JP2008185171A - Fluid device - Google Patents

Fluid device Download PDF

Info

Publication number
JP2008185171A
JP2008185171A JP2007020562A JP2007020562A JP2008185171A JP 2008185171 A JP2008185171 A JP 2008185171A JP 2007020562 A JP2007020562 A JP 2007020562A JP 2007020562 A JP2007020562 A JP 2007020562A JP 2008185171 A JP2008185171 A JP 2008185171A
Authority
JP
Japan
Prior art keywords
spool
solenoid
control valve
fluid
piston rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007020562A
Other languages
Japanese (ja)
Other versions
JP5154806B2 (en
Inventor
Norio Ebisu
典生 恵比須
Atsushi Fukui
淳 福井
Norimasa Takagi
憲優 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2007020562A priority Critical patent/JP5154806B2/en
Publication of JP2008185171A publication Critical patent/JP2008185171A/en
Application granted granted Critical
Publication of JP5154806B2 publication Critical patent/JP5154806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Servomotors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve an inexpensive and reliable fluid device by using a control valve capable of being manufactured at low cost without sacrificing safety for surely holding a wing surface in a horizontal direction in flight control of an aircraft even when an electrical signal is lost. <P>SOLUTION: The fluid device more inexpensive and more reliable than a conventional electrohydraulic servo valve having a large number of parts is achieved by the usage of the control valve equipped with a sleeve 50, a spool 60, an elastic body 70 energizing one end side of the spool, a solenoid 80 energizing the other end side of the spool, and a differential transformer 90 for detecting a position of the spool, and having a small number of parts. When the electric current supplied to the solenoid 80, for example, a proportional solenoid, is lost by failure, the spool energized by the elastic body 70, for example, a spring, is moved from the one end side to the other end side, and thereby, the wing surface 110 is held to be almost in the horizontal direction, and safety can be secured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、弾性体ならびにソレノイドによって付勢される制御弁、およびそれを備えた流体装置に関するものである。   The present invention relates to an elastic body, a control valve energized by a solenoid, and a fluid device including the control valve.

従来、供給電流に応答してフラッパーと呼ばれる軸を可動させるトルクモータを備え、該軸の可動によりスプール両端の圧力バランスを制御することでスプール位置を移動させ、油圧機械的フィードバック制御を行う電気油圧サーボバルブ(Electro Hydraulic Servo Valve)が知られている。(例えば、特許文献1、2参照)
また、前記サーボバルブを用いてアクチュエータのピストンロッドを伸縮させる流体装置が知られている。(例えば、特許文献3参照)
米国特許公報 4,624,284 米国特許公報 3,023,782 米国特許公報 4,513,782
Conventionally, an electrohydraulic system that has a torque motor that moves a shaft called a flapper in response to a supply current, moves the spool position by controlling the pressure balance at both ends of the spool by moving the shaft, and performs hydraulic mechanical feedback control A servo valve (Electro Hydraulic Servo Valve) is known. (For example, see Patent Documents 1 and 2)
There is also known a fluid device that expands and contracts a piston rod of an actuator using the servo valve. (For example, see Patent Document 3)
US Pat. No. 4,624,284 US Patent Publication 3,023,782 US Patent No. 4,513,782

しかしながら、従来の電気油圧式サーボバルブにおいては、前記スプールを駆動させるために、機械的可動部であるトルクモータおよびフラッパーと、スプール両端の圧力バランス制御を行うための油圧回路が必要である。従って、部品点数が多く、それらを組み立て調整する時間も多大なものとなり、製品コストが高くなるという問題があった。   However, in the conventional electrohydraulic servo valve, in order to drive the spool, a torque motor and a flapper which are mechanically movable parts and a hydraulic circuit for performing pressure balance control at both ends of the spool are necessary. Accordingly, there are problems that the number of parts is large, the time for assembling and adjusting them is also great, and the product cost is increased.

本発明は、航空機の飛行制御において、電気信号が消失した場合であっても、翼面を確実に水平方向に保持するという安全性を犠牲にすること無く、安価に製造することができる制御弁を提供することを目的とする。   The present invention provides a control valve that can be manufactured at low cost without sacrificing the safety of reliably holding the wing surface in the horizontal direction even when the electrical signal disappears in flight control of the aircraft. The purpose is to provide.

本発明の流体装置は、シリンダ内に収納されたピストンロッドの両側に一方および他方の流体室を形成し、両流体室への作動流体の供給および排出によりピストンロッドを移動させるアクチュエータと、前記アクチュエータへ供給する作動流体を給排制御する制御弁を有し、前記制御弁が、スリーブと、スプールと、前記スプールの一端側を付勢する弾性体と、前記スプールの他端側を付勢するソレノイドと、前記スプールの位置を検出する差動トランスとを有し、前記差動トランスからの電気信号と、制御部より出力された入力信号により前記ソレノイドを駆動する演算回路とを備えた流体装置において、前記演算回路より出力された電気信号によりソレノイドを励磁し、前記弾性体を付勢しスプールを他端側または一端側に移動させることによって、前記アクチュエータのピストンロッドを伸縮させる構成としている。
この構成により、本発明の制御弁は従来の電気油圧サーボ弁に比べ部品点数が少なくて構成されるため、安価に製造することができる。
The fluid device according to the present invention includes an actuator in which one and the other fluid chambers are formed on both sides of a piston rod housed in a cylinder, and the piston rod is moved by supplying and discharging a working fluid to both fluid chambers, and the actuator A control valve that controls supply and discharge of the working fluid supplied to the sleeve, and the control valve biases the sleeve, the spool, the elastic body that biases one end of the spool, and the other end of the spool. A fluid device having a solenoid and a differential transformer for detecting the position of the spool, and comprising: an electric signal from the differential transformer; and an arithmetic circuit for driving the solenoid by an input signal output from a control unit In this case, the solenoid is excited by the electric signal output from the arithmetic circuit, the elastic body is energized, and the spool is moved to the other end side or one end side. By, it has a configuration extending and retracting the piston rod of the actuator.
With this configuration, the control valve of the present invention is configured with fewer parts than a conventional electrohydraulic servovalve, and therefore can be manufactured at low cost.

本発明の流体装置は、前記制御弁が、操舵電気信号入力により制御され、前記ピストンロッドを航空機用翼面に接続する構成としている。
この構成により、上述したように部品点数の少ない制御弁を用いるため、安価で信頼性の高い流体装置とすることができる。
In the fluid device of the present invention, the control valve is controlled by a steering electric signal input, and the piston rod is connected to an aircraft wing surface.
With this configuration, as described above, a control valve having a small number of parts is used, so that the fluid device can be made inexpensive and highly reliable.

本発明の流体装置は、前記ピストンロッドを航空機用翼面であるスポイラーに接続する構成としている。
この構成により、航空機の飛行制御において、故障によって電気信号が消失した場合でも前記ピストンロッドを最も収納した位置(翼面を水平方向)で保持し、安全性を確保させた流体装置とすることができる。
The fluid device of the present invention is configured to connect the piston rod to a spoiler which is an aircraft wing surface.
With this configuration, in the flight control of the aircraft, even when the electrical signal disappears due to a failure, the piston rod is held in the most retracted position (the wing surface is in the horizontal direction), and the fluid device can ensure safety. it can.

本発明によれば、信頼性の高い制御弁を安価に製造することができるとともに、特に航空機の飛行制御において、安全性を確保させた流体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to manufacture a control valve with high reliability at low cost, the fluid apparatus which ensured safety | security especially in flight control of an aircraft can be provided.

以下、本発明に関わる流体装置の一実施の形態について、図1〜図2を用いて説明する。   Hereinafter, an embodiment of a fluid device according to the present invention will be described with reference to FIGS.

図1に示すように、本実施の形態に係る流体装置10は、アクチュエータ20内に収納されたピストンロッド30の両側に一方および他方の流体室を形成し、両流体室への作動流体の供給および排出によりピストンロッド30を移動させるアクチュエータ20と、アクチュエータ20へ供給する作動流体を給排制御する制御弁40を有し、制御弁40がスリーブ50と、スプール60の一端側を付勢する弾性体70と、スプール60の他端側を付勢するソレノイド80と、スプール60の位置を検出する差動トランス90とを有し、差動トランス91からの電気信号と、図外の制御部より出力された指令信号を受信し位置制御を行うための演算処理を行う第1の演算部101と、ソレノイド80を駆動する第2の演算部102と、飛行制御用の翼面110と、を備えている。     As shown in FIG. 1, the fluid device 10 according to the present embodiment forms one and the other fluid chambers on both sides of a piston rod 30 housed in the actuator 20, and supplies the working fluid to both fluid chambers. And an actuator 20 that moves the piston rod 30 by discharging, and a control valve 40 that controls the supply and discharge of the working fluid supplied to the actuator 20, and the control valve 40 is elastic to urge the sleeve 50 and one end of the spool 60. Body 70, solenoid 80 that biases the other end of spool 60, and differential transformer 90 that detects the position of spool 60, an electrical signal from differential transformer 91, and a control unit (not shown) A first arithmetic unit 101 that receives the output command signal and performs arithmetic processing for position control; a second arithmetic unit 102 that drives the solenoid 80; It includes a blade surface 110, a.

次に、図1に示すように、流体装置10の動作について、ソレノイド80に演算部102からの出力電流が0の場合の動作について説明する。   Next, as shown in FIG. 1, the operation of the fluid device 10 will be described in the case where the output current from the computing unit 102 to the solenoid 80 is zero.

他端側のソレノイド80(例えば比例ソレノイド)に電流が流れない場合には、弾性体70(例えばスプリング)によって付勢されたスプールが一端側より他端側へ移動する。この時に、制御弁40のPSポートに供給された作動流体はピストンロッド30を収納する方向に流れ、制御弁40のP(2)ポートより排出される。同時に、ピストンロッド30に接続された翼面110は略水平方向に維持される。 When no current flows through the solenoid 80 (for example, a proportional solenoid) on the other end side, the spool biased by the elastic body 70 (for example, a spring) moves from the one end side to the other end side. At this time, the working fluid supplied to the P S port of the control valve 40 flows in the direction for housing the piston rod 30, and is discharged from the P R (2) port of the control valve 40. At the same time, the blade surface 110 connected to the piston rod 30 is maintained in a substantially horizontal direction.

これにより、ソレノイド80に供給する電流が故障等によって消失した場合でも、ピストンロッド30を最も収納した位置で保持することができる。
さらに上述したように、この構成により、航空機の飛行制御において、故障によって電気信号が消失した場合でも、ピストンロッド30を最も収納した位置(翼面を略水平方向)で保持し、安全性を確保させた流体装置10とすることができる。
Thereby, even when the current supplied to the solenoid 80 disappears due to a failure or the like, the piston rod 30 can be held at the most housed position.
Further, as described above, with this configuration, even when the electrical signal disappears due to a failure in flight control of the aircraft, the piston rod 30 is held at the most retracted position (the wing surface is substantially horizontal) to ensure safety. It can be set as the fluid apparatus 10 made.

次に、図2に示すように、流体装置10の動作について、ソレノイド80に演算部102からの出力電流が印加された場合の動作について説明する。   Next, as shown in FIG. 2, the operation of the fluid device 10 will be described in the case where the output current from the calculation unit 102 is applied to the solenoid 80.

図外の制御部より翼面を動作させる指令信号(所定の舵角信号に相当する電圧)が演算部102へ入力されると、演算回路102を介して出力された電気信号(アンプによって変換された電流)によってソレノイド80を励磁し、弾性体70に抗してスプールを一端側に移動させる。この時に、制御弁40のPSポートに供給された作動流体はピストンロッド30を伸長する方向に流れ、制御弁40のP(1)ポートより排出される。同時に、ピストンロッド30に接続された翼面110は略垂直方向に可動する。 When a command signal (voltage corresponding to a predetermined rudder angle signal) for operating the blade surface is input from the control unit (not shown) to the calculation unit 102, an electric signal (converted by an amplifier) output via the calculation circuit 102 is input. The solenoid 80 is excited by the current), and the spool is moved to one end side against the elastic body 70. At this time, the working fluid supplied to the P S port of the control valve 40 flows in a direction to extend the piston rod 30, and is discharged from the P R (1) port of the control valve 40. At the same time, the blade surface 110 connected to the piston rod 30 moves in a substantially vertical direction.

ここで、スプール60の変位量は差動トランス90で検出され、演算部102内で前記指令信号と比較し、所定の舵面角速度となるようソレノイド80を制御する。
次に、同様にアクチュエータ20内のピストンロッド30に接続された差動トランス91によって、翼面の舵角に相当するピストンロッド30の変位量を検出し、演算部101内で前記指令信号と比較し、所定の舵角となるよう、ソレノイド80を制御する演算部102への信号を出力する。
Here, the displacement amount of the spool 60 is detected by the differential transformer 90, and compared with the command signal in the calculation unit 102, the solenoid 80 is controlled so as to obtain a predetermined control surface angular velocity.
Next, similarly, a displacement amount of the piston rod 30 corresponding to the steering angle of the blade surface is detected by the differential transformer 91 connected to the piston rod 30 in the actuator 20, and compared with the command signal in the calculation unit 101. And the signal to the calculating part 102 which controls the solenoid 80 is output so that it may become a predetermined rudder angle.

詳細には、第1の演算部101を介して、第2の演算部102に入力された所定の翼面の角速度に相当する電圧と、差動トランス90で検出されたスプール60の変位によって生じたフィードバック電圧を等しくし、ソレノイド80を励磁する電流値を、スプール60と対向する弾性体70の反力と釣り合う電流値となるように設定させてスプール60を演算部102への入力電圧に比例した変位にて停止する。これにより、制御弁の流量制御を行いアクチュエータの速度制御および翼面110の角速度を制御することができる。(インナーループ制御)   Specifically, it is generated by the voltage corresponding to the predetermined angular velocity of the blade surface input to the second calculation unit 102 via the first calculation unit 101 and the displacement of the spool 60 detected by the differential transformer 90. The feedback voltage is equalized, and the current value for exciting the solenoid 80 is set to be a current value that balances the reaction force of the elastic body 70 facing the spool 60, so that the spool 60 is proportional to the input voltage to the arithmetic unit 102. Stops at the displacement. As a result, the flow rate of the control valve can be controlled to control the speed of the actuator and the angular speed of the blade surface 110. (Inner loop control)

また、第1の演算部101において入力した所定の舵角信号に相当する電圧と差動トランス91で検出されたピストンロッド30の変位によって生じたフィードバック電圧とを減算し(あるいは加算し)、その電圧値に差動トランス90で検出されたスプール60の変位によって生じたフィードバック電圧を第2の演算部102において減算し(あるいは加算し)ソレノイド80を励磁する電流値がスプール60と対向する弾性体70の反力と釣り合う電流値となるように演算処理を行い、スプール60を制御弁の油圧中立にて停止する。これにより、制御弁の流量制御によりアクチュエータの速度制御を行うインナーループを介して、所定の翼面110の角度を制御することができる。(アウターループ制御)   Further, the voltage corresponding to the predetermined steering angle signal input in the first calculation unit 101 and the feedback voltage generated by the displacement of the piston rod 30 detected by the differential transformer 91 are subtracted (or added), The feedback voltage generated by the displacement of the spool 60 detected by the differential transformer 90 is subtracted (or added) to the voltage value by the second arithmetic unit 102, and the current value for exciting the solenoid 80 is the elastic body facing the spool 60. Calculation processing is performed so that the current value is balanced with the reaction force of 70, and the spool 60 is stopped at the hydraulic neutral pressure of the control valve. Thereby, the angle of the predetermined blade surface 110 can be controlled through the inner loop that controls the speed of the actuator by controlling the flow rate of the control valve. (Outer loop control)

さらに、第2の演算部102はスプール60の中立点にオフセット値を与えられるように設定することができる。このオフセット値の付与によって翼面110を上下に制御することができ、本発明の流体装置を航空機の飛行制御翼面のエルロンやエレベータにも使用することができる。   Further, the second calculation unit 102 can be set so that an offset value is given to the neutral point of the spool 60. By providing this offset value, the wing surface 110 can be controlled up and down, and the fluid device of the present invention can also be used for ailerons and elevators on flight control wing surfaces of aircraft.

以上、上述したように、信頼性の高い制御弁を安価に製造することができるという効果を有し、特に航空機の飛行制御において、安全性を確保させた流体装置を提供することができ有用である。   As described above, there is an effect that a highly reliable control valve can be manufactured at low cost, and in particular, it is possible to provide a fluid device that ensures safety in flight control of an aircraft, which is useful. is there.

本発明の一実施の形態に係る流体装置において、ソレノイドを励磁していないときの状態を示す。The fluid apparatus which concerns on one embodiment of this invention shows the state when the solenoid is not excited. 本発明の一実施の形態に係る流体装置において、ソレノイドを励磁したときの状態を示す。The fluid apparatus which concerns on one embodiment of this invention WHEREIN: The state when a solenoid is excited is shown.

符号の説明Explanation of symbols

10 流体装置
20 アクチュエータ
30 ピストンロッド
40 制御弁
50 スリーブ
60 スプール
70 弾性体
80 ソレノイド
90,91 差動トランス
101 第1の演算部
102 第2の演算部
110 飛行制御用の翼面
120 流体ポンプ
121 タンク
DESCRIPTION OF SYMBOLS 10 Fluid apparatus 20 Actuator 30 Piston rod 40 Control valve 50 Sleeve 60 Spool 70 Elastic body 80 Solenoid 90,91 Differential transformer 101 1st calculating part 102 2nd calculating part 110 Blade surface 120 for flight control 120 Fluid pump 121 Tank

Claims (3)

シリンダ内に収納されたピストンロッドの両側に一方および他方の流体室を形成し、両流体室への作動流体の供給および排出によりピストンロッドを移動させるアクチュエータと、前記アクチュエータへ供給する作動流体を給排制御する制御弁を有し、前記制御弁が、スリーブと、スプールと、前記スプールの一端側を付勢する弾性体と、前記スプールの他端側を付勢するソレノイドと、前記スプールの位置を検出する差動トランスとを有し、前記差動トランスからの電気信号と、制御部より出力された指令信号により前記ソレノイドを駆動する演算回路とを備えた流体装置において、前記演算回路より出力された電気信号によりソレノイドを励磁し、前記弾性体を付勢しスプールを他端側に移動させることによって、前記アクチュエータのピストンロッドを伸縮させることを特徴とする流体装置。   One and the other fluid chambers are formed on both sides of the piston rod accommodated in the cylinder, and the piston rod is moved by supplying and discharging the working fluid to both fluid chambers, and the working fluid supplied to the actuator is supplied. A control valve for controlling the discharge, the control valve including a sleeve, a spool, an elastic body that biases one end of the spool, a solenoid that biases the other end of the spool, and a position of the spool Output from the arithmetic circuit in a fluid device comprising an electric signal from the differential transformer and an arithmetic circuit for driving the solenoid by a command signal output from the control unit. By energizing the solenoid by the generated electrical signal, energizing the elastic body and moving the spool to the other end side, Fluid and wherein the expanding and contracting the piston rod. 前記制御弁が、操舵電気信号入力により制御され、前記ピストンロッドを航空機用翼面に接続することを特徴とする請求項1記載の流体装置。 2. The fluid device according to claim 1, wherein the control valve is controlled by a steering electric signal input and connects the piston rod to an aircraft wing surface. 前記翼面がスポイラーであることを特徴とする請求項2記載の流体装置。 The fluid device according to claim 2, wherein the blade surface is a spoiler.
JP2007020562A 2007-01-31 2007-01-31 Fluid device Active JP5154806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020562A JP5154806B2 (en) 2007-01-31 2007-01-31 Fluid device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020562A JP5154806B2 (en) 2007-01-31 2007-01-31 Fluid device

Publications (2)

Publication Number Publication Date
JP2008185171A true JP2008185171A (en) 2008-08-14
JP5154806B2 JP5154806B2 (en) 2013-02-27

Family

ID=39728352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020562A Active JP5154806B2 (en) 2007-01-31 2007-01-31 Fluid device

Country Status (1)

Country Link
JP (1) JP5154806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510230A (en) * 2008-01-14 2011-03-31 エッセティイ ソシエタ ア レスポンサビリタ リミタータ Spool valve actuator
WO2012126376A1 (en) * 2011-03-23 2012-09-27 宁夏银川大河数控机床有限公司 Hydraulic reciprocating servo control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE514645C2 (en) 1998-10-06 2001-03-26 Perstorp Flooring Ab Floor covering material comprising disc-shaped floor elements intended to be joined by separate joint profiles
SE518184C2 (en) 2000-03-31 2002-09-03 Perstorp Flooring Ab Floor covering material comprising disc-shaped floor elements which are joined together by means of interconnecting means
DE102010004717A1 (en) 2010-01-15 2011-07-21 Pergo (Europe) Ab Set of panels comprising retaining profiles with a separate clip and method for introducing the clip
CN102884260B (en) 2010-05-10 2015-05-13 佩尔戈(欧洲)股份公司 Set of panels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149601A (en) * 1984-10-19 1986-07-08 ル−カス インダストリ−ズ パブリツク リミテイド カンパニ− Electric-fluid type actuator system
JPH06193610A (en) * 1991-11-08 1994-07-15 Kayaba Ind Co Ltd Flow rate controlling valve device
JPH06235404A (en) * 1993-02-09 1994-08-23 Mitsubishi Heavy Ind Ltd Fluid pressure servo valve
JPH1091210A (en) * 1996-09-18 1998-04-10 Kayaba Ind Co Ltd Servocontrol system for aircraft steering surface
JPH11332214A (en) * 1998-05-19 1999-11-30 Amada Eng Center Co Ltd Linear motor and hydraulic servo valve using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149601A (en) * 1984-10-19 1986-07-08 ル−カス インダストリ−ズ パブリツク リミテイド カンパニ− Electric-fluid type actuator system
JPH06193610A (en) * 1991-11-08 1994-07-15 Kayaba Ind Co Ltd Flow rate controlling valve device
JPH06235404A (en) * 1993-02-09 1994-08-23 Mitsubishi Heavy Ind Ltd Fluid pressure servo valve
JPH1091210A (en) * 1996-09-18 1998-04-10 Kayaba Ind Co Ltd Servocontrol system for aircraft steering surface
JPH11332214A (en) * 1998-05-19 1999-11-30 Amada Eng Center Co Ltd Linear motor and hydraulic servo valve using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510230A (en) * 2008-01-14 2011-03-31 エッセティイ ソシエタ ア レスポンサビリタ リミタータ Spool valve actuator
WO2012126376A1 (en) * 2011-03-23 2012-09-27 宁夏银川大河数控机床有限公司 Hydraulic reciprocating servo control device

Also Published As

Publication number Publication date
JP5154806B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5154806B2 (en) Fluid device
JP5658117B2 (en) Aircraft actuator hydraulic system
JP5498887B2 (en) Damping test method, control device, hydraulic system, and program
US8341956B2 (en) Hydraulic fluid supply device and electric actuator
EP3423353B1 (en) Redundant vehicle control systems
JP2008249024A (en) Hydraulic actuator
JP2007046790A (en) Actuation system
US8596575B2 (en) Aircraft actuator
WO2016013445A1 (en) Directional control valve
ATE533691T1 (en) ELECTRICAL CONTROL SYSTEM FOR AN AIRCRAFT STEERING BLADE
JP4585570B2 (en) Power steering device and fluid volume flow sensitive steering method
EP3023647A1 (en) Servovalve jet pipe
US20080078318A1 (en) Power assist steering apparatus and method responsive to volume flow of fluid
KR20090061989A (en) Wedge typed active dynamic control system in vehicle
JP4410811B2 (en) Actuation system and helicopter
JP2007239894A (en) Energy conversion system
JP4252583B2 (en) Blade drive
CN115087593B (en) Steering system
JP2015209000A (en) Hydraulic power steering device
KR101566827B1 (en) Apparatus and method for controlling submarine rudders
JP2010202084A (en) Electric hydraulic pressure type power steering system
JP2014028575A (en) Hydraulic power steering apparatus
JP3892455B2 (en) Actuation system
JPS6010201B2 (en) Load detection method using load pressure feedback type servo valve
JPS62106106A (en) Control valve directly coupled to linear pulse motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250