JP2008184858A - Steel floor slab pavement structure and its construction method - Google Patents

Steel floor slab pavement structure and its construction method Download PDF

Info

Publication number
JP2008184858A
JP2008184858A JP2007021004A JP2007021004A JP2008184858A JP 2008184858 A JP2008184858 A JP 2008184858A JP 2007021004 A JP2007021004 A JP 2007021004A JP 2007021004 A JP2007021004 A JP 2007021004A JP 2008184858 A JP2008184858 A JP 2008184858A
Authority
JP
Japan
Prior art keywords
steel
floor slab
slab
concrete
steel floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007021004A
Other languages
Japanese (ja)
Other versions
JP4975464B2 (en
Inventor
Yasumiki Yamamoto
泰幹 山本
Kazuo Hasegawa
和夫 長谷川
Hisamitsu Hanno
久光 半野
Akio Arai
明夫 荒井
Hiroshi Oikawa
博 及川
Hideto Takeishi
英人 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metropolitan Expressway Co Ltd
Nippo Corp Inc
Original Assignee
Metropolitan Expressway Co Ltd
Nippo Corp Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metropolitan Expressway Co Ltd, Nippo Corp Inc filed Critical Metropolitan Expressway Co Ltd
Priority to JP2007021004A priority Critical patent/JP4975464B2/en
Publication of JP2008184858A publication Critical patent/JP2008184858A/en
Application granted granted Critical
Publication of JP4975464B2 publication Critical patent/JP4975464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel floor slab pavement structure, easy in construction, superior in durability, without causing interlayer separation and a crack, easy in disassembling even in repairing, short in a work period, and reducing even generation of noise. <P>SOLUTION: A steel floor slab and a concrete slab or a mortar slab are joined via a bitumen-based material or a rubber-based sealing material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は道路橋や高架橋などに用いられる鋼床版舗装構造およびその構築方法に関する。   The present invention relates to a steel floor slab pavement structure used for road bridges, viaducts, and the like, and a construction method thereof.

鋼床版上にアスファルト舗装やコンクリート舗装を行った鋼床版舗装は従来から道路橋や高架橋などに広く用いられているが、近年、交通車両の増大や重量化、さらには架橋時の溶接方法などにより鋼床版自体に亀裂が入り、鋼床版の耐久性が大幅に低下していることが大きな社会問題となっている。この補強対策として鋼床版上面にアスファルト舗装ではなく、剛性の高い繊維補強コンクリートを打設して剛性回復させる工法が適用されだしている。このような工法として、鋼床版の上にスタッドを突設しそれらの表面にエポキシ樹脂などの樹脂系塗膜材を塗布して防水層を形成し、その上に繊維補強コンクリート舗装を行う工法が提案されている(特許文献1)。しかしこの工法でも、交通車両の車輪走行付近に発生する部分的な層間剥離やひび割れの発生を防ぎ難く、また、補修時にはコンクリート版を橋面から全面的にはがすことが困難で、長期にわたる工事や工事期間中の騒音発生が避けられないという問題を生ずる。   Steel floor slab pavement with asphalt pavement or concrete pavement on steel slabs has been widely used for road bridges and viaducts, etc. The steel floor slab itself is cracked due to the above, and the durability of the steel slab is greatly reduced, which is a big social problem. As a countermeasure for reinforcement, a method of restoring rigidity by placing high-strength fiber reinforced concrete instead of asphalt pavement on the upper surface of steel slab has been applied. As such a construction method, studs are projected on steel slabs, a resin-based coating material such as epoxy resin is applied to the surface to form a waterproof layer, and fiber reinforced concrete pavement is performed thereon Has been proposed (Patent Document 1). However, even with this construction method, it is difficult to prevent partial delamination and cracking that occur near the wheel of a traffic vehicle, and it is difficult to completely peel the concrete plate from the bridge surface during repair. There is a problem that noise generation is unavoidable during the construction period.

特開2005−314992号公報JP 2005-314992 A

本発明の目的は、上記した従来技術の問題点を解決することにあり、特に施工が容易で、耐久性に優れ、層間剥離やひび割れなどが発生し難く、また補修時にも解体が容易で工事期間が短く騒音発生も少ない新規鋼床版舗装構造およびその構築方法を提供することにある。   The purpose of the present invention is to solve the above-mentioned problems of the prior art, especially construction is easy, durability is excellent, delamination and cracks are difficult to occur, and disassembly is also easy during repair. It is an object of the present invention to provide a new steel floor slab pavement structure with a short period and less noise generation and a construction method thereof.

本発明は、第1に、鋼床版の表面に瀝青系材料およびゴム系シーリング材からなる群から選ばれる層間付着材を介してコンクリート版もしくはモルタル版が配されていることを特徴とする鋼床版舗装構造である。   The first aspect of the present invention is a steel characterized in that a concrete plate or a mortar plate is arranged on the surface of a steel floor slab via an interlayer adhesive selected from the group consisting of a bituminous material and a rubber sealing material. It is a floor slab paving structure.

本発明は、第2に、層間付着材がイオン結合形成性官能基をもつゴム系シーリング材である上記の鋼床版舗装構造である。
本発明は、第3に、コンクリート版もしくはモルタル版が繊維補強されている上記の鋼床版舗装構造である。
本発明は、第4に、鋼床版が厚さ12mmの鋼床版である上記の鋼床版舗装構造である。
Secondly, the present invention is the above steel floor slab pavement structure in which the interlayer adhesion material is a rubber-based sealing material having an ion bond-forming functional group.
Thirdly, the present invention is the above steel floor slab pavement structure in which a concrete plate or a mortar plate is fiber-reinforced.
Fourthly, the present invention is the above-described steel plate slab paving structure, wherein the steel plate is a steel plate having a thickness of 12 mm.

本発明は、第5に、鋼床版がUリブ鋼床版である上記の鋼床版舗装構造である。
本発明は、第6に、鋼床版が補修または補強の対象となる鋼床版である上記の鋼床版舗装構造である。
本発明は、第7に、鋼床版の表面に瀝青系材料およびゴム系シーリング材からなる群から選ばれる層間付着材を塗布または接着し、その上に生コンクリートを打設するかまたはコンクリート版もしくはモルタル版を付着させることを特徴とする鋼床版舗装構造の構築方法である。
Fifthly, the present invention is the above-described steel slab pavement structure in which the steel slab is a U-rib steel slab.
6thly this invention is said steel floor slab pavement structure which is a steel floor slab by which a steel deck is repaired or reinforced.
Seventhly, the present invention applies or adheres an interlayer adhesive selected from the group consisting of a bituminous material and a rubber sealing material to the surface of a steel floor slab, and casts fresh concrete thereon or a concrete slab Or it is the construction method of the steel floor slab pavement structure characterized by making a mortar plate adhere.

本発明は、第8に、鋼床版の表面に加熱した瀝青系材料を塗布し、その上にコンクリート版もしくはモルタル版を付着させることを特徴とする鋼床版舗装構造の構築方法である。
本発明は、第9に、鋼床版の表面にイオン結合形成性官能基をもつゴム系シーリング材を付着させ、その上に生コンクリートを打設してコンクリート版を形成することを特徴とする鋼床版舗装構造の構築方法である。
Eighth, the present invention is a method for constructing a steel floor slab pavement structure, characterized in that a heated bituminous material is applied to the surface of the steel floor slab, and a concrete plate or a mortar plate is adhered thereon.
Ninthly, the present invention is characterized in that a rubber sealant having an ion bond-forming functional group is attached to the surface of a steel floor slab, and concrete is cast thereon to form a concrete plate. It is a construction method of a steel floor slab pavement structure.

本発明は、第10に、ゴム系シーリング材が粘着シート状物であり、付着した粘着シート状ゴム系シーリング材の表面に直接生コンクリートを打設する上記の方法である。   The tenth aspect of the present invention is the above method, wherein the rubber-based sealing material is an adhesive sheet-like material, and the ready-mixed concrete is directly placed on the surface of the attached adhesive-sheet-like rubber-based sealing material.

本発明により、施工が容易で、耐久性に優れ、長期間経過後も層間剥離やひび割れなどが発生し難く、また補修時にも解体が容易で工事期間が短く騒音発生も少ない鋼床版舗装構造が提供される。さらに、本発明により、鋼床版に発生する応力をコンクリート版に伝達しない応力緩和機能を有する鋼床版舗装構造が提供される。   Steel plate slab pavement structure that is easy to construct, has excellent durability, does not easily cause delamination or cracks after a long period of time, and is easy to dismantle during repair, has a short construction period, and generates little noise. Is provided. Furthermore, the present invention provides a steel floor slab pavement structure having a stress relaxation function that does not transmit the stress generated in the steel floor slab to the concrete plate.

以下に、本発明の好ましい態様について説明する。
好ましい態様の1つでは層間付着材として瀝青系材料を用いる。瀝青系材料としてはストレートアスファルト、ブローンアスファルトなどのアスファルトに、スチレンブタジエンゴム、スチレンブタジエンスチレンゴムなどの合成ゴムを典型例とするゴム成分を10〜40%程度添加したゴム入りアスファルトを主成分とし、これに炭酸カルシウムなどの鉱物質粉末を加えたものが好ましく用いられる。
Below, the preferable aspect of this invention is demonstrated.
In one of the preferred embodiments, a bituminous material is used as the interlayer adhesion material. As a bituminous material, asphalt such as straight asphalt, blown asphalt, asphalt such as styrene butadiene rubber, styrene butadiene styrene rubber as a typical example is added as a main component to rubber-containing asphalt. What added mineral powders, such as calcium carbonate, to this is used preferably.

これらの瀝青系材料は、加熱溶融させて鋼床版の表面に塗布される。塗布厚は1〜5mm程度が好ましい。
このように塗布された加熱溶融状態の瀝青系材料層の上にコンクリート版もしくはモルタル版を重ねて付着させる。コンクリート版もしくはモルタル版としては、鋼繊維、炭素繊維などの繊維やゴムラテックス等を混入させた補強版、特に繊維補強版が好ましく用いられる。コンクリート版もしくはモルタル版の厚さは特に制限されないが通常1〜10cm程度である。
These bituminous materials are heated and melted and applied to the surface of the steel deck. The coating thickness is preferably about 1 to 5 mm.
A concrete plate or a mortar plate is deposited on the bituminous material layer in the heated and melted state thus applied. As the concrete plate or mortar plate, a reinforcing plate mixed with fibers such as steel fibers and carbon fibers, rubber latex, etc., particularly a fiber reinforced plate is preferably used. The thickness of the concrete plate or mortar plate is not particularly limited, but is usually about 1 to 10 cm.

本発明でより好ましく用いられる層間付着材はゴム系シーリング材であり、特に好ましく用いられるのは、イオン結合性官能基をもつゴム系シーリング材である。ここで、イオン結合性官能基としてはカルボキシル基やスルホン酸基などの有機酸性基が好ましく用いられる。   The interlayer adhesion material more preferably used in the present invention is a rubber sealant, and particularly preferably a rubber sealant having an ion-binding functional group. Here, an organic acidic group such as a carboxyl group or a sulfonic acid group is preferably used as the ion-binding functional group.

このようなゴム系シーリング材としては、カルボキシル基などのイオン結合性官能基を側鎖にもつ適宜の合成ゴム、天然ゴム、それらの再生ゴムがある。より具体的には、カルボキシル基変性ブチルゴム、カルボキシル基変性クロロプレンゴム、カルボキシル基変性アクリロニトリルブタジエンゴム、カルボキシル基変性エチレンプロピレンゴム、マレイン酸変性ゴムなどが例示される。   Examples of such a rubber-based sealing material include an appropriate synthetic rubber having an ion-binding functional group such as a carboxyl group in the side chain, natural rubber, and recycled rubber thereof. More specifically, carboxyl group-modified butyl rubber, carboxyl group-modified chloroprene rubber, carboxyl group-modified acrylonitrile butadiene rubber, carboxyl group-modified ethylene propylene rubber, maleic acid-modified rubber and the like are exemplified.

ゴムへのイオン結合性官能基の導入方法の一例としては、(メタ)アクリル酸やマレイン酸などのイオン結合性官能基をもつモノマーをゴム成分中に共重合によって導入する方法などが例示される。   Examples of the method for introducing an ion-bonding functional group into rubber include a method of introducing a monomer having an ion-binding functional group such as (meth) acrylic acid or maleic acid into a rubber component by copolymerization. .

カルボキシル基などのイオン結合性官能基の量はイオン結合を形成しうる量であれば特に制限されないが、通常はゴム成分1グラム当り0.1ミリ当量以上、特に0.2〜1ミリ当量程度が好ましい。   The amount of an ion-binding functional group such as a carboxyl group is not particularly limited as long as it is an amount capable of forming an ionic bond, but usually 0.1 milliequivalent or more, especially about 0.2 to 1 milliequivalent per gram of rubber component Is preferred.

これらのゴム系シーリング材は溶液状、ペースト状、シート状等で本発明に供しうるが、シート状で供することが好ましい。通常は粘着性を保持した状態で離型紙を表面に貼着したシート状のゴム系シーリング材の離型紙を剥離して本発明に供される。ゴム系シーリング材の厚さは特に制限はないが、通常1〜5mm程度が好ましい。   These rubber-based sealing materials can be used in the present invention in the form of solutions, pastes, sheets, etc., but it is preferable to provide them in the form of sheets. Usually, the release paper of the sheet-like rubber-based sealing material having the release paper stuck to the surface in a state where the adhesiveness is maintained is peeled off and used for the present invention. The thickness of the rubber sealant is not particularly limited, but is usually preferably about 1 to 5 mm.

鋼床版の表面にこの粘着シート状のゴム系シーリング材を付着させた後、その表面から離型紙を剥離し、その上に、直接生コンクリートを打設してコンクリート版を形成する。プレキャストのコンクリート版もしくはモルタル版を付着させることも可能だが、生コンクリートの打設が一層顕著な効果をもたらす。   After the rubber sheet sealing material in the form of an adhesive sheet is attached to the surface of the steel floor slab, the release paper is peeled off from the surface, and the ready-mixed concrete is directly placed thereon to form a concrete plate. Precast concrete or mortar plates can be attached, but the placement of ready-mixed concrete has a more pronounced effect.

生コンクリートを打設すると、生コンクリート中の水分の作用でイオン化したセメント成分中のカルシウムなどのカチオン分とゴム系シーリング材中のカルボキシル基などのイオン結合形成性官能基とがイオン結合して両層間に強固な接着状態を形成する。   When ready-mixed concrete is placed, both cationic components such as calcium in the cement component ionized by the action of moisture in the ready-mixed concrete and ion bond-forming functional groups such as carboxyl groups in the rubber sealant are ionically bonded to both. A strong adhesive state is formed between the layers.

生コンクリートは鋼床版舗装に通常用いられるものと同様のものでよく、鋼繊維や炭素繊維などの補強用繊維を含有する繊維補強コンクリートが特に好ましく用いられる。生コンクリート打設層の厚さは特に制限されないが、通常1〜10cm程度である。   The ready-mixed concrete may be the same as that normally used for steel floor slab paving, and fiber-reinforced concrete containing reinforcing fibers such as steel fibers and carbon fibers is particularly preferably used. The thickness of the ready-mixed concrete casting layer is not particularly limited, but is usually about 1 to 10 cm.

かくして付着されたコンクリート版もしくはモルタル版上に必要に応じて表層としてアスファルト舗装がなされる。
本発明の鋼床版舗装構造は鋼床版の補修または補強に適用すると特に効果的である。
また本発明の鋼床版舗装構造は、厚さが標準12mmの鋼床版において特に効果を発揮する。また鋼床版には、その支持構造の違いにより、Uリブ鋼床版や板リブ鋼床版等が知られているが、本発明の鋼床版舗装構造はUリブ鋼床版を用いた場合に亀裂防止等の点で特に有効性が高い。
次に実施例に基づいて本発明を例証する。
Asphalt pavement is made as a surface layer on the concrete plate or mortar plate thus adhered as necessary.
The steel deck slab paving structure of the present invention is particularly effective when applied to repair or reinforcement of a steel deck.
The steel deck slab paving structure of the present invention is particularly effective in a steel deck with a standard thickness of 12 mm. In addition, U-ribbed steel slabs, plate-ribbed steel slabs, and the like are known for steel slabs due to differences in support structure, but U-ribbed steel slabs were used for the steel slab pavement structure of the present invention. In particular, it is highly effective in preventing cracks.
The invention will now be illustrated on the basis of examples.

〔試験1〕
本発明の鋼床版舗装構造において鋼繊維補強コンクリートが硬化するときの乾燥収縮による影響を確認するために、次のような試験を行った。
縦横3m、厚さ12mmの鋼床版(構造実験用供試体)を2基準備し、各鋼床版の上面に層間付着材料として材料a、bを接着または塗布し、これらの上に鋼繊維補強コンクリートを打設してそれぞれ供試体A、Bとした。材料aはブチル再生ゴム100重量部、テルペン重合樹脂45重量部、ポリイソブチレン低重合物30重量部および炭酸カルシウム100重量部を混練して押し出し成形したカルボキシル基をもつゴム系シート材で、ゴム1グラム当たり0.25ミリ当量のカルボキシル基をもつものである。材料bはストレートアスファルト、熱可塑性スチレンブタジエンゴムおよび石油系樹脂等を混練した瀝青系塗膜材である。舗装断面は図1に示すとおりである。
[Test 1]
In order to confirm the influence of drying shrinkage when steel fiber reinforced concrete hardens in the steel floor slab pavement structure of the present invention, the following test was performed.
Prepare two steel floor slabs (structure test specimens) of 3m in length and width 12mm, and adhere or apply materials a and b as interlayer adhesion materials on the upper surface of each steel slab, and steel fibers on them. Reinforced concrete was cast into specimens A and B, respectively. Material a is a rubber-based sheet material having a carboxyl group obtained by kneading 100 parts by weight of butyl recycled rubber, 45 parts by weight of a terpene polymer resin, 30 parts by weight of a low polyisobutylene polymer and 100 parts by weight of calcium carbonate, and rubber 1 It has 0.25 milliequivalent carboxyl groups per gram. The material b is a bituminous coating material obtained by kneading straight asphalt, thermoplastic styrene butadiene rubber, petroleum resin, and the like. The pavement cross section is as shown in FIG.

供試体A、Bを環境シミュレーター内に入れて一定温度のもとに養生し、フレッシュな鋼繊維補強コンクリートが硬化するまでの状態を観察した。その結果、供試体A、Bのいずれのコンクリート版にもひび割れの発生がなかった。これらの試験結果より、本発明の鋼床版舗装構造によれば、フレッシュコンクリートが硬化するときの乾燥収縮に層間付着材料が追従することにより、不規則なひび割れを抑制できることが確認された。   Specimens A and B were placed in an environmental simulator and cured under a constant temperature, and the state until fresh steel fiber reinforced concrete was hardened was observed. As a result, no crack was generated in any of the concrete plates of specimens A and B. From these test results, according to the steel floor slab pavement structure of the present invention, it was confirmed that irregular cracks can be suppressed by the interlayer adhesion material following the drying shrinkage when the fresh concrete is cured.

〔試験2〕
本発明の鋼床版舗装構造に対する温度変化による影響を確認するために、次のような試験を行った。
試験1で使用した供試体A、Bが硬化した後、各供試体の鋼繊維補強コンクリート上面の中央と左右端部に歪みゲージを貼り付けた。なお、各供試体の鋼床版上面の中央と左右端部にも、試験1で鋼繊維補強コンクリートを打設する前にあらかじめ歪みゲージを貼り付けておいた。各供試体を恒温室に入れて、都内の冬期および夏期の気温を考慮して室温を上昇下降させ、このときのコンクリート版の状態および鋼床版とコンクリート版の長さの変位量を観察・測定した。
[Test 2]
In order to confirm the influence by the temperature change with respect to the steel floor slab pavement structure of this invention, the following tests were done.
After the specimens A and B used in Test 1 were cured, strain gauges were attached to the center and the left and right ends of the steel fiber reinforced concrete upper surface of each specimen. In addition, strain gauges were attached in advance to the center and the left and right ends of the upper surface of the steel slab of each specimen before placing the steel fiber reinforced concrete in Test 1. Place each specimen in a temperature-controlled room, and raise and lower the room temperature in consideration of the winter and summer temperatures in Tokyo, and observe the state of the concrete slab and the displacement of the length of the steel slab and concrete slab at this time. It was measured.

その結果、供試体A、Bのいずれのコンクリート版にもひび割れが見られなかった。また、鋼床版の長さの変位量とコンクリート版の長さの変位量とを比較すると、鋼床版の変位量の方が大きかった。これらの試験結果より、本発明の鋼床版舗装構造によれば、鋼床版とコンクリート版の変位量の差によって発生する応力を層間付着材料が吸収し、該応力をコンクリート版に伝達しない応力緩和機能を発揮するということが確認された。   As a result, no crack was observed in any of the concrete plates of specimens A and B. Moreover, when the amount of displacement of the length of the steel slab was compared with the amount of displacement of the length of the concrete slab, the amount of displacement of the steel slab was larger. From these test results, according to the steel slab pavement structure of the present invention, the stress generated by the difference in displacement between the steel slab and the concrete slab is absorbed by the interlayer adhesion material, and the stress is not transmitted to the concrete slab. It was confirmed that it exerts a relaxation function.

〔試験3〕
本発明の鋼床版舗装構造に対する交通荷重による影響を確認するために、次のような試験を行った。
試験2で使用した供試体A、Bの鋼繊維補強コンクリート上面に118kNの輪荷重を繰り返し加えて、このときのコンクリート版の状態を観察した。
その結果、現在試験中ではあるが、繰り返し荷重が50万回の時点において、供試体A、Bのいずれのコンクリート版にもひび割れなど破損は見られなかった。この試験結果より、本発明の鋼床版舗装構造によれば、高速道路における鋼床版舗装の標準荷重に対して十分な耐久性をもつということが推定できる。
[Test 3]
In order to confirm the influence of the traffic load on the steel floor slab pavement structure of the present invention, the following test was performed.
A ring load of 118 kN was repeatedly applied to the upper surfaces of the steel fiber reinforced concrete specimens A and B used in Test 2, and the state of the concrete plate at this time was observed.
As a result, although it is currently being tested, no damage such as cracks was found in any of the concrete plates of specimens A and B when the repeated load was 500,000 times. From this test result, it can be estimated that the steel floor slab pavement structure of the present invention has sufficient durability against the standard load of the steel floor slab pavement on the highway.

〔試験4〕
本発明の鋼床版舗装構造を撤去するときの施工効率などを確認するために、次のような試験を行った。通常の鋼床版上のアスファルト舗装を撤去する際に発生する工事騒音は、非常に大きな課題となっている。剛性回復を目的として鋼床版上にコンクリート舗装を施工した場合、コンクリート版を撤去するためにブレーカなどを使用することは現実的には認められず、コンクリート版をコンクリートカッタで小片に切断した後、各小片にアンカを打ち込んで引き抜く方法しか低騒音での撤去方法はない。そこで、縦横1m、厚さ12mmの鋼床版(構造実験用供試体)を2基準備し、各鋼床版の上面に層間付着材料として試験1と同じ材料a、bを接着または塗布し、これらの上に鋼繊維補強コンクリートを打設してそれぞれ供試体C、Dとした。上記したアンカによる引き抜きを想定して、供試体C、Dのコンクリート版を小片に切断してアンカによる引き抜き試験を行った。
[Test 4]
In order to confirm the construction efficiency when removing the steel floor slab pavement structure of the present invention, the following tests were conducted. Construction noise generated when removing asphalt pavement on a normal steel slab is a very big issue. When concrete pavement is constructed on a steel floor slab for the purpose of recovery of rigidity, it is not practically allowed to use a breaker to remove the concrete slab, and after the concrete slab is cut into small pieces with a concrete cutter The only removal method with low noise is to drive an anchor into each small piece and pull it out. Therefore, two steel floor slabs (structure test specimens) having a length of 1 m and a thickness of 12 mm were prepared, and the same materials a and b as those of Test 1 were adhered or applied as an interlayer adhesion material on the upper surface of each steel slab, Steel fiber reinforced concrete was placed on these to form specimens C and D, respectively. Assuming the above-described extraction with the anchor, the concrete plates of the specimens C and D were cut into small pieces, and the extraction test with the anchor was performed.

その結果、供試体C、Dのいずれのコンクリート版に関しても鋼繊維補強コンクリートを鋼床版上から容易に撤去することができ、撤去後の鋼床版面は残存するコンクリートが少なく比較的きれいな状態であった。これらの試験結果より、本発明の鋼床版舗装構造によれば、舗装補修時に鋼床版からコンクリートを容易に剥がすことができ、補修時の工事騒音を低減することができると同時に工事の施工効率がよくなるということが推定できる。   As a result, the steel fiber reinforced concrete can be easily removed from the steel floor slab for both the concrete slabs of specimens C and D, and the steel floor slab surface after removal is relatively clean with little residual concrete. there were. From these test results, according to the steel floor slab pavement structure of the present invention, the concrete can be easily peeled off from the steel floor slab at the time of pavement repair, and the construction noise can be reduced while reducing the construction noise at the time of repair. It can be estimated that the efficiency is improved.

本発明の鋼床版舗装構造の一例を示す断面図。Sectional drawing which shows an example of the steel floor slab pavement structure of this invention.

Claims (10)

鋼床版の表面に瀝青系材料およびゴム系シーリング材からなる群から選ばれる層間付着材を介してコンクリート版もしくはモルタル版が配されていることを特徴とする鋼床版舗装構造。   A steel slab pavement structure characterized in that a concrete slab or mortar slab is arranged on the surface of the steel slab via an interlayer adhesive selected from the group consisting of bituminous materials and rubber sealants. 層間付着材がイオン結合形成性官能基をもつゴム系シーリング材である請求項1に記載の鋼床版舗装構造。   The steel floor slab pavement structure according to claim 1, wherein the interlayer adhesion material is a rubber sealant having an ion bond-forming functional group. コンクリート版もしくはモルタル版が繊維補強されている請求項1または2に記載の鋼床版舗装構造。   The steel floor slab pavement structure according to claim 1 or 2, wherein the concrete plate or the mortar plate is fiber-reinforced. 鋼床版が厚さ12mmの鋼床版である請求項1〜3のいずれか1項記載の鋼床版舗装構造。   The steel floor slab pavement structure according to any one of claims 1 to 3, wherein the steel floor slab is a steel floor slab having a thickness of 12 mm. 鋼床版がUリブ鋼床版である請求項1〜4のいずれか1項記載の鋼床版舗装構造。   The steel slab pavement structure according to any one of claims 1 to 4, wherein the steel slab is a U-rib steel slab. 鋼床版が補修または補強の対象となる鋼床版である請求項1〜5のいずれか1項記載の鋼床版舗装構造。   The steel floor slab pavement structure according to any one of claims 1 to 5, wherein the steel deck is a steel deck to be repaired or reinforced. 鋼床版の表面に瀝青系材料およびゴム系シーリング材からなる群から選ばれる層間付着材を塗布または接着し、その上に生コンクリートを打設するかまたはコンクリート版もしくはモルタル版を付着させることを特徴とする鋼床版舗装構造の構築方法。   Applying or adhering an interlayer adhesive selected from the group consisting of bituminous materials and rubber sealants to the surface of the steel floor slab, and placing concrete on it or attaching a concrete or mortar plate A method for constructing a pavement structure with a characteristic steel floor slab. 鋼床版の表面に加熱した瀝青系材料を塗布し、その上にコンクリート版もしくはモルタル版を付着させることを特徴とする鋼床版舗装構造の構築方法。   A method for constructing a steel floor slab pavement structure, wherein a heated bituminous material is applied to the surface of a steel floor slab, and a concrete plate or a mortar plate is adhered thereon. 鋼床版の表面にイオン結合形成性官能基をもつゴム系シーリング材を付着させ、その上に生コンクリートを打設してコンクリート版を形成することを特徴とする鋼床版舗装構造の構築方法。   A method for constructing a steel floor slab pavement structure, comprising attaching a rubber sealant having an ion bond-forming functional group to a surface of a steel floor slab, and placing concrete on the surface to form a concrete slab. . ゴム系シーリング材が粘着シート状物であり、付着した粘着シート状ゴム系シーリング材の表面に直接生コンクリートを打設する請求項9に記載の方法。   The method according to claim 9, wherein the rubber-based sealing material is an adhesive sheet-like material, and the ready-mixed concrete is directly placed on the surface of the attached adhesive sheet-like rubber-based sealing material.
JP2007021004A 2007-01-31 2007-01-31 Steel floor slab pavement structure and construction method thereof Active JP4975464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021004A JP4975464B2 (en) 2007-01-31 2007-01-31 Steel floor slab pavement structure and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021004A JP4975464B2 (en) 2007-01-31 2007-01-31 Steel floor slab pavement structure and construction method thereof

Publications (2)

Publication Number Publication Date
JP2008184858A true JP2008184858A (en) 2008-08-14
JP4975464B2 JP4975464B2 (en) 2012-07-11

Family

ID=39728090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021004A Active JP4975464B2 (en) 2007-01-31 2007-01-31 Steel floor slab pavement structure and construction method thereof

Country Status (1)

Country Link
JP (1) JP4975464B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199908A (en) * 2015-04-09 2016-12-01 国立大学法人 東京大学 Construction method for concrete pavement structure
JP2017066237A (en) * 2015-09-29 2017-04-06 ニチバン株式会社 Adhesive tape or sheet for coat sealing
JP2018053510A (en) * 2016-09-28 2018-04-05 株式会社大林組 Pavement structure
CN112362498A (en) * 2020-10-27 2021-02-12 合肥工业大学 Test method for determining optimal intermittent time of intermittent heating and self-healing of steel bridge deck pavement
CN113970494A (en) * 2021-10-25 2022-01-25 北京建筑大学 Test piece of asphalt pavement interlayer material in local release state and shear strength evaluation method
CN114635352A (en) * 2022-03-18 2022-06-17 东南大学 Steel bridge deck pavement structure and pavement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546028A (en) * 1977-06-15 1979-01-17 Hayakawa Rubber Adhesive composition for concrete
JP2001131916A (en) * 1999-08-20 2001-05-15 Miwa Tec:Kk Water-proof pavement structure for road floor slab
JP2006009353A (en) * 2004-06-24 2006-01-12 Kawasaki Heavy Ind Ltd Rubber latex mortar composite steel floor slab
JP2006348487A (en) * 2005-06-13 2006-12-28 Tokyo Institute Of Technology Steel floor slab structure of bridge and steel floor slab reinforcing construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546028A (en) * 1977-06-15 1979-01-17 Hayakawa Rubber Adhesive composition for concrete
JP2001131916A (en) * 1999-08-20 2001-05-15 Miwa Tec:Kk Water-proof pavement structure for road floor slab
JP2006009353A (en) * 2004-06-24 2006-01-12 Kawasaki Heavy Ind Ltd Rubber latex mortar composite steel floor slab
JP2006348487A (en) * 2005-06-13 2006-12-28 Tokyo Institute Of Technology Steel floor slab structure of bridge and steel floor slab reinforcing construction method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199908A (en) * 2015-04-09 2016-12-01 国立大学法人 東京大学 Construction method for concrete pavement structure
JP2017066237A (en) * 2015-09-29 2017-04-06 ニチバン株式会社 Adhesive tape or sheet for coat sealing
JP2018053510A (en) * 2016-09-28 2018-04-05 株式会社大林組 Pavement structure
CN112362498A (en) * 2020-10-27 2021-02-12 合肥工业大学 Test method for determining optimal intermittent time of intermittent heating and self-healing of steel bridge deck pavement
CN112362498B (en) * 2020-10-27 2024-05-28 合肥工业大学 Test method for determining optimal intermittent time of intermittent heating self-healing of steel bridge deck pavement
CN113970494A (en) * 2021-10-25 2022-01-25 北京建筑大学 Test piece of asphalt pavement interlayer material in local release state and shear strength evaluation method
CN113970494B (en) * 2021-10-25 2023-11-21 北京建筑大学 Test piece and shear strength evaluation method for interlayer material of asphalt pavement in local release state
CN114635352A (en) * 2022-03-18 2022-06-17 东南大学 Steel bridge deck pavement structure and pavement method
CN114635352B (en) * 2022-03-18 2024-04-09 东南大学 Steel bridge deck pavement structure and pavement method

Also Published As

Publication number Publication date
JP4975464B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4975464B2 (en) Steel floor slab pavement structure and construction method thereof
WO2021010456A1 (en) Structure protection sheet, execution method and precast member using structure protection sheet, and method for manufacturing precast member
KR101522505B1 (en) Overall repairing method for concrete and asphalt road after repairing cracks by using the overall pavement products
KR101058231B1 (en) Bridge water-proof material for mixing used mma resin and bridge water-proof constructing mehtod without connection of concrete and steel plate
WO2008131005A1 (en) Structural panels
KR101378936B1 (en) Waterproof complex layer of road comprising mma waterproofing composition and construction method for thereof
JP5535440B2 (en) Composite steel slab that prevents cracking
JP2023111914A (en) Structure protection sheet, concrete block and manufacturing method of reinforced structure
US20080088056A1 (en) Flexible release agent-free, multiple-use materials employed for concrete pouring forms and methods of making and using the same
JP5323980B1 (en) Waterproof structure of road bridge deck
JP5457777B2 (en) Waterproofing method for concrete floor slabs
JP2010216175A (en) Rc floor slab structure and repair method for increasing thickness of rc floor slab
Haddad Hybrid repair configurations with CFRP composites for recovering structural performance of steel-corroded beams
JPH0959929A (en) Repair and reinforcing method of top of reinforced concrete floor slab
KR20090125873A (en) Bottom of bridged rainge spatial-temporal methods of bridge
KR100317831B1 (en) A method of Ascon bonding for concrete plate
KR101153899B1 (en) Repair and waterproof method for bridge
KR20110097557A (en) Thin-layer overlaying method for reinforcing paving concrete of road
JP6541238B2 (en) Asphalt pavement removal method
JP2002250136A (en) Reinforced panel
KR100926779B1 (en) Polymer Modified Bitumen Waterproofing Sheet
Almonbhi Effectiveness of waterproofing membranes for precast prestressed concrete adjacent Box-Beam Bridges
JP2008179993A (en) Rubber latex mortar construction method
Bottenberg Fiber-reinforced polymer decks for movable bridges
JP6504838B2 (en) Repair method for concrete deck top

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250