG. 3A, the lattice-shaped resin material 12 is printed on the surface of the metal plate 11 by screen printing or the like and solidified.
Next, the metal plate 11 is disposed on the inner bottom surface side of the container 13 with the top surface open. The container 13 is easier to use if it can be divided into a bottom part and a side part. Moreover, it becomes easy to prevent the outer resin from flowing out by pressing the peripheral portion of the metal plate 11 through the packing 14 to the bottom of the side surface of the container 13. The material of the container 13 is not particularly limited, but when a silicone resin-based molded body is used for the side surface portion, the packing 14 can be omitted and the peelability from the exterior resin is good.
Next, the conductive adhesive 4 is provided by potting in each lattice of the lattice-shaped resin material 12. The metal plate 11 may be provided by screen printing or the like before being put in the container 13.
Capacitor element 1 has an anode sintered body formed by embedding one end of a valve action metal anode lead, press-pressing a powder mixed with a binder into a fine powder of valve action metal, and sintering. A general capacitor element in which an anodized film, a solid electrolyte layer, and a cathode layer such as a carbon layer or a silver layer are sequentially provided, and a lead metal 6 formed into a comb shape in accordance with the position of the lattice of the lattice-like resin material 12 The tip end side of the anode lead 2 is welded to the tip end side of the comb, arranged in a row with a gap, and suspended. A plurality of rows are provided depending on production efficiency. When the lead metal 6 is not used, the tip side of the anode lead of the capacitor element 1 is welded to a plate-shaped stainless steel plate, arranged in a line with a gap, and suspended.

次に、図3(b)に示すように、コンデンサ素子1を下げて、導電性接着剤4と、コンデンサ素子1の陰極層15とを接続し、固化後、陰極層15が埋没するように容器内に外装樹脂8となる絶縁樹脂を充填する。次に、この絶縁樹脂の表面を表面処理後、下地として5μmから50μm程度の、たとえば銅の無電解めっき層10を設ける。なお、引き出し金属6(引き出し金属6を使用しない場合は、陽極用リード2)を切断後に、たとえば銅の無電解めっき層10を設けてもかまわない。また、導電性接着剤4は、陽極用リード側とは反対面の陰極層の表面に設けておいてもかまわない。   Next, as shown in FIG. 3B, the capacitor element 1 is lowered, the conductive adhesive 4 and the cathode layer 15 of the capacitor element 1 are connected, and after solidification, the cathode layer 15 is buried. The container is filled with an insulating resin to be the exterior resin 8. Next, after the surface of the insulating resin is surface-treated, an electroless plating layer 10 of, for example, copper having a thickness of about 5 to 50 μm is provided as a base. For example, a copper electroless plating layer 10 may be provided after cutting the lead metal 6 (the anode lead 2 when the lead metal 6 is not used). Further, the conductive adhesive 4 may be provided on the surface of the cathode layer opposite to the anode lead side.

次に、図3(c)に示すように、引き出し金属6(引き出し金属6を使用しない場合は、陽極用リード1)を切断後、厚さが50μmから500μm程度の、たとえば銅の電解めっき層9を設ける。また、上層にニッケル、亜鉛、錫などのめっき層を適宜設ける。上記の無電解めっきや電解めっきは、容器の側板を取りはずした後に行ってもかまわない。   Next, as shown in FIG. 3C, after cutting the lead metal 6 (the anode lead 1 when the lead metal 6 is not used), for example, a copper electrolytic plating layer having a thickness of about 50 μm to 500 μm. 9 is provided. In addition, a plating layer of nickel, zinc, tin, or the like is appropriately provided on the upper layer. The above electroless plating or electrolytic plating may be performed after removing the side plate of the container.

次に、図3(d)に示すように、容器13の内底面と金属板11との間に、加熱により接着性が弱くなるタイプの両面接着剤16を設け、金属板11上のコンデンサ素子1の隣り合う領域を、ダイアモンドカッター等で切断する。加熱後、個々のコンデンサを取り出す。図では容器13と金属板11の間に両面接着剤16を設けているが、容器13の代わりに平板であればかまわない。また、図3では、めっき層面のほうから切断しているが、ひっくり返して金属板11の方から切断してもかまわない。 Next, as shown in FIG. 3D, a double-sided adhesive 16 of a type whose adhesiveness is weakened by heating is provided between the inner bottom surface of the container 13 and the metal plate 11, and the capacitor element on the metal plate 11. The adjacent region of 1 is cut with a diamond cutter or the like. After heating, the individual capacitors are removed. Although the double-sided adhesive 16 is provided between the container 13 and the metal plate 11 in the figure, a flat plate may be used instead of the container 13. Moreover, in FIG. 3, although it cut | disconnected from the plating layer surface, you may turn over and cut | disconnect from the direction of the metal plate 11. FIG.

本発明に係るチップ形固体電解コンデンサの概略図を示している。1 shows a schematic view of a chip-type solid electrolytic capacitor according to the present invention. 本発明に係る金属板を示している。1 shows a metal plate according to the present invention. 本発明に係るチップ形固体電解コンデンサの製造方法を示している。1 illustrates a method for manufacturing a chip-type solid electrolytic capacitor according to the present invention.

符号の説明Explanation of symbols

1…コンデンサ素子、2…陽極用リード、3…陰極側面端子板、4…導電性接着剤、5…ダム状の樹脂材、6…引き出し金属、7…貫通孔、8…外装樹脂、9…陽極側面端子、10…無電解めっき層、11…金属板、12…格子状樹脂材、13…容器、14…パッキン、15…陰極層、16…両面接着剤。   DESCRIPTION OF SYMBOLS 1 ... Capacitor element, 2 ... Anode lead | read | reed, 3 ... Cathode side terminal board, 4 ... Conductive adhesive agent, 5 ... Dam-shaped resin material, 6 ... Lead-out metal, 7 ... Through-hole, 8 ... Exterior resin, 9 ... Anode side terminal, 10 ... electroless plating layer, 11 ... metal plate, 12 ... lattice-shaped resin material, 13 ... container, 14 ... packing, 15 ... cathode layer, 16 ... double-sided adhesive.

Claims (2)

弁作用金属の陽極用リードの一端を埋め込んで、弁作用金属の微粉末に、バインダーを混合した粉末をプレス加圧成形し、焼結して形成した陽極焼結体と、この焼結体に陽極酸化皮膜と、固体電解質層と、陰極層とを順次設けたコンデンサ素子と、前記陽極用リードに直接または引き出し金属を介して接続される陽極側面端子と、前記陰極層の側面に導電性接着剤により接続される陰極側面端子板と、前記コンデンサ素子を包み、前記陽極側面端子と前記陰極側面端子板を分離する外装樹脂とを有する固体電解コンデンサにあって、前記陰極側面端子板の内面四方周辺に、ダム状の樹脂材を設けたことを特徴とするチップ形固体電解コンデンサ。   An anode sintered body formed by embedding one end of a valve action metal anode lead, press-pressing and sintering a powder obtained by mixing a binder with a fine powder of the valve action metal, and sintering the sintered body. Capacitor element in which an anodized film, a solid electrolyte layer, and a cathode layer are sequentially provided, an anode side terminal connected to the anode lead directly or through a lead metal, and conductive adhesion to the side of the cathode layer A solid electrolytic capacitor having a cathode side surface terminal plate connected by an agent and an exterior resin that encloses the capacitor element and separates the anode side surface terminal and the cathode side surface terminal plate, A chip-type solid electrolytic capacitor characterized in that a dam-shaped resin material is provided around. 金属板表面に格子状樹脂材を設けて、前記金属板を上面開放の容器の底面側に配置する工程と、
前記金属板の上方に、弁作用金属の陽極用リードの一端を埋め込んで、弁作用金属の微粉末に、バインダーを混合した粉末をプレス加圧成形し、焼結して形成した陽極焼結体と、この焼結体に陽極酸化皮膜と、固体電解質層と、陰極層とを順次設けたコンデンサ素子を、前記陽極用リード側を上方にして前記格子の位置に合わせて複数つり下げる工程と、
前記格子状樹脂材の格子内に、または前記陽極用リード側とは反対面の前記陰極層の表面に設けた導電性接着剤で、前記金属板と前記陰極層とを接続固化する工程と、
前記陰極層が埋没するように前記容器内に外装用絶縁樹脂を充填する工程と、
途中で前記陽極用リード側を切断しながら前記陽極用リード側と電気的に接続する陽極側面端子を設ける工程と、
前記金属板上の前記コンデンサ素子の隣り合う領域を切断する工程とを有するチップ形固体電解コンデンサの製造方法。
A step of providing a lattice-shaped resin material on the surface of the metal plate and disposing the metal plate on the bottom surface side of the open top container;
An anode sintered body formed by embedding one end of a valve action metal anode lead above the metal plate, press-pressing and sintering a powder obtained by mixing a binder with a fine powder of the valve action metal. And a step of suspending a plurality of capacitor elements sequentially provided with an anodized film, a solid electrolyte layer, and a cathode layer on the sintered body in accordance with the position of the lattice with the anode lead side facing upward,
A step of connecting and solidifying the metal plate and the cathode layer with a conductive adhesive provided in the lattice of the lattice-shaped resin material or on the surface of the cathode layer opposite to the anode lead side;
Filling the container with an exterior insulating resin so that the cathode layer is buried;
Providing an anode side surface terminal electrically connected to the anode lead side while cutting the anode lead side in the middle;
And a step of cutting adjacent regions of the capacitor element on the metal plate.
JP2007021114A 2007-01-31 2007-01-31 Chip-type solid electrolytic capacitor and manufacturing method therefor Pending JP2008187114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021114A JP2008187114A (en) 2007-01-31 2007-01-31 Chip-type solid electrolytic capacitor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021114A JP2008187114A (en) 2007-01-31 2007-01-31 Chip-type solid electrolytic capacitor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2008187114A true JP2008187114A (en) 2008-08-14

Family

ID=39729933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021114A Pending JP2008187114A (en) 2007-01-31 2007-01-31 Chip-type solid electrolytic capacitor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2008187114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204347A (en) * 2014-04-14 2015-11-16 パナソニックIpマネジメント株式会社 Electronic component and manufacturing method for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138710A (en) * 1987-08-18 1989-05-31 Nec Corp Manufacture of chip type solid electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138710A (en) * 1987-08-18 1989-05-31 Nec Corp Manufacture of chip type solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204347A (en) * 2014-04-14 2015-11-16 パナソニックIpマネジメント株式会社 Electronic component and manufacturing method for the same

Similar Documents

Publication Publication Date Title
CN100466124C (en) Solid electrolytic capacitor and method of manufacturing the same
TW516054B (en) Solid electrolytic capacitor
US8064192B2 (en) Solid electrolytic capacitor
JP2008098394A (en) Solid-state electrolytic capacitor
KR100996915B1 (en) Solid electrolytic capacitor and method for preparing the same
CN100565737C (en) Solid electrolytic capacitor And Manufacturing approach
US10079113B2 (en) Capacitor and method of manufacture utilizing membrane for encapsulant thickness control
JP2002134360A (en) Solid electrolytic capacitor and its manufacturing method
CN104701016A (en) Forming method of solid electrolytic capacitor
JP5267593B2 (en) Capacitor element, solid electrolytic capacitor and manufacturing method thereof
JPH0817686A (en) Structure of packaged solid electrolytic capacitor
JP2010080645A (en) Solid electrolytic capacitor and method of manufacturing the same
JP4392960B2 (en) Method for manufacturing tantalum electrolytic capacitor
JP2001244145A (en) Solid electrolytic capacitor
JP2008187114A (en) Chip-type solid electrolytic capacitor and manufacturing method therefor
JP2015220247A (en) Solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor
CN104854670A (en) Solid electrolytic capacitor and method for manufacturing the same
WO2022163644A1 (en) Electrolytic capacitor
JP4810456B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP2008311583A (en) Solid electrolytic capacitor, and its manufacturing method
KR20150125406A (en) Tantalum capacitor and method of preparing the same
KR102281461B1 (en) Solid electrolytic capacitor, and board having the same mounted thereon
JP2008300402A (en) Chip type solid electrolytic capacitor, and manufacturing method thereof
JP5698450B2 (en) Manufacturing method of solid electrolytic capacitor
JP2020167267A (en) Electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20091127

RD02 Notification of acceptance of power of attorney

Effective date: 20091229

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100518

RD02 Notification of acceptance of power of attorney

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Effective date: 20110510

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108