JP2008185388A - Fine differential pressure gage - Google Patents

Fine differential pressure gage Download PDF

Info

Publication number
JP2008185388A
JP2008185388A JP2007017503A JP2007017503A JP2008185388A JP 2008185388 A JP2008185388 A JP 2008185388A JP 2007017503 A JP2007017503 A JP 2007017503A JP 2007017503 A JP2007017503 A JP 2007017503A JP 2008185388 A JP2008185388 A JP 2008185388A
Authority
JP
Japan
Prior art keywords
differential pressure
measurement chamber
pressure
pressure side
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007017503A
Other languages
Japanese (ja)
Inventor
Toru Fujiwara
透 藤原
Kazuhiko Mizuno
一彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KRONE KK
Original Assignee
KRONE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KRONE KK filed Critical KRONE KK
Priority to JP2007017503A priority Critical patent/JP2008185388A/en
Publication of JP2008185388A publication Critical patent/JP2008185388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine differential pressure gage hardly influenced by a temperature change inside/outside an apparatus, capable adjusting a zero point more accurately with a simple structure, and resultantly measuring a fine differential pressure highly accurately. <P>SOLUTION: A channel is switched by operating at a prescribed timing, selector valves 21a, 22a provided on one side or on both sides of vent pipes 14, 15 connected to the first measuring chamber (high pressure side measuring chamber 11) and the second measuring chamber (low pressure side measuring chamber 12) partitioned across a diaphragm 13, and a pressure in the first measuring chamber (high pressure side measuring chamber 11) is equalized to a pressure in the second measuring chamber (low pressure side measuring chamber 12), to thereby adjust the zero point. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダイヤフラムの変位量を計測して微差圧を求める微差圧計に関する。   The present invention relates to a fine differential pressure gauge that obtains a fine differential pressure by measuring a displacement amount of a diaphragm.

従来より、流体の流れを監視、制御する装置にはさまざまな方式が知られており、その一つとして、ダイヤフラムを備える方式のものが広く用いられている。ダイヤフラムを備えた微差圧計は、例えば、クリーンルームの環境管理、食品や薬剤等の製造ラインの衛生管理、病院や研究室等での細菌や塵片の拡散防止等に利用されている。具体的には、クリーンルームと隣接する部屋の室内圧力の差を監視することによりクリーンルームの環境管理を行ったり、食品や薬剤等の製造ラインの室内圧力を隣接する部屋よりも高く維持することで衛生管理を行ったり、病院や研究室の室内圧力を隣接する部屋よりも低く維持することで細菌や塵片の拡散を防止したりするために用いられている。   Conventionally, various systems are known for monitoring and controlling the flow of fluid, and as one of them, a system having a diaphragm is widely used. The differential pressure gauge equipped with a diaphragm is used, for example, for environmental management of a clean room, hygiene management of a production line for foods and drugs, prevention of diffusion of bacteria and dust particles in hospitals and laboratories, and the like. Specifically, hygiene can be achieved by monitoring the environmental pressure of the clean room by monitoring the difference in the indoor pressure between the clean room and the adjacent room, or by maintaining the indoor pressure of the production line for food, drugs, etc. higher than the adjacent room. It is used for management and to prevent the spread of bacteria and dust particles by keeping the pressure in hospitals and laboratories lower than that in adjacent rooms.

このような用途に用いられる微差圧計では、圧力の微小な変化を正確に把握することが必要となる。従来の差圧計は、kPa単位の差圧を計測することが多かったため、圧力の微小な変化によって微差圧レベルでゼロ点がシフトしても計測に問題は生じなかったが、上述のような微差圧計ではPa単位の精度が必要となるため、ゼロ点を正確に調整する必要がある。   In the differential pressure gauge used for such applications, it is necessary to accurately grasp minute changes in pressure. Conventional differential pressure gauges often measure differential pressure in kPa units, so there was no problem in measurement even if the zero point shifted at the slight differential pressure level due to minute changes in pressure. Since the differential pressure gauge requires accuracy in Pa units, it is necessary to accurately adjust the zero point.

ところが、Pa単位の圧力は、機器内外の温度変化等で容易に変化してしまうものである。そのため、温度変化等による影響を受けにくくする方法として、例えば微差圧計に温度センサを配設して温度を検出し、温度補償演算器等で差圧の温度補償を行う発明等が開示されている(例えば特許文献1参照)。   However, the pressure in Pa is easily changed by a temperature change inside and outside the device. For this reason, as a method for making it less susceptible to the effects of temperature changes, for example, an invention is disclosed in which a temperature sensor is provided in a micro differential pressure gauge to detect the temperature, and temperature compensation of the differential pressure is performed with a temperature compensation calculator or the like. (For example, refer to Patent Document 1).

特開平6−58833号公報(段落[0009]〜[0010])JP-A-6-58833 (paragraphs [0009] to [0010])

しかしながら、温度センサや温度補償演算器等を用いてゼロ点を調整する方法は、例えばセンサで得られた外気温等の情報からダイヤフラムの変位量を計算し、実際に計測された値と、その変位量とを考慮して演算した結果得られた数値を計測値とするものであったため、その正確さに欠けるものであった。すなわち、所定の数値よりも低い圧力は無視せざるを得ないため、その近似値を計測値とするより他なく、計測の精密さには限界があった。また、センサや演算器等の装置を用いるため、装置の誤動作や演算ミス等による誤差が生じる可能性があった。   However, the method of adjusting the zero point using a temperature sensor, a temperature compensation arithmetic unit, etc., for example, calculates the displacement amount of the diaphragm from information such as the outside air temperature obtained by the sensor, the actually measured value, Since the numerical value obtained as a result of calculation in consideration of the amount of displacement is used as the measurement value, the accuracy is lacking. That is, a pressure lower than a predetermined numerical value must be ignored, and there is a limit to the precision of measurement other than using the approximate value as a measured value. In addition, since devices such as sensors and calculators are used, there is a possibility that errors due to device malfunctions or calculation errors may occur.

本発明は、このような点に鑑みてなされたものであり、その目的は、機器内外の温度変化を受けにくく、簡易な構造で、より正確にゼロ点を調整することができ、ひいては精度の高い微差圧計測をすることができる微差圧計を提供することにある。   The present invention has been made in view of such a point, and the object thereof is to be less susceptible to temperature changes inside and outside the device, and with a simple structure, the zero point can be adjusted more accurately, and as a result An object of the present invention is to provide a micro differential pressure gauge capable of performing high micro differential pressure measurement.

(1) ダイヤフラムを挟んで区画され、それぞれ外部に連結する通気管が接続された第1の測定室及び第2の測定室を備え、前記ダイヤフラムの変位量を計測して微差圧を求める微差圧計であって、前記通気管の少なくとも一方に、前記第1の測定室と前記第2の測定室との差圧をなくすように流路の切替を行う切替バルブを備えることを特徴とする微差圧計。   (1) A first measurement chamber and a second measurement chamber, which are partitioned with a diaphragm interposed therebetween and are connected to a vent pipe connected to the outside, respectively, and the amount of displacement of the diaphragm is measured to obtain a fine differential pressure. A differential pressure gauge, wherein at least one of the vent pipes is provided with a switching valve for switching a flow path so as to eliminate a differential pressure between the first measurement chamber and the second measurement chamber. Fine differential pressure gauge.

本発明によれば、ダイヤフラムを挟んで区画された第1の測定室及び第2の測定室に、それぞれ外部(微差圧計測対象領域)に連結する通気管が接続され、通気管の少なくとも一方に、第1の測定室と第2の測定室との差圧をなくすように流路の切替を行う切替バルブを備えることとしたから、簡易な構造で、精度の高い微差圧計測をすることができる。   According to the present invention, the first measurement chamber and the second measurement chamber partitioned by sandwiching the diaphragm are connected to the vent pipes that are connected to the outside (the target area for measuring the minute differential pressure), and at least one of the vent pipes. In addition, since the switching valve for switching the flow path so as to eliminate the differential pressure between the first measurement chamber and the second measurement chamber is provided, a highly accurate fine differential pressure measurement is performed with a simple structure. be able to.

すなわち、第1の測定室及び第2の測定室に接続された通気管の一方、又は双方に備えられた切替バルブが所定のタイミングで動作して、流路の切り替えが行われ、第1の測定室内の圧力と、第2の測定室内の圧力とが等しくなることによって、ダイヤフラムの変位量がゼロとなり、ゼロ点の調整が行われる。   That is, the switching valve provided in one or both of the ventilation pipes connected to the first measurement chamber and the second measurement chamber operates at a predetermined timing to switch the flow path. By making the pressure in the measurement chamber equal to the pressure in the second measurement chamber, the displacement amount of the diaphragm becomes zero, and the zero point is adjusted.

機械的に流路の切替を行うことによってゼロ点調整が行われ、温度センサや演算器等の複雑な機構を必要としないため、装置の誤動作や演算ミス等による誤差が生じにくく、簡易な構造でより正確にゼロ点調整を行うことができ、ひいては精度の高い微差圧計測を行うことができる。   Zero point adjustment is performed by mechanically switching the flow path, and there is no need for complicated mechanisms such as temperature sensors and calculators. Thus, the zero point adjustment can be performed more accurately, and as a result, a highly accurate differential pressure measurement can be performed.

(2) 前記切替バルブの切替によって、前記通気管が大気圧に開放されることを特徴とする(1)記載の微差圧計。   (2) The fine differential pressure gauge according to (1), wherein the vent pipe is opened to an atmospheric pressure by switching the switching valve.

本発明によれば、切替バルブの切替によって、通気管が大気圧に開放されることとしたから、第1の測定室及び第2の測定室の双方が大気圧に開放され、第1の測定室内の圧力と、第2の測定室内の圧力とがどちらも大気圧と等しくなることにより、ダイヤフラムの変位量がゼロとなり、ゼロ点の調整が行われる。   According to the present invention, since the ventilation pipe is opened to the atmospheric pressure by switching the switching valve, both the first measurement chamber and the second measurement chamber are opened to the atmospheric pressure, and the first measurement is performed. Since both the pressure in the room and the pressure in the second measurement room are equal to the atmospheric pressure, the displacement amount of the diaphragm becomes zero, and the zero point is adjusted.

所定のタイミングで通気管が大気圧に開放されることにより、簡易な構造でより正確にゼロ点調整を行うことができ、ひいては精度の高い微差圧計測を行うことができる。   By opening the vent pipe to the atmospheric pressure at a predetermined timing, it is possible to perform zero point adjustment more accurately with a simple structure, and thus to perform highly accurate differential pressure measurement.

(3) 前記切替バルブの切替によって、前記第1の測定室と前記第2の測定室とが前記通気管によって連通されることを特徴とする(1)記載の微差圧計。   (3) The differential pressure gauge according to (1), wherein the first measurement chamber and the second measurement chamber are communicated with each other by the vent pipe by switching the switching valve.

本発明によれば、切替バルブの切替によって、第1の測定室と第2の測定室とが通気管によって連通されることとしたから、第1の測定室内の流体と第2の測定室内の流体とを通気管を経て流通させることができる。第1の測定室内、通気管、第2の測定室内の圧力がすべて等しくなることにより、ダイヤフラムの変位量がゼロとなり、ゼロ点の調整が行われる。   According to the present invention, since the first measurement chamber and the second measurement chamber are communicated with each other by the ventilation pipe by switching the switching valve, the fluid in the first measurement chamber and the second measurement chamber are connected to each other. Fluid can be circulated through the vent pipe. When the pressures in the first measurement chamber, the vent pipe, and the second measurement chamber are all equal, the displacement of the diaphragm becomes zero, and the zero point is adjusted.

所定のタイミングで、第1の測定室と第2の測定室とが連通されることにより、簡易な構造でより正確にゼロ点調整を行うことができ、ひいては精度の高い微差圧計測を行うことができる。   By connecting the first measurement chamber and the second measurement chamber at a predetermined timing, the zero point can be adjusted more accurately with a simple structure, and consequently, a highly accurate differential pressure measurement is performed. be able to.

また、装置内の流体が、第1の測定室内、第2の測定室内、及び、通気管内のみの密閉系で流通することにより、流体が装置外に流出することがないため、例えば燃焼系ガス等の流体を扱う場合であっても、安全に計測を行うことができる。   In addition, since the fluid in the apparatus flows through the closed system only in the first measurement chamber, the second measurement chamber, and the vent pipe, the fluid does not flow out of the apparatus. Even when handling fluids such as, it is possible to safely measure.

(4) 前記微差圧計は、さらに、密閉されたボックスを備え、前記切替バルブは、前記ボックス内に備えられることを特徴とする(3)記載の微差圧計。   (4) The fine differential pressure gauge according to (3), wherein the fine differential pressure gauge further includes a sealed box, and the switching valve is provided in the box.

本発明によれば、切替バルブは、微差圧計に備えられた密閉されたボックス内に備えられることとしたから、切替バルブが動作する際等に、何らかの原因で切替バルブから流体が流出したような場合であっても、流出した流体は密閉されたボックス内に滞留し、流体の装置外への漏洩を防ぐことができるため、より安全性の高い微差圧計測を行うことができる。   According to the present invention, since the switching valve is provided in a sealed box provided in the micro differential pressure gauge, fluid may flow out of the switching valve for some reason when the switching valve is operated. Even in such a case, the fluid that has flowed out stays in a sealed box, and leakage of the fluid to the outside of the apparatus can be prevented, so that it is possible to perform finer differential pressure measurement with higher safety.

以下、本発明の実施の形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は、本発明の実施の形態に係る微差圧計の内部構造を示す模式断面図であって、特に、差圧計測部10及び通気管14,15の構造を示している。ここで、図1は、差圧計測時の内部構造を、図2は、ゼロ点調整時の内部構造を示す。   1 and 2 are schematic cross-sectional views showing the internal structure of the fine differential pressure gauge according to the embodiment of the present invention, and in particular, the structure of the differential pressure measuring unit 10 and the vent pipes 14 and 15. Here, FIG. 1 shows the internal structure during differential pressure measurement, and FIG. 2 shows the internal structure during zero point adjustment.

図1及び図2において、本発明の実施の形態に係る微差圧計は、高圧側測定室11と、低圧側測定室12と、ダイヤフラム13と、からなる差圧計測部10を備え、高圧側測定室(第1の測定室)11と、低圧側測定室(第2の測定室)12とは、ダイヤフラム13を挟んで区画されている。高圧側測定室11及び低圧側測定室12には、それぞれ外部に連結する通気管14、15が接続されており、外部の流体と各測定室内の流体とを流通させるための流路となっている。   1 and 2, the fine differential pressure gauge according to the embodiment of the present invention includes a differential pressure measurement unit 10 including a high pressure side measurement chamber 11, a low pressure side measurement chamber 12, and a diaphragm 13, and includes a high pressure side. A measurement chamber (first measurement chamber) 11 and a low-pressure side measurement chamber (second measurement chamber) 12 are partitioned with a diaphragm 13 interposed therebetween. The high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12 are connected to the vent pipes 14 and 15 connected to the outside, respectively, and serve as a flow path for circulating an external fluid and a fluid in each measurement chamber. Yes.

差圧計測時には、通気管14に設けられた流路切替部21の切替バルブ21aが動作して、大気圧が遮断されるとともに高圧側測定室11が外部と連通され、通気管14を経て高圧側測定室11内に高圧の流体が流通する。同時に、通気管15に設けられた流路切替部22の切替バルブ22aが動作して、大気圧が遮断されるとともに低圧側測定室12が外部と連通され、通気管15を経て低圧側測定室12内に低圧の流体が流通する(図1参照)。高圧側測定室11内に流通する高圧の流体と、低圧側測定室12内に流通する低圧の流体との圧力差によって、高圧側測定室11と低圧側測定室12との間に設けられたダイヤフラム13が変位し、その変位量を計測することで微差圧が求められる。   At the time of measuring the differential pressure, the switching valve 21a of the flow path switching unit 21 provided in the vent pipe 14 is operated to shut off the atmospheric pressure, and the high pressure side measurement chamber 11 is communicated with the outside. A high-pressure fluid flows in the side measurement chamber 11. At the same time, the switching valve 22a of the flow path switching unit 22 provided in the ventilation pipe 15 is operated to shut off the atmospheric pressure, and the low pressure side measurement chamber 12 is communicated with the outside. A low-pressure fluid flows through 12 (see FIG. 1). Due to the pressure difference between the high-pressure fluid flowing in the high-pressure side measurement chamber 11 and the low-pressure fluid flowing in the low-pressure side measurement chamber 12, it is provided between the high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12. The diaphragm 13 is displaced, and a minute differential pressure is obtained by measuring the displacement amount.

また、ゼロ点調整時には、流路切替部21、22の切替バルブ21a、22aが動作して流路が切り替えられ、高圧側測定室11及び低圧側測定室12が外部から遮断されるとともに、通気管14、15がそれぞれ大気圧に開放される(図2参照)。高圧側測定室11、及び、低圧側測定室12内の圧力が双方ともに大気圧と等しくなり、高圧側測定室11と低圧側測定室12との差圧がなくなることにより、ダイヤフラム13の変位がゼロとなり、ゼロ点が正確に調整される。   When the zero point is adjusted, the switching valves 21a and 22a of the flow path switching units 21 and 22 are operated to switch the flow path, and the high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12 are shut off from the outside and The trachea 14 and 15 are each opened to atmospheric pressure (see FIG. 2). The pressures in the high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12 are both equal to the atmospheric pressure, and the pressure difference between the high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12 is eliminated, so that the displacement of the diaphragm 13 is reduced. It becomes zero and the zero point is adjusted accurately.

本発明の実施の形態に係る微差圧計においては、図示しないタイマーを備えることにより、一定時間毎に流路の切替を行い、ゼロ点調整を行う。ゼロ点調整に要する時間はごく短時間であるため(例えば1秒以下)、流路切替の直前の計測値を維持したままゼロ点調整を行い、動作終了後に計測を再開させることにより、継続的に微差圧計測を行うことができる。   In the micro differential pressure gauge according to the embodiment of the present invention, by providing a timer (not shown), the flow path is switched at regular time intervals to perform zero point adjustment. Since the time required for the zero point adjustment is very short (for example, 1 second or less), the zero point adjustment is performed while maintaining the measurement value immediately before the flow path switching, and the measurement is resumed after the operation is completed. The differential pressure can be measured.

図3及び図4は、本発明の別の実施の形態に係る微差圧計の内部構造を示す模式断面図であって、特に、差圧計測部10及び通気管14,15の構造を示している。図3は、差圧計測時の内部構造を、図4は、ゼロ点調整時の内部構造を示す。   3 and 4 are schematic cross-sectional views showing the internal structure of a micro differential pressure gauge according to another embodiment of the present invention, in particular, the structures of the differential pressure measuring unit 10 and the vent pipes 14 and 15. Yes. FIG. 3 shows the internal structure during differential pressure measurement, and FIG. 4 shows the internal structure during zero point adjustment.

図3及び図4において、通気管14及び15に備えられた流路切替部21、22は、大気圧に開放するための切替バルブ21a、22aと、外部からの流体の流通を遮断するための切替バルブ21b、22bと、の、2種類の切替バルブから構成されている。   3 and 4, the flow path switching units 21 and 22 provided in the vent pipes 14 and 15 are for switching valves 21a and 22a for opening to atmospheric pressure, and for blocking the flow of fluid from the outside. It consists of two types of switching valves, switching valves 21b and 22b.

差圧測定時には、通気管14に設けられた流路切替部21の切替バルブ21aが動作して大気圧が遮断され、切替バルブ21bが動作して高圧側測定室11が外部と連通され、通気管14を経て高圧側測定室11内に高圧の流体が流通する。同時に、通気管15に設けられた流路切替部22の切替バルブ22aが動作して、大気圧が遮断され、切替バルブ22bが動作して低圧側測定室12が外部と連通され、通気管15を経て低圧側測定室12内に低圧の流体が流通する(図3参照)。   At the time of differential pressure measurement, the switching valve 21a of the flow path switching unit 21 provided in the vent pipe 14 operates to shut off the atmospheric pressure, the switching valve 21b operates to connect the high-pressure side measurement chamber 11 to the outside, and A high-pressure fluid flows through the trachea 14 into the high-pressure side measurement chamber 11. At the same time, the switching valve 22a of the flow path switching unit 22 provided in the ventilation pipe 15 is operated, the atmospheric pressure is shut off, the switching valve 22b is operated, and the low-pressure side measurement chamber 12 is communicated with the outside. Then, a low-pressure fluid flows in the low-pressure side measurement chamber 12 (see FIG. 3).

また、ゼロ点調整時には、流路切替部21、22によって流路が切り替えられ、切替バルブ21b、22bが動作して高圧側測定室11及び低圧側測定室12が外部から遮断されるとともに、切替バルブ21a、22aが動作して通気管14、15がそれぞれ大気圧に開放される(図4参照)。   Further, at the time of zero point adjustment, the flow path switching units 21 and 22 switch the flow path, the switching valves 21b and 22b are operated, and the high pressure side measurement chamber 11 and the low pressure side measurement chamber 12 are shut off from the outside. The valves 21a and 22a operate to open the vent pipes 14 and 15 to atmospheric pressure (see FIG. 4).

通気管14,15に備える切替バルブを2種類とすることにより、ゼロ点調整時に流路切替部21、22にかかる負荷を軽減し、装置の安全性を高めることができる。すなわち、図2に示す微差圧計においては、ゼロ点調整時に、外部からの流体の流通を切替バルブ21a、22aのみで遮断するため、外部の流体の圧力は切替バルブ21a、22aの1点にかかり、特に高圧側の切替バルブ21aには大きな負荷がかかることとなる。切替バルブを2種類設け、一方(21a、22a)で通気管の大気圧への開放を行い、他方(21b、22b)で外部からの流体の流通を遮断することにより、切替バルブにかかる負荷が軽減される。さらに、切替バルブ21b、22bの位置に、中央に仕切り25が設けられた連結管16を備えることにより(図4参照)、切替バルブにかかる圧力は連結管16及び仕切り25に分散され、切替バルブ21b、22bにかかる負荷をさらに軽減することができる。   By using two types of switching valves provided in the vent pipes 14 and 15, it is possible to reduce the load applied to the flow path switching units 21 and 22 during zero point adjustment, and to increase the safety of the apparatus. That is, in the differential pressure gauge shown in FIG. 2, the flow of the fluid from the outside is blocked only by the switching valves 21a and 22a at the time of zero point adjustment, so the pressure of the external fluid is limited to one point of the switching valves 21a and 22a. In particular, a large load is applied to the switching valve 21a on the high pressure side. By providing two types of switching valves, one (21a, 22a) opens the vent pipe to atmospheric pressure, and the other (21b, 22b) shuts off the flow of fluid from the outside, so that the load on the switching valve is reduced. It is reduced. Further, by providing the connecting pipe 16 provided with a partition 25 in the center at the position of the switching valves 21b and 22b (see FIG. 4), the pressure applied to the switching valve is distributed to the connecting pipe 16 and the partition 25, and the switching valve The load applied to 21b and 22b can be further reduced.

図5及び図6は、燃焼系ガスの差圧計測に用いる微差圧計の内部構造を示す模式断面図であって、特に、差圧計測部10及び通気管14,15の構造を示している。図5は差圧計測時の内部構造を、図6は、ゼロ点調整時の内部構造を示す。   5 and 6 are schematic cross-sectional views showing the internal structure of the fine differential pressure gauge used for measuring the differential pressure of the combustion system gas, and in particular, the structures of the differential pressure measuring unit 10 and the vent pipes 14 and 15. . FIG. 5 shows the internal structure during differential pressure measurement, and FIG. 6 shows the internal structure during zero point adjustment.

図5及び図6において、高圧側の通気管14と、低圧側の通気管15との間には、連通管17が接続され、高圧側の通気管14に備えられた流路切替部23によって流路の切替が行われる。   5 and 6, a communication pipe 17 is connected between the high-pressure side vent pipe 14 and the low-pressure side vent pipe 15, and a flow path switching unit 23 provided in the high-pressure side vent pipe 14. The flow path is switched.

差圧計測時には、通気管14に設けられた流路切替部23の切替バルブ23aが動作して、高圧側測定室11が外部と連通され、通気管14を経て高圧側測定室11内に高圧の流体が流通する。低圧側測定室12は通気管15によって外部と連通されており、通気管15を経て低圧側測定室12内に低圧の流体が流通する(図5参照)。高圧側測定室11内に流通する高圧の流体と、低圧側測定室12内に流通する低圧の流体との圧力差によって、高圧側測定室11と低圧側測定室12との間に設けられたダイヤフラム13が変位し、その変位量を計測することで微差圧が求められる。   At the time of measuring the differential pressure, the switching valve 23a of the flow path switching unit 23 provided in the vent pipe 14 is operated, the high pressure side measurement chamber 11 is communicated with the outside, and the high pressure side measurement chamber 11 passes through the vent pipe 14 and has a high pressure. Fluid flows. The low-pressure side measurement chamber 12 is communicated with the outside by a vent pipe 15, and low-pressure fluid flows through the vent pipe 15 into the low-pressure side measurement chamber 12 (see FIG. 5). Due to the pressure difference between the high-pressure fluid flowing in the high-pressure side measurement chamber 11 and the low-pressure fluid flowing in the low-pressure side measurement chamber 12, it is provided between the high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12. The diaphragm 13 is displaced, and a minute differential pressure is obtained by measuring the displacement amount.

また、ゼロ点調整時には、流路切替部23の切替バルブ23aが動作して流路が切り替えられ、高圧側測定室11が外部から遮断されるとともに、高圧側の通気管14と低圧側の通気管15とが、連通管17によって連通される(図6参照)。従って、高圧側測定室11と低圧側測定室12とが、通気管14、15、及び連通管17によって連通されることとなり、高圧側測定室11内には、低圧側の通気管15、連通管17、高圧側の通気管14を経て低圧の流体が流通する。その結果、高圧側測定室11、及び、低圧側測定室12の双方に、低圧の流体が流通することとなるため、ダイヤフラム13の変位がゼロとなり、ゼロ点が正確に調整される。   Further, at the time of zero point adjustment, the switching valve 23a of the flow path switching unit 23 is operated to switch the flow path, the high pressure side measurement chamber 11 is shut off from the outside, and the high pressure side vent pipe 14 and the low pressure side passage are connected. The trachea 15 communicates with the communication pipe 17 (see FIG. 6). Therefore, the high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12 are communicated with each other through the vent pipes 14 and 15 and the communication pipe 17. A low-pressure fluid flows through the pipe 17 and the high-pressure side vent pipe 14. As a result, since the low-pressure fluid flows through both the high-pressure side measurement chamber 11 and the low-pressure side measurement chamber 12, the displacement of the diaphragm 13 becomes zero, and the zero point is adjusted accurately.

本実施の形態に係る微差圧計によれば、装置内の流体が高圧側測定室11、低圧側測定室12、通気管14、15、及び連通管17内のみで流通することにより、流体が装置外に流出することがなく、燃焼系ガス等の流体を計測する場合であっても、安全性の高い微差圧計測を行うことができる。   According to the differential pressure gauge according to the present embodiment, the fluid in the apparatus flows only in the high-pressure side measurement chamber 11, the low-pressure side measurement chamber 12, the vent pipes 14 and 15, and the communication pipe 17, so that the fluid Even when a fluid such as a combustion system gas is measured without flowing out of the apparatus, it is possible to perform highly safe differential pressure measurement.

図7及び図8は、燃焼系ガスの差圧計測に用いる微差圧計であって、特に、ガスの漏洩を防止するためのシステムを備えた微差圧計の内部構造を示す模式断面図である。図7は差圧計測時の内部構造を、図8は、ゼロ点調整時の内部構造を示す。   FIG. 7 and FIG. 8 are schematic cross-sectional views showing the internal structure of a fine differential pressure gauge that is a fine differential pressure gauge used for measuring the differential pressure of a combustion system gas, and particularly equipped with a system for preventing gas leakage. . FIG. 7 shows the internal structure during differential pressure measurement, and FIG. 8 shows the internal structure during zero point adjustment.

図7及び図8において、流路切替部23の周囲には、密閉されたボックス30が備えられており、切替バルブ23aが動作する際に、何らかの原因で切替バルブ23aから流体が流出するようなことがあっても、流出した流体は密閉されたボックス30内に滞留するため、流体の装置外への漏洩をより確実に防ぐことができる。従って、燃焼系ガス等の流体を計測する場合であっても、より安全性の高い微差圧計測を行うことができる。   7 and 8, a sealed box 30 is provided around the flow path switching unit 23. When the switching valve 23a is operated, fluid flows out of the switching valve 23a for some reason. Even if this occurs, the fluid that has flowed out stays in the sealed box 30, so that leakage of the fluid to the outside of the apparatus can be prevented more reliably. Therefore, even when a fluid such as a combustion system gas is measured, it is possible to perform a safer differential pressure measurement.

本発明に係る微差圧計は、機器内外の温度変化を受けにくく、簡易な構造で、より正確にゼロ点を調整することができ、ひいては精度の高い微差圧計測をすることができるものとして有用である。   The fine differential pressure gauge according to the present invention is less susceptible to temperature changes inside and outside the device, can adjust the zero point more accurately with a simple structure, and can therefore perform highly accurate differential pressure measurement. Useful.

本発明の実施の形態に係る微差圧計の差圧計測時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of the differential pressure measurement of the micro differential pressure gauge which concerns on embodiment of this invention. 本発明の実施の形態に係る微差圧計のゼロ点調整時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of the zero point adjustment of the micro differential pressure gauge which concerns on embodiment of this invention. 本発明の他の実施の形態に係る微差圧計の差圧計測時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of the differential pressure measurement of the micro differential pressure gauge which concerns on other embodiment of this invention. 本発明の他の実施の形態に係る微差圧計のゼロ点調整時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of the zero point adjustment of the micro differential pressure gauge which concerns on other embodiment of this invention. 燃焼系ガスの差圧計測に用いる微差圧計の差圧計測時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of the differential pressure measurement of the micro differential pressure gauge used for the differential pressure measurement of combustion type | system | group gas. 燃焼系ガスの差圧計測に用いる微差圧計のゼロ点調整時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of zero point adjustment of the fine differential pressure gauge used for the differential pressure measurement of combustion type | system | group gas. 燃焼系ガスの差圧計測に用いる微差圧計の差圧計測時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of the differential pressure measurement of the micro differential pressure gauge used for the differential pressure measurement of combustion type | system | group gas. 燃焼系ガスの差圧計測に用いる微差圧計のゼロ点調整時の内部構造を示す模式断面図である。It is a schematic cross section which shows the internal structure at the time of the zero point adjustment of the fine differential pressure gauge used for the differential pressure measurement of combustion type | system | group gas.

符号の説明Explanation of symbols

10 差圧計測部
11 高圧側測定室
12 低圧側測定室
13 ダイヤフラム
14,15 通気管
16 連結管
17 連通管
21,22,23 流路切替部
25 仕切り部
30 密閉ボックス
10 Differential pressure measurement unit
DESCRIPTION OF SYMBOLS 11 High pressure side measurement chamber 12 Low pressure side measurement chamber 13 Diaphragm 14,15 Ventilation pipe 16 Connection pipe 17 Communication pipe 21,22,23 Flow path switching part 25 Partition part 30 Sealing box

Claims (4)

ダイヤフラムを挟んで区画され、それぞれ外部に連結する通気管が接続された第1の測定室及び第2の測定室を備え、前記ダイヤフラムの変位量を計測して微差圧を求める微差圧計であって、
前記通気管の少なくとも一方に、前記第1の測定室と前記第2の測定室との差圧をなくすように流路の切替を行う切替バルブを備えることを特徴とする微差圧計。
A fine differential pressure gauge that includes a first measurement chamber and a second measurement chamber that are partitioned by a diaphragm and each connected to a vent pipe that is connected to the outside, and that measures the displacement of the diaphragm to obtain a fine differential pressure. There,
A fine differential pressure gauge comprising a switching valve for switching a flow path so as to eliminate a differential pressure between the first measurement chamber and the second measurement chamber in at least one of the vent pipes.
前記切替バルブの切替によって、前記通気管が大気圧に開放されることを特徴とする請求項1記載の微差圧計。   The fine differential pressure gauge according to claim 1, wherein the vent pipe is opened to atmospheric pressure by switching the switching valve. 前記切替バルブの切替によって、前記第1の測定室と前記第2の測定室とが前記通気管によって連通されることを特徴とする請求項1記載の微差圧計。   The fine differential pressure gauge according to claim 1, wherein the first measurement chamber and the second measurement chamber are communicated by the vent pipe by switching the switching valve. 前記微差圧計は、さらに、密閉されたボックスを備え、
前記切替バルブは、前記ボックス内に備えられることを特徴とする請求項3記載の微差圧計。
The fine differential pressure gauge further includes a sealed box,
The differential pressure gauge according to claim 3, wherein the switching valve is provided in the box.
JP2007017503A 2007-01-29 2007-01-29 Fine differential pressure gage Pending JP2008185388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017503A JP2008185388A (en) 2007-01-29 2007-01-29 Fine differential pressure gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017503A JP2008185388A (en) 2007-01-29 2007-01-29 Fine differential pressure gage

Publications (1)

Publication Number Publication Date
JP2008185388A true JP2008185388A (en) 2008-08-14

Family

ID=39728547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017503A Pending JP2008185388A (en) 2007-01-29 2007-01-29 Fine differential pressure gage

Country Status (1)

Country Link
JP (1) JP2008185388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678478B1 (en) * 2016-06-22 2016-11-22 (주)에스씨에스 Explosion proof type differential pressure gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678478B1 (en) * 2016-06-22 2016-11-22 (주)에스씨에스 Explosion proof type differential pressure gauge

Similar Documents

Publication Publication Date Title
KR102121260B1 (en) Flow control device and abnormality detection method using flow control device
KR102028372B1 (en) Pressure Flow Control System and More Detection Methods
US7367241B2 (en) Differential pressure type flowmeter and differential pressure type flow controller
KR101843378B1 (en) Flow meter and flow control device provided therewith
TWI642910B (en) Flow control device, flow correction method for flow control device, flow measurement device, and flow measurement method using flow measurement device
JP2007095042A (en) Method of detecting abnormality in fluid supply system using flow rate control device having pressure sensor
JP7216736B2 (en) Mass flow controller with absolute and differential pressure transducers
JP2009115271A (en) Flow rate measurement valve
JP5208949B2 (en) Process pressure measuring system with outlet
WO2017122714A1 (en) Gas supply device capable of measuring flow rate, flowmeter, and flow rate measuring method
KR20180030447A (en) Method of inspecting gas supply system, method of calibrating flow controller, and method of calibrating secondary reference device
JP2004280688A (en) Massflow controller
JP2010107419A (en) Flow rate measuring apparatus
RU2651481C2 (en) Regulating device (options) for pressure regulation with filter condition detectors
US11914407B2 (en) Flow rate control device
JP2008185388A (en) Fine differential pressure gage
JP2013170979A (en) Method of determining replacement period of differential pressure-pressure composite sensor
TWI766961B (en) Diagnostic system, diagnostic method, storage medium, and flow rate controller
WO2020235423A1 (en) Gas safety device and gas safety system
JP6770388B2 (en) Leakage element evaluation device and evaluation method
JP2021004763A (en) Abnormality detection device, abnormality detection method and program
JP7034854B2 (en) Abnormality determination device and method