JP2008183483A - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP2008183483A
JP2008183483A JP2007017080A JP2007017080A JP2008183483A JP 2008183483 A JP2008183483 A JP 2008183483A JP 2007017080 A JP2007017080 A JP 2007017080A JP 2007017080 A JP2007017080 A JP 2007017080A JP 2008183483 A JP2008183483 A JP 2008183483A
Authority
JP
Japan
Prior art keywords
discharge electrode
electrode
counter electrode
discharge
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007017080A
Other languages
Japanese (ja)
Other versions
JP4093282B1 (en
Inventor
Yukihiro Masuda
幸広 桝田
Tetsuya Maekawa
哲也 前川
Yoshio Mitsutake
義雄 光武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007017080A priority Critical patent/JP4093282B1/en
Application granted granted Critical
Publication of JP4093282B1 publication Critical patent/JP4093282B1/en
Publication of JP2008183483A publication Critical patent/JP2008183483A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic atomizer which generates a strong electric field in a large range between a counter electrode and a discharge electrode and increases the degree of concentration of electric field to the distal end of the discharge electrode. <P>SOLUTION: The electrostatic atomization device, which is provided with the discharge electrode 1, the counter electrode 2 located apart from the distance to the discharge electrode 1, a liquid supply means 3 to supply the liquid to the discharge electrode 1 and a high-voltage application means 4 to apply high voltage between the discharge electrode 1 and the counter electrode 2, and applies high voltage to the liquid retained by the discharge electrode 1 to discharge the generated charged particulate, is characterized that the cross-sectional configuration of the inner face 2b directed to the discharge electrode 1 of the counter electrode 2 is made the circular arc configuration as the center of the distal end 1a of the discharge electrode 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、帯電微粒子液を生成する静電霧化装置に関し、詳しくは帯電微粒子液を効率的に生成するための技術に関する。   The present invention relates to an electrostatic atomizer that generates a charged fine particle liquid, and more particularly to a technique for efficiently generating a charged fine particle liquid.

従来から、放電電極と、放電電極から距離を隔てて位置する対向電極と、放電電極に液体を供給する液供給手段と、放電電極と対向電極の間に高電圧を印加する高電圧印加手段とを具備する静電霧化装置が知られている(特許文献1参照)。この静電霧化装置においては、高電圧印加手段によって対向電極と放電電極との間に電界を発生させ、放電電極が保持する液体にマイナス電荷を集中させることで液体に分裂、飛散(所謂レイリー分裂)を繰り返す静電霧化現象を発生させ、この静電霧化現象によって活性種(ラジカル)を含むナノメータサイズの帯電微粒子液を生成するようになっている。ここで生じた帯電微粒子液は、イオン風に乗せて装置外の空間へと放出され、高い保湿効果、脱臭効果、及びダニや花粉等のアレルゲン物質の不活性化効果等を発揮する。   Conventionally, a discharge electrode, a counter electrode positioned at a distance from the discharge electrode, a liquid supply means for supplying a liquid to the discharge electrode, and a high voltage applying means for applying a high voltage between the discharge electrode and the counter electrode There is known an electrostatic atomization apparatus including the above (see Patent Document 1). In this electrostatic atomizer, an electric field is generated between the counter electrode and the discharge electrode by high voltage applying means, and negative charges are concentrated on the liquid held by the discharge electrode, so that the liquid is split and scattered (so-called Rayleigh). An electrostatic atomization phenomenon that repeats splitting is generated, and a nanometer-sized charged fine particle liquid containing active species (radicals) is generated by this electrostatic atomization phenomenon. The charged fine particle liquid produced here is released into a space outside the apparatus by being put on an ion wind, and exhibits a high moisturizing effect, a deodorizing effect, an inactivating effect of allergen substances such as mites and pollen, and the like.

図8に示すように、上記従来の静電霧化装置の対向電極2は、中央に放出孔2aを有するリング状に形成されており、上記放出孔2aを放電電極1の先端部1aと対向させている。したがって、高電圧印加部4により対向電極2の内面2bと放電電極1の先端部1aとの間で発生させる電界は、特に、放電電極1の先端部1aに対して最短距離dとなる放出孔2aの周縁部分と該放電電極1の先端部1aとの間の狭い範囲内でしか強く生じることがなく、放電電極1の先端部1aに対する電界の集中度合いは低いため、効率的に電荷を集中させて帯電微粒子液を発生させることは困難であった。
特開2005−131549号公報
As shown in FIG. 8, the counter electrode 2 of the conventional electrostatic atomizer is formed in a ring shape having a discharge hole 2 a in the center, and the discharge hole 2 a is opposed to the tip end portion 1 a of the discharge electrode 1. I am letting. Therefore, the electric field generated between the inner surface 2b of the counter electrode 2 and the distal end portion 1a of the discharge electrode 1 by the high voltage applying unit 4 is particularly an emission hole having the shortest distance d with respect to the distal end portion 1a of the discharge electrode 1. 2a is strongly generated only in a narrow range between the peripheral portion of the discharge electrode 1 and the distal end portion 1a of the discharge electrode 1, and the concentration of electric field on the distal end portion 1a of the discharge electrode 1 is low. It was difficult to generate a charged fine particle liquid.
JP 2005-131549 A

本発明は上記問題点に鑑みて発明したものであって、対向電極と放電電極との間の広範な範囲内で強い電界を発生させ、放電電極の先端部に対する電界の集中度合いを増すことで、帯電微粒子液を効率的に発生させることが可能な静電霧化装置を提供することを課題とする。   The present invention has been invented in view of the above problems, and generates a strong electric field within a wide range between the counter electrode and the discharge electrode, thereby increasing the concentration of the electric field on the tip of the discharge electrode. An object of the present invention is to provide an electrostatic atomizer capable of efficiently generating a charged fine particle liquid.

上記課題を解決するために本発明を、放電電極1と、放電電極1から距離を隔てて位置する対向電極2と、放電電極2に液体を供給する液供給手段3と、放電電極1と対向電極2の間に高電圧を印加する高電圧印加手段4とを具備し、放電電極2が保持する液体に高電圧を印加して生成される帯電微粒子液を放出する静電霧化装置において、上記対向電極2の放電電極1側を向く内面2bの少なくとも一部の断面形状が、放電電極1の先端部1aを中心とし、放電電極1の先端部1aから対向電極2までの最短距離dを半径として描く円弧線に沿って形成されたものとする。   In order to solve the above problems, the present invention is directed to the discharge electrode 1, the counter electrode 2 positioned at a distance from the discharge electrode 1, the liquid supply means 3 for supplying a liquid to the discharge electrode 2, and the discharge electrode 1. In an electrostatic atomizer that includes a high voltage applying means 4 that applies a high voltage between the electrodes 2 and that discharges a charged fine particle liquid generated by applying a high voltage to the liquid held by the discharge electrode 2, The cross-sectional shape of at least a part of the inner surface 2b facing the discharge electrode 1 side of the counter electrode 2 is centered on the tip portion 1a of the discharge electrode 1, and the shortest distance d from the tip portion 1a of the discharge electrode 1 to the counter electrode 2 is defined. It is assumed that it is formed along an arc line drawn as a radius.

このようにすることで、対向電極2の内面2bのうち少なくとも放電電極1の先端部1aを囲んで形成される円弧線部分の全体が、放電電極1の先端部1aとの間で最短距離dを隔てた部分となり、この対向電極2の円弧線部分と放電電極1の先端部1aとの間の広範な範囲内で、強力な電界が生じる。これにより、放電電極1の先端部1aに対する電界の集中度合いが高くなり、放電電極1に保持する液体に効率的に電荷を集中させて帯電微粒子液を発生させることが可能となる。   In this way, the entire arc line portion formed so as to surround at least the distal end portion 1a of the discharge electrode 1 in the inner surface 2b of the counter electrode 2 is the shortest distance d from the distal end portion 1a of the discharge electrode 1. A strong electric field is generated in a wide range between the arc line portion of the counter electrode 2 and the distal end portion 1a of the discharge electrode 1. Thereby, the concentration degree of the electric field with respect to the tip portion 1a of the discharge electrode 1 is increased, and it becomes possible to efficiently concentrate the electric charge on the liquid held in the discharge electrode 1 and generate the charged fine particle liquid.

また、上記構成の静電霧化装置にあっては、上記対向電極2の放電電極1側を向く内面2bの少なくとも一部が、放電電極1の先端部1aを中心とし、放電電極1の先端部1aから対向電極2までの最短距離dを半径として描く球面に沿って形成されたものであることが好適である。このようにすることで、対向電極2の内面2bと、放電電極1の先端部1aとの間に形成される三次元的に広範な範囲内で、強力な電界が生じる。これにより、放電電極1の先端部1aへの電界の集中度合いは更に高くなり、放電電極1に保持する液体に更に効率的に電荷を集中させて帯電微粒子液を発生させることが可能となる。   In the electrostatic atomizer having the above configuration, at least a part of the inner surface 2b of the counter electrode 2 facing the discharge electrode 1 side is centered on the tip portion 1a of the discharge electrode 1, and the tip of the discharge electrode 1 is placed. It is preferable that it is formed along a spherical surface that draws the shortest distance d from the portion 1a to the counter electrode 2 as a radius. By doing so, a strong electric field is generated within a wide three-dimensional range formed between the inner surface 2b of the counter electrode 2 and the tip 1a of the discharge electrode 1. As a result, the concentration of the electric field on the tip 1a of the discharge electrode 1 is further increased, and the charged fine particle liquid can be generated by more efficiently concentrating charges on the liquid held in the discharge electrode 1.

また更に、上記対向電極2の放電電極1側を向く内面2bの少なくとも一部は、放電電極1の先端部1aを中心とし、放電電極1の先端部1aから対向電極2までの最短距離dを半径とする半球状の面であることが好適である。このようにすることで、対向電極2の内面2bと放電電極1の先端部1aとの間に形成される三次元的に広範な範囲内で更に強力な電界を発生させ、これにより、放電電極1に保持する液体に更に効率的に電荷を集中させて帯電微粒子液を発生させることが可能となる。   Furthermore, at least a part of the inner surface 2b of the counter electrode 2 facing the discharge electrode 1 side is centered on the tip portion 1a of the discharge electrode 1, and the shortest distance d from the tip portion 1a of the discharge electrode 1 to the counter electrode 2 is set. A hemispherical surface having a radius is preferable. In this way, a stronger electric field is generated within a wide three-dimensional range formed between the inner surface 2b of the counter electrode 2 and the tip end portion 1a of the discharge electrode 1, whereby the discharge electrode The charged fine particle liquid can be generated by more efficiently concentrating the electric charge on the liquid held at 1.

また上記対向電極2は、複数の放出孔2aを有するものであることが好適である。このようにすることで、放電電極1から対向電極2に向けて放出される帯電微粒子液を、装置外に効率的に送り出すことができる。   The counter electrode 2 preferably has a plurality of discharge holes 2a. By doing in this way, the charged fine particle liquid discharge | released toward the counter electrode 2 from the discharge electrode 1 can be sent out out of an apparatus efficiently.

また上記対向電極2は、放電電極1側を向く内面2bの端部に、放電防止用の凸曲面30を設けたものであることが好適である。一般的に、放電電極1と対向電極2が近い場合には、対向電極2の放電電極1側を向く内面2bの端部で放電を生じ易くなる。この放電により発生するプラスイオンは逆極性の帯電微粒子液を中和するように作用するので、上記凸曲面30を設けて電界の集中を防ぎ、放電を防止することで、帯電微粒子液を安定的に供給することができる。   The counter electrode 2 is preferably provided with a convex curved surface 30 for preventing discharge at the end of the inner surface 2b facing the discharge electrode 1 side. In general, when the discharge electrode 1 and the counter electrode 2 are close to each other, discharge tends to occur at the end of the inner surface 2b facing the discharge electrode 1 side of the counter electrode 2. The positive ions generated by this discharge act to neutralize the charged fine particle liquid having the opposite polarity. Therefore, by providing the convex curved surface 30 to prevent concentration of the electric field and to prevent discharge, the charged fine particle liquid can be stabilized. Can be supplied to.

請求項1に係る発明は、対向電極と放電電極との間の広範な範囲内で強い電界を発生させ、放電電極の先端部に対する電界の集中度合いを増すことで、帯電微粒子液を効率的に発生させることが可能になるという効果を奏する。   The invention according to claim 1 generates a strong electric field within a wide range between the counter electrode and the discharge electrode, and increases the concentration of the electric field with respect to the tip of the discharge electrode, thereby efficiently charging the charged fine particle liquid. There is an effect that it can be generated.

また請求項2に係る発明は、請求項1に係る発明の効果に加えて、対向電極の内面と放電電極の先端部との間に形成される三次元的に広範な範囲内で、強力な電界が生じることとなり、放電電極の先端部への電界の集中度合いが更に高くなるので、放電電極に保持する液体に更に効率的に電荷を集中させて帯電微粒子液を発生させることが可能となるという効果を奏する。   In addition to the effect of the invention according to claim 1, the invention according to claim 2 is powerful within a three-dimensional wide range formed between the inner surface of the counter electrode and the tip of the discharge electrode. Since an electric field is generated and the concentration of the electric field at the tip of the discharge electrode is further increased, it becomes possible to more efficiently concentrate the charge on the liquid held in the discharge electrode and generate the charged fine particle liquid. There is an effect.

また請求項3に係る発明は、請求項2に係る発明の効果に加えて、対向電極の内面と放電電極の先端部との間に形成される三次元的に広範な範囲内で更に強力な電界を発生させ、これにより、放電電極に保持する液体に更に効率的に電荷を集中させて帯電微粒子液を発生させることが可能になるという効果を奏する。   In addition to the effect of the invention according to claim 2, the invention according to claim 3 is more powerful within a wide three-dimensional range formed between the inner surface of the counter electrode and the tip of the discharge electrode. By generating an electric field, it is possible to generate a charged fine particle liquid by more efficiently concentrating charges on the liquid held in the discharge electrode.

また請求項4に係る発明は、請求項1〜3のいずれか一項に係る発明の効果に加えて、放電電極から対向電極に向けて放出される帯電微粒子液を、装置外に効率的に送り出すことができるという効果を奏する。   In addition to the effect of the invention according to any one of claims 1 to 3, the invention according to claim 4 efficiently discharges the charged fine particle liquid discharged from the discharge electrode toward the counter electrode outside the apparatus. There is an effect that it can be sent out.

また請求項5に係る発明は、請求項1〜4のいずれか一項に係る発明の効果に加えて、対向電極に対する電界の集中を防ぎ、対向電極側の放電を防止することで、帯電微粒子液を更に効率的に且つ安定的に供給することが可能になるという効果を奏する。   In addition to the effect of the invention according to any one of claims 1 to 4, the invention according to claim 5 prevents the electric field from concentrating on the counter electrode and prevents discharge on the counter electrode side. There is an effect that the liquid can be supplied more efficiently and stably.

以下、本発明を添付図面に示す実施形態に基づいて説明する。図1には、本発明の実施形態における第1例の静電霧化装置を概略的に示している。この静電霧化装置は、棒状を成す放電電極1と、この放電電極1の先端部1aから距離を隔てて位置するとともに放出孔2aを中央に有する対向電極2と、この放電電極1の先端部1aにまで水等の静電霧化用の液体(図示せず)を供給する液供給手段3と、放電電極1及び対向電極2に電気的に接続されて両電極1,2間に高電圧を印加する高電圧印加部4とを具備している。図示例では放電電極1の先端部1aを丸まった形状としているが、先鋭形状としてもよい。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. In FIG. 1, the electrostatic atomizer of the 1st example in embodiment of this invention is shown roughly. The electrostatic atomizer includes a discharge electrode 1 having a rod shape, a counter electrode 2 having a discharge hole 2a at the center and a distance from the tip 1a of the discharge electrode 1, and the tip of the discharge electrode 1. A liquid supply means 3 for supplying a liquid (not shown) for electrostatic atomization such as water to the part 1a, and a discharge electrode 1 and a counter electrode 2 that are electrically connected to each other. And a high voltage applying unit 4 for applying a voltage. In the illustrated example, the tip 1a of the discharge electrode 1 is rounded, but it may be sharp.

本例にあっては上記液供給手段3として、放電電極1をアルミニウム等の熱伝導率の高い材質で形成するとともに、この放電電極1の基端部1bを、ペルチェユニット5の冷却部5a側に接続させてある。これにより、ペルチェユニット5により放電電極1自体を冷却して該放電電極1の表面上に結露水を生成させ、この結露水を静電霧化用の液体として用いる構造である。本発明において液供給手段3は特に限定されず、例えば放電電極1を多孔質セラミック等の多孔質材や細孔を有する材質で構成し、この放電電極1の基端部1b側を、液タンク(図示せず)内に貯蔵してある液体内に浸すといった構成であってもよい。   In this example, as the liquid supply means 3, the discharge electrode 1 is formed of a material having high thermal conductivity such as aluminum, and the base end portion 1b of the discharge electrode 1 is connected to the cooling unit 5a side of the Peltier unit 5. It is connected to. As a result, the discharge electrode 1 itself is cooled by the Peltier unit 5 to generate condensed water on the surface of the discharge electrode 1, and this condensed water is used as a liquid for electrostatic atomization. In the present invention, the liquid supply means 3 is not particularly limited. For example, the discharge electrode 1 is made of a porous material such as porous ceramic or a material having pores, and the base end 1b side of the discharge electrode 1 is connected to a liquid tank. It may be configured such that it is immersed in a liquid stored in (not shown).

そして本例にあっては、放電電極1の先端部1aと対向して位置する上記対向電極2の内面2bを、放電電極1の先端部1aを囲むように形成される凹面としている(図2参照)。放電電極1の先端部1aを通過する平面でこの内面2bを切断した断面形状は、放電電極1の先端部1aを中心とし、この先端部1aから対向電極2までの最短距離dを半径として描かれる円弧状の断面形状となっている。   And in this example, the inner surface 2b of the said counter electrode 2 located facing the front-end | tip part 1a of the discharge electrode 1 is made into the concave surface formed so that the front-end | tip part 1a of the discharge electrode 1 may be enclosed (FIG. 2). reference). The cross-sectional shape obtained by cutting the inner surface 2b in a plane passing through the tip 1a of the discharge electrode 1 is drawn with the shortest distance d from the tip 1a to the counter electrode 2 as the radius centered on the tip 1a of the discharge electrode 1. It has an arcuate cross-sectional shape.

これにより、対向電極2の内面2bと放電電極1の先端部1aとの間で生じる電界は、特に、対向電極2の内面2bのうち放電電極1の先端部1aとの距離が最短距離dとなる円弧線部分(図2中の点線部分)と、放電電極1の先端部1aとの間の範囲内で強く生じることとなる。対向電極2は例えばSUS304等の金属から成る導電性物質を切削、曲げ加工等して形成したものであるが、樹脂成形後に金属めっきを施して形成してもよいし、或いは導電性プラスチック等の導電性物質を用いてもよい。   As a result, the electric field generated between the inner surface 2b of the counter electrode 2 and the tip 1a of the discharge electrode 1 is such that the distance from the tip 1a of the discharge electrode 1 of the inner surface 2b of the counter electrode 2 is the shortest distance d. The arc line portion (dotted line portion in FIG. 2) and the distal end portion 1 a of the discharge electrode 1 are strongly generated. The counter electrode 2 is formed by cutting or bending a conductive material made of a metal such as SUS304. However, the counter electrode 2 may be formed by performing metal plating after resin molding, or may be formed of conductive plastic or the like. A conductive substance may be used.

上記構成の静電霧化装置において、液供給手段3により放電電極1の先端部1aに液体を供給して保持させ、この状態で高電圧印加部4によって、放電電極1の先端部1a側がマイナス電極となって電荷が集中するように該放電電極1と対向電極2との間に高電圧を印加すると、放電電極1の先端部1aに保持される液体が帯電し、帯電した液体にクーロン力が働き、液体の液面が局所的に円錐形状に盛り上がる。この円錐形状となった液体(テイラーコーン)の先端に電荷が集中して電荷の密度が高密度となり、高密度の電荷の反発力で弾けるようにして液体が分裂、飛散(所謂レイリー分裂)を繰り返して静電霧化を生じる。この静電霧化現象により、活性種(ラジカル)を含むナノメータサイズの帯電微粒子液が大量に生成され、イオン風に乗って放出孔2aから装置外へと放出される。   In the electrostatic atomizer having the above-described configuration, the liquid supply means 3 supplies and holds the liquid to the distal end portion 1a of the discharge electrode 1, and in this state, the high voltage application unit 4 causes the distal end portion 1a side of the discharge electrode 1 to be negative. When a high voltage is applied between the discharge electrode 1 and the counter electrode 2 so that electric charges are concentrated as an electrode, the liquid held at the tip 1a of the discharge electrode 1 is charged, and the charged liquid is subjected to Coulomb force. The liquid level of the liquid rises locally in a conical shape. Charge concentrates at the tip of this cone-shaped liquid (Taylor cone), the charge density becomes high, and the liquid breaks and scatters (so-called Rayleigh split) so that it can be repelled by the repulsive force of the high-density charge. Repeatedly causes electrostatic atomization. Due to this electrostatic atomization phenomenon, a large amount of nanometer-sized charged fine particle liquid containing active species (radicals) is generated and released from the discharge hole 2a to the outside of the apparatus by riding on the ion wind.

ここで、本例にあっては上記した通り、対向電極2の内面2bのうち放電電極1の先端部1aを囲む円弧線部分が、放電電極1の先端部1aとの間で最短距離dを隔てた部分となり、この対向電極2の円弧線部分と放電電極1の先端部1aとの間の広範な範囲内で、強力な電界が生じることとなる。したがって、放電電極1の先端部1aへの電界の集中度合いは高くなり、放電電極1に保持する液体に効率的に電荷を集中させて帯電微粒子液を発生させることが可能となるのである。   Here, in this example, as described above, the arc line portion surrounding the tip portion 1a of the discharge electrode 1 in the inner surface 2b of the counter electrode 2 has the shortest distance d between the tip portion 1a of the discharge electrode 1. A strong electric field is generated within a wide range between the arc line portion of the counter electrode 2 and the distal end portion 1a of the discharge electrode 1. Therefore, the concentration of the electric field on the tip 1a of the discharge electrode 1 is increased, and it becomes possible to generate a charged fine particle liquid by efficiently concentrating charges on the liquid held in the discharge electrode 1.

次に、本発明の実施形態における第2例の静電霧化装置について説明するが、本例の構成のうち上記した第1例と同様の構成については説明を省略する。本例の対向電極2の凹状を成す内面2bの断面形状は、図3に概略的に示すように、放電電極1の先端部1aからの最短距離dだけ隔てて位置する複数の直線を連続させた折れ線形状となっており、全体として、放電電極1の先端部1aを中心とし且つ最短距離dを半径として描く円弧線(図中の点線部分)に沿って形成されている。断面形状がこのような略円弧状の折れ線形状であっても、第1例と同様に、対向電極2の内面2bは放電電極1の先端部1aとの間の広範な範囲内で、強力な電界を生じることとなる。したがって、放電電極1の先端部1aへの電界の集中度合いは高くなり、放電電極1に保持する液体に効率的に電荷を集中させて帯電微粒子液を発生させることが可能となる。   Next, the electrostatic atomizer of the second example in the embodiment of the present invention will be described, but the description of the same configuration as the above-described first example among the configurations of the present example will be omitted. As shown schematically in FIG. 3, the cross-sectional shape of the concave inner surface 2b of the counter electrode 2 of this example is a continuous series of a plurality of straight lines that are located at the shortest distance d from the tip 1a of the discharge electrode 1. As a whole, it is formed along a circular arc line (dotted line portion in the figure) drawn with the tip end 1a of the discharge electrode 1 as the center and the shortest distance d as the radius. Even if the cross-sectional shape is such a substantially arc-shaped polygonal line shape, the inner surface 2b of the counter electrode 2 is strong within a wide range between the tip portion 1a of the discharge electrode 1 as in the first example. An electric field will be generated. Therefore, the concentration of the electric field on the distal end portion 1a of the discharge electrode 1 is increased, and the charged fine particle liquid can be generated by efficiently concentrating charges on the liquid held in the discharge electrode 1.

次に、本発明の実施形態における第3例の静電霧化装置について説明するが、本例の構成のうち上記した第1例と同様の構成については説明を省略する。本例の対向電極2は、図4に概略的に示すように、その全体又は一部をメッシュ加工することによって、対向電極2に複数の放出孔2aを形成したものである。これにより、放電電極1の先端部1aから対向電極2に向けて拡散して放出される帯電微粒子液を装置外に効率的に送り出すことができる。なお、第2例においても同様の構成を採用できることは勿論である。   Next, although the electrostatic atomizer of the 3rd example in the embodiment of the present invention is explained, explanation is omitted about the same composition as the 1st example mentioned above among the composition of this example. As shown schematically in FIG. 4, the counter electrode 2 of this example has a plurality of emission holes 2 a formed in the counter electrode 2 by meshing the whole or a part thereof. As a result, the charged fine particle liquid that is diffused and discharged from the distal end portion 1a of the discharge electrode 1 toward the counter electrode 2 can be efficiently sent out of the apparatus. Needless to say, the same configuration can be adopted in the second example.

次に、本発明の実施形態における第4例の静電霧化装置について説明するが、本例の構成のうち上記した第1例と同様の構成については説明を省略する。本例の対向電極2は、図5に概略的に示すように、放電電極1の先端部1aに近い一部分の断面形状を、対向電極2の先端部1aを中心とし且つ最短距離dを半径として描かれる円弧形状とし、他の部分の断面形状は、上記円弧形状の端部から変曲点を介して逆側に屈曲した形状としている。このように、対向電極2の放電電極1側を向く内面2bの全部でなく一部のみを、放電電極1の先端部1aから最短距離dを隔てて描く円弧線に沿って形成した場合であっても、同様の効果が得られる。なお、本例にあっては放電電極1の先端部1aを中心とした断面円弧状の部分に、少なくとも周方向に等間隔を隔てて複数の放出孔2aを設けている。   Next, although the electrostatic atomizer of the 4th example in the embodiment of the present invention is explained, explanation is omitted about the same composition as the 1st example mentioned above among the composition of this example. As shown schematically in FIG. 5, the counter electrode 2 of this example has a partial cross-sectional shape near the tip 1a of the discharge electrode 1, with the tip 1a of the counter electrode 2 as the center and the shortest distance d as the radius. The arc shape is drawn, and the cross-sectional shape of the other part is a shape bent from the end of the arc shape to the opposite side via an inflection point. In this way, only a part of the inner surface 2b facing the discharge electrode 1 side of the counter electrode 2 is formed along a circular arc drawn with a shortest distance d from the tip 1a of the discharge electrode 1. However, the same effect can be obtained. In the present example, a plurality of discharge holes 2a are provided at an equal interval at least in the circumferential direction in a circular arc-shaped portion centering on the tip 1a of the discharge electrode 1.

次に、本発明の実施形態における第5例の静電霧化装置について説明するが、本例の構成のうち上記した第1例と同様の構成については説明を省略する。本例の対向電極2は、図6に概略的に示すように、対向電極2の放電電極1側を向く凹状の内面2bを、放電電極1の先端部1aを中心とし、放電電極1の先端部1aと対向電極2との最短距離dを半径とする半球状の面としている。   Next, although the electrostatic atomizer of the 5th example in the embodiment of the present invention is explained, explanation is omitted about the same composition as the 1st example mentioned above among the composition of this example. As shown schematically in FIG. 6, the counter electrode 2 of this example has a concave inner surface 2 b facing the discharge electrode 1 side of the counter electrode 2, the tip of the discharge electrode 1 as the center, and the tip of the discharge electrode 1. The surface is a hemispherical surface with the shortest distance d between the portion 1a and the counter electrode 2 as a radius.

本例にあっては、放電電極1の先端部1aを囲む対向電極2の半球状の内面2b全体が、放電電極1の先端部1aとの間に最短距離dを隔てた部分となる。そして、この内面2b全体と放電電極1の先端部1aとの間には、三次元的に広範な範囲内で強力な電界が生じるので、放電電極1の先端部1aに対する電界の集中度合いは第1例と比べても更に高くなり、放電電極1に保持する液体に更に効率的に電荷を集中させて帯電微粒子液を発生させることが可能となる。   In this example, the entire hemispherical inner surface 2 b of the counter electrode 2 surrounding the distal end portion 1 a of the discharge electrode 1 is a portion that is separated from the distal end portion 1 a of the discharge electrode 1 by the shortest distance d. Since a strong electric field is generated within a wide three-dimensional range between the entire inner surface 2b and the tip 1a of the discharge electrode 1, the concentration of the electric field with respect to the tip 1a of the discharge electrode 1 is first. Compared to one example, the charge is further increased, and the charged fine particle liquid can be generated by more efficiently concentrating charges on the liquid held in the discharge electrode 1.

なお、本例においても、第2例の特徴的な構成は適用可能である。即ち、例えば対向電極2の内面2bの断面形状が、放電電極1の先端部1aから最短距離dを隔てた複数の直線を連続させた折れ線形状となる構成であっても(図3参照)、全体として、放電電極1の先端部1aを中心として描く球面(図6中の点線部分)に沿って形成される構成になっていれば、本例の上記効果は得られる。この場合、対向電極2の内面2bは、放電電極1の先端部1aから最短距離dを隔てて形成される複数の平面を組み合わせて半球状に構成した面となる。   Also in this example, the characteristic configuration of the second example is applicable. That is, for example, even if the cross-sectional shape of the inner surface 2b of the counter electrode 2 is a configuration in which a plurality of straight lines separated by the shortest distance d from the distal end portion 1a of the discharge electrode 1 are continuous (see FIG. 3). As a whole, if the structure is formed along a spherical surface (dotted line portion in FIG. 6) drawn with the tip portion 1a of the discharge electrode 1 as the center, the above effect of the present example can be obtained. In this case, the inner surface 2b of the counter electrode 2 is a hemispherical surface formed by combining a plurality of planes formed at a shortest distance d from the distal end portion 1a of the discharge electrode 1.

また、第3例の構成や第4例の構成も、本例において適用可能である。即ち、対向電極2の全体又は一部をメッシュ加工することによって対向電極2に複数の放出孔2aを形成してもよいし(図4参照)、対向電極2において放電電極1の先端部1aに近い一部分のみを、放電電極1の先端部1aを中心として描く球面に沿って形成してもよい(図5参照)。   The configuration of the third example and the configuration of the fourth example are also applicable in this example. That is, a plurality of discharge holes 2a may be formed in the counter electrode 2 by meshing the whole or a part of the counter electrode 2 (see FIG. 4), or the tip portion 1a of the discharge electrode 1 in the counter electrode 2 may be formed. You may form only a near part along the spherical surface drawn centering on the front-end | tip part 1a of the discharge electrode 1 (refer FIG. 5).

次に、本発明の実施形態における第6例の静電霧化装置について説明するが、本例の構成のうち上記した第5例と同様の構成については説明を省略する。本例の対向電極2は、図7に概略的に示すように、放電電極1側を向く内面2bの端部に、放電防止用の凸曲面30を設けたものである。   Next, the sixth example of the electrostatic atomizer in the embodiment of the present invention will be described, but the description of the same configuration as the fifth example described above will be omitted. The counter electrode 2 of this example is provided with a convex curved surface 30 for preventing discharge at the end of the inner surface 2b facing the discharge electrode 1, as schematically shown in FIG.

一般的に、放電電極1と対向電極2を近くに設置した場合(例えば最短距離dが3mm以下となる場合)には、対向電極2の放電電極1側を向く内面2bの端部で、放電が生じ易くなる。この内面2bの端部は、例えば放出孔2aの内側面との間で凸状の角部分となり、角部分の先端に電界が集中し易くなるからである。対向電極2側で放電が起こればプラスイオンが発生し、このプラスイオンは逆極性の帯電微粒子液を中和するように作用するので、帯電微粒子液の安定的な供給を阻害することとなる。   In general, when the discharge electrode 1 and the counter electrode 2 are installed close to each other (for example, when the shortest distance d is 3 mm or less), the discharge is caused at the end of the inner surface 2b of the counter electrode 2 facing the discharge electrode 1 side. Is likely to occur. This is because the end portion of the inner surface 2b becomes, for example, a convex corner portion between the inner surface of the discharge hole 2a and the electric field is easily concentrated on the tip of the corner portion. If discharge occurs on the counter electrode 2 side, positive ions are generated, and these positive ions act to neutralize the charged fine particle liquid having the opposite polarity, thereby inhibiting the stable supply of the charged fine particle liquid. .

これに対して、上記凸曲面30を0.3mm程度の曲率半径で形成し、対向電極2に対する電界の集中を防ぐことで、対向電極2側の放電を防止することができ、結果として帯電微粒子液を効率的に且つ安定的に供給することが可能となる。なお、同様の凸曲面30の構成を第1例〜第4例の構成に適用した場合でも、同様の効果が得られることは勿論である。   On the other hand, by forming the convex curved surface 30 with a radius of curvature of about 0.3 mm and preventing concentration of the electric field on the counter electrode 2, discharge on the counter electrode 2 side can be prevented. As a result, charged fine particles The liquid can be supplied efficiently and stably. Of course, even when the same configuration of the convex curved surface 30 is applied to the configurations of the first to fourth examples, the same effect can be obtained.

以上述べた各例の構成は、本発明の主旨を逸脱しない範囲内で適宜設計変更可能であり、また各例の構成を適宜組み合わせることも可能である。   The configuration of each example described above can be modified as appropriate without departing from the gist of the present invention, and the configuration of each example can be combined as appropriate.

本発明の実施形態における第1例の静電霧化装置の説明図である。It is explanatory drawing of the electrostatic atomizer of the 1st example in embodiment of this invention. 同上の対向電極の説明図である。It is explanatory drawing of a counter electrode same as the above. 本発明の実施形態における第2例の静電霧化装置の対向電極の説明図である。It is explanatory drawing of the counter electrode of the electrostatic atomizer of the 2nd example in embodiment of this invention. 本発明の実施形態における第3例の静電霧化装置の対向電極の説明図である。It is explanatory drawing of the counter electrode of the electrostatic atomizer of the 3rd example in embodiment of this invention. 本発明の実施形態における第4例の静電霧化装置の対向電極の説明図である。It is explanatory drawing of the counter electrode of the electrostatic atomizer of the 4th example in embodiment of this invention. 本発明の実施形態における第5例の静電霧化装置の対向電極の説明図である。It is explanatory drawing of the counter electrode of the electrostatic atomizer of the 5th example in embodiment of this invention. 本発明の実施形態における第6例の静電霧化装置の対向電極の説明図である。It is explanatory drawing of the counter electrode of the electrostatic atomizer of the 6th example in embodiment of this invention. 従来の静電霧化装置の対向電極の説明図である。It is explanatory drawing of the counter electrode of the conventional electrostatic atomizer.

符号の説明Explanation of symbols

1 放電電極
1a 先端部
2 対向電極
2a 放出孔
2b 内面
3 液供給手段
4 高電圧印加部
30 凸曲面
DESCRIPTION OF SYMBOLS 1 Discharge electrode 1a Tip part 2 Counter electrode 2a Ejection hole 2b Inner surface 3 Liquid supply means 4 High voltage application part 30 Convex curve

Claims (5)

放電電極と、放電電極から距離を隔てて位置する対向電極と、放電電極に液体を供給する液供給手段と、放電電極と対向電極の間に高電圧を印加する高電圧印加手段とを具備し、放電電極が保持する液体に高電圧を印加して生成される帯電微粒子液を放出する静電霧化装置において、上記対向電極の放電電極側を向く内面の少なくとも一部の断面形状が、放電電極の先端部を中心とし、放電電極の先端部から対向電極までの最短距離を半径として描く円弧線に沿って形成されたものであることを特徴とする静電霧化装置。   A discharge electrode; a counter electrode located at a distance from the discharge electrode; a liquid supply means for supplying a liquid to the discharge electrode; and a high voltage applying means for applying a high voltage between the discharge electrode and the counter electrode. In the electrostatic atomizer that discharges the charged fine particle liquid generated by applying a high voltage to the liquid held by the discharge electrode, the cross-sectional shape of at least a part of the inner surface of the counter electrode facing the discharge electrode is An electrostatic atomizer characterized in that the electrostatic atomizer is formed along an arc line centered on the tip of the electrode and having a shortest distance from the tip of the discharge electrode to the counter electrode as a radius. 上記対向電極の放電電極側を向く内面の少なくとも一部が、放電電極の先端部を中心とし、放電電極の先端部から対向電極までの最短距離を半径として描く球面に沿って形成されたものであることを特徴とする請求項1に記載の静電霧化装置。   At least a part of the inner surface facing the discharge electrode side of the counter electrode is formed along a spherical surface with the tip portion of the discharge electrode as the center and the shortest distance from the tip portion of the discharge electrode to the counter electrode as a radius. The electrostatic atomizer according to claim 1, wherein the electrostatic atomizer is provided. 上記対向電極の放電電極側を向く内面の少なくとも一部が、放電電極の先端部を中心とし、放電電極の先端部から対向電極までの最短距離を半径とする半球状の面であることを特徴とする請求項2に記載の静電霧化装置。   At least a part of the inner surface of the counter electrode facing the discharge electrode is a hemispherical surface centered on the tip of the discharge electrode and having a radius of the shortest distance from the tip of the discharge electrode to the counter electrode. The electrostatic atomizer according to claim 2. 上記対向電極は、複数の放出孔を有するものであることを特徴とする請求項1〜3のいずれか一項に記載の静電霧化装置。   The electrostatic atomizer according to any one of claims 1 to 3, wherein the counter electrode has a plurality of discharge holes. 上記対向電極は、放電電極側を向く内面の端部に、放電防止用の凸曲面を設けたものであることを特徴とする請求項1〜4のいずれか一項に記載の静電霧化装置。
5. The electrostatic atomization according to claim 1, wherein the counter electrode is provided with a convex curved surface for preventing discharge at an end portion of an inner surface facing the discharge electrode side. apparatus.
JP2007017080A 2007-01-26 2007-01-26 Electrostatic atomizer Active JP4093282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017080A JP4093282B1 (en) 2007-01-26 2007-01-26 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017080A JP4093282B1 (en) 2007-01-26 2007-01-26 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP4093282B1 JP4093282B1 (en) 2008-06-04
JP2008183483A true JP2008183483A (en) 2008-08-14

Family

ID=39560795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017080A Active JP4093282B1 (en) 2007-01-26 2007-01-26 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4093282B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021332A1 (en) * 2008-08-19 2010-02-25 パナソニック電工株式会社 Electrostatic atomization device
EP2279794A1 (en) * 2009-07-28 2011-02-02 Panasonic Electric Works Co., Ltd. Electrostatic atomizer
JP2011047549A (en) * 2009-08-26 2011-03-10 Panasonic Corp Refrigerator
CN102029233A (en) * 2009-09-24 2011-04-27 松下电工株式会社 Static atomization device and beautification device with the same
CN102427888A (en) * 2009-03-19 2012-04-25 杜尔系统有限责任公司 Electrode Assembly For An Electrostatic Atomizer
JP2013220365A (en) * 2012-04-12 2013-10-28 Panasonic Corp Electrostatic atomizer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021332A1 (en) * 2008-08-19 2010-02-25 パナソニック電工株式会社 Electrostatic atomization device
JPWO2010021332A1 (en) * 2008-08-19 2012-01-26 パナソニック電工株式会社 Electrostatic atomizer
CN102427888A (en) * 2009-03-19 2012-04-25 杜尔系统有限责任公司 Electrode Assembly For An Electrostatic Atomizer
EP2279794A1 (en) * 2009-07-28 2011-02-02 Panasonic Electric Works Co., Ltd. Electrostatic atomizer
JP2011047549A (en) * 2009-08-26 2011-03-10 Panasonic Corp Refrigerator
CN102029233A (en) * 2009-09-24 2011-04-27 松下电工株式会社 Static atomization device and beautification device with the same
JP2013220365A (en) * 2012-04-12 2013-10-28 Panasonic Corp Electrostatic atomizer

Also Published As

Publication number Publication date
JP4093282B1 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP5330711B2 (en) Electrostatic atomizer
JP4093282B1 (en) Electrostatic atomizer
JP3952052B2 (en) Electrostatic atomizer
JP2011070803A (en) Ion generator and cosmetic device equipped with the same
JP2006204968A (en) Atomizer
JP2007289871A (en) Electrostatic atomizer
JP6083568B2 (en) Electrostatic atomizer
JP5606022B2 (en) Electrostatic spraying equipment
JP2009172560A (en) Electrostatic atomizer
JP2016198756A (en) Electric discharge nozzle used for electrospray ionization method
JP5968716B2 (en) Electrostatic spraying equipment
JP2008183484A (en) Electrostatic atomizer
JP2014165147A (en) Active ingredient generator
JP6832571B2 (en) Liquid processing equipment
JP2010227808A (en) Electrostatic atomization apparatus
JP2011067725A (en) Electrostatic atomizer, and cosmetic device including the same
JP2011067739A (en) Electrostatic atomization apparatus
JP5833781B1 (en) Electrostatic spraying equipment
JP5180604B2 (en) Electrostatic atomizer
JP2006075702A (en) Electrostatic atomization apparatus
WO2015056391A1 (en) Active ingredient generating device
JP2007021369A (en) Electrostatic atomizer
JP2006110448A (en) Electrostatic coating apparatus
JP2013111558A (en) Radical generator and nitrogen oxide generator
JP4595348B2 (en) Electrostatic atomizer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4093282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6