JP2008184533A - Coordinate polymer metal complex compound single crystal and method for producing the same - Google Patents

Coordinate polymer metal complex compound single crystal and method for producing the same Download PDF

Info

Publication number
JP2008184533A
JP2008184533A JP2007019122A JP2007019122A JP2008184533A JP 2008184533 A JP2008184533 A JP 2008184533A JP 2007019122 A JP2007019122 A JP 2007019122A JP 2007019122 A JP2007019122 A JP 2007019122A JP 2008184533 A JP2008184533 A JP 2008184533A
Authority
JP
Japan
Prior art keywords
single crystal
metal complex
complex compound
polymer metal
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007019122A
Other languages
Japanese (ja)
Inventor
Tomoki Koo
智己 兒王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007019122A priority Critical patent/JP2008184533A/en
Publication of JP2008184533A publication Critical patent/JP2008184533A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coordinate polymer metal complex compound single crystal having increased gas adsorptivity and a method for producing the compound. <P>SOLUTION: The coordinate polymer metal complex compound single crystal is a porous bulk single crystal of a coordinate polymer metal complex compound having a composition having as a skeleton a coordinate polymer metal complex having a three-dimensional structure expressed by [M<SB>2</SB>(C<SB>6</SB>H<SB>2</SB>N<SB>2</SB>O<SB>4</SB>)<SB>2</SB>(C<SB>4</SB>H<SB>4</SB>N<SB>2</SB>)]4H<SB>2</SB>O as one unit, wherein M is a pentadentate metal element selected from Cu, Ni and Cd, in which complex the two-dimensional structures composed of the metal element M and 2,3-pyrazine dicarboxylate are bonded together through a column composed of pyrazine interposing a gap between the structures, and the gap is divided with the column to form pores. Water is supplied on an aqueous solution A of the pentadentate metal element salt and pyrazine to form a water layer, an aqueous solution B of 2,3-pyrazine dicarboxylic acid is supplied on the water layer at a supplying rate of 0.04-0.4 cm<SP>3</SP>/sec to form a layer of an aqueous solution B and the product is left to stand at room temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガス吸着性に優れた単結晶配位高分子金属錯体化合物およびその製造方法に関する。   The present invention relates to a single crystal coordination polymer metal complex compound excellent in gas adsorption and a method for producing the same.

従来、ガス吸着性を有する配位高分子金属錯体化合物として、非特許文献1に、1ユニットが〔Cu(C(C)〕・2HOで表わされる組成を有し、該Cu元素とピラジン−2,3−ジカルボキシレートとから成る2次元構造同士がピラジンから成る支柱で相互に間隙を置いて接続された3次元構造を有する配位高分子金属錯体を骨格とし、上記間隙が上記支柱で区切られて成る細孔を有する配位高分子金属錯体化合物が示されている。しかし、この化合物は、これまで粉末としてのみ合成に成功しており、ガス吸着性の高いバルク状単結晶としては合成されていない。 Conventionally, as a coordination polymer metal complex compound having gas adsorbability, Non-Patent Document 1 discloses that 1 unit is [Cu 2 (C 6 H 2 N 2 O 4 ) 2 (C 4 H 4 N 2 )] · 2H. It has a composition represented by 2 O, and has a three-dimensional structure in which the two-dimensional structure composed of the Cu element and pyrazine-2,3-dicarboxylate is connected to each other with a pillar composed of pyrazine with a gap therebetween. A coordination polymer metal complex compound having pores in which the coordination polymer metal complex is a skeleton and the gap is divided by the support columns is shown. However, this compound has been successfully synthesized only as a powder so far, and has not been synthesized as a bulk single crystal having high gas adsorbability.

また特許文献1には、固体高分子燃料電池のプロトン交換膜として、配位高分子金属錯体RdtoaM(R:アルキル基、dtoa:ジチオオキサミド)の層間に水分子を吸蔵させて室温でプロトン伝導性を有する化合物が開示されている。更に、特許文献2には更に上記錯体に水素を吸蔵させて室温で電子伝導性を具備させることが示されている。しかしいずれも、ガス吸着性には何ら配慮されていない。 In Patent Document 1, as a proton exchange membrane of a solid polymer fuel cell, water molecules are occluded between layers of coordination polymer metal complex R 2 dtoaM (R: alkyl group, dtoa: dithiooxamide), and proton conduction is performed at room temperature. Compounds having properties are disclosed. Further, Patent Document 2 shows that the above-described complex is made to absorb hydrogen and to have electron conductivity at room temperature. However, in any case, no consideration is given to gas adsorption.

Mitsuru Kondo et al., Angew.Chem.Int.Ed. 1999, 38, No. 1/2, pp. 140-143Mitsuru Kondo et al., Angew.Chem.Int.Ed. 1999, 38, No. 1/2, pp. 140-143 特開2004−31173号公報JP 2004-31173 A 特開2004−31174号公報JP 2004-31174 A

本発明は、ガス吸着性を高めた単結晶配位高分子金属錯体化合物およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a single crystal coordination polymer metal complex compound with improved gas adsorption and a method for producing the same.

上記の目的を達成するために、第1発明によれば、1ユニットが〔M(C(C)〕・4HOで表わされる組成を有し、上記MはCu、Ni、Cdから選択される5配位の金属元素であり、該金属元素Mと2,3−ピラジンジカルボキシレートとから成る2次元構造同士がピラジンから成る支柱で相互に間隙を置いて接続された3次元構造を有する配位高分子金属錯体を骨格とし、上記間隙が上記支柱で区切られて成る細孔を有する配位高分子金属錯体化合物であって、バルクの単結晶を構成していることを特徴とする単結晶配位高分子金属錯体化合物が提供される。 In order to achieve the above object, according to the first invention, a composition in which one unit is represented by [M 2 (C 6 H 2 N 2 O 4 ) 2 (C 4 H 4 N 2 )] · 4H 2 O And M is a pentacoordinate metal element selected from Cu, Ni, and Cd, and a two-dimensional structure composed of the metal element M and 2,3-pyrazine dicarboxylate is composed of pyrazine. A coordination polymer metal complex compound having pores in which the coordination polymer metal complex having a three-dimensional structure connected with a gap between each other has a skeleton, and the gap is divided by the support, Provided is a single crystal coordination polymer metal complex compound characterized by constituting a bulk single crystal.

更に、第2発明によれば、第1発明の単結晶配位高分子金属錯体化合物の製造方法であって、
上記5配位の金属元素の塩とピラジンとの水溶液Aを作成する工程、
上記水溶液Aの上に水を供給して該溶液A上に該水の層を形成する工程、
上記水の層上に2,3−ピラジンジカルボン酸水溶液Bを供給速度0.04〜0.4cm/秒で供給して該水の層上に該水溶液Bの層を形成する工程、および
その後、室温にて放置し、上記バルクの単結晶を得る工程、
を含む重層法を行なうことを特徴とする単結晶配位高分子金属錯体化合物の製造方法が提供される。
Furthermore, according to the second invention, there is provided a method for producing a single crystal coordination polymer metal complex compound of the first invention, comprising:
Producing an aqueous solution A of the pentacoordinate metal element salt and pyrazine;
Supplying water onto the aqueous solution A to form a layer of the water on the solution A;
Supplying a 2,3-pyrazinedicarboxylic acid aqueous solution B onto the water layer at a supply rate of 0.04 to 0.4 cm 3 / second to form a layer of the aqueous solution B on the water layer; and thereafter , Leaving at room temperature to obtain the bulk single crystal,
A method for producing a single crystal coordination polymer metal complex compound is provided, which comprises performing a multi-layer method including:

第1発明の単結晶配位高分子金属錯体化合物は、バルクの単結晶とすることで、配位高分子金属錯体化合物の細孔内の空間をガス吸着サイトとして十分に活用できるので、従来の粉末体と比べてガス吸着性能が大幅に向上する。   Since the single crystal coordination polymer metal complex compound of the first invention is a bulk single crystal, the space in the pores of the coordination polymer metal complex compound can be fully utilized as a gas adsorption site. Compared with powder, gas adsorption performance is greatly improved.

第2発明の単結晶配位高分子金属錯体化合物の製造方法は、重層法を用い、反応溶液の供給速度を制御したことにより、配位高分子金属錯体化合物をバルクの単結晶として成長させることができる。   The method for producing a single crystal coordination polymer metal complex compound of the second invention is to grow a coordination polymer metal complex compound as a bulk single crystal by using a multilayer method and controlling the supply rate of the reaction solution. Can do.

本発明において、「バルクの単結晶」とは、塊状あるいは粒状の1個の固体全体が単一の結晶から成るものを言う。一方、「粉末」とは、粉末粒子の個々が複数個の結晶から成るもの(単結晶である一次粒子が複数個不規則に合体して多結晶体となった二次粒子)を言う。   In the present invention, the term “bulk single crystal” refers to one in which a whole solid block or granule consists of a single crystal. On the other hand, “powder” refers to powder particles each composed of a plurality of crystals (secondary particles in which a plurality of primary particles, which are single crystals, are irregularly combined into a polycrystal).

本発明の配位高分子金属錯体化合物は、単結晶すなわち1個体全体が単一の結晶であるので、結晶の構成要素である細孔が規則的に整列しかつ細長い細孔が全長に亘って途中で閉塞することなく貫通している。そのため、一個体中に存在する細孔が極めて効率良く吸着サイトとして機能するので、高いガス吸着性を発揮することができる。   Since the coordination polymer metal complex compound of the present invention is a single crystal, that is, one whole is a single crystal, the pores constituting the crystal are regularly aligned and the elongated pores extend over the entire length. It penetrates without blocking on the way. For this reason, the pores present in one individual function as an adsorption site extremely efficiently, so that high gas adsorbability can be exhibited.

従来の配位高分子金属錯体化合物は、粉末すなわち1個体が複数個の結晶の集合体であるので、1個体中において個々の結晶の細孔が隣接結晶との界面で閉塞される頻度が高いため、1個体中に存在する細孔のうち有効な吸着サイトとして機能するものが個数・容積ともに少ないので、高いガス吸着性を発揮することができない。   Since the conventional coordination polymer metal complex compound is a powder, that is, an individual is an aggregate of a plurality of crystals, the frequency of the pores of each crystal being blocked at the interface with an adjacent crystal in one individual is high. Therefore, since the number and volume of pores present in one individual that function as effective adsorption sites are small, high gas adsorbability cannot be exhibited.

本発明の単結晶配位高分子金属錯体化合物の製造方法は、重層法を用い、反応溶液の供給速度を適正な範囲内に限定したことにより、安定してバルクの単結晶を成長させることができる。すなわち、5配位の金属元素の塩とピラジンとの水溶液A上に形成した水の層上への2,3−ピラジンジカルボン酸水溶液Bの供給速度を0.04〜0.4cm/秒に制限する。 The method for producing a single crystal coordination polymer metal complex compound of the present invention can grow a bulk single crystal stably by using a multilayer method and limiting the supply rate of the reaction solution within an appropriate range. it can. That is, the supply rate of the aqueous solution of 2,3-pyrazinedicarboxylic acid B onto the water layer formed on the aqueous solution A of the 5-coordinate metal element salt and pyrazine is set to 0.04 to 0.4 cm 3 / sec. Restrict.

水溶液Bの供給速度が0.04cm/秒未満であると、本来の結晶以外の不純物結晶が混在してしまう。例えば、5配位の金属元素としてCuを用いた場合、本来の青色結晶の他に緑色粒が混在した生成物となってしまう。これはピラジン支柱と結合すべきCuイオンが他の部分に結合してしまうためであると推測される。 When the supply rate of the aqueous solution B is less than 0.04 cm 3 / second, impurity crystals other than the original crystals are mixed. For example, when Cu is used as a five-coordinate metal element, a product in which green grains are mixed in addition to the original blue crystal is formed. This is presumed to be because Cu ions to be bonded to the pyrazine support are bonded to other portions.

逆に、水溶液Bの供給速度が0.4cm/秒を超えると、液層同士の界面が乱れて適正な重層法を行なうことができない。 On the other hand, when the supply rate of the aqueous solution B exceeds 0.4 cm 3 / sec, the interface between the liquid layers is disturbed and an appropriate multi-layer method cannot be performed.

本発明により重層法を用いて単結晶配位高分子金属錯体化合物を合成した。5配位の金属元素としてCuを用いた。合成の条件および手順は下記のとおりであった。図1(1)に、用いた装置を模式的に示す。反応溶液を滴下装置により反応容器内へ滴下する構造である。図1(2)は、重層法により形成した3層構造を示す。   According to the present invention, a single crystal coordination polymer metal complex compound was synthesized by using a multilayer method. Cu was used as a pentacoordinate metal element. The synthesis conditions and procedures were as follows. FIG. 1 (1) schematically shows the apparatus used. In this structure, the reaction solution is dropped into the reaction vessel by a dropping device. FIG. 1 (2) shows a three-layer structure formed by a multilayer method.

(1)図1の反応容器内で、過塩素酸銅(II)六水和物とピラジンを水300cmに溶解させて、青色の水溶液Aを得る。すなわち図1(2)に示した第1層を形成する。 (1) In the reaction vessel shown in FIG. 1, copper (II) perchlorate hexahydrate and pyrazine are dissolved in 300 cm 3 of water to obtain a blue aqueous solution A. That is, the first layer shown in FIG. 1 (2) is formed.

(2)重層法により、上記水溶液Aの上に水300cmを滴下速度0.08cm/秒で重ね、青色の水溶液上に無色の水の層を形成する。すなわち図1(2)に示した第2層を形成する。 (2) Overlaying 300 cm 3 of water on the aqueous solution A at a dropping rate of 0.08 cm 3 / sec by the multi-layer method, a colorless water layer is formed on the blue aqueous solution. That is, the second layer shown in FIG. 1 (2) is formed.

(3)更に、水の層の上に2,3−ピラジンジカルボン酸水溶液(無色)を重ね、三層積層状態とする。すなわち図1(2)に示した第3層を形成する。   (3) Furthermore, a 2,3-pyrazinedicarboxylic acid aqueous solution (colorless) is stacked on the water layer to form a three-layer stacked state. That is, the third layer shown in FIG. 1 (2) is formed.

(4)この状態で室温にて1日放置し、青色結晶を得る。図2(1)に顕微鏡写真を示す。視野内に棒状の単結晶が5本認められる。   (4) Leave in this state at room temperature for 1 day to obtain blue crystals. A micrograph is shown in FIG. Five rod-like single crystals are observed in the visual field.

得られた青色結晶について単結晶X線構造解析を行った結果、銅と2,3−ピラジンジカルボキシレートが形成する2次元構造がピラジンによって連結されて多孔性物質となっていることがわかった。   As a result of single crystal X-ray structural analysis of the obtained blue crystal, it was found that the two-dimensional structure formed by copper and 2,3-pyrazine dicarboxylate was linked by pyrazine to form a porous material. .

次に、従来例として、上記と同じ溶液Aと溶液Bとを直接混合して攪拌した。これにより青色の粉末が生成した。図2(2)に顕微鏡写真を示す。無数の微細な粒子が凝集した状態である。   Next, as a conventional example, the same solution A and solution B as described above were directly mixed and stirred. This produced a blue powder. A micrograph is shown in FIG. Innumerable fine particles are in an aggregated state.

本発明においては、重層法を用い、2つの反応溶液A、Bの間に反応溶媒である水を介在させたことにより、反応溶液A/B間での反応物質の拡散が遅くなり、配位高分子金属錯体化合物がゆっくりと生成し、その結果として、反応生成物が単結晶に成長すると考えられる。   In the present invention, by using the multi-layer method, water as a reaction solvent is interposed between the two reaction solutions A and B, so that the diffusion of the reactants between the reaction solutions A / B is slowed and coordinated. It is considered that the polymer metal complex compound is slowly formed, and as a result, the reaction product grows into a single crystal.

これに対して、従来法では2つの反応溶液A、Bを直接混合して攪拌するため、瞬時に配位高分子金属錯体化合物が生成する。このような高速の反応では、反応生成物が単結晶に成長することができず、多結晶微粒子から成る粉末状になる。   On the other hand, in the conventional method, since the two reaction solutions A and B are directly mixed and stirred, a coordination polymer metal complex compound is instantaneously generated. In such a high-speed reaction, the reaction product cannot grow into a single crystal, but becomes a powder composed of polycrystalline fine particles.

上記の本発明による重層法で得られた単結晶試料と、従来の直接混合法により得られた粉末試料について、下記条件にて水素の吸着量を測定した。   The adsorption amount of hydrogen was measured under the following conditions for the single crystal sample obtained by the multilayer method according to the present invention and the powder sample obtained by the conventional direct mixing method.

<水素吸着試験条件>
測定装置:PCT評価装置
測定法:流量法
測定圧力:20MPa、30MPa(2水準)
測定温度:室温
測定結果を図3に示す。測定圧力20MPa、30MPaでの水素ガス吸着量は、従来例の粉末試料が0.08mass%、0.15mass%であったのに対して、本発明例の単結晶試料は0.13mass%、0.21mass%と顕著に向上していることが分かる。
<Hydrogen adsorption test conditions>
Measuring device: PCT evaluation device Measuring method: flow method Measuring pressure: 20 MPa, 30 MPa (2 levels)
Measurement temperature: room temperature The measurement results are shown in FIG. The hydrogen gas adsorption amount at the measurement pressures of 20 MPa and 30 MPa was 0.08 mass% and 0.15 mass% for the powder sample of the conventional example, whereas 0.13 mass% and 0 for the single crystal sample of the present invention example. It can be seen that the mass is significantly improved to 21 mass%.

本発明によれば、ガス吸着性を高めた単結晶配位高分子金属錯体化合物およびその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the single crystal coordination polymer metal complex compound which improved gas adsorbability, and its manufacturing method are provided.

重層法により本発明の単結晶配位高分子Cu錯体化合物を合成するための(1)装置の配置および(2)反応容器内の液層構成を示す模式図である。It is a schematic diagram which shows (1) arrangement | positioning of an apparatus for synthesize | combining the single crystal coordination polymer Cu complex compound of this invention by a multilayer method, and (2) the liquid layer structure in reaction container. (1)本発明の重層法により合成した単結晶配位高分子Cu錯体化合物および(2)従来の直接混合法により合成した粉末状の配位高分子Cu錯体化合物の顕微鏡写真である。1 is a photomicrograph of a single crystal coordination polymer Cu complex compound synthesized by the multilayer method of the present invention and (2) a powdery coordination polymer Cu complex compound synthesized by a conventional direct mixing method. (1)本発明の単結晶配位高分子金属錯体化合物および(2)従来の粉末状配位高分子金属錯体化合物について水素ガス吸着量と測定圧力との関係を示すグラフである。It is a graph which shows the relationship between hydrogen gas adsorption amount and measurement pressure about (1) single crystal coordination polymer metal complex compound of this invention and (2) conventional powdery coordination polymer metal complex compound.

Claims (2)

1ユニットが〔M(C(C)〕・4HOで表わされる組成を有し、上記MはCu、Ni、Cdから選択される5配位の金属元素であり、該金属元素Mと2,3−ピラジンジカルボキシレートとから成る2次元構造同士がピラジンから成る支柱で相互に間隙を置いて接続された3次元構造を有する配位高分子金属錯体を骨格とし、上記間隙が上記支柱で区切られて成る細孔を有する配位高分子金属錯体化合物であって、バルクの単結晶を構成していることを特徴とする単結晶配位高分子金属錯体化合物。 One unit has a composition represented by [M 2 (C 6 H 2 N 2 O 4 ) 2 (C 4 H 4 N 2 )] · 4H 2 O, and the M is selected from Cu, Ni, and Cd It is a five-coordinate metal element, and has a three-dimensional structure in which two-dimensional structures composed of the metal element M and 2,3-pyrazine dicarboxylate are connected to each other with pillars made of pyrazine and spaced from each other. A coordination polymer metal complex compound having a pore composed of a coordination polymer metal complex as a skeleton, and the gaps separated by the support columns, and constituting a bulk single crystal Coordination polymer metal complex compound. 請求項1記載の単結晶配位高分子金属錯体化合物の製造方法であって、
上記5配位の金属元素の塩とピラジンとの水溶液Aを作成する工程、
上記水溶液Aの上に水を供給して該溶液A上に該水の層を形成する工程、
上記水の層上に2,3−ピラジンジカルボン酸水溶液Bを供給速度0.04〜0.4cm/秒で供給して該水の層上に該水溶液Bの層を形成する工程、および
その後、室温にて放置し、上記バルクの単結晶を得る工程
を含む重層法を行なうことを特徴とする単結晶配位高分子金属錯体化合物の製造方法。
A method for producing a single crystal coordination polymer metal complex compound according to claim 1,
Producing an aqueous solution A of the pentacoordinate metal element salt and pyrazine;
Supplying water onto the aqueous solution A to form a layer of the water on the solution A;
Supplying a 2,3-pyrazinedicarboxylic acid aqueous solution B onto the water layer at a supply rate of 0.04 to 0.4 cm 3 / second to form a layer of the aqueous solution B on the water layer; and thereafter A method for producing a single crystal coordination polymer metal complex compound, comprising a step of standing at room temperature and performing a multilayer method including a step of obtaining the bulk single crystal.
JP2007019122A 2007-01-30 2007-01-30 Coordinate polymer metal complex compound single crystal and method for producing the same Pending JP2008184533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019122A JP2008184533A (en) 2007-01-30 2007-01-30 Coordinate polymer metal complex compound single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019122A JP2008184533A (en) 2007-01-30 2007-01-30 Coordinate polymer metal complex compound single crystal and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008184533A true JP2008184533A (en) 2008-08-14

Family

ID=39727786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019122A Pending JP2008184533A (en) 2007-01-30 2007-01-30 Coordinate polymer metal complex compound single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008184533A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063648A (en) * 2009-09-15 2011-03-31 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2011178749A (en) * 2010-03-03 2011-09-15 Honda Motor Co Ltd Method for producing organometallic complex
JP2011184355A (en) * 2010-03-08 2011-09-22 Honda Motor Co Ltd Method for producing organic metal complex
JP2011213616A (en) * 2010-03-31 2011-10-27 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2012045533A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Carbon dioxide gas adsorbent and using method of organic metal complex
JP2012046472A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Gaseous methane adsorbent and method for using organometallic complex
US9580446B2 (en) 2012-12-26 2017-02-28 Showa Denko K.K. Gas separation material using metal complex and gas separation method
CN108671893A (en) * 2018-04-24 2018-10-19 浙江大学 A kind of separation method for detaching the metal-organic framework material and ethylene acetylene of ethylene and acetylene
CN112029109A (en) * 2020-09-11 2020-12-04 陕西师范大学 Metal organic framework material with copper-pyrazine ligand regulating pore size, preparation method thereof and application of metal organic framework material in methane purification

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063648A (en) * 2009-09-15 2011-03-31 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2011178749A (en) * 2010-03-03 2011-09-15 Honda Motor Co Ltd Method for producing organometallic complex
JP2011184355A (en) * 2010-03-08 2011-09-22 Honda Motor Co Ltd Method for producing organic metal complex
JP2011213616A (en) * 2010-03-31 2011-10-27 Honda Motor Co Ltd Organometallic complex and method for producing the same
JP2012045533A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Carbon dioxide gas adsorbent and using method of organic metal complex
JP2012046472A (en) * 2010-08-30 2012-03-08 Honda Motor Co Ltd Gaseous methane adsorbent and method for using organometallic complex
US9580446B2 (en) 2012-12-26 2017-02-28 Showa Denko K.K. Gas separation material using metal complex and gas separation method
CN108671893A (en) * 2018-04-24 2018-10-19 浙江大学 A kind of separation method for detaching the metal-organic framework material and ethylene acetylene of ethylene and acetylene
CN108671893B (en) * 2018-04-24 2021-03-30 浙江大学 Metal organic framework material for separating ethylene and acetylene and method for separating ethylene and acetylene
CN112029109A (en) * 2020-09-11 2020-12-04 陕西师范大学 Metal organic framework material with copper-pyrazine ligand regulating pore size, preparation method thereof and application of metal organic framework material in methane purification

Similar Documents

Publication Publication Date Title
JP2008184533A (en) Coordinate polymer metal complex compound single crystal and method for producing the same
Liang et al. A tailor-made interpenetrated MOF with exceptional carbon-capture performance from flue gas
Stackhouse et al. Azamacrocyclic-based metal organic frameworks: Design strategies and applications
CN109851810B (en) Borane anion supramolecular organic framework material and preparation method and application thereof
US20140088312A1 (en) Zeolite porous metal bis(imidazole) coordination polymers and preparation method thereof
Cui et al. A microporous metal-organic framework of sql topology for C2H2/CO2 separation
Li et al. Nanocomposites formed by in situ growth of NiDOBDC nanoparticles on graphene oxide sheets for enhanced CO2 and H2 storage
Wang et al. A partially fluorinated ligand for two super-hydrophobic porous coordination polymers with classic structures and increased porosities
JP2008287976A (en) Coordination polymer complex compound
JP2008291061A (en) Proton-conducting coordination polymer complex compound
CN107892750B (en) Metal organic framework material, preparation method and application
CN110016145A (en) Porous organo-metallic skeleton material, preparation method and its adsorbing separation application
CN114849649B (en) Ion hybridization porous material with zsd topological structure, and preparation method and application thereof
CN106866988A (en) A kind of layer column type metal-organic framework material as well as preparation method and application thereof
Chen et al. A stable metal–organic framework with well‐matched pore cavity for efficient acetylene separation
Xiong et al. One 1D T4 (0) A (0) water tape embedded in a 1D Cu (II) coordination polymer with 1, 3-bis (4-pyridyl) propane
EP2916931B1 (en) Metal-organic materials (moms) for polarizable gas adsorption and methods of using moms
JP6242136B2 (en) Porous metal complex composition
KR101176875B1 (en) Mixed-ligand metal-organic frameworks with large pores
Chen et al. Synthesis, crystal structures and vapor adsorption properties of Hg (II) and Cd (II) coordination polymers derived from two hydrazone Schiff base ligands
Yan et al. A copper-based metal–organic framework constructed from a new tetracarboxylic acid for selective gas separation
KR20110005591A (en) Metal-organic framework with stepwise and hysteretic gas sorption properties and its use for gas storage material and method for manufacturing the same
JP6323495B2 (en) Method for producing porous body
Zhang et al. Acid-directed synthesis of three Cd-based metal–organic frameworks with luminescence and catalytic CO 2 transformation properties
Yang et al. Efficient C 2 H 2-selective separation in a microporous Zn (ii)-based metal–organic framework via the dual-ligand strategy