JP2008185995A - Mirror reinforcement method, mirror, optical scanner, image reading apparatus and image forming apparatus - Google Patents

Mirror reinforcement method, mirror, optical scanner, image reading apparatus and image forming apparatus Download PDF

Info

Publication number
JP2008185995A
JP2008185995A JP2007021983A JP2007021983A JP2008185995A JP 2008185995 A JP2008185995 A JP 2008185995A JP 2007021983 A JP2007021983 A JP 2007021983A JP 2007021983 A JP2007021983 A JP 2007021983A JP 2008185995 A JP2008185995 A JP 2008185995A
Authority
JP
Japan
Prior art keywords
mirror
reinforcing
reinforcing member
image
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007021983A
Other languages
Japanese (ja)
Other versions
JP5064818B2 (en
Inventor
Tomoya Osugi
友哉 大杉
Nekka Matsuura
熱河 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007021983A priority Critical patent/JP5064818B2/en
Publication of JP2008185995A publication Critical patent/JP2008185995A/en
Application granted granted Critical
Publication of JP5064818B2 publication Critical patent/JP5064818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mirror reinforcement method by which an effective, assured and necessary reinforcement effect is inexpensively available with a small amount of materials, and to provide a mirror which is reinforced by the mirror reinforcement method. <P>SOLUTION: The mirror reinforcement method is used for reinforcing a mirror 1 having a slender reflection face 1a, by which a reinforcement member 2 is fixed on the side face of the mirror 1 with respect of the reflection face 1a, and the reinforcement member 2 satisfies the condition 0.8×Lm≤Lh, where Lm represents the length (mm) of the mirror in the longitudinal direction, Lh represents the length (mm) of the reinforcement member in the longitudinal direction, consequently there is no possibility that a sufficient reinforcement effect is unavailable in spite of the attachment of the reinforcement member, and an effective mirror reinforcement is available. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、反射面が細長く延びた形状のミラーの補強方法、そのミラー補強方法によって補強されたミラー、そのミラーを用いた光走査装置または画像読取装置、その光走査装置または画像読取装置を備えた画像形成装置に関する。   The present invention includes a method for reinforcing a mirror having a shape in which a reflecting surface is elongated, a mirror reinforced by the mirror reinforcing method, an optical scanning device or an image reading device using the mirror, and the optical scanning device or the image reading device. The present invention relates to an image forming apparatus.

電子写真技術を用いた複写機などの画像形成装置では、原稿画像を読み取る画像読取装置や、画像読取装置で読み取ったり、あるいはパーソナルコンピュータ等から送信された出力画像を形成するための画像情報に基づいて、像担持体上に潜像を書き込む光走査装置に、ミラーが用いられている。
これらの画像形成装置に用いられるミラーは、線状の光束、あるいは線状に走査された光束を反射して、光線の方向を変えるのに用いられる。従って、これらのミラーは一般に非常に細長い形状をしており、かつ光を遮らないようにするため、ミラーの両端部近傍のみしか保持できないことが多い。このミラーの形状と保持方法とから、画像形成装置に用いられるミラーは非常に振動しやすい。
In an image forming apparatus such as a copying machine using electrophotographic technology, an image reading apparatus that reads an original image, an image that is read by an image reading apparatus, or an image information for forming an output image transmitted from a personal computer or the like is used. A mirror is used in an optical scanning device that writes a latent image on an image carrier.
Mirrors used in these image forming apparatuses are used to change the direction of light rays by reflecting a linear light beam or a linearly scanned light beam. Accordingly, these mirrors generally have a very long and narrow shape, and in many cases, only the vicinity of both ends of the mirror can be held so as not to block light. Due to the shape of the mirror and the holding method, the mirror used in the image forming apparatus is very likely to vibrate.

画像読取装置や光走査装置のミラーが振動すると、ミラーは両端の保持部を支点に弓状に変形する振動を生じることから、本来平面であるべきミラーが、長手方向に凹型および凸型に周期的に変形し、これに合わせて読み取られる画像情報または像面に書き込まれる画像情報の、ミラー長手方向の倍率や光の線の短手方向への曲がりが周期的なずれを生じてしまう。長手方向の倍率の周期的なずれは、結果として出力画像の線の周期的な揺らぎを生じ、また短手方向への曲がりの周期的なずれは、バンディングと呼ばれる周期的な画像の濃淡を生じ、いずれも画像品質の劣化を招く。   When the mirror of an image reading device or optical scanning device vibrates, the mirror generates a vibration that deforms in an arcuate shape with the holding parts at both ends as fulcrums. Therefore, the magnification of the mirror in the longitudinal direction and the bending of the light line in the short direction of the image information read in accordance with this or the image information written on the image plane cause a periodic shift. Periodic shifts in magnification in the longitudinal direction result in periodic fluctuations in the lines of the output image, and periodic shifts in bending in the short direction cause periodic image shading called banding. Both cause degradation of image quality.

ミラーの振動を低減するためには、ミラーの厚さを厚くすれば良いことは、従来よりよく知られている。ここで、ミラーの材質には、一般にフロートガラスが用いられている。フロートガラスが用いられるのは、その工法から安く形成でき、高い平面度が得られるためである。ミラー反射面に垂直な方向の厚さは、フロートガラスの板材の厚さのまま用いられるが、反射面に平行な方向の幅および長さは、カットして切り出す必要がある。   It has been well known that the thickness of the mirror should be increased in order to reduce the vibration of the mirror. Here, float glass is generally used as the material of the mirror. Float glass is used because it can be formed cheaply from its construction method and high flatness can be obtained. The thickness in the direction perpendicular to the mirror reflecting surface is used as the thickness of the float glass plate, but the width and length in the direction parallel to the reflecting surface must be cut out.

ここで、一般に画像形成装置に用いられるようなミラーの大きさの場合には、板厚が6mm以下の場合には、ダイヤモンドカッター等でガラス面にキズをつけた後、軽く衝撃を与えることで、そのキズに沿って折るようにしてカットを行う。しかしながら、板厚が6mmを超える場合には、上手くキズに沿って折ることが困難となるため、この工法を用いることができず、研削のような方法で切断する必要がある。ガラスは靭性が低い材料であるため、割れたり欠けたりしないようにするため切削速度は非常に遅くなり、結果としてこの工法になると、かなり加工費が高くなってしまう。従って、ミラーを厚くすると、材料費だけでなく、加工工法が変わって加工費がかなり高くなる(後述の補強部材の部品費よりもずっと高い)ため、可能な限りミラーの厚さは6mm以下に留めたいという事情がある。   Here, in the case of the size of a mirror generally used in an image forming apparatus, if the plate thickness is 6 mm or less, the glass surface is scratched with a diamond cutter or the like and then lightly shocked. Then cut along the scratches. However, when the plate thickness exceeds 6 mm, it is difficult to fold along the scratch well, so this method cannot be used and it is necessary to cut by a method such as grinding. Since glass is a material with low toughness, the cutting speed is very slow in order to prevent cracking and chipping, and as a result, the processing cost becomes considerably high when using this method. Therefore, when the mirror is thickened, not only the material cost but also the processing method changes, and the processing cost becomes considerably high (much higher than the parts cost of the reinforcing member described later). Therefore, the mirror thickness should be 6 mm or less as much as possible. There are circumstances that you want to keep.

この問題に対し、ミラーの耐振動性を向上するため、従来より様々な技術が提案されている。例えば特許文献1には、ミラーの反射面の裏面に補強部材を貼り付けてミラーを補強することが記載されている。しかしながら、この方法では、補強部材の平面度にミラーがならってしまうことから、ミラー反射面の平面度を高精度に保つためには補強部材にも高い平面度が求められる。従って安価での補強が難しいという問題がある。   In order to improve the vibration resistance of the mirror with respect to this problem, various techniques have been conventionally proposed. For example, Patent Document 1 describes that a mirror is reinforced by attaching a reinforcing member to the back surface of the reflecting surface of the mirror. However, in this method, since the mirror is aligned with the flatness of the reinforcing member, the flatness of the reinforcing member is also required to maintain the flatness of the mirror reflecting surface with high accuracy. Therefore, there is a problem that reinforcement at low cost is difficult.

一方、この問題と振動の問題を合わせて解決する技術として、特許文献2に記載の光折り返しミラーが提案されている。特許文献2に記載の従来技術においては、ミラーの反射面の側面に補強部材を貼り付けるため、仮に補強部材の平面度があまり高くない場合にも、ミラーが補強部材にならって反射面に平行な方向に変形するため、反射面の平面度にほとんど影響を与えることなくミラーを補強することができる。従って非常に安価にミラーの耐振動性を高めることができるというメリットがあると主張されている。   On the other hand, as a technique for solving this problem and the problem of vibration, an optical folding mirror described in Patent Document 2 has been proposed. In the prior art described in Patent Document 2, since the reinforcing member is attached to the side surface of the reflecting surface of the mirror, even if the flatness of the reinforcing member is not so high, the mirror follows the reinforcing member and is parallel to the reflecting surface. Therefore, the mirror can be reinforced without substantially affecting the flatness of the reflecting surface. Therefore, it is claimed that there is a merit that the vibration resistance of the mirror can be improved at a very low cost.

実開平1−142913号公報Japanese Utility Model Publication No. 1-142913 特開平10−282399号公報JP-A-10-282399 特開2006−154116公報JP 2006-154116 A

光走査装置や画像読取装置等に用いられるこのような細長い形状のミラーは、通常長手方向の両端部近傍を支持される。具体的には、反射面裏面をばねで押圧して反射面を支持部材に突き当てる。さらに、反射面の短手方向にも、ばねを用いて支持部材に突き当てたり、ばねを用いず若干の隙間を開けて配置した規制部材で規制するなどして、短手方向の位置が大きくずれないようにする。従って、ミラーの長手方向両端部近傍には、支持部材、ばね、規制部材等が様々な方向から張り出して配置されており、ミラー補強部材がミラーから張り出しているとこれらのレイアウトの妨げとなるため、各々の形状が複雑化し、ミラー保持の確実性が損なわれてしまう。   Such an elongated mirror used in an optical scanning device, an image reading device or the like is usually supported near both ends in the longitudinal direction. Specifically, the back surface of the reflecting surface is pressed with a spring and the reflecting surface is abutted against the support member. In addition, the position in the short direction of the reflective surface is also large, such as by using a spring to abut against the support member, or by using a restricting member that is arranged with a slight gap without using a spring. Do not slip. Accordingly, support members, springs, restricting members, and the like are disposed in the vicinity of both ends in the longitudinal direction of the mirror so that the layout is hindered when the mirror reinforcing member projects from the mirror. Each shape becomes complicated, and the reliability of holding the mirror is impaired.

さらに、本発明者らは前記特許文献2で提案されている形態のミラー補強方法について、有限要素法による振動シミュレーションを行った。この結果を下記の表1および図2に示す。この結果より、特許文献2に記載の従来技術については以下のような2つの問題があることが今回新たに判明した。   Furthermore, the present inventors performed a vibration simulation by the finite element method for the mirror reinforcing method of the form proposed in Patent Document 2. The results are shown in Table 1 below and FIG. From this result, it was newly found that the conventional technique described in Patent Document 2 has the following two problems.

Figure 2008185995
Figure 2008185995

(1)ミラーに何か硬い部材を貼り付ければ補強されるとは限らない。鉄板を貼り付けても共振周波数が高くならないことがある。
例えば、長さ254mm×幅10mm×厚さ5mmのミラーに、長さ254mm×厚さ1mmの鉄板を貼り付けた場合の、補強部材(鉄板)の幅に対するミラーの一次共振周波数を表1および図2に示した。ここで、補強部材なしの場合の一次共振周波数を、便宜上補強板幅0mmとして記載した。表1に示すように、幅5mmの鉄板をミラーに貼り付けた場合、何も貼り付けない場合に比べて一次共振周波数が約3Hz低下している。
(1) If something hard member is stuck on the mirror, it is not always reinforced. Even if an iron plate is attached, the resonance frequency may not increase.
For example, when a steel plate of length 254 mm × thickness 1 mm is attached to a mirror of length 254 mm × width 10 mm × thickness 5 mm, the primary resonance frequency of the mirror with respect to the width of the reinforcing member (iron plate) is shown in Table 1 and FIG. It was shown in 2. Here, the primary resonance frequency in the case of no reinforcing member is shown as a reinforcing plate width of 0 mm for convenience. As shown in Table 1, when an iron plate having a width of 5 mm is attached to the mirror, the primary resonance frequency is reduced by about 3 Hz compared to a case where nothing is attached.

(2)従来は、補強部材の幅を大きくするほど共振周波数が高くなると考えられていたが、実際には表1に示したように、補強部材の幅を大きくすればするほど共振周波数が高くなるというわけではない。
表1および図2に示したように、補強板幅20mmのときよりも45mmの時の方が一次共振周波数が74Hzも低く、補強部材の幅を大きくしたにも関わらず一次共振周波数が低下している。
(2) Conventionally, it has been considered that the resonance frequency increases as the width of the reinforcing member increases. However, as shown in Table 1, the resonance frequency increases as the width of the reinforcing member increases. It doesn't mean that
As shown in Table 1 and FIG. 2, when the reinforcing plate width is 45 mm, the primary resonant frequency is lower by 74 Hz than when the reinforcing plate width is 20 mm, and the primary resonant frequency is lowered despite the increase in the width of the reinforcing member. ing.

従来は、補強部材を貼り付ければミラーは補強される、補強部材の幅は大きいほど補強効果は大きい、などと漠然と考えられていたが、現実的に用いられ得る補強部材の形状・大きさの範囲において、これらの認識が誤っており、必要とする効果が得られていないことや、時には全く効果が得られていないことがあることが、上記の(1)、(2)の結果よりわかった。
特に、回転方向を完全には束縛しない支持方法を用いた場合には、ミラー長手方向を回転軸とするねじれ変形に対して、剛性があまり高くない。ここで補強部材の幅を長くすると、上述の回転軸から遠いところに質量が付加されるため、このねじれ方向の振動モードの影響を受けやすくなり、結果として、補強部材の幅を長くしてもかえって耐振動性が下がってしまうという現象を生じている。従って、このねじれ方向の振動モードも考慮に入れた設計が必要となる。
In the past, it was vaguely thought that the mirror would be reinforced if a reinforcing member was attached, and that the reinforcing effect would be greater as the width of the reinforcing member was larger, but the shape and size of the reinforcing member that can be used practically From the results of (1) and (2) above, it is clear that these recognitions are wrong in the range, and the required effect is not obtained, or sometimes the effect is not obtained at all. It was.
In particular, when a support method that does not completely constrain the rotation direction is used, the rigidity is not so high against torsional deformation with the mirror longitudinal direction as the rotation axis. Here, if the width of the reinforcing member is increased, mass is added at a position far from the above-described rotation shaft, so that it is easily affected by the vibration mode in the torsional direction. As a result, even if the width of the reinforcing member is increased. On the contrary, the phenomenon that the vibration resistance is lowered is generated. Therefore, it is necessary to design in consideration of the vibration mode in the torsional direction.

本発明は、上記事情に鑑みなされたものであって、従来技術の問題を解決または低減しようとするものであり、特に、より少ない材料の量および、より少ないコストで、効果的にかつ確実に必要な補強効果を得られる、ミラー補強方法を提供することを目的とする。そして、本発明は、そのミラー補強方法によって補強されたミラー、そのミラーを用いた光走査装置または画像読取装置、その光走査装置または画像読取装置を備えた画像形成装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is intended to solve or reduce the problems of the prior art, particularly effectively and reliably with a smaller amount of material and a lower cost. An object of the present invention is to provide a mirror reinforcing method capable of obtaining a necessary reinforcing effect. An object of the present invention is to provide a mirror reinforced by the mirror reinforcing method, an optical scanning device or an image reading device using the mirror, and an image forming apparatus including the optical scanning device or the image reading device. To do.

上記目的を達成するため、本発明では、以下のような手段を採っている。
本発明の第1の手段は、反射面が細長く延びた形状のミラーの補強方法であって、前記ミラーの前記反射面に対する側面に補強部材を固定し、かつ前記補強部材は下記の条件式を満たすことを特徴とする。
0.8×Lm≦Lh
Lm:ミラーの長手方向の長さ(mm)
Lh:補強部材の長手方向の長さ(mm)
In order to achieve the above object, the present invention adopts the following means.
A first means of the present invention is a method for reinforcing a mirror having a shape in which a reflecting surface is elongated, wherein a reinforcing member is fixed to a side surface of the mirror with respect to the reflecting surface, and the reinforcing member satisfies the following conditional expression: It is characterized by satisfying.
0.8 × Lm ≦ Lh
Lm: Length in the longitudinal direction of the mirror (mm)
Lh: Length in the longitudinal direction of the reinforcing member (mm)

本発明の第2の手段は、第1の手段のミラー補強方法において、前記補強部材の長手方向の長さLhが、前記ミラーの長手方向の長さLmよりも短いことを特徴とする。
また、本発明の第3の手段は、第1の手段のミラー補強方法において、前記補強部材の前記ミラーの端部近傍に、切欠部を設けたことを特徴とする。
According to a second means of the present invention, in the mirror reinforcing method of the first means, a length Lh in the longitudinal direction of the reinforcing member is shorter than a length Lm in the longitudinal direction of the mirror.
According to a third means of the present invention, in the mirror reinforcing method of the first means, a notch is provided in the vicinity of the end of the mirror of the reinforcing member.

本発明の第4の手段は、反射面が細長く延びた形状のミラーの補強方法であって、前記ミラーの前記反射面に対する側面に補強部材を固定し、前記ミラーの反射面に略垂直な方向において、下記の条件式を満たすことを特徴とする。
Wh≧(−1.1×ln(Th)+2.7)×(Lm/250)^1.3
×(Tm/5)^0.2×(Wm/10)^0.5+Tm
Wh:補強部材の幅(mm)
ln(Th):Thの自然対数
Th:補強部材の厚さ(mm)
Lm:ミラーの長手方向の長さ(mm)
Tm:ミラーの反射面に略垂直な方向の厚さ(mm)
Wm:ミラーの幅(mm)
A fourth means of the present invention is a method for reinforcing a mirror having a shape in which a reflecting surface is elongated, and a reinforcing member is fixed to a side surface of the mirror with respect to the reflecting surface, and the direction is substantially perpendicular to the reflecting surface of the mirror. The following conditional expression is satisfied.
Wh ≧ (−1.1 × ln (Th) +2.7) × (Lm / 250) ^ 1.3
× (Tm / 5) ^ 0.2 × (Wm / 10) ^ 0.5 + Tm
Wh: width of the reinforcing member (mm)
ln (Th): natural logarithm of Th Th: thickness of reinforcing member (mm)
Lm: Length in the longitudinal direction of the mirror (mm)
Tm: Thickness (mm) in a direction substantially perpendicular to the reflecting surface of the mirror
Wm: Mirror width (mm)

本発明の第5の手段は、第1乃至第4のいずれか1つの手段のミラー補強方法において、前記ミラーの基材の材質はガラス材であり、かつ前記補強部材の材質は鉄系板金材であることを特徴とする。
また、本発明の第6の手段は、反射面が細長く延びた形状のミラーであって、第1乃至第5のいずれか1つの手段のミラー補強方法によって補強されたことを特徴とする。
According to a fifth means of the present invention, in the mirror reinforcing method according to any one of the first to fourth means, the material of the base material of the mirror is a glass material, and the material of the reinforcing member is an iron-based sheet metal material. It is characterized by being.
The sixth means of the present invention is a mirror having a shape in which the reflecting surface is elongated and is reinforced by the mirror reinforcing method of any one of the first to fifth means.

本発明の第7の手段は、光源からの光を偏向器で偏向し、像面上を走査する光走査装置において、前記偏向器から前記像面に至る光路に配置されるミラーに、第6の手段のミラーを用いたことを特徴とする。
また、本発明の第8の手段は、原稿の画像をミラー及びレンズを介して光電変換素子に結像し、原稿の画像情報を読み取る画像読取装置において、前記ミラーに、第6の手段のミラーを用いたことを特徴とする。
さらに本発明の第9の手段は、画像形成装置であって、第7の手段の光走査装置、または第8の手段の画像読取装置を備え、画像を形成することを特徴とする。
According to a seventh means of the present invention, in an optical scanning device that deflects light from a light source with a deflector and scans on an image surface, a mirror disposed in an optical path from the deflector to the image surface includes It is characterized by using a mirror of the means.
According to an eighth means of the present invention, an image of a document is imaged on a photoelectric conversion element through a mirror and a lens, and in the image reading apparatus for reading image information of the document, the mirror of the sixth means is included in the mirror. It is characterized by using.
The ninth means of the present invention is an image forming apparatus, characterized in that it comprises an optical scanning device as the seventh means or an image reading device as the eighth means, and forms an image.

本発明の第1の手段のミラー補強方法では、補強部材を貼り付けたのに十分なミラー補強効果が得られないというようなことがなく、効率良いミラー補強を行うことができる。
また、第2の手段のミラー補強方法では、第1の手段の作用効果に加え、複雑な形状の支持部材を用いることなく、かつそのことによってミラー補強効果を損なうことなく、簡便な構成でミラーの支持ができる。
さらに第3の手段のミラー補強方法では、第1の手段の作用効果に加え、複雑な形状の支持部材を用いることなく、かつそのことによってミラー補強効果を損なうことなく、簡便な構成でミラーの支持ができる。
In the mirror reinforcing method of the first means of the present invention, there is no such a situation that a sufficient mirror reinforcing effect cannot be obtained even when the reinforcing member is attached, and efficient mirror reinforcement can be performed.
Further, in the mirror reinforcing method of the second means, in addition to the function and effect of the first means, a mirror having a simple configuration without using a support member having a complicated shape and without impairing the mirror reinforcing effect. Can be supported.
Furthermore, in the mirror reinforcing method of the third means, in addition to the function and effect of the first means, a mirror having a simple structure can be used without using a support member having a complicated shape and without impairing the mirror reinforcing effect. Support is possible.

第4の手段のミラー補強方法では、補強部材を貼り付けたのに十分なミラー補強効果が得られないというようなことがなく、効率良い(最小限の補強部材の材料の量、および極めて簡易な形状で十分なミラー補強効果が得られる)ミラー補強を行うことができる。
また、第5の手段のミラー補強方法では、第1乃至第4のいずれか1つの手段の作用効果に加え、低コストで精度の高い面形状の反射面を形成でき、かつ低コストで十分な補強効果を得ることができるミラー補強方法を実現できる。
さらに第6の手段のミラーでは、第1乃至第5のいずれか1つの手段のミラー補強方法によって補強されているので、第1乃至第5のいずれか1つの手段の作用効果が得られ、振動の発生が低減されたミラーを低コストに実現することができる。
In the mirror reinforcing method of the fourth means, a sufficient mirror reinforcing effect is not obtained even when the reinforcing member is attached, and it is efficient (minimum amount of material of the reinforcing member and extremely simple) (A sufficient mirror reinforcing effect can be obtained with a simple shape).
In addition, in the mirror reinforcing method of the fifth means, in addition to the operational effect of any one of the first to fourth means, it is possible to form a reflective surface having a highly accurate surface shape at low cost, and it is sufficient at low cost. A mirror reinforcing method capable of obtaining a reinforcing effect can be realized.
Further, since the mirror of the sixth means is reinforced by the mirror reinforcement method of any one of the first to fifth means, the function and effect of any one of the first to fifth means can be obtained and vibration can be obtained. It is possible to realize a mirror with reduced occurrence of the low cost.

第7の手段の光走査装置では、第6の手段のミラーを用いることにより、ミラーの振動による書込み画像の画像劣化を低減することができる。
また、第8の手段の画像読取装置によれば、第6の手段のミラーを用いることにより、ミラーの振動による読取り画像の画像劣化を低減することができる。
さらに第9の手段の画像形成装置においては、第7の手段の光走査装置、または第8の手段の画像読取装置を備え、画像を形成するので、ミラーの振動による書込み画像または読取り画像の画像劣化を低コストで低減することができる。
In the optical scanning device of the seventh means, by using the mirror of the sixth means, it is possible to reduce the image deterioration of the written image due to the vibration of the mirror.
Further, according to the image reading apparatus of the eighth means, by using the mirror of the sixth means, it is possible to reduce image deterioration of the read image due to the vibration of the mirror.
Further, the image forming apparatus of the ninth means includes the optical scanning device of the seventh means or the image reading apparatus of the eighth means, and forms an image, so the image of the written image or the read image by the vibration of the mirror is formed. Deterioration can be reduced at low cost.

以下、本発明を実施するための最良の形態を図面を参照して詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

<振動シミュレーションについて>
まず初めに、本発明で用いた振動シミュレーションについて説明する。なお、前述の「本発明が解決しようとする課題」で述べたシミュレーションも、以下と同様の条件で行ったものである。
振動シミュレーションには、有限要素法による市販のシミュレーションソフトを用いた。また、メッシュには六面体要素を用い、要素の最大長さは2〜3mm程度とした。用いた材料物性値は下記の表2に示した通りである。
<About vibration simulation>
First, the vibration simulation used in the present invention will be described. The simulation described in the above-mentioned “problem to be solved by the present invention” is also performed under the same conditions as described below.
A commercially available simulation software by the finite element method was used for the vibration simulation. Moreover, the hexahedral element was used for the mesh, and the maximum length of the element was about 2 to 3 mm. The material property values used are as shown in Table 2 below.

Figure 2008185995
Figure 2008185995

図3は本発明に係るミラー補強方法の説明図であって、同図(a)は振動シミュレーションに用いる板状の補強部材(補強板)2で補強されたミラー1の斜視図であり、同図(b)は、同図(a)中の矢印A方向から見た図である。境界条件は、図3(a)のように、ミラー反射面を3点で支持し、第1の拘束点4−1をxyz方向拘束、第2の拘束点4−2をyz方向拘束、第3の拘束点4−3をz方向拘束とした。本例におけるミラー1は図示しないばねで押圧して保持され、支持点は完全な固着ではなく、回転方向は自由ないわゆる自由支持に近い形態であることから、シミュレーションでも、支持個所の3つの拘束点とも回転方向は拘束していない。
補強部材2とミラー1との間は、図3(b)に示すように、接着部3による完全固着状態とした。また、接着固定の他、両面テープで貼り合わせるような場合も、少なくとも現実的に振動が問題となるような低周波域では、補強部材2とミラー1が独立した動きをすることはないため、完全固着状態としてシミュレーションして差し支えない。また、全面でなくとも長手方向に3ヶ所以上接着されていれば、十分大きな効果を得られることが特許文献3等の公知例からもわかることから、本発明の適用は全面固着に限定するものではない。
FIG. 3 is an explanatory view of a mirror reinforcing method according to the present invention. FIG. 3 (a) is a perspective view of the mirror 1 reinforced by a plate-like reinforcing member (reinforcing plate) 2 used for vibration simulation. FIG. (B) is a view seen from the direction of arrow A in FIG. As shown in FIG. 3A, the boundary condition is that the mirror reflecting surface is supported at three points, the first restraint point 4-1 is restrained in the xyz direction, the second restraint point 4-2 is restrained in the yz direction, 3 constraint point 4-3 was defined as z-direction constraint. In this example, the mirror 1 is pressed and held by a spring (not shown), and the support point is not completely fixed, and the rotation direction is close to a so-called free support. The rotation direction of both points is not constrained.
Between the reinforcing member 2 and the mirror 1, as shown in FIG. In addition, in addition to adhesive fixation, even when pasting with double-sided tape, at least in the low frequency range where vibration is a problem in practice, the reinforcing member 2 and the mirror 1 do not move independently. It can be simulated as a completely fixed state. In addition, since it can be seen from known examples such as Patent Document 3 that a sufficiently large effect can be obtained if three or more portions are bonded in the longitudinal direction even if it is not the entire surface, the application of the present invention is limited to the entire surface fixing. is not.

<必要とする補強効果の目安について>
ミラー1の振動対策として有効な手段には、次の2つがある。
[1] ミラー1の剛性を高めることにより、仮に共振したとしても光学特性に影響が出ない程度まで振幅を低減する。
[2] ミラー1の共振周波数を加振源の周波数からずらして、ミラーが共振しないようにする。
<About the required reinforcement effect>
There are the following two effective means as countermeasures against vibration of the mirror 1.
[1] By increasing the rigidity of the mirror 1, even if it resonates, the amplitude is reduced to such an extent that the optical characteristics are not affected.
[2] The resonance frequency of the mirror 1 is shifted from the frequency of the excitation source so that the mirror does not resonate.

一般的に、剛性を高めて共振周波数が高くなると、それに伴い、共振したとしても共振時の振幅は小さくなる。本発明の対象としているようなミラー1の場合は、一次共振周波数が300Hz以上であれば、仮に共振したとしても十分に変位が小さく、ほとんど光学特性に影響を与えることはない。
従って、上記の対策[1] が実現できれば、加振源の周波数に関係なく、ミラーの振幅が小さく、ミラーの振動が光学特性に影響を与えることはなくなる。しかしながら、装置の大きさなどのレイアウト上の都合やコストの問題などから、いつも必ず対策[1] を実現できるとは限らない。このような場合には、上記の対策[2]で述べたように、ミラー1の共振周波数を加振源の周波数からずらして、ミラー1が共振しないようにすると良い。
In general, when the resonance frequency is increased by increasing the rigidity, the amplitude at the time of resonance decreases accordingly even if resonance occurs. In the case of the mirror 1 as an object of the present invention, if the primary resonance frequency is 300 Hz or more, even if it resonates, the displacement is sufficiently small and hardly affects the optical characteristics.
Therefore, if the above measure [1] can be realized, the amplitude of the mirror is small regardless of the frequency of the excitation source, and the vibration of the mirror does not affect the optical characteristics. However, measures [1] cannot always be realized due to layout considerations such as the size of the device and cost issues. In such a case, as described in the measure [2] above, it is preferable to shift the resonance frequency of the mirror 1 from the frequency of the excitation source so that the mirror 1 does not resonate.

ここで、ミラー1の伝達関数と呼ばれる振動特性の例を図4に示す。図4は、ミラー形状が長さ260mmおよび240mm、幅10×厚さ5mm(補強部材なし)の時の伝達関数をシミュレーションにより求めたものである。縦軸は、加振する力1N当りのミラー長手方向中央部の変位を示している。
この図4より、ミラーの形状に関わらず、一次共振周波数から20〜30Hz程度ずれれば、振幅が共振時の振幅に対して10分の1程度にまで低減できることがわかる。すなわち、補強部材なしの状態でミラー1が大きく振動しているとすれば、加振源の周波数がミラー1の一次共振周波数と重なって共振しているわけであるから、このミラー1に対して補強部材2を貼り付けることによって、20〜30Hz程度、ミラー1の一次共振周波数をずらすことができれば、ミラー1の振幅を10分の1程度まで低減できる、ということになる。逆に言えば、補強部材2を貼り付けたとしても、一次共振周波数が20Hz以上変化していないようであれば、その補強効果は極めて限定的なもので不十分である可能性が高い。
Here, an example of a vibration characteristic called a transfer function of the mirror 1 is shown in FIG. FIG. 4 shows the transfer function obtained by simulation when the mirror shape is 260 mm and 240 mm in length, width 10 × thickness 5 mm (without a reinforcing member). The vertical axis indicates the displacement of the central portion in the longitudinal direction of the mirror per 1 N of the exciting force.
From FIG. 4, it can be seen that the amplitude can be reduced to about 1/10 of the amplitude at the time of resonance if it deviates by about 20 to 30 Hz from the primary resonance frequency regardless of the shape of the mirror. In other words, if the mirror 1 vibrates greatly without a reinforcing member, the frequency of the excitation source overlaps with the primary resonance frequency of the mirror 1 and resonates. If the primary resonance frequency of the mirror 1 can be shifted by about 20 to 30 Hz by attaching the reinforcing member 2, the amplitude of the mirror 1 can be reduced to about 1/10. In other words, even if the reinforcing member 2 is pasted, if the primary resonance frequency does not change by 20 Hz or more, the reinforcing effect is extremely limited and is likely to be insufficient.

以下、本発明のより具体的な実施例について説明する。   Hereinafter, more specific examples of the present invention will be described.

[実施例1]
図1に本発明の第一の実施例を示す。図1(a)は板状の補強部材(補強板)2で補強されたミラー1の斜視図であり、同図(b)は、同図(a)中の矢印A方向から見た図である。
図1に示すように、ミラー1の長手方向(x方向)の長さをLm、反射面1aに垂直な方向(z方向)の厚さをTm、反射面1aの短手方向(y方向)の幅をWmとし、補強部材(補強板)2のx方向の長さをLh、y方向の厚さをTh(図示せず)、z方向の幅をWhとする。また、長さの単位は、特に断らない限りmmとする。
補強部材(補強板)2は、z方向において反射面側突き出し量と裏面側突き出し量とが等しく、かつx方向においてLmの中点とLhの中点とが一致するようにして、ミラー1の側面に貼り付けている。
[Example 1]
FIG. 1 shows a first embodiment of the present invention. FIG. 1A is a perspective view of a mirror 1 reinforced by a plate-like reinforcing member (reinforcing plate) 2, and FIG. 1B is a view seen from the direction of arrow A in FIG. is there.
As shown in FIG. 1, the length of the mirror 1 in the longitudinal direction (x direction) is Lm, the thickness in the direction perpendicular to the reflecting surface 1a (z direction) is Tm, and the transverse direction (y direction) of the reflecting surface 1a. The length of the reinforcing member (reinforcing plate) 2 in the x direction is Lh, the thickness in the y direction is Th (not shown), and the width in the z direction is Wh. The unit of length is mm unless otherwise specified.
The reinforcing member (reinforcing plate) 2 is formed so that the reflecting surface side protruding amount and the back surface side protruding amount are equal in the z direction, and the midpoint of Lm and the midpoint of Lh coincide with each other in the x direction. Affixed to the side.

このような構成のミラー1について、振動シミュレーションを行った結果を図5〜図7に示す。上記構成以外の材質や拘束条件等は、前述したシミュレーション条件(図3および表2)と同様である。図5〜図7の全て、補強部材(補強板)2の厚さThは1mmとした。
図5はミラー形状Lm×Wm×Tmを250×10×5(mm)とした時の、補強部材2の幅WhおよびLhを振ったときの、補強効果(補強部材なしの状態に対する、補強部材を貼り付けたことによる一次共振周波数の増分)をシミュレーションした結果である。また、図6および図7は、各々ミラー形状Lm×Wm×Tmを300×10×5(mm)、250×15×5(mm)とした時の結果である。
The results of the vibration simulation performed on the mirror 1 having such a configuration are shown in FIGS. Materials, restraint conditions, and the like other than the above configuration are the same as the simulation conditions described above (FIG. 3 and Table 2). In all of FIGS. 5 to 7, the thickness Th of the reinforcing member (reinforcing plate) 2 is 1 mm.
FIG. 5 shows a reinforcing effect when the widths Wh and Lh of the reinforcing member 2 are swung when the mirror shape Lm × Wm × Tm is 250 × 10 × 5 (mm). This is a result of simulating the increase in the primary resonance frequency due to pasting. 6 and 7 show the results when the mirror shape Lm × Wm × Tm is 300 × 10 × 5 (mm) and 250 × 15 × 5 (mm), respectively.

図5〜図7の結果より、ミラー1の形状が異なるいずれの場合においても、Lh/Lmを1.0から小さくしていくと、0.8〜0.9では1.0の時と補強効果がほとんど変わらないのに対し、0.7で急に補強効果が弱まり始め、0.6になると1.0の時の半分程度にまで低下してしまう。この結果から、Lh/Lmを0.8以上とすると、ミラー支持構造のレイアウト性を低下させることのない短い補強部材2を用いつつ、ほぼ最大限の補強効果が得られるミラー補強手段を実現できることがわかる。
特に本例のように回転方向を完全には束縛しない支持方法を用いた場合には、ミラー長手方向を回転軸とするねじれ変形に対して、剛性があまり高くない。ここで補強部材の幅を長くすると、上述の回転軸から遠いところに質量が付加されるため、このねじれ方向の振動モードの影響を受けやすくなり、結果として、補強部材の幅を長くしてもかえって耐振動性が下がってしまうという現象を生じる。本例では、ある幅を持つ補強部材をミラー側面に貼り付けて、ミラーのたわみ方向の振動と同時に、補強部材の長さを適したものとすることで、このねじれ方向の振動を合わせて低減している。
From the results of FIGS. 5 to 7, in any case where the shape of the mirror 1 is different, when Lh / Lm is decreased from 1.0, 0.8 to 0.9 is 1.0 and reinforcing. While the effect is hardly changed, the reinforcing effect starts to weaken suddenly at 0.7, and when it becomes 0.6, it decreases to about half of that at 1.0. From this result, when Lh / Lm is set to 0.8 or more, it is possible to realize a mirror reinforcing means that can obtain a substantially maximum reinforcing effect while using the short reinforcing member 2 that does not deteriorate the layout of the mirror support structure. I understand.
In particular, when a support method that does not completely constrain the rotation direction as in this example is used, the rigidity is not so high against torsional deformation with the mirror longitudinal direction as the rotation axis. Here, if the width of the reinforcing member is increased, mass is added at a position far from the above-described rotation shaft, so that it is easily affected by the vibration mode in the torsional direction. As a result, even if the width of the reinforcing member is increased. On the contrary, a phenomenon occurs in which the vibration resistance is lowered. In this example, a reinforcing member with a certain width is attached to the side of the mirror, and at the same time as the vibration in the deflection direction of the mirror, the length of the reinforcing member is made suitable to reduce the vibration in the torsional direction. is doing.

[実施例2]
図8(a)〜(c)に本発明の第二の実施例を示す。図8(a)は、板状の補強部材(補強板)2で補強されたミラー1と支持部材を示す分解斜視図、同図(b)は、同図(a)中の矢印A方向から見た図、同図(c)は、同図(a)中の矢印B方向から見た図である。
図8(a)において、ミラー1の反射面のうちハッチングを施した四角形の箇所3点を、第1の支持部材5−1および第2の支持部材5−2により支持して、ミラー1の反射面1aの位置および傾きが決められる。この時、ミラー1は、ねじ7で第1、第2の支持部材5−1,5−2に締結される押えばね6によって、反射面1aの裏面を押圧されて、第1、第2の支持部材5−1,5−2に対して突き当てられて保持される。また、図8(a)および(b)からもわかるように、第1、第2の支持部材5−1,5−2はコの字状の形状をなしており、ミラー1が0.01〜0.5mm程度の隙間を開けてここに嵌合することにより、ミラー1の短手方向(y方向)の位置が規制される。本実施例では、ミラー1の反射面1aを平面としているので、ミラー1の短手方向(y方向)への多少の位置ずれは、光学特性に影響しないが、例えば反射面1aが凹面形状をしているような場合などには短手方向の位置精度も要求されるため、上記の隙間を小さくしたり、あるいは、ばねを用いて片側に突き当てるなどすれば良い。
[Example 2]
8 (a) to 8 (c) show a second embodiment of the present invention. 8A is an exploded perspective view showing the mirror 1 reinforced by the plate-like reinforcing member (reinforcing plate) 2 and the supporting member, and FIG. 8B is from the direction of arrow A in FIG. 8A. The figure seen, the figure (c) is the figure seen from the arrow B direction in the figure (a).
In FIG. 8A, three hatched rectangular portions of the reflecting surface of the mirror 1 are supported by the first support member 5-1 and the second support member 5-2, and the mirror 1 The position and inclination of the reflecting surface 1a are determined. At this time, the mirror 1 is pressed against the back surface of the reflecting surface 1a by the presser spring 6 fastened to the first and second support members 5-1 and 5-2 by the screw 7, so that the first and second It is abutted against and held by the support members 5-1 and 5-2. As can be seen from FIGS. 8A and 8B, the first and second support members 5-1 and 5-2 have a U-shape, and the mirror 1 is 0.01. The position of the mirror 1 in the short direction (y direction) is regulated by fitting a gap of about 0.5 mm. In this embodiment, since the reflecting surface 1a of the mirror 1 is a flat surface, a slight positional shift in the short direction (y direction) of the mirror 1 does not affect the optical characteristics. For example, the reflecting surface 1a has a concave shape. In such a case, positional accuracy in the short direction is also required. Therefore, the gap may be reduced, or may be abutted against one side using a spring.

なお、図の煩雑化を防ぐため、ミラー1の長手方向の規制部材を図示しなかったが、実際にはミラー1の長手方向にも、ミラー1の位置が大きくずれることのないように、ミラー長手方向の端面と少し隙間を開けて、規制部材が配置される。   In addition, in order to prevent complication of the drawing, the regulating member in the longitudinal direction of the mirror 1 is not illustrated, but in practice, the mirror 1 is not displaced greatly in the longitudinal direction of the mirror 1 either. The regulating member is arranged with a slight gap from the end face in the longitudinal direction.

ここで、図8のように補強部材2の長手方向両端部をミラー1よりも各々5〜20mm程度短くすれば、補強部材2がミラー支持部に干渉しないため、上述のような従来の形態(補強部材を用いない場合の形態)と同様のミラー保持構造にでき、従ってレイアウト性を損なうことなく、補強部材2を用いたミラー補強効果を得ることができる。例えばミラー1の長さが250mmの場合、補強部材2の両端を各々20mm短くして補強部材2の長さを210mmとしても、Lh/Lm=0.84と0.8以上になるので、第一の実施例(図5)で示したように、十分な補強効果が得られる。
また、補強部材2の長さはミラー1と同じにし、図9に示すように、補強部材(補強板)2の長手方向の両端部に5〜20mmの長さの切欠部を設けても、上述の図8の例と同様に、ミラー保持構造のレイアウト性を損なうことなく補強できる。このような構成によれば、さらに、補強部材2の長手方向(x方向)および短手方向(z方向)の端部をミラー1の端部に合わせることで、補強部材2の位置決めができるため、補強部材2のミラー1に対する貼り付け作業をより簡単に行うことができる。
Here, if both longitudinal ends of the reinforcing member 2 are made shorter by about 5 to 20 mm than the mirror 1 as shown in FIG. 8, the reinforcing member 2 does not interfere with the mirror support portion. A mirror holding structure similar to that in the case where the reinforcing member is not used), and therefore, a mirror reinforcing effect using the reinforcing member 2 can be obtained without impairing the layout. For example, when the length of the mirror 1 is 250 mm, even if both ends of the reinforcing member 2 are shortened by 20 mm and the length of the reinforcing member 2 is 210 mm, Lh / Lm = 0.84 and 0.8 or more. As shown in one embodiment (FIG. 5), a sufficient reinforcing effect can be obtained.
Further, the length of the reinforcing member 2 is the same as that of the mirror 1, and as shown in FIG. 9, even if notches having a length of 5 to 20 mm are provided at both ends in the longitudinal direction of the reinforcing member (reinforcing plate) 2, Similar to the example of FIG. 8 described above, the mirror holding structure can be reinforced without impairing the layout. According to such a configuration, the reinforcing member 2 can be positioned by aligning the end portions of the reinforcing member 2 in the longitudinal direction (x direction) and the short direction (z direction) with the end portion of the mirror 1. The work of attaching the reinforcing member 2 to the mirror 1 can be performed more easily.

[実施例3]
本発明の第三の実施例として、光走査装置または画像読取装置において一般的によく使われる、ミラー1の長さLmが200〜350mm、厚さTmが3〜10mmの範囲における、補強部材(補強板)2の貼り付け時の振動シミュレーションの結果から、確実に+30Hz前後の補強効果が得られる、次の条件式を導出した。
Wh≧(−1.1×ln(Th)+2.7)×(Lm/250)^1.3
×(Tm/5)^0.2×(Wm/10)^0.5+Tm
Wh:補強部材の幅(mm)
ln(Th):Thの自然対数
Th:補強部材の厚さ(mm)
Lm:ミラーの長手方向の長さ(mm)
Tm:ミラーの反射面に略垂直な方向の厚さ(mm)
Wm:ミラーの幅(mm)
[Example 3]
As a third embodiment of the present invention, a reinforcing member (which is generally used in an optical scanning device or an image reading device) in a range in which the length Lm of the mirror 1 is 200 to 350 mm and the thickness Tm is 3 to 10 mm. From the result of the vibration simulation at the time of attaching the reinforcing plate 2, the following conditional expression was obtained that can reliably obtain a reinforcing effect of around +30 Hz.
Wh ≧ (−1.1 × ln (Th) +2.7) × (Lm / 250) ^ 1.3
× (Tm / 5) ^ 0.2 × (Wm / 10) ^ 0.5 + Tm
Wh: width of the reinforcing member (mm)
ln (Th): natural logarithm of Th Th: thickness of reinforcing member (mm)
Lm: Length in the longitudinal direction of the mirror (mm)
Tm: Thickness (mm) in a direction substantially perpendicular to the reflecting surface of the mirror
Wm: Mirror width (mm)

様々なミラー1の長さLmおよびミラー1の厚さTmに対する、上記条件式によって導き出した必要な補強部材(補強板)2の厚さと幅の下限値、およびその補強板を貼り付けたことによる一次共振周波数の変化を下記の表3に示す。ここに示したように、上記条件式によって導き出した最低限の形状の補強板2を貼り付けることによって、ミラー1の長さおよび厚さのどの組み合わせに対しても、確かに+30Hz前後の補強効果が得られることがわかる。   The lower limit values of the thickness and width of the necessary reinforcing member (reinforcing plate) 2 derived from the above conditional expressions with respect to the length Lm of the various mirrors 1 and the thickness Tm of the mirror 1, and by attaching the reinforcing plates The change in the primary resonance frequency is shown in Table 3 below. As shown here, by attaching the reinforcing plate 2 having the minimum shape derived by the above conditional expression, the reinforcing effect of about +30 Hz is surely obtained for any combination of the length and thickness of the mirror 1. It can be seen that

Figure 2008185995
Figure 2008185995

なお、上記条件式には補強板2の長さが含まれておらず、補強板があまりにも短いと表3で見込まれるような補強効果が得られないが、上述(第一の実施例)のように補強板2の長さが0.7×Lm以上であれば、十分な補強効果が得られる。また同様に上述したように、補強板の長さが0.8×Lm以上であれば、なお良い。   The conditional expression does not include the length of the reinforcing plate 2. If the reinforcing plate is too short, the reinforcing effect expected in Table 3 cannot be obtained. Thus, if the length of the reinforcing plate 2 is 0.7 × Lm or more, a sufficient reinforcing effect can be obtained. Similarly, as described above, it is better if the length of the reinforcing plate is 0.8 × Lm or more.

上記シミュレーションは、ミラー1の反射面1aに垂直な方向において、例えば図10(a)に示すように、補強部材(補強板)2がミラー1に対して両側に均等に突き出すような構成について行ったが、少なくとも補強効果が+30Hz程度となるときの補強部材の幅では、図10(b)に示すような片側突き出しでも結果はあまり変わらないため(下記の表4参照)、本実施例の条件式は突き出し量がミラー反射面側と裏面側とで異なる場合にも適用できる。
また、補強部材2の形状は完全な長方形に限るものではなく、例えばこのミラーを設置する光学箱の構造を補強するために設けられたリブとの干渉を避けるための、若干の部分的な切欠形状があっても良い。
The above simulation is performed for a configuration in which the reinforcing member (reinforcing plate) 2 protrudes evenly on both sides of the mirror 1 in the direction perpendicular to the reflecting surface 1a of the mirror 1, for example, as shown in FIG. However, at least the width of the reinforcing member when the reinforcing effect is about +30 Hz, the result does not change so much even with one-side protrusion as shown in FIG. 10B (see Table 4 below). The formula can also be applied when the protrusion amount differs between the mirror reflection surface side and the back surface side.
In addition, the shape of the reinforcing member 2 is not limited to a perfect rectangle. For example, a slight partial cutout for avoiding interference with a rib provided to reinforce the structure of the optical box in which the mirror is installed. There may be a shape.

Figure 2008185995
Figure 2008185995

以上の実施例において、シミュレーションではミラー1の材質はフロートガラスとしたが、E/ρ(E:ヤング率、ρ:密度)がフロートガラスと大きく変わらない材料であれば、フロートガラス以外の材料においても同様の効果が得られる。また、シミュレーションでは補強部材(補強板)2は鉄系の板金材としたが、E/ρがこの鉄系板金材と大きく変わらない材料であれば、鉄系板金材以外の材料においても同様の効果が得られる。従って、上記の実施例における作用効果は、フロートガラスおよび鉄系板金材に限るものではない。
但し、ミラー1の材質をフロートガラスとすれば、より低コストで高い面精度が得られる。また、補強部材2を鉄系の板金材とすれば、補強部材2の材料費および加工費が極めて安く、かつ高い補強効果が得られる。従って、ミラー1の材質をフロートガラスとし、かつ補強部材2の材質を鉄系の板金材とすることが、より望ましい。
In the above embodiment, the material of the mirror 1 is float glass in the simulation, but any material other than float glass can be used as long as E / ρ (E: Young's modulus, ρ: density) is not significantly different from float glass. The same effect can be obtained. In the simulation, the reinforcing member (reinforcing plate) 2 is an iron-based sheet metal material. However, if E / ρ is not significantly different from this iron-based sheet metal material, the same applies to materials other than the iron-based sheet metal material. An effect is obtained. Therefore, the operational effects in the above-described embodiments are not limited to the float glass and the iron-based sheet metal material.
However, if the mirror 1 is made of float glass, high surface accuracy can be obtained at a lower cost. If the reinforcing member 2 is an iron-based sheet metal material, the material cost and processing cost of the reinforcing member 2 are extremely low, and a high reinforcing effect can be obtained. Therefore, it is more desirable that the material of the mirror 1 is float glass and the material of the reinforcing member 2 is an iron-based sheet metal material.

なお、本発明における補強部材2は必ずしも図1のように平板状の形状でなくても良い。例えば図11に示すように曲げ加工がなされた形状でも良く、この場合のWhは図11に示したように、補強部材2のミラー反射面1aに垂直な方向における幅(図中の「約15mm」)を取るものとする。
また、以上の実施例ではミラー1は全て平面ミラーとしたが、本発明の適用はこれに限るものではなく、シリンドリカルミラーやfθミラー等の曲面ミラーについても適用して同様の効果を得ることができる。
The reinforcing member 2 in the present invention does not necessarily have a flat plate shape as shown in FIG. For example, the shape may be bent as shown in FIG. 11, and Wh in this case is the width in the direction perpendicular to the mirror reflecting surface 1a of the reinforcing member 2 (as shown in FIG. )).
In the above embodiments, the mirrors 1 are all flat mirrors, but the application of the present invention is not limited to this, and the same effect can be obtained by applying to curved mirrors such as cylindrical mirrors and fθ mirrors. it can.

[実施例4]
図12に本発明を適用する分割型のハウジングを用いた光走査装置の一実施例を示す。また、図12における偏向器から像担持体(感光体)までの光学素子の配置を図13に示す。
図12および図13に示す光走査装置では、光源ユニット406a〜406dの半導体レーザ(LD)から射出された光束は、各々シリンドリカルレンズを経て偏向器407によって偏向され、2つの走査結像素子411a〜411d、412a〜412dおよび複数のミラー413を介して像面上に結像されて走査される。偏向器407より後の光学素子の配置は図13に示す通りである。具体的には、偏向器407はポリゴンミラーを上下2段備えるもので、図12における4つの光源ユニット406a〜406dからの4つの光束を、偏向器407の2段のポリゴンミラーミラーによって各々偏向し、左右両側に配置された同じく2段重ね構成の第一走査結像素子411a〜411dを介し、また各々の光路中に配置された第二走査結像素子412a〜412dを通って、4つの感光体414a〜414dに各々結像して走査される。
[Example 4]
FIG. 12 shows an embodiment of an optical scanning device using a split housing to which the present invention is applied. FIG. 13 shows the arrangement of optical elements from the deflector to the image carrier (photosensitive member) in FIG.
In the optical scanning device shown in FIG. 12 and FIG. 13, the light beams emitted from the semiconductor lasers (LD) of the light source units 406a to 406d are deflected by the deflector 407 through the cylindrical lenses, respectively. The image is scanned on the image plane via 411d, 412a to 412d and a plurality of mirrors 413. The arrangement of the optical elements after the deflector 407 is as shown in FIG. Specifically, the deflector 407 includes two stages of polygon mirrors. The four light beams from the four light source units 406a to 406d in FIG. 12 are deflected by the two-stage polygon mirror mirrors of the deflector 407, respectively. The four photosensitive elements pass through the first scanning imaging elements 411a to 411d having the same two-layer configuration arranged on the left and right sides and through the second scanning imaging elements 412a to 412d arranged in the respective optical paths. Each of the bodies 414a to 414d is imaged and scanned.

このような光学系を用いた図12、図13の光走査装置では、12本のミラー413は全て同じ長さであって向かい合う2つの板金製の側板401、402に架橋されて保持される。また、4つの第二走査結像素子412a〜412dは、各々上記向かい合う側板401、402に架橋された板金製のステーに保持される。ここで、側板401、402は、側板403、404によって連結されて1つの筐体(第二の筐体)となる。   In the optical scanning apparatus of FIGS. 12 and 13 using such an optical system, all twelve mirrors 413 have the same length and are bridged and held by two sheet metal side plates 401 and 402 facing each other. Further, the four second scanning imaging elements 412a to 412d are held by sheet metal stays that are bridged to the side plates 401 and 402 facing each other. Here, the side plates 401 and 402 are connected by the side plates 403 and 404 to form one housing (second housing).

一方、図12に示すように、4つの光源ユニット406a〜406d、シリンドリカルレンズ、偏向器407、及び第一走査結像素子411a〜411dは、樹脂で一体成形された筐体405(第一の筐体)に取り付けられる。筐体405は、側板401および402に架橋されて固定される。4つの側板と筐体405の底面とで塞がれていない下部の開口は、塵埃が光学箱内に侵入しないよう下カバー408aおよび408bによって塞がれる。図示はしていないが、上部開口も上カバーにより塞がれる。但しこの光走査装置では光束が上方に向かって射出されるので、上カバーには光を透過するガラスで塞いだ開口部を設ける。   On the other hand, as shown in FIG. 12, the four light source units 406a to 406d, the cylindrical lens, the deflector 407, and the first scanning imaging elements 411a to 411d are integrally formed with a housing 405 (first housing). Body). The housing 405 is fixed to the side plates 401 and 402 by being bridged. Lower openings that are not blocked by the four side plates and the bottom surface of the housing 405 are blocked by lower covers 408a and 408b so that dust does not enter the optical box. Although not shown, the upper opening is also closed by the upper cover. However, since the light beam is emitted upward in this optical scanning device, the upper cover is provided with an opening portion that is covered with glass that transmits light.

ここで、偏向器407の周囲は、筐体405に一体的に形成されたリブと、光束が通過する部分に配置された防音ガラス409a、409bとで囲まれている。さらに上部の開口をカバー410で塞ぐことによって偏向器407の周辺は密閉され、これにより偏向器407の回転に伴う風切り音と、偏向器407で発生する熱とが装置外部に漏れるのを大きく低減することができる。   Here, the periphery of the deflector 407 is surrounded by a rib formed integrally with the housing 405 and soundproof glass 409a and 409b disposed in a portion through which the light beam passes. Further, the periphery of the deflector 407 is sealed by closing the upper opening with the cover 410, thereby greatly reducing the wind noise generated by the rotation of the deflector 407 and the heat generated by the deflector 407 from leaking outside the apparatus. can do.

なお、偏向器407の回転が比較的遅かったり、ポリゴンミラーの外形が小さいなどの理由により音がさほど問題にならない場合には、筐体405のリブとカバー410との間に隙間をあけて、偏向器407で発生する熱を全て偏向器収容部に留めるのではなく光学箱内に若干拡散させるなどしても良い。   In addition, when the sound is not a serious problem because the rotation of the deflector 407 is relatively slow or the outer shape of the polygon mirror is small, a gap is provided between the rib of the housing 405 and the cover 410, All of the heat generated by the deflector 407 may be diffused slightly in the optical box instead of being kept in the deflector housing.

本実施例のように、複数のミラー413を側板間に架橋して保持する光走査装置では、殆どまたは全てのミラーの形状が同じになるため、このような光走査装置のミラー413に、上述の実施例1〜3で示したようなミラー補強方法(補強部材2で補強されたミラー1)を適用すれば、ミラーの形状に加えて補強部材の形状も統一化でき、従って部品点数を低減し、かつコストも低減できる。また、ミラーとそれに貼り付けた補強部材の形状を統一化できるので、ミラーに補強部材を貼り付けた状態で、光走査装置の組立工場に納品するようにしても、マテハンを含めた運送費が安く済むことから、光走査装置トータルでの生産工程設計の自由度を増すことができる。   As in this embodiment, in an optical scanning device that holds a plurality of mirrors 413 by bridging between side plates, most or all of the mirrors have the same shape. If the mirror reinforcing method (mirror 1 reinforced with the reinforcing member 2) as shown in the first to third embodiments is applied, the shape of the reinforcing member can be unified in addition to the shape of the mirror, and thus the number of parts is reduced. In addition, the cost can be reduced. In addition, since the shape of the mirror and the reinforcing member attached to it can be unified, even if the reinforcing member is attached to the mirror and delivered to the assembly factory of the optical scanning device, the transportation cost including material handling can be reduced. Since the cost can be reduced, it is possible to increase the degree of freedom in designing the production process for the entire optical scanning device.

なお、本発明を適用できる光走査装置の構成は、このような側板間にミラーを架橋して保持する構成のものに限るものではなく、例えば古くからよく使われているような、樹脂やアルミで箱型に一体的に形成された光学箱を用いる光走査装置に適用しても、同様の効果が得られる。   The configuration of the optical scanning device to which the present invention can be applied is not limited to such a configuration in which the mirror is bridged and held between the side plates. For example, a resin or aluminum that has been used for a long time is used. Even when applied to an optical scanning device using an optical box integrally formed in a box shape, the same effect can be obtained.

[実施例5]
図14に本発明を適用する画像読取装置の一実施例を示す。
図14において、原稿16を載せるコンタクトガラス11の下方には第1走行体100と第2走行体101が配置されている。第1走行体100は照明ランプ14と第1ミラー12−1を有してなり、照明ランプ14と第1ミラー12−1が一体的に移動可能となっている。第1ミラー12−1は原稿からの反射光を水平方向に反射する。また、第2走行体101は第2ミラー12−2と第3ミラー12−3を有してなり、第2、第3ミラー12−2、12−3は一体的に移動可能となっている。第2、第3ミラー12−2、12−3は反射面が互いに直角になるように斜設され、第1ミラー12−1からの反射光を水平方向に折り返す。反射された光は、レンズ13により光電変換素子としてのCCD17上に結像される。このようにして、原稿16の画像情報は、CCD17より電気信号として取り出される。
[Example 5]
FIG. 14 shows an embodiment of an image reading apparatus to which the present invention is applied.
In FIG. 14, a first traveling body 100 and a second traveling body 101 are disposed below the contact glass 11 on which the document 16 is placed. The 1st traveling body 100 has the illumination lamp 14 and the 1st mirror 12-1, and the illumination lamp 14 and the 1st mirror 12-1 can move integrally. The first mirror 12-1 reflects the reflected light from the document in the horizontal direction. The second traveling body 101 includes a second mirror 12-2 and a third mirror 12-3, and the second and third mirrors 12-2 and 12-3 are movable together. . The second and third mirrors 12-2 and 12-3 are obliquely arranged so that the reflecting surfaces are perpendicular to each other, and the reflected light from the first mirror 12-1 is folded back in the horizontal direction. The reflected light is imaged on the CCD 17 as a photoelectric conversion element by the lens 13. In this way, the image information of the document 16 is extracted from the CCD 17 as an electrical signal.

第1走行体100と第2走行体101はともに図示しない走行体モータを駆動源とし、図14に示す矢印方向に移動可能となっている。この時、露光中の原稿からCCD17までの光学的距離を一定に保つために、第1走行体100は、第2走行体101に対して2倍の速度Vで移動するようになっている。なお、図14において一点鎖線で示した部分は、原稿16を走査した後のミラー12−1、12−2、12−3の位置を示したものである。   The first traveling body 100 and the second traveling body 101 are both movable in the direction of the arrow shown in FIG. 14 using a traveling body motor (not shown) as a drive source. At this time, in order to keep the optical distance from the document being exposed to the CCD 17 constant, the first traveling body 100 moves at a speed V twice that of the second traveling body 101. 14 indicate the positions of the mirrors 12-1, 12-2, and 12-3 after the document 16 is scanned.

このような画像読取装置のミラー12−1,12−2,12−3に上述の実施例1〜3に示したようなミラー補強方法(補強部材2で補強されたミラー1)を適用すれば、低コストでミラーの振動を低減し、電子情報として読み取られる画像データが、原稿にはない線の揺らぎなどを生じることのない画像読取装置を実現することができる。   If the mirror reinforcing method (mirror 1 reinforced by the reinforcing member 2) as shown in the first to third embodiments is applied to the mirrors 12-1, 12-2, 12-3 of such an image reading apparatus. Therefore, it is possible to realize an image reading apparatus that reduces the vibration of the mirror at low cost and does not cause fluctuations in the line of image data that is read as electronic information, which are not found in the original.

[実施例6]
図15は実施例4の光走査装置、または実施例5の画像読取装置を搭載する画像形成装置の一実施例を示す概略断面構成図である。
画像形成装置の略中央部には、ブラック、シアン、マゼンタ、イエローの4色の色ごとに各々対応するドラム状の感光体601(図13の414a〜414dに相等する)を有する4つの画像形成ステーションが配設されており、画像読取装置613にて読み取られた原稿の画像情報、またはパーソナルコンピュータ等から送られる画像情報に応じて、各感光体601に、光走査装置600によって潜像が書き込まれる。
各画像形成ステーションの感光体601の周囲には、感光体601を高圧に帯電する帯電チャージャ602、光走査装置600により記録された静電潜像に帯電したトナーを付着して顕像化する現像ローラ603、現像ローラ603にトナーを補給するトナーカートリッジ604、感光体601に残ったトナーを掻き取り備蓄するクリーニングケース605等が配置されている。
[Example 6]
FIG. 15 is a schematic cross-sectional configuration diagram showing an embodiment of an image forming apparatus on which the optical scanning device of Embodiment 4 or the image reading device of Embodiment 5 is mounted.
Four image formations having drum-shaped photoreceptors 601 (corresponding to 414a to 414d in FIG. 13) corresponding to each of four colors of black, cyan, magenta, and yellow are provided in the substantially central portion of the image forming apparatus. A station is provided, and a latent image is written on each photoconductor 601 by the optical scanning device 600 in accordance with image information of a document read by the image reading device 613 or image information sent from a personal computer or the like. It is.
Development is performed around the photoconductor 601 of each image forming station to make the electrostatic latent image recorded by the optical scanning device 600 adhere to the charging charger 602 that charges the photoconductor 601 to a high voltage and to visualize the image. A roller 603, a toner cartridge 604 that supplies toner to the developing roller 603, a cleaning case 605 that scrapes and stores toner remaining on the photosensitive member 601, and the like are disposed.

上記した画像形成ステーションは中間転写ベルト606の移動方向に並列され、各画像形成ステーションの感光体601上に形成されたイエロー、マゼンタ、シアン、ブラックのトナー画像が、図示しない一次転写手段(一次転写ローラ、一次転写チャージャ、一次転写ブラシ等)により中間転写ベルト606上にタイミングを合わせて順次転写され、重ね合わされてカラー画像が形成される。なお、各画像形成ステーションはトナー色が異なるだけで、基本的には同一構成である。   The above-described image forming stations are arranged in parallel in the moving direction of the intermediate transfer belt 606, and yellow, magenta, cyan, and black toner images formed on the photoconductor 601 of each image forming station are transferred to a primary transfer unit (primary transfer unit) (not shown). A roller, a primary transfer charger, a primary transfer brush, and the like) are sequentially transferred onto the intermediate transfer belt 606 at appropriate timing, and are superimposed to form a color image. Each image forming station basically has the same configuration except that the toner color is different.

一方、記録紙等の転写材は給紙トレイ607から給紙コロ608により供給され、レジストローラ対609により副走査方向の記録開始のタイミングに合わせて送りだされ、図示しない二次転写手段(二次転写ローラ、二次転写チャージャ等)により中間転写ベルト606よりカラー画像が転写される。そして、転写後の転写材は定着装置610に送られ、定着装置610の定着ローラおよび加圧ローラにより画像が転写材に定着される。定着後の転写材は、排紙ローラ612により排紙トレイ611に排出される。   On the other hand, a transfer material such as recording paper is supplied from a paper feed tray 607 by a paper feed roller 608 and is sent out by a registration roller pair 609 in accordance with the recording start timing in the sub-scanning direction. A color image is transferred from the intermediate transfer belt 606 by a secondary transfer roller, a secondary transfer charger, or the like. Then, the transferred transfer material is sent to the fixing device 610, and the image is fixed on the transfer material by the fixing roller and the pressure roller of the fixing device 610. The transfer material after fixing is discharged to a discharge tray 611 by a discharge roller 612.

以上、本発明を適用する画像形成装置の一例を示したが、本発明を適用する画像形成装置は図15のようなカラー画像形成装置に限るものではない。しかし、図15のような感光体601を複数用いるタンデム型の画像形成装置では、図12および図13に示した実施例のように、感光体601の数に応じて光走査装置600に用いられるミラーの数が多くなるため、本発明を適用することによって、より大きな効果が得られる。また、タンデム型の画像形成装置では、複数の感光体上に形成される各色の画像を、各々正しい位置に形成できなければ、色ずれと呼ばれる画像劣化現象を生じ、色の再現性が悪くなるという問題があり、画像読取装置および光走査装置の光学特性に対する要求精度がモノクロ画像形成装置よりも高くなることからも、より低コストでより高画質の出力画像が得られる本発明の適用が有効である。   Although an example of the image forming apparatus to which the present invention is applied has been described above, the image forming apparatus to which the present invention is applied is not limited to the color image forming apparatus as shown in FIG. However, in the tandem type image forming apparatus using a plurality of photoconductors 601 as shown in FIG. 15, the optical scanning device 600 is used according to the number of photoconductors 601 as in the embodiments shown in FIGS. Since the number of mirrors increases, a greater effect can be obtained by applying the present invention. In addition, in a tandem type image forming apparatus, if each color image formed on a plurality of photoconductors cannot be formed at the correct position, an image deterioration phenomenon called color misregistration occurs, resulting in poor color reproducibility. Since the required accuracy for the optical characteristics of the image reading device and the optical scanning device is higher than that of the monochrome image forming device, the application of the present invention that can obtain a higher quality output image at a lower cost is effective. It is.

なお、画像形成装置の普及層は、A4またはA3の紙サイズに対応した大きさの装置である。A4、A3対応の画像形成装置では、紙の主走査方向の長さがそれぞれ210mm、297mmである。従って、これらの画像形成装置に用いられるミラーの長さは、ミラー両端の保持に必要な余分な長さを考慮しても、一般に350mm以下となる。
一方、光走査装置の偏向器に近い位置で用いられるミラーなどは、走査に必要な長さが短い。ここで、例えば長さが150mm×幅10mmのミラーであれば、厚さ3mmと比較的薄くても補強なしで一次共振周波数が322Hzと300Hzを超え、補強なしでもミラー共振時の変位が小さい。従って一般的な光走査装置においては、150mmよりも短いミラーについては補強を考える必要が生じることは少ない。
Note that the popularization layer of the image forming apparatus is an apparatus having a size corresponding to the A4 or A3 paper size. In the image forming apparatuses corresponding to A4 and A3, the length of the paper in the main scanning direction is 210 mm and 297 mm, respectively. Accordingly, the length of the mirror used in these image forming apparatuses is generally 350 mm or less even when an extra length necessary for holding both ends of the mirror is taken into consideration.
On the other hand, a mirror or the like used at a position close to the deflector of the optical scanning device has a short length required for scanning. Here, for example, in the case of a mirror having a length of 150 mm × width of 10 mm, the primary resonance frequency exceeds 322 Hz and 300 Hz without reinforcement even if the thickness is relatively thin as 3 mm, and the displacement at the time of mirror resonance is small even without reinforcement. Therefore, in a general optical scanning apparatus, it is rarely necessary to consider reinforcement for a mirror shorter than 150 mm.

また、A3よりも大きい紙サイズに対応したタイプの画像形成装置では、よりミラーの長さが長くなりやすくミラーの振動対策がより必須となる反面、A4またはA3サイズ対応の画像形成装置に比べて極端に世界的な生産台数が少ないため、部品コストは安いに越したことはないものの、小額のコストダウン策はメリットが小さく、ミラーの振動対策としては厚さの厚いミラーを用いても、あまり差し支えない。   In addition, in the image forming apparatus of a type corresponding to a paper size larger than A3, the mirror length tends to be longer and countermeasures against vibration of the mirror are more essential, but compared with an image forming apparatus compatible with A4 or A3 size. Although the parts cost has never been cheaper due to the extremely small number of global production, the small cost reduction measures have little merit, and even if a thick mirror is used as a mirror vibration measure, it is not much There is no problem.

本発明の第一の実施例を示す図であって、補強部材で補強されたミラーの構成例を示す図である。It is a figure which shows the 1st Example of this invention, Comprising: It is a figure which shows the structural example of the mirror reinforced with the reinforcement member. 従来のミラー補強部材の効果を示す図である。It is a figure which shows the effect of the conventional mirror reinforcement member. 本発明に係るミラー補強方法の説明図であって、同図(a)は振動シミュレーションに用いる板状の補強部材(補強板)で補強されたミラーの斜視図であり、同図(b)は、同図(a)中の矢印A方向から見た図である。It is explanatory drawing of the mirror reinforcement method which concerns on this invention, Comprising: The figure (a) is a perspective view of the mirror reinforced with the plate-shaped reinforcement member (reinforcement board) used for vibration simulation, The figure (b) is the figure. It is the figure seen from the arrow A direction in the figure (a). ミラー形状が長さ260mmおよび240mm、幅10×厚さ5mm(補強部材なし)の時の伝達関数(振動特性)をシミュレーションにより求めた結果を示す図である。It is a figure which shows the result of having calculated | required the transfer function (vibration characteristic) when a mirror shape is length 260mm and 240mm, width 10x thickness 5mm (without a reinforcement member) by simulation. 本発明に係る補強方法を適用したミラーの補強効果をシミュレーションした結果の一例を示す図である。It is a figure which shows an example of the result of having simulated the reinforcement effect of the mirror which applied the reinforcement method which concerns on this invention. 本発明に係る補強方法を適用したミラーの補強効果をシミュレーションした結果の別の例を示す図である。It is a figure which shows another example of the result of having simulated the reinforcement effect of the mirror to which the reinforcement method which concerns on this invention is applied. 本発明に係る補強方法を適用したミラーの補強効果をシミュレーションした結果の別の例を示す図である。It is a figure which shows another example of the result of having simulated the reinforcement effect of the mirror to which the reinforcement method which concerns on this invention is applied. 本発明の第二の実施例を示す図であって、補強部材で補強されたミラーの支持方法の説明図である。It is a figure which shows the 2nd Example of this invention, Comprising: It is explanatory drawing of the support method of the mirror reinforced with the reinforcement member. 本発明の第二の実施例の別の例を示す図であって、補強部材の長手方向の両端部に切欠部を設けた例を示す図である。It is a figure which shows another example of the 2nd Example of this invention, Comprising: It is a figure which shows the example which provided the notch part in the both ends of the longitudinal direction of a reinforcement member. ミラーの反射面に垂直な方向において、補強部材がミラーに対して両側に均等に突き出す両側突き出しと、片側にのみ突き出す片側突き出しの例を示す図である。It is a figure which shows the example of the one-sided protrusion which protrudes only to one side which the reinforcement member protrudes equally to both sides with respect to a mirror in the direction perpendicular | vertical to the reflective surface of a mirror. 本発明の補強方法に用いられる補強部材の別の形状例を示す図である。It is a figure which shows another example of a shape of the reinforcement member used for the reinforcement method of this invention. 本発明を適用する分割型のハウジングを用いた光走査装置の一実施例を示す分解斜視図である。It is a disassembled perspective view which shows one Example of the optical scanning device using the division | segmentation type | mold housing to which this invention is applied. 図12に示す光走査装置の偏向器から像担持体(感光体)までの光学素子の配置を示す概略断面図である。It is a schematic sectional drawing which shows arrangement | positioning of the optical element from the deflector of the optical scanning apparatus shown in FIG. 12 to an image carrier (photosensitive body). 本発明を適用する画像読取装置の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the image reading apparatus to which this invention is applied. 本発明を適用する画像形成装置の一実施例を示す概略断面構成図である。1 is a schematic cross-sectional configuration diagram showing an embodiment of an image forming apparatus to which the present invention is applied.

符号の説明Explanation of symbols

1,12−1,12−2,12−3,413:ミラー
1a:反射面
2:補強部材(補強板)
3:接着部
4−1,4−2,4−3:拘束点
5−1,5−2:支持部材
6:押さえばね
7:ねじ
11:コンタクトガラス
13:レンズ
14:照明ランプ
16:原稿
17:CCD(光電変換素子)
401〜404:側板
405:筐体
406a〜406d:光源ユニット
407:偏向器
408a,408b:下カバー
409a,409b:防音ガラス
410:カバー
411(411a〜411d):第一走査結像素子
412a〜412d:第二走査結像素子
414a〜414d、601:感光体(像担持体)
600:光走査装置
602:帯電チャージャ
603:現像ローラ
604:トナーカートリッジ
605:クリーニングケース
606:中間転写ベルト
607:給紙トレイ
608:給紙コロ
609:レジストローラ
610:定着装置
611:排紙トレイ
612:排紙ローラ
1,12-1,12-2,12-3,413: Mirror 1a: Reflecting surface 2: Reinforcing member (reinforcing plate)
3: Bonding part 4-1, 4-2, 4-3: Restriction point 5-1, 5-2: Support member 6: Pressing spring 7: Screw 11: Contact glass 13: Lens 14: Illumination lamp 16: Document 17 : CCD (photoelectric conversion element)
401-404: side plate 405: housing 406a-406d: light source unit 407: deflector 408a, 408b: lower cover 409a, 409b: soundproof glass 410: cover 411 (411a-411d): first scanning imaging elements 412a-412d : Second scanning imaging element 414a to 414d, 601: photoconductor (image carrier)
600: optical scanning device 602: charging charger 603: developing roller 604: toner cartridge 605: cleaning case 606: intermediate transfer belt 607: paper feed tray 608: paper feed roller 609: registration roller 610: fixing device 611: paper discharge tray 612 : Paper discharge roller

Claims (9)

反射面が細長く延びた形状のミラーの補強方法であって、
前記ミラーの前記反射面に対する側面に補強部材を固定し、かつ前記補強部材は下記の条件式を満たすことを特徴とするミラー補強方法。
0.8×Lm≦Lh
Lm:ミラーの長手方向の長さ(mm)
Lh:補強部材の長手方向の長さ(mm)
A method for reinforcing a mirror having a shape in which a reflecting surface is elongated,
A mirror reinforcing method, wherein a reinforcing member is fixed to a side surface of the mirror with respect to the reflecting surface, and the reinforcing member satisfies the following conditional expression.
0.8 × Lm ≦ Lh
Lm: Length in the longitudinal direction of the mirror (mm)
Lh: Length in the longitudinal direction of the reinforcing member (mm)
請求項1記載のミラー補強方法において、
前記補強部材の長手方向の長さLhが、前記ミラーの長手方向の長さLmよりも短いことを特徴とするミラー補強方法。
The mirror reinforcing method according to claim 1,
A mirror reinforcing method, wherein a length Lh in the longitudinal direction of the reinforcing member is shorter than a length Lm in the longitudinal direction of the mirror.
請求項1記載のミラー補強方法において、
前記補強部材の前記ミラーの端部近傍に、切欠部を設けたことを特徴とするミラー補強方法。
The mirror reinforcing method according to claim 1,
A mirror reinforcing method, wherein a notch is provided near an end of the mirror of the reinforcing member.
反射面が細長く延びた形状のミラーの補強方法であって、
前記ミラーの前記反射面に対する側面に補強部材を固定し、前記ミラーの反射面に略垂直な方向において、下記の条件式を満たすことを特徴とするミラー補強方法。
Wh≧(−1.1×ln(Th)+2.7)×(Lm/250)^1.3
×(Tm/5)^0.2×(Wm/10)^0.5+Tm
Wh:補強部材の幅(mm)
ln(Th):Thの自然対数
Th:補強部材の厚さ(mm)
Lm:ミラーの長手方向の長さ(mm)
Tm:ミラーの反射面に略垂直な方向の厚さ(mm)
Wm:ミラーの幅(mm)
A method for reinforcing a mirror having a shape in which a reflecting surface is elongated,
A mirror reinforcing method comprising: fixing a reinforcing member on a side surface of the mirror with respect to the reflecting surface; and satisfying the following conditional expression in a direction substantially perpendicular to the reflecting surface of the mirror.
Wh ≧ (−1.1 × ln (Th) +2.7) × (Lm / 250) ^ 1.3
× (Tm / 5) ^ 0.2 × (Wm / 10) ^ 0.5 + Tm
Wh: width of the reinforcing member (mm)
ln (Th): natural logarithm of Th Th: thickness of reinforcing member (mm)
Lm: Length in the longitudinal direction of the mirror (mm)
Tm: Thickness (mm) in a direction substantially perpendicular to the reflecting surface of the mirror
Wm: Mirror width (mm)
請求項1乃至4のいずれか1項に記載のミラー補強方法において、
前記ミラーの基材の材質はガラス材であり、かつ前記補強部材の材質は鉄系板金材であることを特徴とするミラー補強方法。
In the mirror reinforcement method according to any one of claims 1 to 4,
A mirror reinforcing method, wherein a material of the base material of the mirror is a glass material, and a material of the reinforcing member is an iron-based sheet metal material.
反射面が細長く延びた形状のミラーであって、
請求項1乃至5のいずれか1項に記載のミラー補強方法によって補強されたことを特徴とするミラー。
A mirror having a shape in which the reflecting surface is elongated,
A mirror reinforced by the mirror reinforcing method according to any one of claims 1 to 5.
光源からの光を偏向器で偏向し、像面上を走査する光走査装置において、
前記偏向器から前記像面に至る光路に配置されるミラーに、請求項6記載のミラーを用いたことを特徴とする光走査装置。
In an optical scanning device that deflects light from a light source with a deflector and scans the image surface,
7. An optical scanning device using the mirror according to claim 6 as a mirror disposed in an optical path from the deflector to the image plane.
原稿の画像をミラー及びレンズを介して光電変換素子に結像し、原稿の画像情報を読み取る画像読取装置において、
前記ミラーに、請求項6記載のミラーを用いたことを特徴とする画像読取装置。
In an image reading apparatus that forms an image of a document on a photoelectric conversion element through a mirror and a lens and reads image information of the document,
An image reading apparatus using the mirror according to claim 6 as the mirror.
請求項7記載の光走査装置、または請求項8記載の画像読取装置を備え、画像を形成することを特徴とする画像形成装置。   An image forming apparatus comprising the optical scanning device according to claim 7 or the image reading device according to claim 8, and forming an image.
JP2007021983A 2007-01-31 2007-01-31 Mirror reinforcing method, mirror, optical scanning device, image reading device, and image forming device Expired - Fee Related JP5064818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021983A JP5064818B2 (en) 2007-01-31 2007-01-31 Mirror reinforcing method, mirror, optical scanning device, image reading device, and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021983A JP5064818B2 (en) 2007-01-31 2007-01-31 Mirror reinforcing method, mirror, optical scanning device, image reading device, and image forming device

Publications (2)

Publication Number Publication Date
JP2008185995A true JP2008185995A (en) 2008-08-14
JP5064818B2 JP5064818B2 (en) 2012-10-31

Family

ID=39729054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021983A Expired - Fee Related JP5064818B2 (en) 2007-01-31 2007-01-31 Mirror reinforcing method, mirror, optical scanning device, image reading device, and image forming device

Country Status (1)

Country Link
JP (1) JP5064818B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021288A (en) * 2012-07-19 2014-02-03 Konica Minolta Inc Holding structure for optical member, optical device, and image forming apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221701A (en) * 1985-12-25 1986-10-02 Sumitomo Bakelite Co Ltd Production of mirror
JPH05297260A (en) * 1992-04-21 1993-11-12 Konica Corp Vibration preventive structure of long stretching mirror
JPH10282399A (en) * 1997-04-11 1998-10-23 Ricoh Co Ltd Light reflecting mirror
JP2004029294A (en) * 2002-06-25 2004-01-29 Seiko Epson Corp Mechanism of supporting long mirror
JP2004177487A (en) * 2002-11-25 2004-06-24 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2005189592A (en) * 2003-12-26 2005-07-14 Kyocera Mita Corp Image reader
JP2006154116A (en) * 2004-11-26 2006-06-15 Fuji Xerox Co Ltd Optical scanner
JP2006259368A (en) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd Optical apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221701A (en) * 1985-12-25 1986-10-02 Sumitomo Bakelite Co Ltd Production of mirror
JPH05297260A (en) * 1992-04-21 1993-11-12 Konica Corp Vibration preventive structure of long stretching mirror
JPH10282399A (en) * 1997-04-11 1998-10-23 Ricoh Co Ltd Light reflecting mirror
JP2004029294A (en) * 2002-06-25 2004-01-29 Seiko Epson Corp Mechanism of supporting long mirror
JP2004177487A (en) * 2002-11-25 2004-06-24 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2005189592A (en) * 2003-12-26 2005-07-14 Kyocera Mita Corp Image reader
JP2006154116A (en) * 2004-11-26 2006-06-15 Fuji Xerox Co Ltd Optical scanner
JP2006259368A (en) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd Optical apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021288A (en) * 2012-07-19 2014-02-03 Konica Minolta Inc Holding structure for optical member, optical device, and image forming apparatus

Also Published As

Publication number Publication date
JP5064818B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US7643193B2 (en) Optical scanning apparatus and image forming apparatus
JP4645251B2 (en) Optical device
US8031362B2 (en) Optical scanning device, image forming apparatus, and liquid crystal element
US20100265310A1 (en) Optical scanning device and image forming apparatus
JP5317409B2 (en) Optical scanning device
JP2006349925A (en) Optical unit and image forming apparatus
JP2018132637A (en) Manufacturing method for optical scanning device, optical scanning device, and image forming apparatus
US7116457B2 (en) Optical scanning apparatus and image forming apparatus
US7821678B2 (en) Image forming apparatus capable of producing a high-precision light beam with a simple structure
JP5064818B2 (en) Mirror reinforcing method, mirror, optical scanning device, image reading device, and image forming device
JP4460865B2 (en) Optical scanning apparatus and color image forming apparatus
JP2006235508A (en) Image forming device
JP4839165B2 (en) Mirror reinforcing structure, optical scanning device, image reading device, and image forming device
CN110531514B (en) Optical scanning device and image forming apparatus
JP2000241733A (en) Optical scanner
JP2008070722A (en) Mirror reinforcement structure, optical scanner, image read-out device, and image forming apparatus
JP4508996B2 (en) Optical unit, image forming apparatus, and optical component unit fixing method
JP2016218102A (en) Dynamic vibration absorber, and optical device and image forming apparatus including the same
JPH10221627A (en) Optical scanner
JP2013041171A (en) Optical scanner, image reading device, and image forming device
JP2008020592A (en) Optical scanner and image forming apparatus
JP2004054019A (en) Scanning optical device and image forming apparatus
JPH10282399A (en) Light reflecting mirror
JP4731722B2 (en) Optical scanning apparatus and image forming apparatus
JP2006039543A (en) Light reflecting miller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5064818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees