JP2008186592A - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
JP2008186592A
JP2008186592A JP2007016389A JP2007016389A JP2008186592A JP 2008186592 A JP2008186592 A JP 2008186592A JP 2007016389 A JP2007016389 A JP 2007016389A JP 2007016389 A JP2007016389 A JP 2007016389A JP 2008186592 A JP2008186592 A JP 2008186592A
Authority
JP
Japan
Prior art keywords
circuit
current
voltage
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007016389A
Other languages
Japanese (ja)
Other versions
JP4908245B2 (en
Inventor
Toshimitsu Nomura
敏光 野村
Yasuhiro Sugimoto
康浩 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007016389A priority Critical patent/JP4908245B2/en
Priority to CN 200710145499 priority patent/CN101232172B/en
Publication of JP2008186592A publication Critical patent/JP2008186592A/en
Application granted granted Critical
Publication of JP4908245B2 publication Critical patent/JP4908245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • H02H1/063Arrangements for supplying operative power primary power being supplied by fault current
    • H02H1/066Arrangements for supplying operative power primary power being supplied by fault current and comprising a shunt regulator

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a circuit breaker capable of supplying power to an internal electronic circuit section by an output current from a current transformer installed in an AC electric circuit, and easily obtaining an AC signal waveform corresponding to an AC signal waveform flowing in the electric circuit as an eddy current detection signal waveform and a ground fault detection signal waveform. <P>SOLUTION: The circuit breaker comprises: the current transformer 3 for detecting current flowing in the AC electric circuit 1; a rectification means 4 for rectifying current detected by the current transformer 3; a power circuit 5 for generating a power supply for operation by current outputted from the rectification means; a voltage conversion means 6 for converting current rectified by the rectification means 4 to voltage; and a subtraction circuit 70 for converting to an AC signal waveform corresponding to the waveform of an AC signal flowing in the AC electric circuit 1 by subtracting the half-wave voltage signal of each rectifier detected by the voltage detection means 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電路に流れる電流から変流器を介して内部の電子回路へ電源を供給すると共に、電路に流れる電流量を検出する装置を備えた回路遮断器に関する。   The present invention relates to a circuit breaker provided with a device for supplying power from an electric current flowing through an electric circuit to an internal electronic circuit via a current transformer and detecting an amount of electric current flowing through the electric circuit.

従来、回路遮断器として、交流電路の各相の電流を検出する変流器と、この変流器の2次出力を全波整流する整流回路と、各相の電流に比例した電圧を負電圧として出力するための相電流検出抵抗と、地絡電流検出用として合成相電流レベルを検出する相電流検出抵抗と、各相で検出された負電圧出力を正電圧に変換するためのレベル変換回路と、このレベル変換回路の出力をデジタル信号に変換するためのA/D変換回路と、検出した電流レベルの大きさにより時限を決定するためのマイクロコンピュータと、電路へ接続した電源回路とを備え、電路の各相に流れる電流を検出し、検出した電流レベルに応じて過電流引き外し信号を出力し、開閉手段を介して電路を遮断するように構成した回路遮断器がある(例えば、特許文献1参照)。   Conventionally, as a circuit breaker, a current transformer that detects the current of each phase of the AC circuit, a rectifier circuit that full-wave rectifies the secondary output of this current transformer, and a negative voltage that is proportional to the current of each phase A phase current detection resistor for output as a phase current, a phase current detection resistor for detecting a composite phase current level for ground fault current detection, and a level conversion circuit for converting a negative voltage output detected in each phase into a positive voltage And an A / D conversion circuit for converting the output of the level conversion circuit into a digital signal, a microcomputer for determining a time period according to the magnitude of the detected current level, and a power supply circuit connected to the electric circuit There is a circuit breaker configured to detect a current flowing in each phase of an electric circuit, output an overcurrent trip signal according to the detected current level, and interrupt the electric circuit via an opening / closing means (for example, a patent Reference 1).

特許第3712886号公報(図6)Japanese Patent No. 3712886 (FIG. 6)

特許文献1に示された従来の回路遮断器は、各相の相電流検出抵抗を介して負電圧の半波波形出力信号をレベル変換回路で正電圧の半波波形信号に変換した後、A/D変換回路を介してデジタル信号へ変換し、マイクロコンピュータで演算処理を行うことで過電流検出や地絡検出を行っているが、過電流検出信号と地絡電流検出信号はそれぞれ半波波形であるために、電路に短時間の過電流又は地絡電流が流れた場合に、検出するタイミングによって過電流引き外し動作又は地絡引き外し動作の検出精度が悪くなるという課題があった。   The conventional circuit breaker shown in Patent Document 1 converts a negative voltage half-wave waveform output signal into a positive voltage half-wave waveform signal by a level conversion circuit via a phase current detection resistor of each phase. Overcurrent detection and ground fault detection are performed by converting to a digital signal via the / D conversion circuit and performing calculation processing with a microcomputer, but each of the overcurrent detection signal and the ground fault current detection signal has a half-wave waveform. Therefore, when a short-time overcurrent or ground fault current flows in the electric circuit, there is a problem that the detection accuracy of the overcurrent tripping operation or the ground fault tripping operation is deteriorated depending on the detection timing.

又、過電流検出や地絡電流検出の他の検出機能として、フーリエ変換処理を必要とする高調波電流計測、電路の電流値と電圧値より乗算処理する電力計測等の検出機能の処理を行う場合には、マイクロコンピュータ内部へ取り込む電流検出信号の波形として従来の構成で得られる半波信号波形では処理することができず、別の電流検出用の変流器を追加する必要があるため装置が大型となるという課題があった。   In addition, as other detection functions for overcurrent detection and ground fault current detection, processing of detection functions such as harmonic current measurement that requires Fourier transform processing, power measurement that multiplies the current value and voltage value of the circuit is performed. In this case, the current detection signal waveform to be taken into the microcomputer cannot be processed with the half-wave signal waveform obtained by the conventional configuration, and it is necessary to add another current detection current transformer. There has been a problem that becomes large.

更に、内部の電子回路用の動作用電源は、電路から電源回路を介して供給されていたため、装置の大きさが大きくなるという課題があった。   Further, since the operation power supply for the internal electronic circuit is supplied from the electric circuit via the power supply circuit, there is a problem that the size of the device increases.

この発明は、前述のような従来の回路遮断器の課題を解決するためになされたもので、電路に設置した変流器からの出力電流により、内部の電子回路部への電源を供給すると共に、過電流検出信号波形及び地絡検出信号波形として、電路に流れる交流信号波形に対応した交流信号波形を容易に得ることを可能とし、別の計測用変流器を追加することなく電路に流れる各種の電流量の検出を可能とした回路遮断器を得ることを目的としたものである。   The present invention was made to solve the problems of the conventional circuit breaker as described above, and supplies power to the internal electronic circuit section by the output current from the current transformer installed in the electric circuit. As an overcurrent detection signal waveform and a ground fault detection signal waveform, it is possible to easily obtain an AC signal waveform corresponding to the AC signal waveform flowing in the electric circuit, and it flows in the electric circuit without adding another measurement current transformer. The object of the present invention is to obtain a circuit breaker capable of detecting various amounts of current.

この発明に係る回路遮断器は、交流の各相に対応する複数の単位電路からなる交流電路を開閉する回路遮断器であって、前記複数の単位電路に夫々配設され対応する前記単位電路に流れる電流に応じた出力電流を発生する複数の変流器と、前記変流器の出力電流を整流する整流手段と、前記整流手段により出力された電流を前記各相毎に前記交流の正負に対応する一対の半波電圧信号に変換する電圧変換手段と、前記電圧変換手段により変換された前記一対の半波電圧信号を減算して前記各相に対応する交流電圧信号に変換する減算回路と、前記減算回路により変換された前記交流電圧信号に基づいて前記複数の単位電路に流れる電流値を演算する演算回路と、前記演算回路により演算された値が所定の値以上のときに引外し信号を出力する引外し手段と、前記整流手段の出力電流に基づいて前記減算回路と前記演算回路と前記引外し手段に供給する電源を生成する電源回路と、前記引外し手段により出力された引外し信号に基づいて前記交流電路を遮断する開閉接点を備えたものである。   The circuit breaker according to the present invention is a circuit breaker that opens and closes an AC circuit composed of a plurality of unit circuits corresponding to each phase of the AC, and is disposed in each of the plurality of unit circuits and corresponds to the corresponding unit circuit. A plurality of current transformers for generating an output current corresponding to the flowing current, a rectifying means for rectifying the output current of the current transformer, and a current output by the rectifying means for positive or negative of the alternating current for each phase. A voltage converting means for converting into a corresponding pair of half-wave voltage signals, and a subtracting circuit for subtracting the pair of half-wave voltage signals converted by the voltage converting means into an alternating voltage signal corresponding to each phase; An arithmetic circuit for calculating a current value flowing through the plurality of unit electric circuits based on the AC voltage signal converted by the subtracting circuit, and a trip signal when the value calculated by the arithmetic circuit is equal to or greater than a predetermined value. Output A power supply circuit that generates power to be supplied to the subtracting circuit, the arithmetic circuit, and the tripping means based on an output current of the rectifying means, and a tripping signal output by the tripping means. An open / close contact for interrupting the AC electric circuit is provided.

この発明による回路遮断器は、複数の単位電路に夫々配設され対応する単位電路に流れる電流に応じた出力電流を発生する複数の変流器と、前記変流器の出力電流を整流する整流手段と、前記整流手段により出力された電流を交流の各相毎に前記交流の正負に対応する一対の半波電圧信号に変換する電圧変換手段と、前記電圧変換手段により変換された前記一対の半波電圧信号を減算して前記各相に対応する交流電圧信号に変換する減算回路と、前記減算回路により変換された前記交流電圧信号に基づいて前記複数の単位電路に流れる電流値を演算する演算回路と、前記演算回路により演算された値が所定の値以上のときに引外し信号を出力する引外し手段と、前記整流手段の出力電流に基づいて前記減算回路と前記演算回路と前記引外し手段に供給する電源を生成する電源回路と、前記引外し手段により出力された引外し信号に基づいて前記交流電路を遮断する開閉接点を備えているので、電路へ設置した変流器によりこの変流器からの出力電流により、内部の電子回路部への電源を供給すると共に、過電流検出信号波形及び地絡検出信号波形として電路に流れる交流信号波形に対応した交流信号波形を容易に得ることが可能となり、電路に短時間の過電流または地絡電流が流れた場合でも過電流引き外し動作または地絡引き外し動作の検出精度を向上させることが可能となる。更に電路に流れる各種の電流量の検出も容易に行うことが可能となる。   A circuit breaker according to the present invention includes a plurality of current transformers that are respectively provided in a plurality of unit electric circuits and generate an output current corresponding to a current flowing through the corresponding unit electric circuit, and a rectifier that rectifies the output current of the current transformer Means, voltage converting means for converting the current output by the rectifying means into a pair of half-wave voltage signals corresponding to the positive and negative of the alternating current for each phase of alternating current, and the pair of voltage converted by the voltage converting means A subtracting circuit that subtracts a half-wave voltage signal to convert it to an AC voltage signal corresponding to each phase, and calculates a current value that flows through the plurality of unit circuits based on the AC voltage signal converted by the subtracting circuit. An arithmetic circuit; tripping means for outputting a trip signal when a value calculated by the arithmetic circuit is equal to or greater than a predetermined value; and the subtracting circuit, the arithmetic circuit and the tripping circuit based on an output current of the rectifying means. Remover A power supply circuit for generating power to be supplied to the power supply circuit and an open / close contact for interrupting the AC circuit based on the trip signal output by the tripping means. It is possible to easily obtain an AC signal waveform corresponding to the AC signal waveform flowing in the electric circuit as the overcurrent detection signal waveform and the ground fault detection signal waveform while supplying power to the internal electronic circuit unit by the output current from the device. This makes it possible to improve the detection accuracy of the overcurrent tripping operation or the ground fault tripping operation even when a short overcurrent or ground fault current flows in the electric circuit. Furthermore, it is possible to easily detect various current amounts flowing in the electric circuit.

実施の形態1.
図1はこの発明の実施の形態1に於ける回路遮断器を示すブロック図である。図1に於いて、回路遮断器の開閉接点2は、3極の開閉接点を備え、夫々単位電路である第1相交流電路1a、第2相交流電路1b、第3相交流電路1cからなる三相の交流電路1に接続されており、電磁装置11が付勢されると開路して交流電路1を遮断する。変流器3は、第1相交流電路1a、第2相交流電路1b、第3相交流電路1cに夫々設けられた第1相変流器3a、第2相変流器3b、第3相変流器3cからなり、交流電路1の電流に比例した電流信号を出力する。
Embodiment 1 FIG.
1 is a block diagram showing a circuit breaker according to Embodiment 1 of the present invention. In FIG. 1, the switching contact 2 of the circuit breaker has a three-pole switching contact, and includes a first phase AC circuit 1a, a second phase AC circuit 1b, and a third phase AC circuit 1c, which are unit circuits. When the electromagnetic device 11 is energized, the circuit is opened and the AC circuit 1 is cut off. The current transformer 3 includes a first phase current transformer 3a, a second phase current transformer 3b, and a third phase provided in the first phase AC circuit 1a, the second phase AC circuit 1b, and the third phase AC circuit 1c, respectively. It consists of a current transformer 3c and outputs a current signal proportional to the current in the AC circuit 1.

整流手段としての整流回路4は、変流器3から出力された電流信号を全波整流し、電源回路5へ入力する。電源回路5は、整流回路4からの入力に基づいて回路遮断器内部の電子回路に用いる動作電源を生成し、後述の、減算回路手段70、加算回路12、A/D変換回路8、マイクロコンピュータ(以下、CPUと称する)9、及び電磁装置11等へ動作電力を供給する。   The rectifier circuit 4 as the rectifier means performs full-wave rectification on the current signal output from the current transformer 3 and inputs the current signal to the power supply circuit 5. The power supply circuit 5 generates an operation power supply used for an electronic circuit inside the circuit breaker based on the input from the rectifier circuit 4, and includes a subtractor circuit means 70, an adder circuit 12, an A / D converter circuit 8, and a microcomputer, which will be described later. Operating power is supplied to 9 (hereinafter referred to as CPU) 9, electromagnetic device 11 and the like.

電流検出抵抗6は、第1相変流器3aに対応する第1相電流検出抵抗6a、6b、第2相変流器3bに対応する第2相電流検出抵抗6c、6d、及び第3相変流器3cに対応する第3相電流検出抵抗6e、6fにより構成されており、第1相変流器3a、第2相変流器3b、第3相変流器3cにより検出した第1相交流電路1a、第2相交流電路1b、第3相交流電路1cの夫々の電流に対応する電流信号を、電圧信号に夫々変換する。電流検出抵抗6により変換される電圧信号は、第1相電流検出抵抗6a、6b、第2相電流検出抵抗6c、6d、第3相電流検出抵抗6e、6fの夫々の両端に、負電圧の半波電圧波形として出力される。この発明に於いて、電流検出抵抗6は、整流回路により出力された電流を交流の各相毎に交流の正負に対応する一対の半波電圧信号に変換する電圧変換手段を構成する。   The current detection resistor 6 includes first phase current detection resistors 6a and 6b corresponding to the first phase current transformer 3a, second phase current detection resistors 6c and 6d corresponding to the second phase current transformer 3b, and a third phase. The first phase current detector 3e, the second phase current transformer 3b, and the third phase current transformer 3c detected by the third phase current detector resistors 6e and 6f corresponding to the current transformer 3c. Current signals corresponding to the currents of the phase AC circuit 1a, the second phase AC circuit 1b, and the third phase AC circuit 1c are converted into voltage signals, respectively. The voltage signal converted by the current detection resistor 6 is a negative voltage across each of the first phase current detection resistors 6a and 6b, the second phase current detection resistors 6c and 6d, and the third phase current detection resistors 6e and 6f. Output as a half-wave voltage waveform. In the present invention, the current detection resistor 6 constitutes voltage conversion means for converting the current output from the rectifier circuit into a pair of half-wave voltage signals corresponding to the positive and negative of the alternating current for each phase of the alternating current.

減算回路70は、第1相交流電路1a、第2相交流電路1b、第3相交流電路1cに夫々対応する第1相減算回路70a、第2相減算回路70b、第3相減算回路70cにより構成されている。図2に第1相減算回路70aの構成を示す。図2に示すように、減算回路70aは、差動増幅回路7gを備える。この差動増幅回路7gは、第1相電流検出抵抗6a、6bの夫々の両端に発生した負電圧の半波電圧波形を入力信号として増幅するための増幅器7aと、この増幅器7aの増幅率を決定するための増幅率設定手段である抵抗7b、7c、7d、7eと、増幅器7aからの出力信号の直流電圧出力値を決定する直流基準電圧手段7fとにより構成されている。   The subtraction circuit 70 includes a first phase subtraction circuit 70a, a second phase subtraction circuit 70b, and a third phase subtraction circuit 70c corresponding to the first phase AC circuit 1a, the second phase AC circuit 1b, and the third phase AC circuit 1c, respectively. It is configured. FIG. 2 shows the configuration of the first phase subtraction circuit 70a. As shown in FIG. 2, the subtraction circuit 70a includes a differential amplifier circuit 7g. The differential amplifier circuit 7g includes an amplifier 7a for amplifying a negative half-wave voltage waveform generated at both ends of the first phase current detection resistors 6a and 6b as an input signal, and an amplification factor of the amplifier 7a. It comprises resistors 7b, 7c, 7d and 7e which are amplification factor setting means for determining, and DC reference voltage means 7f which determines the DC voltage output value of the output signal from the amplifier 7a.

抵抗7h、7iとツェナーダイオード7j、7kは、差動増幅回路7gの過電圧入力に対する過電圧保護手段を構成しており、その抵抗7h、7iの一端は、夫々第1相電流検出抵抗6a、6bの一端に接続され、他端はツェナーダイオード7j、7kの陽極側に夫々接続されている。ツェナーダイオード7j、7iの陰極側は、夫々第1相電流検出抵抗6a、6bの他端と共に接地されている。   The resistors 7h and 7i and the Zener diodes 7j and 7k constitute an overvoltage protection means against the overvoltage input of the differential amplifier circuit 7g, and one ends of the resistors 7h and 7i are respectively connected to the first phase current detection resistors 6a and 6b. The other end is connected to the anode side of the Zener diodes 7j and 7k. The cathode sides of the Zener diodes 7j and 7i are grounded together with the other ends of the first phase current detection resistors 6a and 6b, respectively.

第2相減算回路70b、及び第3相減算回路70cの入力側は、夫々対応する第2相電流検出抵抗6c、6dの一端、及び第3相電流検出抵抗7e、7fの一端に接続されている。第2相減算回路70b、及び第3相減算回路70cのその他の構成は、第1相減算回路70aの構成と同様である。   The input sides of the second phase subtraction circuit 70b and the third phase subtraction circuit 70c are connected to one end of the corresponding second phase current detection resistors 6c and 6d and one end of the third phase current detection resistors 7e and 7f, respectively. Yes. Other configurations of the second phase subtracting circuit 70b and the third phase subtracting circuit 70c are the same as the configurations of the first phase subtracting circuit 70a.

今、第1相変流器3aの出力電流を(a1)、第1相電流検出抵抗6a、6bの両端間の電圧を夫々(b1)、(c1)、直流基準電圧電圧手段7fの直流基準電圧をV1とすると、電圧(b1)、(c1)が第1相減算回路70aの各入力端子に印加され、次の(式1)に示される出力電圧(d1)が出力される。
(d1)=(b1)−(c1)+V1 (式1)
Now, the output current of the first phase current transformer 3a is (a1), the voltages between both ends of the first phase current detection resistors 6a and 6b are (b1) and (c1), respectively, and the DC reference voltage of the DC reference voltage voltage means 7f. When the voltage is V1, the voltages (b1) and (c1) are applied to the input terminals of the first phase subtracting circuit 70a, and the output voltage (d1) shown in the following (Equation 1) is output.
(D1) = (b1)-(c1) + V1 (Formula 1)

図3は、第1相変流器3aの出力電流(a1)、第1相電流検出抵抗6a、6bの両端間の電圧(b1)、(c1)、第1相減算回路70aの出力(d1)の波形を夫々示す。
図3に示すように、第1相減算回路70aの出力電圧(d1)は、第1相変流器3aの出力電流(a1)に対応した位相の波形を備え、且つ、その値が直流基準電圧7fの直流基準電圧V1により正側にシフトされた直流となる。同様に、第2相減算回路70bの出力(d2)、第3相減算回路70cの出力は、夫々変流器3b、3cの出力電流(a2)、(a3)に対応した位相の交流成分の波形を備え、且つその値が直流基準電源V1の値だけ正側にシフトされた直流となる。これにより、負電圧信号を入力することができない後述のA/D変換回路8へ、各減算回路70a、70b、70cの出力電圧(d1)、(d2)、(d3)を直接入力することが可能となる。加算回路12は、第1相減算回路70a、第2相減算回路70b、第3相減算回路70cの各出力電圧(d1)、(d2)、(d3)が入力され、これらの出力電圧を加算して出力電圧(e)を出力する。
3 shows the output current (a1) of the first phase current transformer 3a, the voltages (b1) and (c1) across the first phase current detection resistors 6a and 6b, and the output (d1) of the first phase subtraction circuit 70a. ) Respectively.
As shown in FIG. 3, the output voltage (d1) of the first phase subtraction circuit 70a has a waveform having a phase corresponding to the output current (a1) of the first phase current transformer 3a, and the value is a DC reference. The direct current is shifted to the positive side by the direct current reference voltage V1 of the voltage 7f. Similarly, the output (d2) of the second phase subtracting circuit 70b and the output of the third phase subtracting circuit 70c are AC component components having phases corresponding to the output currents (a2) and (a3) of the current transformers 3b and 3c, respectively. The waveform has a waveform and its value is a direct current shifted to the positive side by the value of the direct current reference power source V1. As a result, the output voltages (d1), (d2), and (d3) of the subtracting circuits 70a, 70b, and 70c can be directly input to the A / D conversion circuit 8 to be described later, which cannot input a negative voltage signal. It becomes possible. The adding circuit 12 receives the output voltages (d1), (d2), and (d3) of the first phase subtracting circuit 70a, the second phase subtracting circuit 70b, and the third phase subtracting circuit 70c, and adds these output voltages. Output voltage (e).

図4は、変流器3の出力電流の波形に対して減算回路7及び加算回路12から出力される出力電圧の波形の関係を示したものであり、図4の(a)は第1相変流器3a、第2相変流器3b、第3相変流器3cの出力電流(a1)、(a2)、(a3)を示し、図4の(d)は第1相減算回路70a、第2相減算回路70b、第3相減算回路70cの出力電圧(d1)、(d2)、(d3)を示し、図4の(e)は加算回路12の出力電圧(e)を示している。又、図4の(a)、(d)、(e)は、交流電路1の三相交流電流が三相定常負荷時(A)、三相過負荷時(B)、及び交流電路1の何れか1極が地絡した場合の単極地絡時(C)に分けて、夫々示している。   FIG. 4 shows the relationship of the waveform of the output voltage output from the subtraction circuit 7 and the addition circuit 12 with respect to the waveform of the output current of the current transformer 3, and (a) of FIG. The output currents (a1), (a2), and (a3) of the current transformer 3a, the second phase current transformer 3b, and the third phase current transformer 3c are shown. FIG. 4 (d) shows the first phase subtraction circuit 70a. 4 shows the output voltages (d1), (d2), and (d3) of the second-phase subtracting circuit 70b and the third-phase subtracting circuit 70c, and (e) of FIG. 4 shows the output voltage (e) of the adding circuit 12. Yes. 4A, 4D, and 4E show the three-phase AC current of the AC circuit 1 when the three-phase steady load (A), the three-phase overload (B), and the AC circuit 1 Each of the poles is shown separately in the case of a single-pole ground fault (C) when a ground fault occurs.

即ち、図4に於いて、三相定常負荷時(A)の場合、夫々の減算回路70a、70b、70cの出力電圧(d1)、(d2)、(d3)を加算した加算回路12の出力電圧(e)は、図4の(e)に示すように一定値Veを有する直流電圧となる。三相過負荷時(B)の場合、交流電路1の各相の交流電路1a、1b、1cに過電流が流れるので、夫々の変流器3a、3b、3cの出力電流(a1)、(a2)、(a3)の振幅は大きくなり、従って各相の減算回路70a、70b、70cの出力電圧(d1)、(d2)、(d3)の交流成分の振幅は、過電流検出しきい値Hoを超えることとなる。又、交流電路1の単極地絡時(C)の場合は、図4の(e)に示すように、その単極分のみが交流成分として加算回路12の出力(e)に現れ、しかもその振幅の値は地絡検出しきい値Hgを超過することとなる。   That is, in FIG. 4, in the case of three-phase steady load (A), the output of the adder circuit 12 obtained by adding the output voltages (d1), (d2), and (d3) of the subtractor circuits 70a, 70b, and 70c. The voltage (e) is a DC voltage having a constant value Ve as shown in FIG. In the case of three-phase overload (B), since overcurrent flows through the AC circuits 1a, 1b, and 1c of each phase of the AC circuit 1, the output currents (a1) and (a) of the respective current transformers 3a, 3b, and 3c ( The amplitudes of a2) and (a3) are large, and therefore the amplitudes of the AC components of the output voltages (d1), (d2), and (d3) of the subtracting circuits 70a, 70b, and 70c of the respective phases are overcurrent detection threshold values. It will exceed Ho. In the case of a single-pole ground fault (C) in the AC circuit 1, only the single-pole component appears as an AC component at the output (e) of the adder circuit 12 as shown in FIG. The amplitude value exceeds the ground fault detection threshold Hg.

図1に戻り、変圧器13は、入力端子が交流電路1の電路間に接続され、出力端子が電圧信号入力回路14に接続されている。電圧信号入力回路14は、変圧器13からの出力信号を受け取り、その出力信号に基づいて交流電路1の電路間の電圧に対応した電圧信号を出力する。A/D変換回路8は、夫々アナログ信号である減算回路70の出力電圧(d1)、(d2)、(d3)、加算回路12の出力信号(e)、及び電圧信号入力回路14の出力である電圧信号が入力され、これらの信号を夫々デジタル信号に変換し、CPU9に入力する。CPU9は、入力された夫々のデジタル信号に基づいて、交流電路1の過負荷の有無、地絡故障の有無等をデジタル処理により検出する。又、CPU9は、電圧信号入力回路14の出力信号に基づくデジタル信号に基づいて、交流電路1の電圧値、周波数等を演算処理し、この電圧値と周波数値、及び変流器3の出力電流に基づくデジタル信号とにより、交流電路1の高調波電流、電力値、電力量等を演算する。   Returning to FIG. 1, the transformer 13 has an input terminal connected between the AC circuits 1 and an output terminal connected to the voltage signal input circuit 14. The voltage signal input circuit 14 receives the output signal from the transformer 13 and outputs a voltage signal corresponding to the voltage between the AC circuits 1 based on the output signal. The A / D conversion circuit 8 is an output voltage (d1), (d2), (d3) of the subtraction circuit 70, an output signal (e) of the addition circuit 12, and an output of the voltage signal input circuit 14, which are analog signals. A certain voltage signal is inputted, these signals are converted into digital signals, respectively, and inputted to the CPU 9. The CPU 9 detects the presence / absence of an overload of the AC circuit 1 and the presence / absence of a ground fault by digital processing based on each input digital signal. The CPU 9 calculates the voltage value and frequency of the AC circuit 1 based on the digital signal based on the output signal of the voltage signal input circuit 14, and the voltage value and frequency value, and the output current of the current transformer 3. The harmonic current, power value, power amount and the like of the AC circuit 1 are calculated using the digital signal based on the above.

トリガ回路10は、CPU9が交流電路1の過負荷、若しくは地絡事故を検出したとき引外し信号がCPU9から与えられ、電磁装置11を付勢する。付勢された電磁装置11は、その電磁力により開閉接点2を開いて交流電路1を遮断する。7セグメントLED、或いは液晶表示装置等により構成された表示部15は、CPU9の演算結果を表示する。   When the CPU 9 detects an overload of the AC circuit 1 or a ground fault, the trigger circuit 10 is given a trip signal from the CPU 9 and energizes the electromagnetic device 11. The energized electromagnetic device 11 opens the switching contact 2 by the electromagnetic force and interrupts the AC circuit 1. A display unit 15 constituted by a 7-segment LED or a liquid crystal display device displays the calculation result of the CPU 9.

次に、この発明の実施の形態1による回路遮断器の動作を説明する。図1乃至図4に於いて、回路遮断器の開閉接点2が投入されると、第1相交流電路1a、第2相交流電路1b、第3相交流電路1cに流れる三相交流電流に対応して、第1相変流器3a、第2相変流器3b、第3相変流器3cから出力電流(a1)、(a2)、(a3)が出力され、整流回路4により全波整流されて電源回路5に入力される。電源回路5は、この入力に基づいて回路遮断器内部の電子回路に用いる動作電源を生成し、減算回路手段70、加算回路12、A/D変換回路8、マイクロコンピュータ(以下、CPUと称する)9、及び電磁装置11等へ動作電力を供給する。   Next, the operation of the circuit breaker according to Embodiment 1 of the present invention will be described. In FIG. 1 to FIG. 4, when the switching contact 2 of the circuit breaker is turned on, it corresponds to the three-phase AC current flowing in the first-phase AC circuit 1a, the second-phase AC circuit 1b, and the third-phase AC circuit 1c. The output currents (a1), (a2), and (a3) are output from the first phase current transformer 3a, the second phase current transformer 3b, and the third phase current transformer 3c. Rectified and input to the power supply circuit 5. Based on this input, the power supply circuit 5 generates an operation power supply used for an electronic circuit in the circuit breaker, and subtracts the circuit means 70, the adder circuit 12, the A / D conversion circuit 8, and a microcomputer (hereinafter referred to as a CPU). 9, and operating power is supplied to the electromagnetic device 11 and the like.

夫々の変流器3a、3b、3cからの出力電流(a1)、(a2)、(a3)は、電流検出抵抗6を構成する夫々の第1相電流検出抵抗6a、6b、第2相電流検出抵抗6c、6d、及び第3相電流検出抵抗6e、6fにより、前述したように負の半波の電圧出力に変換され、対応する第1相減算回路70a、第2相減算回路70b、第3相減算回路70cに供給される。夫々の減算回路70a、70b、70cは、入力された2つの電圧信号の減算を行い、前述の(式1)に基く出力電圧(d1)、(d2)、(d3)を出力し、A/D変換回路8に与える。一方、加算回路12は、夫々の減算回路70a、70b、70cの出力電圧(d1)、(d2)、(d3)を加算して出力電圧(e)を出力し、これをA/D変換回路8に与える。A/D変換回路8は、アナログの形で入力されたこれらの出力電圧(d1)、(d2)、(d3)、及び(e)をデジタル信号に変換し、CPU9へ入力する。   The output currents (a1), (a2), and (a3) from the current transformers 3a, 3b, and 3c are the first phase current detection resistors 6a and 6b and the second phase current that constitute the current detection resistor 6, respectively. The detection resistors 6c and 6d and the third phase current detection resistors 6e and 6f are converted into negative half-wave voltage outputs as described above, and the corresponding first phase subtraction circuit 70a, second phase subtraction circuit 70b, This is supplied to the three-phase subtracting circuit 70c. Each of the subtracting circuits 70a, 70b, and 70c subtracts the two input voltage signals, and outputs the output voltages (d1), (d2), and (d3) based on the above (Equation 1). This is given to the D conversion circuit 8. On the other hand, the adding circuit 12 adds the output voltages (d1), (d2), and (d3) of the respective subtracting circuits 70a, 70b, and 70c, and outputs an output voltage (e), which is output to the A / D conversion circuit. Give to 8. The A / D conversion circuit 8 converts these output voltages (d1), (d2), (d3), and (e) input in analog form into digital signals and inputs them to the CPU 9.

今、交流電路1に異常がなく、且つその三相負荷が定常状態にあるとすると、図4の(A)に於ける(d)に示すように、第1相減算回路70a、第2相減算回路70b、第3相減算回路70cの出力電圧(d1)、(d2)、(d3)は、過電流検出しきい値Hoを超過することはない。従って、CPU9が過電流を検出することはなく、トリガ回路10は電磁装置11を付勢せず、開閉接点2は開路しない。   Assuming that there is no abnormality in the AC circuit 1 and the three-phase load is in a steady state, as shown in (d) in FIG. 4A, the first phase subtraction circuit 70a, the second phase The output voltages (d1), (d2), and (d3) of the subtraction circuit 70b and the third phase subtraction circuit 70c do not exceed the overcurrent detection threshold value Ho. Therefore, the CPU 9 does not detect an overcurrent, the trigger circuit 10 does not energize the electromagnetic device 11, and the switching contact 2 is not opened.

又、CPU9は、入力された出力電圧(d1)、(d2)、(d3)、及び(e)に基づいて、交流電路1の電圧値、電流値、周波数、更には、高調波電流、電力値、電力量等を演算処理し、表示部15はその演算結果を表示する。これにより交流電路1の通電情報が簡単な構成で計測でき、且つその表示をすることができる。   Further, the CPU 9 determines the voltage value, current value, frequency, harmonic current, power of the AC circuit 1 based on the input output voltages (d1), (d2), (d3), and (e). A value, electric energy, etc. are calculated and the display unit 15 displays the calculation result. As a result, the energization information of the AC circuit 1 can be measured with a simple configuration and displayed.

次に、交流電路1に過負荷等による過電流が流れたとすると、図4の(B)に於ける(a)に示すように、第1相変流器3a、第2相変流器3b、第3相変流器3cの出力電流(a1)、(a2)、(a3)は、定常時よりも大きな値となる。従って、第1相減算回路70a、第2相減算回路70b、第3相減算回路70cの出力電圧(d1)、(d2)、(d3)に基づいて、A/D変換回路8とCPU9とで構成された演算回路により演算した各相に流れる電流量は、過電流検出しきい値Hoを超過することになる。CPU9は、これにより過電流を検出し、引き外し信号をトリガ回路10に与える。トリガ回路10は、そのトリガ信号を受けて電磁装置11を付勢し、開閉接点2を開路して交流電路1を遮断する。このように、電源回路5に供給する整流電流を電圧変換手段である電流検出抵抗6により半波電圧信号として検出し、この検出した半波電圧信号を減算回路70により交流電圧信号に変換して演算することにより、電路に流れる過電流を高精度で検出することが可能となる。   Next, if an overcurrent due to overload or the like flows in the AC circuit 1, as shown in FIG. 4B, (a), the first phase current transformer 3a and the second phase current transformer 3b. The output currents (a1), (a2), and (a3) of the third phase current transformer 3c are larger than those in the steady state. Therefore, the A / D conversion circuit 8 and the CPU 9 are based on the output voltages (d1), (d2), and (d3) of the first phase subtraction circuit 70a, the second phase subtraction circuit 70b, and the third phase subtraction circuit 70c. The amount of current flowing through each phase calculated by the configured arithmetic circuit exceeds the overcurrent detection threshold Ho. Thus, the CPU 9 detects an overcurrent and gives a trip signal to the trigger circuit 10. The trigger circuit 10 receives the trigger signal, energizes the electromagnetic device 11, opens the switching contact 2, and interrupts the AC circuit 1. Thus, the rectified current supplied to the power supply circuit 5 is detected as a half-wave voltage signal by the current detection resistor 6 which is a voltage conversion means, and the detected half-wave voltage signal is converted into an AC voltage signal by the subtraction circuit 70. By calculating, it becomes possible to detect the overcurrent flowing through the electric circuit with high accuracy.

又、交流電路1のうち、何れかの相の交流電路、例えば第1相交流電路1aに地絡事故が発生したとすると、図4の(C)に於ける(a)に示すように、第1相変流器3aの出力電流(a1)と、第2相変流器3b及び第3相変流器3cの出力電流(a2)、(a3)との振幅のバランスが崩れる。従って、第1相減算回路70a、第2相減算回路70b、第3相減算回路70cの出力電圧(d1)、(d2)、(d3)の加算波形である加算回路12の出力電圧(e)の波形を、A/D変換回路8とCPU9で構成される演算回路により演算した地絡電流量は、地絡検出しきい値Hgを超過することとなる。CPU9は、これにより単極地絡事故を検出し、引き外し信号をトリガ回路10に与える。トリガ回路10は、そのトリガ信号を受けて電磁装置11を付勢し、開閉接点2を開路して交流電路1を遮断する。尚、第1相交流電路1a以外の地絡事故であっても、前述と同様にして地絡事故を検出して交流電路1を遮断することができる。   Also, if a ground fault occurs in any phase of the AC circuit 1, for example, the first phase AC circuit 1a, as shown in (a) of FIG. The amplitude balance between the output current (a1) of the first phase current transformer 3a and the output currents (a2) and (a3) of the second phase current transformer 3b and the third phase current transformer 3c is lost. Accordingly, the output voltage (e) of the adder circuit 12 which is the added waveform of the output voltages (d1), (d2), and (d3) of the first phase subtractor circuit 70a, the second phase subtractor circuit 70b, and the third phase subtractor circuit 70c. The ground fault current amount calculated by the arithmetic circuit constituted by the A / D conversion circuit 8 and the CPU 9 exceeds the ground fault detection threshold value Hg. Thus, the CPU 9 detects a unipolar ground fault and provides a trip signal to the trigger circuit 10. The trigger circuit 10 receives the trigger signal, energizes the electromagnetic device 11, opens the switching contact 2, and interrupts the AC circuit 1. In addition, even if it is a ground fault other than the first phase AC circuit 1a, it is possible to detect the ground fault and block the AC circuit 1 in the same manner as described above.

以上のようにこの発明の実施の形態1による回路遮断器によれば、交流電路1に流れる電流に基づいて、変流器3を介して電源回路5により内部の電子回路へ電源を供給するとともに、減算回路70により、過電流検出信号波形及び地絡検出信号波形として電路に流れる交流信号波形に対応した交流信号波形を容易に得ることが可能となり、短時間の過電流又は地絡電流が流れた場合でも過電流引き外し動作または地絡引き外し動作の検出精度を向上させることが可能となる。又、交流電路1に流れる各種の電流量として高調波電流計測や電力計測等の検出も容易に行うことが可能となる。   As described above, according to the circuit breaker according to the first embodiment of the present invention, the power supply circuit 5 supplies power to the internal electronic circuit via the current transformer 3 based on the current flowing in the AC circuit 1. The subtracting circuit 70 can easily obtain an AC signal waveform corresponding to an AC signal waveform flowing in the electric circuit as an overcurrent detection signal waveform and a ground fault detection signal waveform, and a short-time overcurrent or ground fault current flows. Even in such a case, the detection accuracy of the overcurrent tripping operation or the ground fault tripping operation can be improved. Further, it is possible to easily detect harmonic current measurement, power measurement, etc. as various current amounts flowing in the AC circuit 1.

この発明の実施の形態1に於ける回路遮断器を示すブロック図である。It is a block diagram which shows the circuit breaker in Embodiment 1 of this invention. 図1の減算回路の構成を示すブロック図である。It is a block diagram which shows the structure of the subtraction circuit of FIG. 図2の減算回路の入出力電圧の関係を示す波形図である。It is a wave form diagram which shows the relationship of the input-output voltage of the subtraction circuit of FIG. この発明の実施の形態1に於ける回路遮断器の減算回路、及び加算回路の入出力電圧を示す波形図である。It is a wave form diagram which shows the subtraction circuit of the circuit breaker in Embodiment 1 of this invention, and the input-output voltage of an addition circuit.

符号の説明Explanation of symbols

1 交流電路
1a 第1相交流電路
1b 第2相交流電路
1c 第3相交流電路
2 開閉接点
3 変流器
3a 第1相変流器
3b 第2相変流器
3c 第3相変流器
4 整流回路
5 電源回路
6 電流検出抵抗
6a 第1相電流検出抵抗
6b 第2相電流検出抵抗
6c 第3相電流検出抵抗
70 減算回路
70a 第1相減算回路
70b 第2相減算回路
70c 第3相減算回路
8 A/D変換回路
9 マイクロコンピュータ
10 トリガ回路
11 電磁装置
12 加算回路
13 変圧器
14 電圧信号入力回路
15 表示部
DESCRIPTION OF SYMBOLS 1 AC circuit 1a 1st phase AC circuit 1b 2nd phase AC circuit 1c 3rd phase AC circuit 2 Switching contact 3 Current transformer 3a 1st phase current transformer 3b 2nd phase current transformer 3c 3rd phase current transformer 4 Rectifier circuit 5 Power supply circuit 6 Current detection resistor 6a First phase current detection resistor 6b Second phase current detection resistor 6c Third phase current detection resistor 70 Subtraction circuit 70a First phase subtraction circuit 70b Second phase subtraction circuit 70c Third phase subtraction Circuit 8 A / D conversion circuit 9 Microcomputer 10 Trigger circuit 11 Electromagnetic device 12 Addition circuit 13 Transformer 14 Voltage signal input circuit 15 Display unit

Claims (4)

交流の各相に対応する複数の単位電路からなる交流電路を開閉する回路遮断器であって、前記複数の単位電路に夫々配設され対応する前記単位電路に流れる電流に応じた出力電流を発生する複数の変流器と、前記変流器の出力電流を整流する整流手段と、前記整流手段により出力された電流を前記各相毎に前記交流の正負に対応する一対の半波電圧信号に変換する電圧変換手段と、前記電圧変換手段により変換された前記一対の半波電圧信号を減算して前記各相に対応する交流電圧信号に変換する減算回路と、前記減算回路により変換された前記交流電圧信号に基づいて前記複数の単位電路に流れる電流値を演算する演算回路と、前記演算回路により演算された値が所定の値以上のときに引外し信号を出力する引外し手段と、前記整流手段の出力電流に基づいて前記減算回路と前記演算回路と前記引外し手段に供給する電源を生成する電源回路と、前記引外し手段により出力された引外し信号に基づいて前記交流電路を遮断する開閉接点を備えたことを特徴とする回路遮断器。   A circuit breaker that opens and closes an AC circuit composed of a plurality of unit circuits corresponding to each phase of the AC, and generates an output current corresponding to a current that flows through the corresponding unit circuit that is disposed in each of the plurality of unit circuits. A plurality of current transformers, rectifying means for rectifying the output current of the current transformer, and a current output by the rectifying means into a pair of half-wave voltage signals corresponding to the positive and negative of the alternating current for each phase. Voltage converting means for converting, a subtracting circuit for subtracting the pair of half-wave voltage signals converted by the voltage converting means to convert to AC voltage signals corresponding to the respective phases, and the converted by the subtracting circuit An arithmetic circuit for calculating a current value flowing through the plurality of unit electric circuits based on an AC voltage signal, a trip means for outputting a trip signal when a value calculated by the arithmetic circuit is a predetermined value or more, and Of rectifying means A power supply circuit that generates power to be supplied to the subtraction circuit, the arithmetic circuit, and the tripping unit based on a force current; and an open / close contact that shuts off the AC circuit based on a trip signal output by the tripping unit A circuit breaker comprising: 前記減算回路は、前記電圧変換手段により変換された一対の半波電圧信号を差動増幅する差動増幅回路と、前記差動増幅回路により増幅する増幅率を設定する増幅率設定手段と、前記半波電圧信号が所定値以上のとき前記差動増幅回路を保護する過電圧保護手段と、前記減算回路が出力する電圧の基準を規定する基準電圧手段とを備えたことを特徴とする請求項1記載の回路遮断器。   The subtraction circuit includes a differential amplifier circuit that differentially amplifies a pair of half-wave voltage signals converted by the voltage converter, an amplification factor setting unit that sets an amplification factor that is amplified by the differential amplifier circuit, 2. An overvoltage protection unit that protects the differential amplifier circuit when a half-wave voltage signal is equal to or greater than a predetermined value, and a reference voltage unit that defines a reference of a voltage output from the subtraction circuit. Circuit breaker as described. 前記減算回路から出力された前記各相に対応する交流電圧信号を加算する加算回路を備え、前記加算回路の出力信号に基づいて前記交流電路の地絡電流を前記演算回路により演算し、この演算した値が所定の値以上のときに前記引外し手段が引外し信号を出力することを特徴とする請求項1又は2に記載の回路遮断器。   An adder circuit for adding an AC voltage signal corresponding to each phase output from the subtractor circuit, and calculating a ground fault current of the AC circuit by the arithmetic circuit based on an output signal of the adder circuit; The circuit breaker according to claim 1 or 2, wherein the trip means outputs a trip signal when the measured value is equal to or greater than a predetermined value. 前記交流電路の電圧を検出する電圧検出手段を備え、前記電圧検出手段により検出した前記交流電路の電圧と前記減算回路から出力された交流電圧信号に基づいて、前記交流電路の電圧、電流、電力、電力量、高調波電流のうちの少なくとも何れか1つを前記演算手段により演算し、その演算結果を表示部により表示させることを特徴とする請求項1乃至3のいずれかに記載の回路遮断器。   Voltage detection means for detecting the voltage of the AC circuit, and based on the voltage of the AC circuit detected by the voltage detection means and the AC voltage signal output from the subtraction circuit, the voltage, current, and power of the AC circuit 4. The circuit interruption according to claim 1, wherein at least one of electric energy and harmonic current is calculated by the calculation means, and the calculation result is displayed on a display unit. vessel.
JP2007016389A 2007-01-26 2007-01-26 Circuit breaker Active JP4908245B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007016389A JP4908245B2 (en) 2007-01-26 2007-01-26 Circuit breaker
CN 200710145499 CN101232172B (en) 2007-01-26 2007-09-14 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016389A JP4908245B2 (en) 2007-01-26 2007-01-26 Circuit breaker

Publications (2)

Publication Number Publication Date
JP2008186592A true JP2008186592A (en) 2008-08-14
JP4908245B2 JP4908245B2 (en) 2012-04-04

Family

ID=39729495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016389A Active JP4908245B2 (en) 2007-01-26 2007-01-26 Circuit breaker

Country Status (2)

Country Link
JP (1) JP4908245B2 (en)
CN (1) CN101232172B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160647A1 (en) * 2011-05-24 2012-11-29 三菱電機株式会社 Electronic circuit breaker
JP2013200225A (en) * 2012-03-26 2013-10-03 Sanken Electric Co Ltd Ac input voltage detection circuit
JP2013223420A (en) * 2012-04-13 2013-10-28 General Electric Co <Ge> Method, device, and system for monitoring current provided to load
WO2015159364A1 (en) * 2014-04-15 2015-10-22 三菱電機株式会社 Circuit breaker

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699674B1 (en) * 2013-11-22 2017-01-24 미쓰비시덴키 가부시키가이샤 Electronic circuit breaker
CN105840174B (en) * 2015-01-15 2021-02-26 中国石油集团长城钻探工程有限公司 Difference sum circuit in lateral logging instrument
KR101956571B1 (en) 2017-12-01 2019-03-11 엘에스산전 주식회사 Earth leakage circuit breaker

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228914A (en) * 1987-03-09 1988-09-22 メルラン、ジェラン Solid tripper of multiposition breaker protecting ac source
JPS63290122A (en) * 1987-05-22 1988-11-28 Terasaki Denki Sangyo Kk Overcurrent releasing device for breaker
JPH05252642A (en) * 1992-03-04 1993-09-28 Mitsubishi Electric Corp Circuit breaker
JPH076670A (en) * 1992-12-28 1995-01-10 Merlin Gerin Electronic tripping device
JPH09322385A (en) * 1996-05-29 1997-12-12 Fuji Electric Co Ltd Circuit breaker
JP2001161023A (en) * 1999-12-01 2001-06-12 Hitachi Ltd Circuit breaker with measuring function
JP2002008510A (en) * 2000-06-16 2002-01-11 Mitsubishi Electric Corp Wiring breaker
JP2002008511A (en) * 2000-06-23 2002-01-11 Mitsubishi Electric Corp Circuit breaker
JP2002083532A (en) * 2000-09-06 2002-03-22 Mitsubishi Electric Corp Circuit breaker and temperature detecting device
JP2003092534A (en) * 2001-09-18 2003-03-28 Nissin Electric Co Ltd A/d converter and protecting relay using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271444A (en) * 1979-07-31 1981-06-02 General Electric Company Ground fault trip mode network for static trip circuit breakers
US5195009A (en) * 1991-08-27 1993-03-16 Siemens Energy & Automation, Inc. Current summing arrangement for ground fault detection
JP3250648B2 (en) * 1996-03-26 2002-01-28 富士電機株式会社 Overcurrent trip device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228914A (en) * 1987-03-09 1988-09-22 メルラン、ジェラン Solid tripper of multiposition breaker protecting ac source
JPS63290122A (en) * 1987-05-22 1988-11-28 Terasaki Denki Sangyo Kk Overcurrent releasing device for breaker
JPH05252642A (en) * 1992-03-04 1993-09-28 Mitsubishi Electric Corp Circuit breaker
JPH076670A (en) * 1992-12-28 1995-01-10 Merlin Gerin Electronic tripping device
JPH09322385A (en) * 1996-05-29 1997-12-12 Fuji Electric Co Ltd Circuit breaker
JP2001161023A (en) * 1999-12-01 2001-06-12 Hitachi Ltd Circuit breaker with measuring function
JP2002008510A (en) * 2000-06-16 2002-01-11 Mitsubishi Electric Corp Wiring breaker
JP2002008511A (en) * 2000-06-23 2002-01-11 Mitsubishi Electric Corp Circuit breaker
JP2002083532A (en) * 2000-09-06 2002-03-22 Mitsubishi Electric Corp Circuit breaker and temperature detecting device
JP2003092534A (en) * 2001-09-18 2003-03-28 Nissin Electric Co Ltd A/d converter and protecting relay using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160647A1 (en) * 2011-05-24 2012-11-29 三菱電機株式会社 Electronic circuit breaker
JP5289648B2 (en) * 2011-05-24 2013-09-11 三菱電機株式会社 Electronic circuit breaker
KR101515321B1 (en) 2011-05-24 2015-04-24 미쓰비시덴키 가부시키가이샤 Electronic circuit breaker
JP2013200225A (en) * 2012-03-26 2013-10-03 Sanken Electric Co Ltd Ac input voltage detection circuit
US9429601B2 (en) 2012-03-26 2016-08-30 Sanken Electric Co., Ltd. Alternating current input voltage detection circuit
JP2013223420A (en) * 2012-04-13 2013-10-28 General Electric Co <Ge> Method, device, and system for monitoring current provided to load
WO2015159364A1 (en) * 2014-04-15 2015-10-22 三菱電機株式会社 Circuit breaker
JPWO2015159364A1 (en) * 2014-04-15 2017-04-13 三菱電機株式会社 Circuit breaker

Also Published As

Publication number Publication date
JP4908245B2 (en) 2012-04-04
CN101232172B (en) 2010-06-02
CN101232172A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4908245B2 (en) Circuit breaker
US9768610B2 (en) Method and circuit arrangement with means for a leakage current compensation in a photovoltaic system with multiple differential current sensors
US10345347B2 (en) Device and method for fault current detection
US7764473B2 (en) Method of detecting a ground fault and electrical switching apparatus employing the same
US20110102958A1 (en) Electrical load center
JP4935455B2 (en) Earth leakage detector
JP6573571B2 (en) Electric leakage relay, electric leakage breaker and control method thereof
KR101045021B1 (en) Distribution board with neutral current detector and zero-phase harmonic active filter
US20200321767A1 (en) Fault-arc detection unit
EP0453196B1 (en) Transformer differential relay
KR101241859B1 (en) Distribution board with zero-phase harmonic active filter
KR101812915B1 (en) Circuit breaker
KR20200093979A (en) Earth leakage circuit breaker(elcb) and method for detecting leakage current
US9726728B2 (en) Switching device having a measuring apparatus
JPH01218319A (en) Circuit breaker
JP4532359B2 (en) DC component detection circuit
JP6193672B2 (en) Three-phase phase loss protection device and three-phase phase loss protection method
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
KR101889535B1 (en) Earth Leakage Breaker
JP5272678B2 (en) Overexcitation detection device
KR100849464B1 (en) A protection relay for preventing over-current caused by harmonic wave
JP5072085B2 (en) Device for detecting resistance ground fault current
JP2010075001A (en) Harmonic relay
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method
EP1455428A2 (en) Electronic tripping device for low-voltage circuit-breakers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4908245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250