JP2008185515A - Flow measurement method - Google Patents

Flow measurement method Download PDF

Info

Publication number
JP2008185515A
JP2008185515A JP2007020753A JP2007020753A JP2008185515A JP 2008185515 A JP2008185515 A JP 2008185515A JP 2007020753 A JP2007020753 A JP 2007020753A JP 2007020753 A JP2007020753 A JP 2007020753A JP 2008185515 A JP2008185515 A JP 2008185515A
Authority
JP
Japan
Prior art keywords
flow rate
fluid pressure
fluid
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007020753A
Other languages
Japanese (ja)
Other versions
JP5015622B2 (en
Inventor
Yoshimi Seya
慶身 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E'S Inc
Original Assignee
E'S Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E'S Inc filed Critical E'S Inc
Priority to JP2007020753A priority Critical patent/JP5015622B2/en
Publication of JP2008185515A publication Critical patent/JP2008185515A/en
Application granted granted Critical
Publication of JP5015622B2 publication Critical patent/JP5015622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously measure the flow of fluid in a channel with a simple constitution, and to reduce the construction cost when it is installed in the channel and facilitate periodical verification and calibration with a simple and inexpensive constitution. <P>SOLUTION: An injection pipe 1 is arranged in a duct 110 on the upstream side. A fluid pressure detection device 2 is arranged in a duct 120 on the downstream side. CO<SB>2</SB>gas is injected into the duct 110 from the injection pipe 1, and the injection amount of the CO<SB>2</SB>gas is recognized. CO<SB>2</SB>gas is sampled using, as a sampling pipe, a fluid pressure detection body 21 on the upstream side of the fluid pressure detection device 2. Flow is determined based on the concentration of the sampled CO<SB>2</SB>gas. The fluid differential pressure between the fluid pressure detection body 21 on the upstream side and a fluid pressure detection body 22 on the downstream side is detected by a differential pressure indicator 3. The relation between the flow and differential pressure determined by the gas tracer method is investigated. Then, the flow is determined based on the differential pressure detected by the fluid pressure detection device 2 and the relation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、管路内を流れる流体の速度や流量を計測する流量計測方法に関する。   The present invention relates to a flow rate measuring method for measuring the speed and flow rate of a fluid flowing in a pipeline.

従来、管路内に設置し流量を連続的に計測する手段として、ピトー管やオリフィスに代表される差圧方式や渦式、熱線式、羽根車式など様々な方式の流量計がある。しかしながら、これらの方式は次のような問題を抱えている。   Conventionally, there are various types of flowmeters such as a differential pressure method represented by a pitot tube and an orifice, a vortex method, a hot wire method, and an impeller method as means for continuously measuring the flow rate installed in a pipe line. However, these methods have the following problems.

第1に精密加工に伴う高額化という問題がある。第2に、流量計の実際の取り付けに際して所定性能を維持するための制約がある。例えば測定点の上下流域に充分長い直管部(以下、必要直管部という。)を設け、流体が整流された条件下で計測しなければならず、実用的ではない。このため、実際の使用現場では、流量計の所定性能を発揮するための必要直管部が得られていないケースが殆どであり、取り付け状態での初期性能や経年後の検証・校正ができないという問題がある。   First, there is a problem of high costs associated with precision machining. Secondly, there are constraints to maintain a predetermined performance when the flow meter is actually attached. For example, a sufficiently long straight pipe portion (hereinafter referred to as a necessary straight pipe portion) is provided in the upstream and downstream areas of the measurement point, and the measurement must be performed under a condition where the fluid is rectified, which is not practical. For this reason, most of the cases where the necessary straight pipe part for demonstrating the predetermined performance of the flowmeter is not obtained in actual use sites, the initial performance in the installed state and the verification and calibration after aging are not possible There's a problem.

また、近年、必要直管部を短縮化する目的でハニカム形状の整流器を内蔵した流量計もあるが、圧力損失による無効なエネルギーの消耗や目詰まり除去のための定期保全作業が必要となり、省エネや作業性の面で問題化している。また、流路への取り付けに際しては、一般的に流路に対する専用の管路を挟み込む、フランジ接続となるため、別途大規模工事費用が発生し高額になるという問題もある。   In recent years, some flowmeters have built-in honeycomb-shaped rectifiers for the purpose of shortening the required straight pipe section. However, periodic maintenance work is necessary to eliminate invalid energy consumption and clogging due to pressure loss. It has become a problem in terms of workability. In addition, the attachment to the flow path generally involves a flange connection that sandwiches a dedicated pipe line with respect to the flow path, so that there is another problem that a large-scale construction cost is separately generated and expensive.

一方、非特許文献1に開示されている別の手法として、流れの中に被測定流体と異なる物質を注入し、下流域にその異種物質を検出するセンサを配置することで、注入から検出までに要した時間と移動距離(異種物質注入部と異種物質検出部との距離)を基に、被測定流体の速度を算出するトレーサ法や、注入時の初期状態量(異種物質の濃度と注入量)と被測定流体とのミキシングにより希釈された下流域での異種物質濃度を基に被測定流体の速度を算出する混合希釈法がある。しかしながら、これらの手法は、速度の計測が異種物質を注入している期間のみであり、一時的な計測にしかならないという問題がある。
「流量計測ハンドブック」、日刊工業新聞社、昭和54年7月10日発行
On the other hand, as another method disclosed in Non-Patent Document 1, a substance different from the fluid to be measured is injected into the flow, and a sensor for detecting the foreign substance is arranged in the downstream area, so that from injection to detection. The tracer method that calculates the velocity of the fluid to be measured based on the time and distance traveled (distance between the foreign substance injection part and the foreign substance detection part), and the initial state quantity at the time of injection (concentration and injection of the foreign substance) There is a mixed dilution method in which the velocity of the fluid to be measured is calculated on the basis of the concentration of the different substances in the downstream region diluted by mixing with the fluid to be measured. However, these methods have a problem that the speed is measured only during a period in which a foreign substance is injected, and only temporary measurement is performed.
"Flow measurement handbook", published by Nikkan Kogyo Shimbun, July 10, 1979

上記従来の流量計測方法の問題点から、機器そのものが安価で流路への設置費用が抑えられ、必要直管部が短縮化でき、初期性能や経年時の校正ができ、さらに圧力損失が低減できるとともに、保全作業が軽減できる連続的な流量計測方法が望まれている。   Due to the problems of the conventional flow rate measurement method described above, the equipment itself is inexpensive and installation costs in the flow path can be reduced, the required straight pipe section can be shortened, initial performance and aging can be calibrated, and pressure loss is reduced. There is a demand for a continuous flow rate measurement method that can reduce maintenance work.

本発明は、これらの点に鑑み、生産工程を簡素化することで廉価を実現し、しかも簡便に流路への設置ができ、機器設置制限を緩めるとともに、機器設置状態で性能検証や校正ができ、圧力損失によるエネルギーロスを低減し、目詰まり解消などの保全作業が軽減でき、連続的な測定が可能な新規の流量計測方法を提供することを課題とする。   In view of these points, the present invention realizes low cost by simplifying the production process, can be easily installed in the flow path, relaxes equipment installation restrictions, and performs performance verification and calibration in the equipment installation state. It is possible to reduce the energy loss due to pressure loss, reduce maintenance work such as clogging, and provide a new flow measurement method capable of continuous measurement.

請求項1の流量計測方法は、流体の速さによって検出圧力が変化する流体圧力検知装置を流路内に設置するとともに、別途、一時的流量測定手段にて流体の流量を求められるようにし、流路内の流量を段階的に変化させながら、前記流体圧力検知装置からの検出圧力と前記一時的流量測定手段で求めた流量の関係を各流量毎に調査し、その後、前記調査した検出圧力と流量との関係を基に、前記流体圧力検知装置の検出圧力から前記流路内の流用を求めることで、一時的流量測定手段を連続的に流量が測定できるようにしたことを特徴とする。なお、一時的流量測定手段は、例えば混合希釈法やトレーサ法或いは持ち運び可能な超音波流量計にて流量を求めるものである。   In the flow rate measuring method according to claim 1, a fluid pressure detection device whose detection pressure changes depending on the speed of the fluid is installed in the flow path, and the flow rate of the fluid can be separately obtained by a temporary flow rate measurement unit, While changing the flow rate in the channel stepwise, the relationship between the detected pressure from the fluid pressure detector and the flow rate obtained by the temporary flow rate measuring means is investigated for each flow rate, and then the detected detected pressure Based on the relationship between the flow rate and the flow rate, the temporary flow rate measuring means can continuously measure the flow rate by obtaining the diversion in the flow path from the detected pressure of the fluid pressure detection device. . The temporary flow rate measuring means obtains the flow rate by, for example, a mixed dilution method, a tracer method, or a portable ultrasonic flow meter.

請求項2の流量計測方法は、請求項1に記載の流量計測方法であって、前記流体圧力検知装置の一部又は全部が前記一時的流量測定手段における検出手段を兼ねることを特徴とする。この場合、流体圧力検知装置は、例えば流路内に注入されたCO2 ガス等の異種物質を検出する検出手段(サンプリング管)とすることができる。 A flow rate measurement method according to a second aspect is the flow rate measurement method according to the first aspect, wherein a part or all of the fluid pressure detection device also serves as a detection unit in the temporary flow rate measurement unit. In this case, the fluid pressure detection device can be, for example, a detection means (sampling tube) that detects a different substance such as CO 2 gas injected into the flow path.

例えば、流体の流量を決める、ファンやポンプのインバータ及びダンパやバルブの開度を固定して流体の流量を一定に保った条件下で、流路内に異種物質を注入し、その下流域で異種物質の到達時間や濃度を検出するトレーサー法や混合希釈法を用いて流量を計測する。一方で、流路内に設けた流体圧力検知装置(2種類の圧力検知体で構成)の圧力差を検出し、流量と圧力差の関係(相関)を調べる。この調査を流量を変化させて繰り返すことで、流量と圧力差の間に一義的関係が得られることを、本発明者は見出した。そこで、本発明は、この関係から流量と圧力差の回帰曲線を求めたり、グラフ化することで、異種物質を注入しない状態でも圧力差から流量が求められるようにする。これにより、混合希釈法などによる一時的な流量測方法を連続的な流量測定方法に変換できるようにした。   For example, under the condition that the flow rate of the fluid is fixed and the flow rate of the fluid is kept constant by fixing the opening of the inverters and dampers and valves of the fan and pump, different substances are injected into the flow path, The flow rate is measured using a tracer method or mixed dilution method that detects the arrival time and concentration of different substances. On the other hand, the pressure difference of the fluid pressure detector (configured with two types of pressure detectors) provided in the flow path is detected, and the relationship (correlation) between the flow rate and the pressure difference is examined. The present inventor has found that a unique relationship can be obtained between the flow rate and the pressure difference by repeating this investigation while changing the flow rate. Therefore, the present invention obtains a regression curve of the flow rate and the pressure difference from this relationship, or graphs it, so that the flow rate can be obtained from the pressure difference even when different substances are not injected. As a result, a temporary flow measurement method such as a mixed dilution method can be converted into a continuous flow measurement method.

流路内に設ける流体圧力検知体は、トレーサー法や混合希釈法で流量を求める際のサンプリング管や異種物質注入管を兼ねることもできる。流体圧力検知体は、汎用パイプ(丸、角、矩形など)を流用することもでき、流れを横断するように流路内に2種類の圧力(例えば全圧と静圧)が検出でるように設置する。流体圧力検知体は、一端を閉塞し、他端に圧力取り出し口を設けるとともに、適当な間隔で直線上(一定方向)に流体圧力検知孔(またはサンプリング孔を兼ねる)を開孔する。流体圧力検知装置は流体圧力検知孔の向きが異なる2種類の圧力検知体にて構成する。また、この2種類を一対とし、流路内に複数対並行して間隔配置することで流路内の平均圧力やサンプリングの均質化を図ることができる。   The fluid pressure detector provided in the flow path can also serve as a sampling tube or a different substance injection tube when the flow rate is obtained by a tracer method or a mixed dilution method. The fluid pressure detector can be diverted to general-purpose pipes (round, square, rectangular, etc.) so that two types of pressure (for example, total pressure and static pressure) can be detected in the flow path so as to cross the flow. Install. The fluid pressure detector closes one end, provides a pressure outlet at the other end, and opens a fluid pressure detection hole (or a sampling hole) in a straight line (constant direction) at an appropriate interval. The fluid pressure detection device is composed of two types of pressure detectors with different directions of fluid pressure detection holes. Moreover, the two types can be paired, and a plurality of pairs can be arranged in parallel in the flow path so that the average pressure in the flow path and the sampling can be homogenized.

好ましい流体圧力検知体の流体圧力検知孔の開孔向きとして、一方の種類を流体の流れに向かうように開孔し、他方の開孔の向きを下流に向けて配置するとよい。この配置により、流体の流れに向かうように開孔した流体圧力検知体は流体の全圧を検知する。一方、開孔の向きを下流に向けた流体圧力検知体は自身の作る渦の中での圧力を検知することなり、流路内平均静圧より低めの圧力を検出する。その結果、両者の圧力差(流体圧力検知装置からの検出差圧)はピトー管などで検出する動圧よりも大きくなり検出圧力の測定誤差を少なくすることができる。   As a preferable opening direction of the fluid pressure detecting hole of the fluid pressure detecting body, one type may be opened so as to be directed toward the fluid flow, and the other opening may be disposed downstream. With this arrangement, the fluid pressure detector that is opened toward the fluid flow detects the total pressure of the fluid. On the other hand, the fluid pressure detector with the opening directed downstream senses the pressure in the vortex created by itself, and detects a pressure lower than the average static pressure in the flow path. As a result, the pressure difference between them (the detected differential pressure from the fluid pressure sensing device) is greater than the dynamic pressure detected by a Pitot tube or the like, and the measurement error of the detected pressure can be reduced.

請求項1の流量計測方法によれば、連続的に測定が可能な新規の流量計測方法が得られるとともに、構成要素となる異種物質注入管やサンプリング管及び流体圧力検知装置の夫々が、精密な機械加工を伴わない一般部材(汎用パイプ等)にて達成できるため、廉価を実現できる。また、構成要素夫々の構造がシンプルであることから、新設、既設流路を問わず容易に流路内に設置でき、工事費用も低く抑えることができる。さらに、トレーサー法や混合希釈法を基に正確な流量が計測できることで、流体圧力検知装置の設置環境は、従来の流量計に比して大幅に緩めることができ、定期的な検証や校正も流路に取り付けた状態でできるようになる。また、圧力損失の要因となる流路内への流体圧力検知装置の取り付けは、それを構成する流体圧力検知体の設置本数を最小限に抑えることで軽減できる。   According to the flow rate measuring method of claim 1, a new flow rate measuring method capable of continuous measurement is obtained, and each of the different substance injection pipe, the sampling pipe, and the fluid pressure detection device, which are constituent elements, is precise. Since it can be achieved with general members (general-purpose pipes, etc.) that do not involve machining, low cost can be realized. Moreover, since the structure of each component is simple, it can be easily installed in the flow path regardless of whether it is a new or existing flow path, and construction costs can be kept low. In addition, since the accurate flow rate can be measured based on the tracer method and the mixed dilution method, the installation environment of the fluid pressure detector can be greatly relaxed compared to conventional flow meters, and regular verification and calibration can also be performed. It can be done in the state attached to the channel. Further, the installation of the fluid pressure detection device in the flow path that causes the pressure loss can be reduced by minimizing the number of the fluid pressure detection bodies that constitute the fluid pressure detection device.

請求項2の流量計測方法によれば、別途サンプリング管等を必要としないので、構成を簡単にすることができる。   According to the flow rate measuring method of the second aspect, since a separate sampling tube or the like is not required, the configuration can be simplified.

次に、本発明の流量計測方法の実施形態を図面を参照して説明する。図1は実施形態の流量計測方法を示す概念図であり、図1(B) は図1(A) のA−A断面を示している。この実施形態は、被測定流体を空気とし、注入する異種物質を二酸化炭素(CO2 )とした例であり、送風ダクト10はチャンバ10aを挟んで上流側のダクト110と下流側のダクトと120とを有している。上流側のダクト110内には異種物質としてのCO2 ガスを注入する注入管1が配設され、下流側のダクト120内には流体圧力検知装置2が配設されている。 Next, an embodiment of the flow rate measuring method of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing a flow rate measuring method according to an embodiment, and FIG. 1 (B) shows an AA cross section of FIG. 1 (A). This embodiment is an example in which the fluid to be measured is air and the dissimilar substance to be injected is carbon dioxide (CO 2 ). The air duct 10 has an upstream duct 110, a downstream duct 120, and 120 with a chamber 10 a interposed therebetween. And have. An injection pipe 1 for injecting CO 2 gas as a different substance is disposed in the upstream duct 110, and a fluid pressure detection device 2 is disposed in the downstream duct 120.

図2は実施形態における注入管1と異種物質CO2 ガスの注入方法を示す図である。CO2 ガスは液化したボンベ20から供給することで純度の高いCO2 ガスが得られる。ボンベ20から出たCO2 ガスは順に減圧弁30、電磁弁40、を経由して注入管1に達する。電磁弁40はタイマーにてオン・オフ制御され、減圧弁30の二次圧調整にて注入量がコントロールされる。注入管1にはその長手方向に所定間隔を隔てて多数の細い孔の注入孔11が開孔されている。これにより、図1に示す下流側のダクト110内に万遍なくCO2 ガスが散布されるようになる。なお、この注入孔11の代わりにスプレーノズル等を用いてもよい。 FIG. 2 is a view showing an injection tube 1 and a method of injecting a different substance CO 2 gas in the embodiment. By supplying CO 2 gas from the liquefied cylinder 20, high-purity CO 2 gas can be obtained. The CO 2 gas emitted from the cylinder 20 reaches the injection pipe 1 via the pressure reducing valve 30 and the electromagnetic valve 40 in order. The solenoid valve 40 is on / off controlled by a timer, and the injection amount is controlled by adjusting the secondary pressure of the pressure reducing valve 30. The injection tube 1 is provided with a number of thin injection holes 11 at predetermined intervals in the longitudinal direction. As a result, the CO 2 gas is uniformly distributed in the duct 110 on the downstream side shown in FIG. A spray nozzle or the like may be used in place of the injection hole 11.

図1の例では、注入管1によりCO2 ガスを下流側に向かって散布しているが、上流側に向かって散布してもよいし、注入管1は図2のような角パイプでなく丸パイプなど汎用性の高い形状のものを用いてもよい。 In the example of FIG. 1, CO 2 gas is sprayed toward the downstream side by the injection pipe 1, but it may be sprayed toward the upstream side, and the injection pipe 1 is not a square pipe as shown in FIG. 2. A highly versatile shape such as a round pipe may be used.

一方、ボンベ20は重量計50上に載置されており、単位時間当たりのCO2 ガスの注入量や変動の確認は、この重量計50で行う。重量計50は出力機能を備えており、注入開始からの時間経過に伴うCO2 ボンベ20の重量の減少量をパーソナルコンピュータ等に逐次記憶することができ、後の解析に有用な情報となる。なお、実際の異種物質(CO2 )の注入に当たっては、その量は被測定流体(空気)の流量に比して無視し得る程度にコントロールするのが好ましい。 On the other hand, the cylinder 20 is placed on a weigh scale 50, and the weigh scale 50 is used to check the amount of CO 2 gas injected per unit time and fluctuation. The weigh scale 50 has an output function, and the weight reduction amount of the CO 2 cylinder 20 with the passage of time from the start of injection can be sequentially stored in a personal computer or the like, which is useful information for later analysis. In the actual injection of the different substance (CO 2 ), the amount is preferably controlled to be negligible as compared with the flow rate of the fluid to be measured (air).

次に、注入ガス(CO2 )がミキシングされた下流域でのガスサンプリング形態を図3に示す。なお、この実施形態では流体圧力検知装置2をCO2 ガスのサンプリング用に流用している。図の流体圧力検知装置2は、上流側(H側)の2つの流体圧力検知体21,21と、下流側(L側)の2つの流体圧力検知体22,22とで構成されており、流れ方向に沿って流体圧力検知体21,22が1つの対をなし、いこれが2対設けられている。各流体圧力検知体21,21,22,22は、一端が閉塞された角パイプで構成され、他端に圧力取り出し口21a,21a,22a,22aが設けられている。 Next, FIG. 3 shows a gas sampling configuration in the downstream region where the injection gas (CO 2 ) is mixed. In this embodiment, the fluid pressure detector 2 is used for sampling CO 2 gas. The fluid pressure detection device 2 in the figure is composed of two fluid pressure detection bodies 21 and 21 on the upstream side (H side) and two fluid pressure detection bodies 22 and 22 on the downstream side (L side), The fluid pressure detectors 21 and 22 form one pair along the flow direction, and two pairs are provided. Each fluid pressure detector 21, 21, 22, 22 is formed by a square pipe with one end closed, and pressure extraction ports 21 a, 21 a, 22 a, 22 a are provided at the other end.

また、上流側の流体圧力検知体21,21は、上流側の稜線上に所定間隔で流体圧力検知孔21b,21bが開孔されるとともに、両方の圧力取り出し口21a,21aは連結されている。また、図3には現れていないが、図1(B) に示すように、下流側の流体圧力検知体22,22は、下流側の稜線上に所定間隔で流体圧力検知孔22b,22bが開孔されるとともに、両方の圧力取り出し口22a,22aは連結されている。   Further, the upstream fluid pressure detectors 21 and 21 have fluid pressure detection holes 21b and 21b opened at predetermined intervals on the upstream ridge line, and both pressure extraction ports 21a and 21a are connected. . Although not shown in FIG. 3, as shown in FIG. 1 (B), the fluid pressure detection bodies 22 and 22 on the downstream side are provided with fluid pressure detection holes 22b and 22b at predetermined intervals on the ridge line on the downstream side. While being opened, both the pressure outlets 22a and 22a are connected.

図3の例では、H側の流体圧力検知体21,21をサンプリング管として流用してCO2 ガスのサンプリングを行う。そして、このサンプリングしたCO2 ガスの濃度から、1秒間にダクト120の断面を通過する空気量すなわち流量を求める。 In the example of FIG. 3, CO 2 gas sampling is performed using the H-side fluid pressure detectors 21 and 21 as sampling tubes. Then, the amount of air passing through the cross section of the duct 120 per second, that is, the flow rate, is obtained from the sampled CO 2 gas concentration.

なお、この流量は例えば以下のように求めることができる。注入管1よりも上流側にある空気で該注入管1を1秒間に通過する空気(注目空気)の体積をQi、注目空気の単位体積に含まれるCO2 分子数をNiとすると、注目空気中に存在するCO2 分子の総数はQi×Niとなる。なお、この分子数NiはCO2 ガスを注入する前にサンプリング管でサンプリングしたCO2 ガス濃度から求まる。注入管1から注入するCO2 ガスの体積をQp、CO2 分子数をNpとすると、CO2 ガスの注入後の空気の体積Qoは、Qo=Qi+Qpとなる。注入管1の位置におけるダクト110の断面の前後でのCO2 の総数は不変であるから、CO2 ガスを注入した後にサンプリング管でサンプリングしたCO2 ガス濃度から求まる分子数をNoとすると、次式が成り立つ。 In addition, this flow volume can be calculated | required as follows, for example. When the volume of air (attention air) passing through the infusion pipe 1 in one second with air upstream from the infusion pipe 1 is Qi and the number of CO 2 molecules contained in the unit volume of the attention air is Ni, the attention air The total number of CO 2 molecules present therein is Qi × Ni. Incidentally, the number of molecules Ni is determined from the CO 2 gas concentration sampled at a sampling tube before injecting the CO 2 gas. If the volume of the CO 2 gas injected from the injection tube 1 is Qp and the number of CO 2 molecules is Np, the volume Qo of the air after the CO 2 gas is injected is Qo = Qi + Qp. Since the total number of CO 2 before and after the cross-section of the duct 110 at the location of the injection tube 1 is unchanged, and the number of molecules obtained from the CO 2 gas concentrations sampled at a sampling tube after injecting CO 2 gas and No, next The formula holds.

Qi×Ni+Qp×Np=Qo×No
故に、Qi×Ni+Qp×Np=(Qi+Qp)×No
故に、(Ni−No)×Qi=Qp×No−Qp×Np
Qi x Ni + Qp x Np = Qo x No
Therefore, Qi × Ni + Qp × Np = (Qi + Qp) × No
Therefore, (Ni-No) * Qi = Qp * No-Qp * Np

上式より、1秒間にダクト110の断面を通過する空気量Qiは、
Qi=(Qp×No−Qp×Np)/(Ni−No)
故に、Qi=Qp(Np−No)/(No−Ni)
となる。すなわち、注入管1から注入するCO2 の注入条件(Qp,Np)と、注入前後のサンプリングした単位体積当りのCO2 分子数(Ni,No)の計測値から流量を求めることができる。
From the above equation, the amount of air Qi passing through the cross section of the duct 110 per second is
Qi = (Qp * No-Qp * Np) / (Ni-No)
Therefore, Qi = Qp (Np-No) / (No-Ni)
It becomes. That is, the flow rate can be obtained from the injection conditions (Qp, Np) of CO 2 injected from the injection tube 1 and the measured values of the number of CO 2 molecules (Ni, No) sampled per unit volume before and after the injection.

なお、このCO2 ガスのサンプリングのみを目的としたサンプリング管を別途用いるようにしてもよい、下流側(L側)に位置する流体圧力検知体22,22でCO2 ガスをサンプリングしてもよい。また、流体圧力検知体21,22や別途設けるサンプリング管は前記注入管1と同様に、角パイプ、丸パイプなど汎用性の高い安価な形状のものを採用することでコスト低減を図ることができる。さらに、その取り付け位置に関しても注入ガス(異種物質)の混合ができていれば整流される必要性がないため、何処に設置してもよく、取り付け場所の制限を大幅に緩めることができる。 Note that a sampling pipe intended only for sampling of the CO 2 gas may be used separately, or the CO 2 gas may be sampled by the fluid pressure detectors 22 and 22 located on the downstream side (L side). . In addition, the fluid pressure detectors 21 and 22 and the separately provided sampling pipes, like the injection pipe 1, can be reduced in cost by adopting a versatile and inexpensive shape such as a square pipe or a round pipe. . Furthermore, since there is no need for rectification as long as the injection gas (foreign substances) can be mixed with respect to the mounting position, it can be installed anywhere and the restriction on the mounting position can be greatly relaxed.

図3では、上流側に位置する流体圧力検知体21,21同士を連結している。これにより、流路上での混合が不十分であったとしても、流路断面から均等にサンプリングすることで混合状態を高める効果があり注入管1からサンプリング(当該流体圧力検知体21,21)までの距離を短縮することができる。すなわち、測定部分のサイズ(距離)を小さくできる。また、サンプリングのための孔(この例では流体圧力検知孔21b)位置に関し、図3では上流に向かって開孔しているが、流れに直交するように上下に開孔しても、下流に向かって開孔してもよい。   In FIG. 3, the fluid pressure detectors 21 and 21 located on the upstream side are connected to each other. Thereby, even if the mixing on the flow path is insufficient, there is an effect of increasing the mixed state by sampling evenly from the cross section of the flow path, from the injection tube 1 to the sampling (the fluid pressure detectors 21, 21). Can be shortened. That is, the size (distance) of the measurement part can be reduced. Further, regarding the position of the hole for sampling (in this example, the fluid pressure detecting hole 21b), the hole is opened toward the upstream in FIG. 3, but even if the hole is opened vertically so as to be orthogonal to the flow, You may open a hole toward it.

次に、流体圧力検知装置2にて流体の圧力を検出している実施形態を図4に示す。上流側の流体圧力検知体21,21の連結された圧力取り出し口21a,21aと、下流側の流体圧力検知体22,22の連結された圧力取り出し口22a,22aとは、それぞれ差圧指示計3に接続されており、この差圧指示計3により、流体圧力検知装置2の上流側の全圧と、下流側のダクト内平均静圧より低めの圧力との差圧を検出する。なお、前記のように、この流体圧力検知装置2はシンプルなパイプ構造であることから、新設、既設流路を問わず流路の側面を利用する簡易工事で安価に設置することができる。   Next, an embodiment in which the fluid pressure detection device 2 detects the fluid pressure is shown in FIG. The pressure outlets 21a and 21a connected to the upstream fluid pressure detectors 21 and 21 and the pressure outlets 22a and 22a connected to the downstream fluid pressure detectors 22 and 22 are respectively differential pressure indicators. The differential pressure indicator 3 detects a differential pressure between the total pressure on the upstream side of the fluid pressure detecting device 2 and a pressure lower than the average static pressure in the duct on the downstream side. As described above, since the fluid pressure detection device 2 has a simple pipe structure, it can be installed at a low cost by simple construction using the side surface of the flow path regardless of whether it is a new or existing flow path.

本実施形態では、流体圧力検知装置2の一部を用いて混合希釈法などのガスサンプリングを行っているため、同時並行して流体圧力検知装置2からの検出圧力を読み取ることはできない。そのため、ガストレーサー法や混合希釈法などにより一時的に流量を求めた後で流体圧力検知装置2からの検出差圧を指示計などで読み取ることになる。すなわち、図3に示したCO2 濃度検出による手法(混合希釈法)で計測したサンプリング流量値と、図4に示した手法により計測したサンプリング差圧値とを取得し、これを多数回交互に繰り返す。そして、このデータを例えばパーソナルコンピュータ等に蓄積しておき、これらのデータの回帰分析等を行う。 In the present embodiment, since gas sampling such as a mixed dilution method is performed using a part of the fluid pressure detection device 2, the detected pressure from the fluid pressure detection device 2 cannot be read simultaneously. Therefore, after the flow rate is temporarily obtained by a gas tracer method, a mixed dilution method or the like, the detected differential pressure from the fluid pressure detector 2 is read with an indicator or the like. That is, the sampling flow rate value measured by the CO 2 concentration detection method (mixed dilution method) shown in FIG. 3 and the sampling differential pressure value measured by the method shown in FIG. repeat. Then, this data is stored in, for example, a personal computer and the regression analysis of these data is performed.

このように、流量と検出差圧の関係を流量を変えながら段階的に調べることで図5のグラフに示すような相関を求めることができる。一旦、この相関が得られれば、グラフや回帰曲線の近似式などを利用することで流体圧力検知装置2からの圧力(差圧)を基に流量を逆算することができる。   Thus, the correlation as shown in the graph of FIG. 5 can be obtained by examining the relationship between the flow rate and the detected differential pressure step by step while changing the flow rate. Once this correlation is obtained, the flow rate can be calculated backward based on the pressure (differential pressure) from the fluid pressure detection device 2 by using an approximate expression of a graph or a regression curve.

本発明の実施形態の流量方法を示す概念図である。It is a conceptual diagram which shows the flow rate method of embodiment of this invention. 実施形態における注入管と異種物質CO2 ガスの注入方法を示す図である。It is a diagram illustrating a method of injecting the injection tube and different materials CO 2 gas in the embodiment. 実施形態における下流域でのCO2 ガスのサンプリング形態を示す図である。It is a diagram showing a sampling form of CO 2 gas in the downstream area in the embodiment. 実施形態における流体圧力検知装置にて流体の圧力を検出する形態を示す図である。It is a figure which shows the form which detects the pressure of the fluid with the fluid pressure detection apparatus in embodiment. 実施形態における流量と検出差圧との相関グラフの一例を示す図である。It is a figure which shows an example of the correlation graph of the flow volume and detected differential pressure | voltage in embodiment.

符号の説明Explanation of symbols

1 注入管
2 流体圧力検知装置
21,22 流体圧力検知体
21b,22b 流体圧力検知孔
3 差圧指示計
DESCRIPTION OF SYMBOLS 1 Injection pipe 2 Fluid pressure detection apparatus 21, 22 Fluid pressure detection body 21b, 22b Fluid pressure detection hole 3 Differential pressure indicator

Claims (2)

流体の速さによって検出圧力が変化する流体圧力検知装置を流路内に設置するとともに、別途、一時的流量測定手段にて流体の流量を求められるようにし、流路内の流量を段階的に変化させながら、前記流体圧力検知装置からの検出圧力と前記一時的流量測定手段で求めた流量の関係を各流量毎に調査し、その後、前記調査した検出圧力と流量との関係を基に、前記流体圧力検知装置の検出圧力から前記流路内の流用を求めることで、一時的流量測定手段を連続的に流量が測定できるようにしたことを特徴とする流量計測方法。   A fluid pressure detection device whose detection pressure changes depending on the speed of the fluid is installed in the flow path, and the flow rate of the fluid can be obtained separately by a temporary flow rate measuring means. While changing, investigate the relationship between the detected pressure from the fluid pressure sensing device and the flow rate obtained by the temporary flow rate measuring means for each flow rate, and then based on the relationship between the investigated detected pressure and the flow rate, A flow rate measuring method characterized in that the flow rate can be continuously measured by the temporary flow rate measuring means by obtaining diversion in the flow path from the detected pressure of the fluid pressure detecting device. 前記流体圧力検知装置の一部又は全部が前記一時的流量測定手段における検出手段を兼ねることを特徴とする請求項1に記載の流量計測方法。   2. The flow rate measurement method according to claim 1, wherein a part or all of the fluid pressure detection device also serves as a detection unit in the temporary flow rate measurement unit.
JP2007020753A 2007-01-31 2007-01-31 Flow rate measurement method Expired - Fee Related JP5015622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020753A JP5015622B2 (en) 2007-01-31 2007-01-31 Flow rate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020753A JP5015622B2 (en) 2007-01-31 2007-01-31 Flow rate measurement method

Publications (2)

Publication Number Publication Date
JP2008185515A true JP2008185515A (en) 2008-08-14
JP5015622B2 JP5015622B2 (en) 2012-08-29

Family

ID=39728662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020753A Expired - Fee Related JP5015622B2 (en) 2007-01-31 2007-01-31 Flow rate measurement method

Country Status (1)

Country Link
JP (1) JP5015622B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101870A (en) * 2008-10-27 2010-05-06 Shibata Giken Co Ltd Wind amount measuring method in wind channel
KR101590520B1 (en) * 2014-08-04 2016-02-01 박상태 Hybrid air duct folwmeter using pitot tube and thermal mass flow meter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733327A (en) * 1980-08-07 1982-02-23 Toshiba Corp Method for calibration of flowmeter
JPS60183822U (en) * 1984-04-25 1985-12-06 三菱重工業株式会社 Flow velocity detection probe with dust catcher
JPH03220421A (en) * 1989-10-26 1991-09-27 British Gas Plc Mean pitot probe
JPH09210750A (en) * 1996-02-02 1997-08-15 Chugai Ro Co Ltd Method and apparatus for measuring flow rate
JPH11118545A (en) * 1997-10-16 1999-04-30 Wetmaster Co Ltd Fluid pressure detecting apparatus
JP2003532066A (en) * 2000-04-27 2003-10-28 ラティス インテレクチュアル プロパティー リミテッド Flow measurement method and device
JP2005147682A (en) * 2003-11-11 2005-06-09 Shimadzu Corp Flowmeter and flow measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733327A (en) * 1980-08-07 1982-02-23 Toshiba Corp Method for calibration of flowmeter
JPS60183822U (en) * 1984-04-25 1985-12-06 三菱重工業株式会社 Flow velocity detection probe with dust catcher
JPH03220421A (en) * 1989-10-26 1991-09-27 British Gas Plc Mean pitot probe
JPH09210750A (en) * 1996-02-02 1997-08-15 Chugai Ro Co Ltd Method and apparatus for measuring flow rate
JPH11118545A (en) * 1997-10-16 1999-04-30 Wetmaster Co Ltd Fluid pressure detecting apparatus
JP2003532066A (en) * 2000-04-27 2003-10-28 ラティス インテレクチュアル プロパティー リミテッド Flow measurement method and device
JP2005147682A (en) * 2003-11-11 2005-06-09 Shimadzu Corp Flowmeter and flow measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101870A (en) * 2008-10-27 2010-05-06 Shibata Giken Co Ltd Wind amount measuring method in wind channel
KR101590520B1 (en) * 2014-08-04 2016-02-01 박상태 Hybrid air duct folwmeter using pitot tube and thermal mass flow meter

Also Published As

Publication number Publication date
JP5015622B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US6957586B2 (en) System to measure density, specific gravity, and flow rate of fluids, meter, and related methods
US7752929B2 (en) Mass velocity and area weighted averaging fluid compositions sampler and mass flow meter
CN202304903U (en) Exact air quantity measuring system
Hua et al. Wet gas meter based on the vortex precession frequency and differential pressure combination of swirlmeter
EP2192391A1 (en) Apparatus and a method of measuring the flow of a fluid
CN105865587B (en) A kind of scaling method of electromotor effusion meter
CN100472184C (en) Monitoring of two-phase fluid flow using a vortex flowmeter
US10514283B2 (en) Exhaust gas flow rate measuring unit and exhaust gas analyzing apparatus
Hua et al. Wet gas metering technique based on slotted orifice and swirlmeter in series
CN102353410B (en) Method and device utilizing trace gas to measure air channel volume
CN201476849U (en) Device for calibrating flowmeter of large-caliber coal gas delivery pipeline by using tracing method
Ye et al. Helical capacitance sensor-based gas fraction measurement of gas–liquid two-phase flow in vertical tube with small diameter
Laurantzon et al. A flow facility for the characterization of pulsatile flows
Nguyen et al. The impact of geometric parameters of a S-type Pitot tube on the flow velocity measurements for greenhouse gas emission monitoring
FI122767B (en) Method and apparatus for calibrating a flow meter
CN102288263A (en) Device for calibrating gas flow meter in pipeline on line
JP5015622B2 (en) Flow rate measurement method
JP6791512B2 (en) Real-time fluid type mass flow meter
Meng et al. A flow stability evaluation method based on flow-pressure correlation
CN206470284U (en) The measurement apparatus of gas in pipelines flow velocity
CN107870012A (en) The device and method of rate-of flow under a kind of heat balance method of test complex environment
US9488509B2 (en) Method or determining an absolute flow rate of a volume or mass flow
Han et al. Research on detection method of large diameter pitot tube type differential pressure flowmeter
CN201662566U (en) Tubular differential pressure flow air resistor device
Ozcan et al. An overview on ventilation rate measuring and modelling techniques through naturally ventilated buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees