JP2008184560A - Polyproylenic resin composition and sheet - Google Patents
Polyproylenic resin composition and sheet Download PDFInfo
- Publication number
- JP2008184560A JP2008184560A JP2007020162A JP2007020162A JP2008184560A JP 2008184560 A JP2008184560 A JP 2008184560A JP 2007020162 A JP2007020162 A JP 2007020162A JP 2007020162 A JP2007020162 A JP 2007020162A JP 2008184560 A JP2008184560 A JP 2008184560A
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene
- molecular weight
- sheet
- polymerization
- high molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、熱成形性に優れ、かつ透明性に優れた製品を得る熱成形用ポリプロピレン系樹脂組成物およびシートに関するものである。 The present invention relates to a polypropylene-based resin composition and a sheet for thermoforming that provide a product excellent in thermoformability and excellent in transparency.
シート状の熱可塑性プラスチックシートを加熱し溶融させ、真空および/または圧空で金型に密着させ容器を得る熱成型において、ポリプロピレンは食品容器などの成型に用いられている。しかし、粘度に対して溶融張力が低いため、シート成形では熱成型での加熱時に垂れ下がりやすい(ドローダウンを起こす)。ドローダウンを防ぐために、分子量を高め、粘度を高める必要があったが、分子量を高めると粘度が高くなり、押出成形時に発熱し劣化するため、変色、発煙、機械物性の低下を引き起こす。また、押出機の負荷が高くなり、生産性が低下する。 用途が熱成型でない文具や折箱などに用いられる透明シートであっても、シートはフィルムと異なり自重があるために押出機に接続されたTダイから地面に平行に押し出され、引き取られる。 従って、メルトフローレート(MFR)が低い樹脂でなければ垂れ下がってしまうために均質なシートを成型することができず、同様の押出成形時の問題が発生する。 Polypropylene is used for molding food containers and the like in thermoforming, in which a sheet-like thermoplastic sheet is heated and melted and adhered to a mold by vacuum and / or compressed air to obtain a container. However, since melt tension is low with respect to viscosity, sheet molding tends to sag during heating (causes drawdown). In order to prevent drawdown, it was necessary to increase the molecular weight and increase the viscosity. However, if the molecular weight is increased, the viscosity increases, and heat is generated and deteriorated during extrusion, causing discoloration, smoke generation, and deterioration of mechanical properties. In addition, the load on the extruder increases and productivity decreases. Even if it is a transparent sheet used for stationery or folding boxes that are not thermoformed, the sheet has its own weight, unlike a film, so it is pushed out parallel to the ground from a T-die connected to an extruder. Therefore, if the resin does not have a low melt flow rate (MFR), it will sag, so that a homogeneous sheet cannot be molded, and the same problem occurs during extrusion molding.
しかしながら、ポリプロピレンであっても分子量分布が広い場合や分子構造に長鎖分岐がある成分が入ると溶融張力が上昇し、成形性が向上するため、分子量を低くすることができ(MFRを上げることができ)、押出成形時の問題を軽減することができる。
そこで、従来、分子量分布を広げるために、機械的混合によるブレンドや、二成分以上のポリプロピレンの重合によるブレンドが行われてきた。
しかし、従来の技術では効果がないか、ドローダウンに効果があってもゲルの発生、溶融時の破断などの問題が生じた。
However, even in the case of polypropylene, if the molecular weight distribution is wide or a component having a long chain branch in the molecular structure is added, the melt tension is increased and the moldability is improved, so that the molecular weight can be lowered (increasing MFR). Can reduce the problems during extrusion.
Therefore, conventionally, in order to broaden the molecular weight distribution, blending by mechanical mixing and blending by polymerization of two or more components of polypropylene have been performed.
However, the conventional technique is not effective, or even if the drawdown is effective, problems such as generation of a gel and fracture at the time of melting occur.
また、分子構造に長鎖分岐のある成分を導入するためには、長鎖分岐のある分子を含む低密度ポリエチレンをブレンドしたり、放射線の照射、架橋剤により長鎖分岐を持つポリプロピレン分子を発生させたりすることが行われた。 しかし、低密度ポリエチレンのブレンドは材料の剛性を下げ、放射線の照射では特殊な装置が必要になった(特許文献1)。
またポリプロピレンはポリエチレンと異なり、劣化により架橋が進行するのではなく、分解が進む材料であるために、長鎖分岐を生成することは困難であった。
非常に高い分子量成分のポリエチレンまたはEPRを重合し、その後、分子量の低いポリプロピレンを重合して高溶融張力のポリプロピレンを製造することが開示されている(特許文献2)が、相容性が十分でないため、フィッシュアイが生じやすく、透明性、剛性が低下する。
In addition, unlike polyethylene, polypropylene does not proceed with crosslinking due to deterioration, but is a material that undergoes decomposition, and thus it has been difficult to produce long chain branches.
Although it is disclosed that a polyethylene or EPR having a very high molecular weight component is polymerized and then a polypropylene having a low molecular weight is polymerized to produce a polypropylene having a high melt tension (Patent Document 2), the compatibility is not sufficient. Therefore, fish eyes are easily generated, and transparency and rigidity are lowered.
本発明は、熱成形が容易で、透明性に優れたポリプロピレン樹脂組成物およびシートを提供することを目的とする。 An object of this invention is to provide the polypropylene resin composition and sheet | seat which are easy to thermoform and were excellent in transparency.
本発明は、メルトフローレート(MFR、荷重2.16kgf)が1〜50g/10min、高分子量ポリプロピレンの割合が0.5〜5質量%であるポリプロピレンからなるポリプロピレン樹脂組成物であって、該高分子量ポリプロピレンの135℃のテトラヒドロナフタレンによる極限粘度〔η〕が6〜9dl/gであり、かつプロピレン以外のα―オレフィン量が50質量%未満であることを特徴とするポリプロピレン樹脂組成物である。
本発明のポリプロピレンシートは、前記ポリプロピレン樹脂組成物からなることが好ましい。
The present invention is a polypropylene resin composition comprising a polypropylene having a melt flow rate (MFR, load 2.16 kgf) of 1 to 50 g / 10 min and a ratio of high molecular weight polypropylene of 0.5 to 5% by mass, The polypropylene resin composition is characterized in that the intrinsic viscosity [η] of tetrahydronaphthalene at 135 ° C. of molecular weight polypropylene is 6 to 9 dl / g, and the amount of α-olefin other than propylene is less than 50% by mass.
It is preferable that the polypropylene sheet of this invention consists of the said polypropylene resin composition.
前記ポリプロピレン樹脂組成物において、ポリプロピレンがプロピレン単独重合体であることが好ましい。
本発明のポリプロピレンシートはポリプロピレンがプロピレン単独重合体であるポリプロピレン樹脂組成物からなることが好ましい。
In the polypropylene resin composition, the polypropylene is preferably a propylene homopolymer.
The polypropylene sheet of the present invention is preferably composed of a polypropylene resin composition in which polypropylene is a propylene homopolymer.
上記のように構成された本発明のポリプロピレンシートを用いることによって、粘度は低いが溶融張力が高いために、ドローダウンを起こしにくい。従って、熱成形の条件幅を広げることができ、サイクルを速くすることができる。また、シート幅を広げることができ、一回のサイクルで得られる製品の個数を多くすることができる。また、ドローダウンによって大きく弛んだ部分によって生じる皺が発生しにくいので、製品に皺が生じにくく歩留まりが向上する。
また、一般にドローダウンによりシートの端が伸ばされ、中央の伸びは少ないために厚みムラ、冷却ムラが起こり、一つの金型で多数個の製品を成型する場合には、個々の製品に物性のばらつきやソリ、歪みが生じる。本発明のポリプロピレンシートを用いることによって、この問題を解消できる。
By using the polypropylene sheet of the present invention configured as described above, the viscosity is low but the melt tension is high, so that it is difficult to cause drawdown. Therefore, the condition range of thermoforming can be expanded and the cycle can be accelerated. Further, the sheet width can be increased, and the number of products obtained in one cycle can be increased. In addition, since wrinkles caused by a portion that is largely slackened by drawdown are less likely to occur, wrinkles are less likely to occur in the product, and the yield is improved.
In addition, the sheet edge is generally stretched by drawdown, and there is little center elongation, resulting in uneven thickness and cooling. When molding a large number of products with a single mold, the physical properties of each product Variation, warping, and distortion occur. This problem can be solved by using the polypropylene sheet of the present invention.
また、上記のように構成された本発明のポリプロピレンシートを用いることによって、溶融張力を上げるためのポリプロピレンと相容しない材料を混練する必要がなく、架橋剤などの添加剤も含んでおらず、また、低いMFRの材料を押し出した場合のように発熱による劣化が抑えられるので均質で透明なシートを得ることができる。
加えて、高分子量成分の分子が配向するためか、剛性が高く、耐衝撃性に優れる。
Further, by using the polypropylene sheet of the present invention configured as described above, it is not necessary to knead a material incompatible with polypropylene for increasing the melt tension, and does not include additives such as a crosslinking agent, Further, since deterioration due to heat generation is suppressed as in the case of extruding a low MFR material, a homogeneous and transparent sheet can be obtained.
In addition, because the molecules of the high molecular weight component are oriented, the rigidity is high and the impact resistance is excellent.
ルトフローレート(MFR、荷重2.16kgf)が1〜50g/10min、高分子量ポリプロピレンの割合が0.5〜5質量%であるポリプロピレンからなるポリプロピレン樹脂組成物であって、該高分子量ポリプロピレンの135℃のテトラヒドロナフタレンによる極限粘度〔η〕が6〜9dl/gであり、かつプロピレン以外のα―オレフィン量が50質量%未満であることを特徴とするポリプロピレン樹脂組成物を用いてシートを成形する。 A polypropylene resin composition comprising a polypropylene resin composition having a flow rate (MFR, load 2.16 kgf) of 1 to 50 g / 10 min and a ratio of high molecular weight polypropylene of 0.5 to 5% by mass. A sheet is molded using a polypropylene resin composition characterized in that the intrinsic viscosity [η] by tetrahydronaphthalene at 5 ° C. is 6 to 9 dl / g and the amount of α-olefin other than propylene is less than 50% by mass. .
ここで、高分子量ポリプロピレンとは、本発明によるポリプロピレン樹脂組成物を構成する2種類以上のポリプロピレンの中で、最も分子量の高い成分であり、この高分子量成分の分子量、α―オレフィン量、および割合を最適としたポリプロピレン樹脂を用いてシート成形することで、従来のポリプロピレンシートの問題点を解決することができる。なお、極限粘度[η]はポリプロピレンの平均分子量の指標として一般的に使用されるパラメーターであり、[η]が大きい程、分子量が大きい事を示している。商業的に使用されるシート用ポリプロピレン樹脂の[η]はおおむね1.5〜3dl/gの範囲である。 Here, the high molecular weight polypropylene is a component having the highest molecular weight among two or more types of polypropylene constituting the polypropylene resin composition according to the present invention, and the molecular weight, α-olefin amount, and ratio of the high molecular weight component. The problem of the conventional polypropylene sheet can be solved by molding the sheet using a polypropylene resin optimized for the above. The intrinsic viscosity [η] is a parameter generally used as an index of the average molecular weight of polypropylene, and the larger [η], the larger the molecular weight. [Η] of commercially used polypropylene resin for sheet is generally in the range of 1.5 to 3 dl / g.
高分子量ポリプロピレンの[η]が6より低い場合には、熱成形時のドローダウンが大きくなり、また、透明性が低下する。9より高い場合には、フィッシュアイが生じてシートの外観を損なう。高分子量成分が0.5質量%より低い場合にはドローダウンが大きくなり、5質量%より高い場合にはMFRが低くなり前記の押出成形時の問題が生じる。MFRが1g/10minより低い場合には、生産性が低下し、発熱により劣化する。50g/10minより高い場合にはフィッシュアイが生じてシートの外観を損なう。またドローダウンが大きくなる。 When the [η] of the high molecular weight polypropylene is lower than 6, the drawdown during thermoforming increases and the transparency decreases. If it is higher than 9, fish eyes are formed and the appearance of the sheet is impaired. When the high molecular weight component is lower than 0.5% by mass, the drawdown is increased. When the MFR is lower than 1 g / 10 min, the productivity is lowered and deteriorates due to heat generation. When it is higher than 50 g / 10 min, fish eyes are formed and the appearance of the sheet is impaired. Also, the drawdown increases.
本発明の原料となるポリプロピレンとしては、プロピレン単独重合体、またはプロピレンと他のα−オレフィン(炭素数は多くとも12)との共重合体が挙げられる。α一オレフィンの具体例としては、エチレン、1−ブテン、3−メチル−1−ブテン、3−メチル−1―ペンテン、4−メチル−1−ペンテン、4−ジメチル−1−ペンテン、ビニルシクロペンタン、ビニルシクロヘキサンなどが挙げられ、好適にはエチレン、1−ブテンが使用される。高分子量ポリプロピレンに含まれるプロピレン以外のα−オレフィン量は50質量%未満であり、好ましくは30質量%以下、より好ましくはプロピレン単独重合体が使用される。高分子量ポリプロピレン中のプロピレン以外のα−オレフィン量が50質量%を超えると、高分子量成分の分散不良によるシート上のゲルの発生、透明性の悪化が起こり好ましくない。
本発明の原料の中に含まれる高分子量成分以外の成分は、プロピレン以外のα―オレフィンが5質量%以下、より好ましくは2質量%以下であることが好ましい。α―オレフィン量が5質量%を超えると、剛性、耐熱性が低下し好ましくない。なお、α―オレフィン含有量は、H. N. Cheng ; Marcomolecules, Vol.17, p1950-1955(1984), E. T. Hsieh et al ; ibid., Vol. 15, p353-360 (1982)等に報告されている13C−NMRによる方法で測定される。
Examples of the polypropylene used as a raw material of the present invention include a propylene homopolymer or a copolymer of propylene and another α-olefin (having at most 12 carbon atoms). Specific examples of the α-olefin include ethylene, 1-butene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 4-dimethyl-1-pentene, and vinylcyclopentane. And vinylcyclohexane, and ethylene and 1-butene are preferably used. The amount of α-olefin other than propylene contained in the high molecular weight polypropylene is less than 50% by mass, preferably 30% by mass or less, and more preferably a propylene homopolymer. If the amount of α-olefin other than propylene in the high molecular weight polypropylene exceeds 50% by mass, the generation of gel on the sheet due to poor dispersion of the high molecular weight component and the deterioration of transparency are undesirable.
The component other than the high molecular weight component contained in the raw material of the present invention is preferably 5% by mass or less, more preferably 2% by mass or less of α-olefin other than propylene. When the amount of α-olefin exceeds 5% by mass, rigidity and heat resistance are lowered, which is not preferable. The α-olefin content is reported in HN Cheng; Marcomolecules, Vol. 17, p1950-1955 (1984), ET Hsieh et al; ibid., Vol. 15, p353-360 (1982), etc. 13 It is measured by the method by C-NMR.
本発明で原料となるポリプロピレンの重合法は特に限定されず、ヘキサン、ヘプタン、灯油などの不活性炭化水素またはプロピレンなどの液化α―オレフィン溶媒の存在化で行うスラリー法、無溶媒下の気相重合法などの公知の方法を用いて行われる、温度条件としては0〜130℃、圧力2〜50kg/cm2の条件で行われる。重合工程における反応器は、当該技術分野で通常用いるものが適宜使用でき、例えば攪拌層型反応器、流動床型反応器、循環式反応器などがある。これらの反応器を用いて連続式、半回分式、回分式のいずれの方法でも製造できる。
本発明のポリプロピレン樹脂は、多段重合法によって製造することができる。多段重合法とは、ある成分の重合後に、その成分の存在下、さらに重合触媒を添加することなく、違う成分を重合する方法である。多段重合の段数、順序に特に制限はなく、一般的には2段から5段が使用され、生産性等を考慮して適当な順序が選択される。多段重合法により製造することで、各々の成分を製造した後これらを混合するブレンド法に比較して高分子量ポリプロピレン成分の分散が良好になり、ゲルの発生を抑え、透明性、剛性等の機械物性が向上する。高分子量ポリプロピレン成分を重合する段階は任意であるが、最初の段階で所定量の高分子量のポリプロピレンを重合した後、これより分子量の低いポリプロピレンを後段で重合を行う方法が例として挙げられる。
The polymerization method of polypropylene as a raw material in the present invention is not particularly limited, and is a slurry method performed in the presence of a liquefied α-olefin solvent such as hexane, heptane, kerosene or a liquid α-olefin solvent such as propylene, and a gas phase in the absence of a solvent. The temperature condition is 0 to 130 ° C. and the pressure is 2 to 50 kg / cm 2 , which is performed using a known method such as a polymerization method. As the reactor in the polymerization step, those normally used in the technical field can be used as appropriate, and examples thereof include a stirred bed reactor, a fluidized bed reactor, and a circulation reactor. These reactors can be used to produce any of continuous, semi-batch, and batch methods.
The polypropylene resin of the present invention can be produced by a multistage polymerization method. The multistage polymerization method is a method of polymerizing different components in the presence of a component without adding a polymerization catalyst after the polymerization of the component. There are no particular limitations on the number and order of multistage polymerization, and generally 2 to 5 stages are used, and an appropriate order is selected in consideration of productivity and the like. Produced by a multi-stage polymerization method, the dispersion of the high molecular weight polypropylene component is better compared to the blend method in which each component is produced and then mixed, and the gel is prevented from being generated, and the machine such as transparency and rigidity is improved. Physical properties are improved. The step of polymerizing the high molecular weight polypropylene component is optional, but an example is a method in which a predetermined amount of high molecular weight polypropylene is polymerized in the first step and then a lower molecular weight polypropylene is polymerized in the subsequent step.
本発明のポリプロピレンを得るための触媒は特に限定されないが、副生成物が少なく、生産性に優れた触媒が好ましい。アタクチック成分、オリゴマー成分等の副生成物が多いと、シートの剛性、耐熱性が損なわれるばかりか、副生成物がシート表面にブリードアウトし、表面の平滑性、透明性が損なわれる。このような副生成物が少なく、生産性に優れた触媒として代表的なのは、MgCl2等の担体へ担時されたZiegler−Natta触媒であり、より好ましい触媒の例としては、例えば、特許第3034452号に記載の触媒が挙げられる。
具体的には、マグネシウム化合物、チタン化合物、ハロゲン含有化合物および電子供与性化合物を必須成分とする固体触媒を、更に一般式:Ti Xa・Yb(式中、XはCl,Br,Iのハロゲン原子を、Yは電子供与性化合物を、aは3もしくは4を、bは3以下の整数をそれぞれ表す)で示されるチタン化合物で処理後、ハロゲン含有化合物で洗浄し、更に炭化水素で洗浄して得られる重合触媒である。ここで、XはCl,Br,Iのハロゲン原子であり、この中で好ましいのはClである。aは3もしくは4であるが、好ましくは4である。Yとしては、一般に含酸素化合物、含窒素化合物、含リン化合物、含硫黄化合物などが挙げられる。含酸素化合物としては、例えばアルコール類、エーテル類、エステル類、酸ハライド類、酸無水物類などが挙げられる。これらの電子供与性化合物は、1種でもよく、2種以上を併用してもよい。これらの中でも好ましいものはエステル類である。Yのbは、前記aが3のときbは1〜3、aが4のときは1または2が好ましく、特に好ましいのはaが4、bが1の場合である。
The catalyst for obtaining the polypropylene of the present invention is not particularly limited, but a catalyst with few by-products and excellent productivity is preferable. When there are many by-products such as an atactic component and an oligomer component, not only the rigidity and heat resistance of the sheet are impaired, but also the by-products bleed out to the sheet surface, and the smoothness and transparency of the surface are impaired. A typical example of such a catalyst having few by-products and excellent productivity is a Ziegler-Natta catalyst supported on a support such as MgCl 2. Examples of more preferable catalysts include, for example, Japanese Patent No. 3034452. The catalyst described in No. is mentioned.
Specifically, a solid catalyst containing a magnesium compound, a titanium compound, a halogen-containing compound and an electron donating compound as essential components is further converted into a general formula: Ti X a · Y b (wherein X is Cl, Br, I After treatment with a halogen atom, Y is an electron-donating compound, a is 3 or 4, and b is an integer of 3 or less, and then washed with a halogen-containing compound and further washed with a hydrocarbon. Is a polymerization catalyst obtained. Here, X is a halogen atom of Cl, Br, or I, and among these, Cl is preferred. a is 3 or 4, but is preferably 4. Examples of Y generally include oxygen-containing compounds, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds. Examples of the oxygen-containing compound include alcohols, ethers, esters, acid halides, acid anhydrides and the like. These electron donating compounds may be used alone or in combination of two or more. Among these, esters are preferable. B in Y is preferably 1 to 2 when b is 1 to 3 when a is 3 and 1 or 2 when a is 4, particularly preferably a is 4 and b is 1.
上記方法で調製された固体触媒は、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウムなどの有機アルミニウム化合物と第2の電子供与性化合物の共存下で重合するとよい。第2の電子供与性化合物は、前記電子供与性化合物と同一でもよいが、芳香族カルボン酸エステル、Si−O−CまたはSi−N−C結合を有するケイ素化合物、アセタール化合物、GeO−C結合を有するゲルマニウム化合物、アルキル置換基を有する窒素または酸素の複素環化合物など使用してもよい。これらの中でもSi−O−C結合を有するケイ素化合物が好ましい。好ましい例としては、ジシクロペンチルジメトキシシラン、テキシルトリメトキシシラン、シクロペンチル−t−ブチルージメトキシシラン、n−プロピル−t−ブチルージメトキシシラン、ジフェニルジメトキシシランなどが挙げられる。 The solid catalyst prepared by the above method is preferably polymerized in the presence of an organoaluminum compound such as trimethylaluminum, triethylaluminum, or tripropylaluminum and the second electron-donating compound. The second electron-donating compound may be the same as the electron-donating compound, but an aromatic carboxylic acid ester, a silicon compound having a Si—O—C or Si—N—C bond, an acetal compound, a GeO—C bond. Or a nitrogen or oxygen heterocyclic compound having an alkyl substituent may be used. Among these, a silicon compound having a Si—O—C bond is preferable. Preferred examples include dicyclopentyldimethoxysilane, texyltrimethoxysilane, cyclopentyl-t-butyl-dimethoxysilane, n-propyl-t-butyl-dimethoxysilane, diphenyldimethoxysilane and the like.
また、重合に先立って、触媒と少量のオレフィンを接触させる予備重合を行うことが可能である。予備重合は触媒活性の向上や、得られるポリプロピレンが取扱い容易な性状の粉体となるといった点で好ましいものである。予備重合は炭化水素溶剤中やオレフィンの液相中または気相中で触媒と少量のオレフィンをより好ましくはプロピレンを、触媒の重量の0.5〜500倍程度の量の重合体が得られるのに十分な時間接触させることで行う。 Further, prior to the polymerization, it is possible to carry out a preliminary polymerization in which a catalyst and a small amount of olefin are brought into contact. Pre-polymerization is preferable in terms of improving the catalytic activity and obtaining a powder having properties that are easy to handle. In the prepolymerization, a catalyst and a small amount of olefin, more preferably propylene, and a polymer in an amount of about 0.5 to 500 times the weight of the catalyst can be obtained in a hydrocarbon solvent or in an olefin liquid phase or gas phase. For a sufficient period of time.
使用したポリプロピレンの製造例を以下に示す。
<重合用固体触媒の調製>
特許第3034452号の実施例に記載されている触媒調製法(イ)、(ロ)、(ハ)の方法に従い、重合用固体触媒の調製を行った。
ポリプロピレン(PP−1〜PP−9)の重合:
<PP−1>
(前段重合)
窒素雰囲気下、内容積30リットルの撹拌機付きオートクレーブに上記方法で調整された固体触媒0.07g、トリエチルアルミニウム2.9g、ジシクロペンチルジメトキシシラン1.7gを入れ、次いでプロピレン1kgを送入し、70℃まで昇温したのち20分間重合を行い、その後未反応のプロピレンを除去し、反応生成物の一部をサンプリングした。
(後段重合)
続いて、オートクレーブにプロピレン9kg、水素をプロピレンに対し0.3モル%になるように導入し、70℃で2時間重合を行った。その後、未反応のプロピレンを除去し重合を終結させた。その結果、MFRが2.3であるポリプロピレン(以下、PP−1)5.2kgを得た。
前段重合終了後にサンプルリングした生成物を分析したところ、[η]が6.3dl/gである高分子量ポリプロピレンであり、前段生成物と後段生成物の触媒残渣から成分比率を求めたところ、PP−1に含まれる高分子量ポリプロピレンの割合は4.2質量%であった。
Production examples of the used polypropylene are shown below.
<Preparation of solid catalyst for polymerization>
A solid catalyst for polymerization was prepared according to the methods (a), (b), and (c) described in Examples of Japanese Patent No. 3034452.
Polymerization of polypropylene (PP-1 to PP-9):
<PP-1>
(Pre-stage polymerization)
In a nitrogen atmosphere, 0.07 g of the solid catalyst adjusted by the above method, 2.9 g of triethylaluminum and 1.7 g of dicyclopentyldimethoxysilane were placed in an autoclave with an internal volume of 30 liters, and then 1 kg of propylene was fed. After heating up to 70 degreeC, superposition | polymerization was performed for 20 minutes, unreacted propylene was removed after that, and a part of reaction product was sampled.
(Post polymerization)
Subsequently, 9 kg of propylene and hydrogen were introduced into the autoclave so that the amount was 0.3 mol% with respect to propylene, and polymerization was performed at 70 ° C. for 2 hours. Thereafter, unreacted propylene was removed to terminate the polymerization. As a result, 5.2 kg of polypropylene (hereinafter referred to as PP-1) having an MFR of 2.3 was obtained.
When the product sampled after the completion of the pre-stage polymerization was analyzed, it was a high molecular weight polypropylene having [η] of 6.3 dl / g, and the component ratio was determined from the catalyst residue of the pre-stage product and the post-stage product. The ratio of the high molecular weight polypropylene contained in -1 was 4.2% by mass.
<PP−2>
PP−1の重合法において、前段と後段の重合時間を変えた以外はPP−1と同様に重合を行い、MFRが4.0、高分子量成分の[η]が6.7dl/g、高分子量成分の割合が0.8質量%であるPP−2を得た。
<PP-2>
In the polymerization method of PP-1, polymerization was performed in the same manner as PP-1 except that the polymerization time of the former stage and the latter stage was changed, MFR was 4.0, [η] of the high molecular weight component was 6.7 dl / g, high PP-2 having a molecular weight component ratio of 0.8% by mass was obtained.
<PP−3>
PP−1の重合法において、ジシクロペンチルジメトキシシランの代わりにテキシルトリメトキシシランを使用し、また後段重合の水素濃度、重合時間を調整し、MFRが16、高分子量ポリプロピレンの成分の[η]が7.2dl/g、高分子量ポリプロピレンの割合が1.0質量%であるPP−3を得た。
<PP-3>
In the polymerization method of PP-1, texyltrimethoxysilane is used instead of dicyclopentyldimethoxysilane, and the hydrogen concentration and polymerization time of the subsequent polymerization are adjusted, and the [η] of the component of high molecular weight polypropylene having an MFR of 16 Of PP-3 having a ratio of 7.2 dl / g and a high molecular weight polypropylene of 1.0% by mass was obtained.
<PP−4>
PP−1の重合法において、前段重合、後段重合の重合温度を80℃にし、後段の水素濃度と重合時間を調整することで、MFRが27、高分子量ポリプロピレン成分の[η]が8.3dl/g、高分子量ポリプロピレン成分の割合が3.6質量%であるPP−4を得た。
<PP-4>
In the polymerization method of PP-1, by adjusting the polymerization temperature of the former stage polymerization and the latter stage polymerization to 80 ° C. and adjusting the hydrogen concentration and the polymerization time in the latter stage, the MFR is 27 and the [η] of the high molecular weight polypropylene component is 8.3 dl. PP-4 whose ratio of / g and a high molecular weight polypropylene component is 3.6 mass% was obtained.
<PP−5>
PP−1の重合法において、前段重合の重合温度を85℃にし、後段の水素濃度と重合時間を調整することで、MFRが40、高分子量ポリプロピレン成分の[η]が8.9dl/g、高分子量ポリプロピレン成分の割合が3.9質量%であるPP−5を得た。
<PP-5>
In the polymerization method of PP-1, by adjusting the polymerization temperature in the former stage polymerization to 85 ° C. and adjusting the hydrogen concentration and the polymerization time in the latter stage, the MFR is 40, the [η] of the high molecular weight polypropylene component is 8.9 dl / g, PP-5 whose ratio of a high molecular weight polypropylene component is 3.9 mass% was obtained.
<PP−6>
PP−1の重合法において、前段重合と後段重合の重合時間を調整し、MFRが2.0、高分子量ポリプロピレン成分の[η]が6.3dl/g、高分子量ポリプロピレン成分の割合が0.2質量%であるPP−6を得た。
<PP-6>
In the polymerization method of PP-1, the polymerization time of the former stage polymerization and the latter stage polymerization was adjusted, MFR was 2.0, [η] of the high molecular weight polypropylene component was 6.3 dl / g, and the ratio of the high molecular weight polypropylene component was 0.00. PP-6 which is 2 mass% was obtained.
<PP−7>
PP−1の重合法において、前段重合で生成するポリプロピレンの[η]が3になるように前段で水素を導入し、さらに前段重合と後段重合の重合時間を調整することで、MFRが1.0、高分子量ポリプロピレン成分の割合が4.0質量%であるPP−7を得た。
<PP-7>
In the polymerization method of PP-1, by introducing hydrogen in the former stage so that the [η] of the polypropylene produced in the former stage polymerization is 3, and adjusting the polymerization time of the former stage polymerization and the latter stage polymerization, the MFR is 1. 0, PP-7 in which the proportion of the high molecular weight polypropylene component was 4.0% by mass was obtained.
<PP−8>
窒素雰囲気下、内容積30リットルの撹拌機付きオートクレーブにプロピレン6kg、水素0.3mol%およびエチレンをその分圧が0.8MPaとなるように導入後、50℃に昇温した。続いて、前記触媒調製法で調製した固体触媒0.07g、トリエチルアルミニウム2.9g、ジシクロペンチルジメトキシシラン1.7gを入れ、11分間重合を行った。その後、未反応のモノマーよび水素を除去し、反応生成物の一部をサンプリングした(以上、前段重合)。続いて、オートクレーブ内を窒素で十分にパージした後、PP−1の後段重合と同様に重合を行い、MFRが3.2、前段で重合した高分子量成分中のエチレン含有量が25質量%で[η]が7.1、高分子量成分の割合が3.8質量%であるPP−8を得た。
<PP-8>
Under a nitrogen atmosphere, 6 kg of propylene, 0.3 mol% of hydrogen and ethylene were introduced into an autoclave equipped with a stirrer with an internal volume of 30 liters so that the partial pressure was 0.8 MPa, and then the temperature was raised to 50 ° C. Subsequently, 0.07 g of the solid catalyst prepared by the catalyst preparation method, 2.9 g of triethylaluminum, and 1.7 g of dicyclopentyldimethoxysilane were added, and polymerization was performed for 11 minutes. Thereafter, unreacted monomers and hydrogen were removed, and a part of the reaction product was sampled (previous polymerization). Subsequently, after the inside of the autoclave was sufficiently purged with nitrogen, polymerization was performed in the same manner as the subsequent polymerization of PP-1, and the MFR was 3.2, and the ethylene content in the high molecular weight component polymerized in the previous stage was 25% by mass. PP-8 having [η] of 7.1 and a high molecular weight component ratio of 3.8% by mass was obtained.
<PP−9>
PP−8と同様の重合法において、前段重合の水素量およびエチレン分圧、また後段重合の水素量、重合時間を調整することで、MFRが4.0、高分子量成分中のエチレン量が52質量%で[η] が6.8、高分子量成分の割合が4.1質量%であるPP−9を得た。
<PP-9>
In the polymerization method similar to PP-8, by adjusting the hydrogen amount and ethylene partial pressure in the former stage polymerization, the hydrogen amount in the latter stage polymerization, and the polymerization time, the MFR was 4.0 and the ethylene amount in the high molecular weight component was 52. PP-9 having [η] of 6.8% by mass and a high molecular weight component ratio of 4.1% by mass was obtained.
<シート成形>
PP−1からPP−9までのサンプルにIrganox1010を0.10質量%、Irgafos168を0.10質量%、カルシウムステアレートを0.05質量%を添加して50mmφ単軸押出機で溶融混練しペレタイズを行った。吐出時の樹脂温度は240℃であった。
その後、370mm幅Tダイを有する40mmφ単軸シート押出機でシート成形を行い、厚み0.5mm、幅320mmのシートを得た。 シリンダー温度とダイ温度を240℃に設定した。 回転数60rpmで行い、吐出量は12kg/hであった。
<Sheet molding>
Add 0.10% by mass of Irganox 1010, 0.10% by mass of Irgafos 168 and 0.05% by mass of calcium stearate to PP-1 to PP-9 samples, and melt knead and pelletize with a 50mmφ single screw extruder. Went. The resin temperature at the time of discharge was 240 ° C.
Thereafter, sheet forming was performed with a 40 mmφ single-axis sheet extruder having a 370 mm wide T-die to obtain a sheet having a thickness of 0.5 mm and a width of 320 mm. The cylinder temperature and die temperature were set to 240 ° C. The rotation was performed at 60 rpm, and the discharge rate was 12 kg / h.
なお、各表中において、諸物性は次の方法で求めた。
<[η]>
極限粘度[η]は135℃のテトラヒドロナフタレンを用いて測定した。
<高分子量ポリプロピレン中のエチレン含量>
1,2,4−トリクロロベンゼン/重水素化ベンゼンの混合溶媒に溶解したサンプルについて、JEOL社製 JNM LA−400(13C共鳴周波数 100MHz)を用い、13C−NMR法で測定を行った。
<高分子量ポリロピレンの重量比>
高分子量ポリプロピレン重合後に、一部をサンプリングし、原子吸光法により高分子量ポリプピレン中のMg量(触媒残)を分析した。また、最終的に得られた重合体のMg量を同じく原子吸光により分析し、各成分のMg量の比から重合体中の高分子量ポリプロピレンの重量比を求めた。
<MFR>
温度230℃、荷重2.16kgfの条件下、JIS K6760に準じて測定した。
<溶融張力>
東洋精機製作所(株)製のRCT−50KRAFを用い、シリンダー温度230℃、オリフィスL/D=8.0/2,095mm、ピストン降下速度20mm/分、引取速度6.28m/分の条件で行ったときにかかる荷重(g)で表した。
<ドローダウン指数>
通常の250℃でのTダイ成形にてエアナイフ冷却方式により0.5mm厚のシートを作成し、シート中央部から330mm四方を切り出し、内寸300mm四方のステンレス製固定治具にクランプした試験体を210℃に充分に加熱されたオーブン内に水平に挿入し、加熱溶融にともない皺が発生した後に、張返し現象によりシートが水平に戻った時刻(T1)から、シート中央部が水平レベルより15mmドローダウンするまでの時刻(T2)から求める指数である。すなわち、ドローダウン指数DD=T2−T1(秒)により求められる。 ドローダウン指数は大きいほどドローダウンを生じにくく、真空成形時の皺の発生を抑え、生産性を向上しうることが予見される。
<ヘイズ>
JIS K 7136に従い、村上色彩研究所製HM−150を用いて測定した。
In each table, various physical properties were determined by the following methods.
<[Η]>
The intrinsic viscosity [η] was measured using tetrahydronaphthalene at 135 ° C.
<Ethylene content in high molecular weight polypropylene>
A sample dissolved in a mixed solvent of 1,2,4-trichlorobenzene / deuterated benzene was measured by 13 C-NMR method using JNM LA-400 ( 13 C resonance frequency 100 MHz) manufactured by JEOL.
<Weight ratio of high molecular weight polypropylene>
After polymerization of the high molecular weight polypropylene, a part was sampled, and the amount of Mg (residual catalyst) in the high molecular weight polypropylene was analyzed by atomic absorption method. Further, the Mg amount of the finally obtained polymer was similarly analyzed by atomic absorption, and the weight ratio of the high molecular weight polypropylene in the polymer was determined from the ratio of the Mg amount of each component.
<MFR>
The measurement was performed according to JIS K6760 under the conditions of a temperature of 230 ° C. and a load of 2.16 kgf.
<Melting tension>
Using RCT-50KRAF manufactured by Toyo Seiki Seisakusho Co., Ltd. under conditions of cylinder temperature 230 ° C., orifice L / D = 8.0 / 2, 095 mm, piston lowering speed 20 mm / min, take-off speed 6.28 m / min It was expressed as a load (g) applied at the time.
<Drawdown index>
A sheet having a thickness of 0.5 mm was prepared by T-die molding at a normal 250 ° C. by an air knife cooling method, and a test body clamped on a stainless steel fixing jig having an inner dimension of 300 mm square was cut out from a central portion of the sheet. From the time (T1) when the sheet is returned to the horizontal level due to the overturning phenomenon after wrinkles are generated by heating and melting after being horizontally inserted in an oven sufficiently heated to ℃, the center of the sheet is drawn 15 mm from the horizontal level. It is an index obtained from the time (T2) until it goes down. That is, the drawdown index DD = T2−T1 (seconds). It is foreseen that the larger the drawdown index, the less likely the drawdown will occur, which can suppress the generation of wrinkles during vacuum forming and improve productivity.
<Haze>
According to JIS K7136, it measured using HM-150 by Murakami Color Research Laboratory.
<実施例1>
PP−129いてペレタイズを行い、MFR、溶融張力を測定し、シート成形を行い、ドローダウン指数、ヘイズを測定した。
<実施例2>
PP−2を用いて、実施例1と同様に実験を行った。
<実施例3>
PP−3を用いて、実施例1と同様に実験を行った。
<実施例4>
PP−4を用いて、実施例1と同様に実験を行った。
<実施例5>
PP−5を用いて、実施例1と同様に実験を行った。
<実施例6>
PP−8を用いて、実施例1と同様に実験を行った。
<Example 1>
PP-129 was pelletized, MFR and melt tension were measured, sheet was molded, and drawdown index and haze were measured.
<Example 2>
Experiments were performed in the same manner as in Example 1 using PP-2.
<Example 3>
Experiments were performed in the same manner as in Example 1 using PP-3.
<Example 4>
Experiments were performed in the same manner as in Example 1 using PP-4.
<Example 5>
Experiments were performed in the same manner as in Example 1 using PP-5.
<Example 6>
Experiments were conducted in the same manner as in Example 1 using PP-8.
<比較例1>
PP−6を用いて、実施例1と同様に実験を行った。高分子量成分の重量比が少ないため、十分に溶融張力があがらず、ドローダウン指数が短くなった。
<比較例2>
PP−7を用いて、実施例1と同様に実験を行った。高分子量ポリプロピレン成分の[η]が低いために、MFRが低い割にローダウン指数は小さく、透明性も低下した。
<比較例3>
PP−9を用いて、実施例1と同様に実験を行った。PP−9は高分子量ポリプロピレン中のエチレン量が多いため、分散が悪く、透明性が低下した。
<Comparative Example 1>
Experiments were performed in the same manner as in Example 1 using PP-6. Since the weight ratio of the high molecular weight component was small, the melt tension was not sufficiently increased and the drawdown index was shortened.
<Comparative example 2>
Experiments were performed in the same manner as in Example 1 using PP-7. Since the [η] of the high molecular weight polypropylene component is low, the low-down index is small and the transparency is lowered for a low MFR.
<Comparative Example 3>
Experiments were performed in the same manner as in Example 1 using PP-9. Since PP-9 has a large amount of ethylene in the high molecular weight polypropylene, the dispersion was poor and the transparency was lowered.
Claims (4)
A polypropylene sheet comprising the polypropylene resin composition according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007020162A JP2008184560A (en) | 2007-01-30 | 2007-01-30 | Polyproylenic resin composition and sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007020162A JP2008184560A (en) | 2007-01-30 | 2007-01-30 | Polyproylenic resin composition and sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008184560A true JP2008184560A (en) | 2008-08-14 |
Family
ID=39727813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007020162A Pending JP2008184560A (en) | 2007-01-30 | 2007-01-30 | Polyproylenic resin composition and sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008184560A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014129434A (en) * | 2012-12-28 | 2014-07-10 | Sunallomer Ltd | Polypropylene resin composition and method of producing the same, and polypropylene sheet and biaxially oriented polypropylene film |
JP7542533B2 (en) | 2019-06-17 | 2024-08-30 | サンアロマー株式会社 | Polypropylene resin composition containing ultra-high molecular weight propylene (co)polymer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997045463A1 (en) * | 1996-05-27 | 1997-12-04 | Mitsui Chemicals, Inc. | Crystalline polypropylene, process for preparing the same, polypropylene composition, and thermoformed article |
JP2004002655A (en) * | 2002-03-27 | 2004-01-08 | Mitsui Chemicals Inc | Polypropylene resin, sheet and film obtained from the same |
-
2007
- 2007-01-30 JP JP2007020162A patent/JP2008184560A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997045463A1 (en) * | 1996-05-27 | 1997-12-04 | Mitsui Chemicals, Inc. | Crystalline polypropylene, process for preparing the same, polypropylene composition, and thermoformed article |
JP2004002655A (en) * | 2002-03-27 | 2004-01-08 | Mitsui Chemicals Inc | Polypropylene resin, sheet and film obtained from the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014129434A (en) * | 2012-12-28 | 2014-07-10 | Sunallomer Ltd | Polypropylene resin composition and method of producing the same, and polypropylene sheet and biaxially oriented polypropylene film |
JP7542533B2 (en) | 2019-06-17 | 2024-08-30 | サンアロマー株式会社 | Polypropylene resin composition containing ultra-high molecular weight propylene (co)polymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100565151B1 (en) | Polypropylene block-copolymer resin and process for producing it | |
JP4083820B2 (en) | Polypropylene resin composition and use thereof | |
EP2914649B1 (en) | Articles comprising broad molecular weight distribution polypropylene resins | |
US8476395B2 (en) | Polypropylene composition with improved optics for film and moulding applications | |
JP2012514122A (en) | Random propylene copolymer compositions, products and methods | |
JP2009167407A (en) | Polypropylene-based resin composition and molded product | |
WO2010076701A1 (en) | Process for producing high melt strength polypropylene | |
JP6144045B2 (en) | Polypropylene resin composition and method for producing the same, polypropylene sheet and biaxially oriented polypropylene film | |
JP7300839B2 (en) | Propylene-based polymer composition and expanded molded product thereof | |
JP2012522081A (en) | Polyolefin masterbatch and composition suitable for injection molding | |
JP2008184560A (en) | Polyproylenic resin composition and sheet | |
EP3912794A1 (en) | Multilayer film with improved properties | |
JP2000290333A (en) | Polypropylene block copolymer resin and preparation thereof | |
JP7257522B2 (en) | Non-foamed sheets and containers | |
JP3139524B2 (en) | Propylene homopolymer and biaxially stretched film using the same | |
JP2020158652A (en) | Propylene-based polymer composition and molding thereof | |
JP2021059678A (en) | Polypropylene resin composition | |
EP4206276A1 (en) | Polypropylene composition, preparation method therefor, and article made therefrom | |
JP6890474B2 (en) | A propylene-based resin composition, a method for producing the same, and a molded product using the propylene-based resin composition. | |
WO2023090201A1 (en) | Non-stretched film comprising propylene polymer composition | |
JPH1171428A (en) | Low crystalline polypropylene | |
JP2022148047A (en) | polypropylene resin composition | |
JP2013209635A (en) | Polypropylene based resin, film made from the same and method for manufacturing polypropylene based resin | |
JP2019089921A (en) | Propylene-based resin composition and method for producing the same, and molding using the propylene-based resin composition | |
US20060155070A1 (en) | Preparation of improved soft olefin polymer materials by using peroxide-containing polyolefins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20091028 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20110915 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111004 |
|
A02 | Decision of refusal |
Effective date: 20120807 Free format text: JAPANESE INTERMEDIATE CODE: A02 |