JP2008182072A - Fiber amplifier - Google Patents

Fiber amplifier Download PDF

Info

Publication number
JP2008182072A
JP2008182072A JP2007014721A JP2007014721A JP2008182072A JP 2008182072 A JP2008182072 A JP 2008182072A JP 2007014721 A JP2007014721 A JP 2007014721A JP 2007014721 A JP2007014721 A JP 2007014721A JP 2008182072 A JP2008182072 A JP 2008182072A
Authority
JP
Japan
Prior art keywords
fiber
wavelength
excitation
light
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007014721A
Other languages
Japanese (ja)
Other versions
JP5204975B2 (en
Inventor
Michio Nakayama
通雄 中山
Akitaka Yamada
明孝 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007014721A priority Critical patent/JP5204975B2/en
Publication of JP2008182072A publication Critical patent/JP2008182072A/en
Application granted granted Critical
Publication of JP5204975B2 publication Critical patent/JP5204975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber amplifier efficiently taking out an energy excited by the fiber. <P>SOLUTION: The fiber amplifier comprises the fiber with a rare earth element added to its core, a first excitation light source for generating a first excitation light entered into one end part of the fiber, and a second exciation light source for generating a second excitation light entered into the other end part of the fiber. The absorption coefficient of the rare earth element in a wavelength of the second exciation light is larger than that in a wavelength of the first excitaion light, and a signal light entering into the one end part is amplified by the rare earth element excited by the first and the second excitation light, and emitted from the other end part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ファイバ増幅器に関する。   The present invention relates to a fiber amplifier.

波長が2μm近傍の赤外光を発生または増幅するには、希土類元素であるTm3+(ツリウムイオン)を添加したファイバが用いられる。Tm3+は793nmを極大とする800nm近傍に吸収特性を有するので、この波長の光を放射する半導体レーザを励起光源とすることができる。この励起光源によりポンピングされ、例えばからへのエネルギー準位間の遷移によって波長が2μm近傍のレーザ光が増幅される。 In order to generate or amplify infrared light having a wavelength in the vicinity of 2 μm, a fiber added with Tm 3+ (thulium ion) which is a rare earth element is used. Since Tm 3+ has an absorption characteristic in the vicinity of 800 nm where 793 nm is a maximum, a semiconductor laser that emits light of this wavelength can be used as an excitation light source. Pumped by this excitation light source, for example, a laser beam having a wavelength of about 2 μm is amplified by a transition between energy levels from 3 H 4 to 3 H 6 .

Tm及びNd(ネオジム)をコアに添加した光ファイバを利得媒体とし、1.47μm帯の光を増幅する光増幅器の技術開示例がある(特許文献1)。この技術開示例では、Tmによる光増幅時に発生する波長800nm帯の自然放出(ASE:Amplified Spontaneous Emission)光をNdに吸収させ、1470nm帯の光の増幅を効率よく行う。
特開2002−246673号公報
There is a technology disclosure example of an optical amplifier that amplifies light in the 1.47 μm band using an optical fiber in which Tm and Nd (neodymium) are added to the core as a gain medium (Patent Document 1). In this example of technical disclosure, spontaneous emission (ASE: Amplified Spontaneous Emission) light having a wavelength of 800 nm generated during light amplification by Tm is absorbed by Nd, and light in the 1470 nm band is efficiently amplified.
JP 2002-246673 A

しかしながら、高出力増幅を行うためにファイバの両端から励起を行う場合、入射端では信号光の入力は小さく励起されたエネルギーを有効に増幅光として取り出すことができず、余ったエネルギーがノイズ成分となるASE光や寄生発振となりエネルギー効率を低下させる。本発明は、ファイバに励起されたエネルギーを効率よく取り出すファイバ増幅器を提供する。   However, when pumping from both ends of the fiber to perform high-power amplification, the input light of the signal light is small at the incident end, and the excited energy cannot be extracted effectively as amplified light, and the surplus energy is regarded as a noise component. ASE light or parasitic oscillation becomes lower and energy efficiency is lowered. The present invention provides a fiber amplifier that efficiently extracts energy excited in a fiber.

本発明の一態様によれば、コアに希土類元素が添加されたファイバと、前記ファイバの一方の端部に入射させる第1の励起光を発生する第1の励起光源と、前記ファイバの他方の端部に入射させる第2の励起光を発生する第2の励起光源と、を備え、前記希土類元素の吸収係数は、前記第2の励起光の波長において前記第1の励起光の波長におけるよりも大きく、前記一方の端部に入射した信号光は、前記第1及び第2の励起光により励起された前記希土類元素により増幅され、前記他方の端部から出射されることを特徴とするファイバ増幅器が提供される。   According to one aspect of the present invention, a fiber in which a rare earth element is added to a core, a first excitation light source that generates a first excitation light incident on one end of the fiber, and the other end of the fiber A second excitation light source that generates second excitation light incident on the end portion, and the rare earth element has an absorption coefficient that is greater than that at the wavelength of the first excitation light at the wavelength of the second excitation light. The signal light incident on the one end is amplified by the rare earth element excited by the first and second excitation light and emitted from the other end. An amplifier is provided.

本発明により、ファイバに励起されたエネルギーを効率よく取り出すファイバ増幅器が提供される。   The present invention provides a fiber amplifier that efficiently extracts energy excited in a fiber.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明の実施の形態にかかるファイバ増幅器の構成図を表す。コアにTm3+が添加されシリカを含むファイバ20は、信号光30の入射端22及び増幅光32の出射端24を有する。波長2μm近傍の赤外光である信号光30はダイクロイックプリズム40を通過し、入射端22に入射される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a fiber amplifier according to an embodiment of the present invention. The fiber 20 including Tm 3+ added to the core and containing silica has an incident end 22 of the signal light 30 and an output end 24 of the amplified light 32. The signal light 30 that is infrared light in the vicinity of a wavelength of 2 μm passes through the dichroic prism 40 and enters the incident end 22.

第1の励起光源50からの第1の励起光34(波長λ1)は、ダイクロイックプリズム40により90度に折り曲げられて入射端22からファイバ20へ入射する。他方、第2の励起光源52からの第2の励起光36(波長λ2)は、ダイクロイックプリズム42により90度に折り曲げられて出射端24からファイバ20に入射する。このようにダイクロイックプリズム40、42は、信号光30及び増幅光32を通過させ、励起光34及び36を反射させる波長選択性を有する。   The first excitation light 34 (wavelength λ1) from the first excitation light source 50 is bent by 90 degrees by the dichroic prism 40 and enters the fiber 20 from the incident end 22. On the other hand, the second excitation light 36 (wavelength λ2) from the second excitation light source 52 is bent by 90 degrees by the dichroic prism 42 and enters the fiber 20 from the emission end 24. As described above, the dichroic prisms 40 and 42 have wavelength selectivity that allows the signal light 30 and the amplified light 32 to pass therethrough and reflects the excitation lights 34 and 36.

励起光源50、52としては、例えば波長が800nm近傍である半導体レーザを用いることができる。ここでTm3+のエネルギー準位について説明する。図2はTm3+のエネルギー準位図の一例である。800nm近傍の波長を有する励起光源50、52によりポンピングされたTm3+は、からへのエネルギー準位間の遷移によって2μm近傍の波長を有するレーザ光を誘導放出する。 As the excitation light sources 50 and 52, for example, a semiconductor laser having a wavelength near 800 nm can be used. Here, the energy level of Tm 3+ will be described. FIG. 2 is an example of an energy level diagram of Tm 3+ . Tm 3+ it pumped by the pumping light source 50 and 52 having a wavelength of 800nm near the laser beam to induced emission having a wavelength of 2μm near the transitions between energy levels of from 3 H 4 to 3 H 6.

このために、信号光30が増幅され、信号光30と同一の波長を有する増幅光32となってファイバ20の出力端24から、ダイクロイックプリズム42を介して外部へ取り出される。なお、エネルギー準位図はこれに限定されず、からへの遷移によって2μm近傍のレーザ光を誘導放出する場合もある。 For this purpose, the signal light 30 is amplified and becomes amplified light 32 having the same wavelength as that of the signal light 30 and is extracted from the output end 24 of the fiber 20 to the outside through the dichroic prism 42. Incidentally, the energy level diagram is not limited thereto, it may induce emit laser light of 2μm near the transition from 3 F 4 to 3 H 6.

図3は、本実施形態におけるファイバ20の利得または損失分布を表すグラフ図である。縦軸は利得または損失、横軸はファイバ長さ方向位置でありP1は入射端22、P2は出射端24を表す。ドット線で表される前方励起の利得は、入射端22から入射された励起光34によりTm3+が励起されて生じる。 FIG. 3 is a graph showing the gain or loss distribution of the fiber 20 in the present embodiment. The vertical axis represents gain or loss, the horizontal axis represents the position in the fiber length direction, P1 represents the entrance end 22, and P2 represents the exit end 24. The forward pumping gain represented by the dot line is generated when Tm 3+ is excited by the pumping light 34 incident from the incident end 22.

また、破線で表される後方励起の利得は、出射端24から入射された励起光36によりTm3+が励起されて生じる。前方励起の利得及び後方励起の利得の和が、実線で表す両側励起の利得である。利得は、入射端22からファイバ20の中間部に向かって低下し、ファイバ20の中間部から出射端24に向かって増大し、出射端24において最大となる。 The backward pumping gain represented by the broken line is generated by exciting Tm 3+ by the pumping light 36 incident from the emission end 24. The sum of the forward excitation gain and the backward excitation gain is the double-side excitation gain represented by the solid line. The gain decreases from the incident end 22 toward the intermediate portion of the fiber 20, increases from the intermediate portion of the fiber 20 toward the output end 24, and becomes maximum at the output end 24.

本実施形態において、希土類元素の吸収係数を、後方励起の励起光52の波長λ2において前方励起の励起光50の波長λ1におけるより大きくする(λ1≠λ2)。すなわち、前方励起及び後方励起を異なる波長により行う2波長ハイブリッド励起とする。   In the present embodiment, the absorption coefficient of the rare earth element is made larger at the wavelength λ2 of the backward pumping excitation light 52 than at the wavelength λ1 of the forward pumping excitation light 50 (λ1 ≠ λ2). That is, two-wavelength hybrid excitation in which forward excitation and backward excitation are performed at different wavelengths.

図4は、800nm近傍の波長におけるTm3+添加シリカファイバの吸収スペクトルを表すグラフ図であり、縦軸は断面積(10−25)、横軸は波長(nm)である。この吸収はから2,3などへの遷移を生じ、吸収の断面積は波長793nmにおいて約10×10−25と極大となる。すなわち、吸収係数が極大となり励起されるエネルギーも極大となる。図4の励起波長範囲内において、λ1及びλ2を設定する。 FIG. 4 is a graph showing the absorption spectrum of a Tm 3+ doped silica fiber at a wavelength near 800 nm, where the vertical axis represents the cross-sectional area (10 −25 m 2 ) and the horizontal axis represents the wavelength (nm). This absorption causes a transition from 3 H 6 to 3 H 4 , 3 F 4 , 3 F 2 , 3, etc., and the absorption cross section becomes a maximum of about 10 × 10 −25 m 2 at a wavelength of 793 nm. That is, the absorption coefficient is maximized and the excited energy is also maximized. Within the excitation wavelength range of FIG. 4, λ1 and λ2 are set.

次に、図3において一点鎖線で表す吸収損失について説明する。Tm3+は波長2μm近傍において発光を生じることができるが、吸収も存在する。図5は、Tm3+による発光及び吸収を表すグラフ図である。縦軸は断面積(10−25)、横軸は波長(nm)である。波長が1900〜1982nmにおいて、発光及び吸収の断面積は波長の増大につれて低下する。例えば1920nmにおいて、発光断面積は約4.8×10−25であるのに対して、吸収も約0.7×10−25であるように2μm近傍において吸収も生じる。 Next, the absorption loss represented by the alternate long and short dash line in FIG. 3 will be described. Tm 3+ can emit light in the vicinity of a wavelength of 2 μm, but there is also absorption. FIG. 5 is a graph showing light emission and absorption by Tm 3+ . The vertical axis represents the cross-sectional area (10 −25 m 2 ), and the horizontal axis represents the wavelength (nm). At wavelengths between 1900 and 1982 nm, the emission and absorption cross sections decrease with increasing wavelength. For example, at 1920 nm, the emission cross-sectional area is about 4.8 × 10 −25 m 2 , whereas the absorption also occurs in the vicinity of 2 μm so that the absorption is about 0.7 × 10 −25 m 2 .

すなわち、信号光30の波長においても、この吸収断面積に対応した吸収損失が存在し、ファイバ20の長さ方向にわたって略平坦に分布する。このために、Tm3+による利得から吸収損失を減じた正味の利得が増幅に寄与することになる。本実施形態は、正味の利得がプラスとなる領域を広く設定する。特に、ファイバ20の全域にわたって正味の利得をプラスとすると信号光30の吸収が低減されより好ましい。 That is, even at the wavelength of the signal light 30, there is an absorption loss corresponding to this absorption cross-sectional area, which is distributed substantially flat over the length direction of the fiber 20. For this reason, the net gain obtained by subtracting the absorption loss from the gain due to Tm 3+ contributes to the amplification. In the present embodiment, a region where the net gain is positive is set wide. In particular, it is more preferable that the net gain is positive over the entire area of the fiber 20 because the absorption of the signal light 30 is reduced.

図3に表す2波長ハイブリッド励起である本実施形態のファイバ増幅器は、信号光30の増大に伴った利得分布である。このために、入射端22側において入射する信号光30に対して適正な励起強度とでき、ASE光や寄生発振によるエネルギー効率の低下を抑制できる。   The fiber amplifier of the present embodiment that is the two-wavelength hybrid pumping shown in FIG. 3 has a gain distribution accompanying an increase in the signal light 30. For this reason, it is possible to obtain an appropriate excitation intensity for the signal light 30 incident on the incident end 22 side, and to suppress a decrease in energy efficiency due to ASE light or parasitic oscillation.

また、吸収係数が小さすぎると励起が不十分となり信号光30を吸収し増幅率を低下させるが、本実施形態では正味の利得のプラスである範囲が広いので増幅率の低下を抑制できる。正味の利得をファイバ20の全域においてプラスと設定すると増幅率の低下を一層抑制でき、ファイバ20の長さを短くできる。   Further, if the absorption coefficient is too small, excitation becomes insufficient and the signal light 30 is absorbed and the amplification factor is lowered. However, in this embodiment, since the range that is a plus of the net gain is wide, the reduction of the amplification factor can be suppressed. If the net gain is set to be positive in the entire area of the fiber 20, a decrease in the amplification factor can be further suppressed, and the length of the fiber 20 can be shortened.

さらに、後方励起の波長λ2における吸収係数は、前方励起の波長λ1におけるより大きいので、出射端24側においてファイバ20の励起を入射端22側より強くし、励起されたエネルギーを効率よく増幅光32として取り出すことができ、高いファイバ出力とできる。   Further, since the absorption coefficient at the wavelength λ2 of the backward pumping is larger than that at the wavelength λ1 of the forward pumping, the excitation of the fiber 20 is made stronger at the emission end 24 side than the incident end 22 side, and the excited energy is efficiently amplified. As high fiber output.

次に、本実施形態のうち、808nmの前方励起および793nmの後方励起を組み合わせた2波長ハイブリッド励起について説明する。図6は、ファイバ出力の励起入力依存性を表すグラフ図である。縦軸はファイバ出力(W)、横軸は励起出力(W)である。図6において、本実施形態である2波長ハイブリッド励起の場合を●印、793nmの前方励起を◆印、793nmの後方励起を■印でそれぞれ表す。さらに、793nmによる両側励起を▲印で表す。   Next, two-wavelength hybrid excitation combining 808 nm forward excitation and 793 nm backward excitation will be described. FIG. 6 is a graph showing the dependence of fiber output on pumping input. The vertical axis represents fiber output (W), and the horizontal axis represents pumping output (W). In FIG. 6, the case of the two-wavelength hybrid excitation according to the present embodiment is indicated by ●, the forward excitation at 793 nm is indicated by ◆, and the backward excitation at 793 nm is indicated by ■. Further, double-sided excitation at 793 nm is represented by ▲.

ここでは、吸収スペクトルが極大となる793nm近傍を後方励起の励起光36の波長λ2として設定し、前方励起の励起光34の波長λ1として吸収の断面積が極大値の70%以下と設定する。λ1における吸収の断面積が70%より大きいと、信号光30を増幅しても励起されたエネルギーがまだ残ることがあるので70%以下とすることが好ましい。図6の本実施形態(●印)におけるλ1は808nmとする。   Here, the vicinity of 793 nm where the absorption spectrum is maximized is set as the wavelength λ2 of the excitation light 36 for backward excitation, and the cross-sectional area of absorption is set to 70% or less of the maximum value as the wavelength λ1 of the excitation light 34 for forward excitation. If the cross-sectional area of absorption at λ1 is larger than 70%, excited energy may still remain even if the signal light 30 is amplified. In this embodiment (marked with ●) in FIG. 6, λ1 is 808 nm.

また、図7は800nm近傍の波長で吸収係数が極大となる793nmの波長を有する励起光源50、52による励起である比較例における利得及び吸収損失の分布を模式的表すグラフ図である。前方励起はドット線、後方励起は破線、両側励起は実線、吸収損失は一点鎖線にてそれぞれ表す。なお、吸収損失はファイバ20の長さ方向位置に依存すること無く略一定とする。   FIG. 7 is a graph schematically showing the distribution of gain and absorption loss in the comparative example, which is excitation by the excitation light sources 50 and 52 having a wavelength of 793 nm at which the absorption coefficient is maximum at a wavelength near 800 nm. Forward excitation is represented by a dot line, backward excitation is represented by a broken line, bilateral excitation is represented by a solid line, and absorption loss is represented by an alternate long and short dash line. The absorption loss is substantially constant without depending on the position in the length direction of the fiber 20.

まず図6において、793nm前方励起のファイバ出力(◆)は、励起入力が85Wで約2.5Wと低い。この場合、利得は図7のドット線で表されるように、入射端22で最大となり入射端22からの長さ方向位置と共に低下する。ファイバ20の中間部近傍から出射端24までの領域では正味の利得がマイナスとなり信号光30が増幅されなくなる。また、入射端22における信号光30の信号レベルは小さいので、793nmで強く励起されたエネルギーを十分に増幅光へ変換できず、低エネルギー効率となる。さらに、出射端24側では励起されたエネルギーは小さいために高いファイバ出力が得られない。   First, in FIG. 6, the fiber output (♦) of 793 nm forward pumping is as low as about 2.5 W when the pumping power is 85 W. In this case, the gain becomes maximum at the incident end 22 and decreases with the position in the length direction from the incident end 22, as represented by the dot line in FIG. In the region from the vicinity of the middle portion of the fiber 20 to the emission end 24, the net gain becomes negative and the signal light 30 is not amplified. Further, since the signal level of the signal light 30 at the incident end 22 is small, the energy strongly excited at 793 nm cannot be sufficiently converted into amplified light, resulting in low energy efficiency. Further, since the excited energy is small on the emission end 24 side, a high fiber output cannot be obtained.

また、793nmの後方励起のファイバ出力(■)は、励起入力が85Wで約7Wであり前方励起より高い。しかしながら、図7に破線で表すように入射端22からの前方励起がないために、入射端22から中間部近傍において正味の利得がなく信号光30がこの領域において増幅されない。正味の利得はファイバ中間部近傍においてプラスに転じ、出射端24に向かって増加し、出射端24において最大となる。励起光36の波長は吸収係数が極大となる793nmであるので、出射端24近傍において強く励起されたエネルギーを外部に取り出すことができ、前方励起よりは高いファイバ出力の7Wが得られる。   Further, the fiber output (■) of the backward pumping at 793 nm is about 7 W when the pumping input is 85 W, which is higher than the forward pumping. However, as indicated by the broken line in FIG. 7, there is no forward pumping from the incident end 22, so there is no net gain in the vicinity of the intermediate portion from the incident end 22, and the signal light 30 is not amplified in this region. The net gain turns positive in the vicinity of the middle of the fiber, increases toward the exit end 24, and reaches its maximum at the exit end 24. Since the wavelength of the excitation light 36 is 793 nm at which the absorption coefficient is maximized, energy that is strongly excited in the vicinity of the emission end 24 can be extracted to the outside, and a fiber output 7 W higher than that of forward excitation can be obtained.

また、793nmによる両側励起のファイバ出力(▲)は、励起入力が165Wで約8.5Wであり、励起入力が130Wを越えると飽和気味となる。この場合、入射端22において励起が強いために励起入力が70W以下の領域においてファイバ出力を高くできる。しかしながら入射端22側での励起が強すぎ、信号光30を増幅してもなおエネルギーが残る。残ったエネルギーがASE光や寄生発止を生じ、エネルギー効率を低下させ、図6のようにファイバ出力を約8.5W近傍で飽和させる。   Further, the fiber output (両 側) of both-side excitation by 793 nm is about 8.5 W when the excitation input is 165 W, and becomes saturated when the excitation input exceeds 130 W. In this case, since the excitation at the incident end 22 is strong, the fiber output can be increased in a region where the excitation input is 70 W or less. However, excitation at the incident end 22 side is too strong, and energy still remains even when the signal light 30 is amplified. The remaining energy causes ASE light and parasitic stopping, reducing energy efficiency, and saturating the fiber output in the vicinity of about 8.5 W as shown in FIG.

これらに対して、793nmの波長による前方励起及び808nmの後方励起を組み合わせた2波長ハイブリッド励起である本実施形態(●)のファイバ出力は、励起入力が175Wで約13.5Wである。この場合、808nmでは吸収の断面積が2.3×10−25と極大値の約23%であり、図3のように、入射端22において励起を押さえることができる。このためにASE光や寄生発振を抑制し高いエネルギー効率とできる。 On the other hand, the fiber output of this embodiment (●), which is a two-wavelength hybrid pump that combines forward pumping with a wavelength of 793 nm and backward pumping of 808 nm, is approximately 13.5 W with a pump input of 175 W. In this case, at 808 nm, the cross-sectional area of absorption is 2.3 × 10 −25 m 2 , which is about 23% of the maximum value, and excitation can be suppressed at the incident end 22 as shown in FIG. For this reason, ASE light and parasitic oscillation can be suppressed and high energy efficiency can be achieved.

また、ファイバ20の出射端24に近いほど励起光36が大きくTm3+は強く励起され、かつ吸収係数が極大となる波長793nmで励起される。このために図4の励起波長範囲において、ファイバ20に励起されるエネルギーは最大となり、出射端24において励起を最大とでき、ファイバ20に励起されたエネルギーは効率よく増幅光32へ変換でき、約13.5Wと高いファイバ出力を得ることができる。 Further, the closer to the emission end 24 of the fiber 20, the larger the excitation light 36 is, and Tm 3+ is strongly excited, and excitation is performed at a wavelength of 793 nm at which the absorption coefficient is maximized. Therefore, in the pumping wavelength range of FIG. 4, the energy pumped into the fiber 20 is maximized, the pumping can be maximized at the output end 24, and the energy pumped into the fiber 20 can be efficiently converted into the amplified light 32, and about A high fiber output of 13.5 W can be obtained.

なお、信号光30が15〜30kHzの繰り返し周波数によりパルス変調されていると、高いピーク値を有するパルス変調された増幅光32を得ることができる。   When the signal light 30 is pulse-modulated with a repetition frequency of 15 to 30 kHz, the pulse-modulated amplified light 32 having a high peak value can be obtained.

ここで、図6のような高いファイバ出力を得るための励起光源50、52について説明を補足する。複数の半導体レーザからのレーザ光は集光され伝送ファイバへ入射する。または、ダブルクラッドファイバを用い複数の半導体レーザが入射した伝送ファイバを束ねて融着してもよい。このように並列に配置された複数の半導体レーザをパルス動作させるとより高いピーク励起入力を得ることができ、Tm3+添加のファイバ20をより強く励起することができる。 Here, a supplementary description will be given of the excitation light sources 50 and 52 for obtaining a high fiber output as shown in FIG. Laser light from a plurality of semiconductor lasers is collected and incident on a transmission fiber. Alternatively, a transmission fiber into which a plurality of semiconductor lasers are incident may be bundled and fused using a double clad fiber. When a plurality of semiconductor lasers arranged in parallel as described above are pulse-operated, a higher peak pumping input can be obtained, and the Tm 3+ doped fiber 20 can be pumped more strongly.

以上、図面を参照しつつ本発明の実施の形態について説明した。しかし、本発明はこれに限定されない。ファイバ増幅器を構成する希土類元素、ファイバ、励起光源などの材質、サイズ、形状、配置に関して当業者が各種設計変更を行ったものであっても本発明の主旨を逸脱しない限り本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to this. Even if those skilled in the art have made various design changes regarding the material, size, shape, and arrangement of rare earth elements, fibers, excitation light sources, etc. constituting the fiber amplifier, they are included in the scope of the present invention without departing from the gist of the present invention. Is done.

本発明の実施形態にかかるファイバ増幅器の構成図である。It is a block diagram of the fiber amplifier concerning embodiment of this invention. Tm3+のエネルギー準位図の一例である。It is an example of the energy level diagram of Tm 3+ . Tm3+添加ファイバにおける利得及び吸収損失の分布を表すグラフ図である。It is a graph showing distribution of gain and absorption loss in a Tm 3+ doped fiber. 800nm近傍におけるTm3+添加シリカファイバの吸収スペクトルを表すグラフ図である。It is a graph showing the absorption spectrum of Tm3 + addition silica fiber in the 800 nm vicinity. Tm3+添加シリカファイバにおける発光及び吸収断面積を表すグラフ図である。It is a graph showing the light emission and absorption cross-sectional area in a Tm3 + addition silica fiber. ファイバ出力の励起入力依存性を表すグラフ図である。It is a graph showing the excitation input dependence of fiber output. 比較例である793nm励起光による利得及び吸収損失分布を表すグラフ図である。It is a graph showing the gain and absorption loss distribution by 793 nm excitation light which is a comparative example.

符号の説明Explanation of symbols

20 ファイバ、22 入射端、24 出射端、30 信号光、32 増幅光、34 励起光、36 励起光、50 励起光源、52 励起光源 20 fiber, 22 entrance end, 24 exit end, 30 signal light, 32 amplified light, 34 excitation light, 36 excitation light, 50 excitation light source, 52 excitation light source

Claims (5)

コアに希土類元素が添加されたファイバと、
前記ファイバの一方の端部に入射させる第1の励起光を発生する第1の励起光源と、
前記ファイバの他方の端部に入射させる第2の励起光を発生する第2の励起光源と、
を備え、
前記希土類元素の吸収係数は、前記第2の励起光の波長において前記第1の励起光の波長におけるよりも大きく、
前記一方の端部に入射した信号光は、前記第1及び第2の励起光により励起された前記希土類元素により増幅され、前記他方の端部から出射されることを特徴とするファイバ増幅器。
A fiber with a rare earth element added to the core;
A first excitation light source that generates first excitation light that is incident on one end of the fiber;
A second excitation light source for generating second excitation light to be incident on the other end of the fiber;
With
An absorption coefficient of the rare earth element is larger at a wavelength of the second excitation light than at a wavelength of the first excitation light;
The fiber amplifier, wherein the signal light incident on the one end is amplified by the rare earth element excited by the first and second excitation lights and is emitted from the other end.
前記希土類元素による前記信号光の増幅の利得は、前記第1の端部から前記ファイバの中間部に向かって低下し、前記中間部から前記第2の端部に向かって増大し、前記第2の端部において最大となることを特徴とする請求項1記載のファイバ増幅器。   The gain of amplification of the signal light by the rare earth element decreases from the first end toward the intermediate portion of the fiber, increases from the intermediate portion toward the second end, and the second 2. The fiber amplifier according to claim 1, wherein the maximum value is at the end of the fiber amplifier. 前記利得から前記希土類元素の吸収損失を減じた正味の利得は、前記ファイバの長さ方向の全域にわたってプラスであることを特徴とする請求項2記載のファイバ増幅器。   3. The fiber amplifier according to claim 2, wherein a net gain obtained by subtracting the absorption loss of the rare earth element from the gain is positive throughout the entire length of the fiber. 前記第2の励起光の波長は、前記信号光を増幅可能な励起波長範囲において、前記吸収係数を極大とする波長の近傍であることを特徴とする請求項1〜3のいずれか1つに記載のファイバ増幅器。   The wavelength of the second pumping light is in the vicinity of a wavelength that maximizes the absorption coefficient in a pumping wavelength range in which the signal light can be amplified. The fiber amplifier described. 前記希土類元素は、ツリウムであることを特徴とする請求項1〜4のいずれか1つに記載のファイバ増幅器。

The fiber amplifier according to claim 1, wherein the rare earth element is thulium.

JP2007014721A 2007-01-25 2007-01-25 Fiber amplifier Active JP5204975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014721A JP5204975B2 (en) 2007-01-25 2007-01-25 Fiber amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014721A JP5204975B2 (en) 2007-01-25 2007-01-25 Fiber amplifier

Publications (2)

Publication Number Publication Date
JP2008182072A true JP2008182072A (en) 2008-08-07
JP5204975B2 JP5204975B2 (en) 2013-06-05

Family

ID=39725731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014721A Active JP5204975B2 (en) 2007-01-25 2007-01-25 Fiber amplifier

Country Status (1)

Country Link
JP (1) JP5204975B2 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188687A (en) * 1989-11-27 1991-08-16 American Teleph & Telegr Co <Att> Erbium dope fiber amplifier
JPH03293788A (en) * 1990-04-12 1991-12-25 Nippon Telegr & Teleph Corp <Ntt> Optical fiber type laser
JPH0437728A (en) * 1990-06-01 1992-02-07 Nippon Telegr & Teleph Corp <Ntt> Erbium-doped optical fiber, its exciting method and optical amplifier
JPH04184427A (en) * 1990-11-20 1992-07-01 Toshiba Corp Optical fiber transmission system
JPH053356A (en) * 1991-06-24 1993-01-08 Nec Corp Optical fiber amplifier
JPH06318755A (en) * 1993-03-11 1994-11-15 Hitachi Cable Ltd Light amplifier
JPH09230400A (en) * 1996-02-26 1997-09-05 Fujitsu Ltd Optical fiber amplifier
JPH1022560A (en) * 1996-07-02 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> Q-switch optical fiber laser
JPH10163554A (en) * 1996-11-27 1998-06-19 Furukawa Electric Co Ltd:The Optical fiber amplifier
JPH10294510A (en) * 1997-02-18 1998-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JPH11177172A (en) * 1997-12-08 1999-07-02 Sumitomo Electric Ind Ltd Optical fiber amplifier
JP2000012938A (en) * 1998-06-25 2000-01-14 Mitsubishi Electric Corp Optical amplifier
JP2000244043A (en) * 1999-02-24 2000-09-08 Nec Corp Optical amplifier
JP2002261362A (en) * 2001-03-02 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
JP2002530898A (en) * 1998-11-20 2002-09-17 コーニング・インコーポレーテッド L-band amplification using detuned 980 nm excitation light
JP2002374024A (en) * 2001-06-14 2002-12-26 Fujitsu Ltd Optical amplifier
JP2004006634A (en) * 2002-04-22 2004-01-08 Mitsubishi Cable Ind Ltd Light amplifier
JP2004103929A (en) * 2002-09-11 2004-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
JP2006505958A (en) * 2002-11-08 2006-02-16 フルカワ アメリカ,インコーポレイテッド System, method and computer program product for modeling EDFA

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188687A (en) * 1989-11-27 1991-08-16 American Teleph & Telegr Co <Att> Erbium dope fiber amplifier
JPH03293788A (en) * 1990-04-12 1991-12-25 Nippon Telegr & Teleph Corp <Ntt> Optical fiber type laser
JPH0437728A (en) * 1990-06-01 1992-02-07 Nippon Telegr & Teleph Corp <Ntt> Erbium-doped optical fiber, its exciting method and optical amplifier
JPH04184427A (en) * 1990-11-20 1992-07-01 Toshiba Corp Optical fiber transmission system
JPH053356A (en) * 1991-06-24 1993-01-08 Nec Corp Optical fiber amplifier
JPH06318755A (en) * 1993-03-11 1994-11-15 Hitachi Cable Ltd Light amplifier
JPH09230400A (en) * 1996-02-26 1997-09-05 Fujitsu Ltd Optical fiber amplifier
JPH1022560A (en) * 1996-07-02 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> Q-switch optical fiber laser
JPH10163554A (en) * 1996-11-27 1998-06-19 Furukawa Electric Co Ltd:The Optical fiber amplifier
JPH10294510A (en) * 1997-02-18 1998-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JPH11177172A (en) * 1997-12-08 1999-07-02 Sumitomo Electric Ind Ltd Optical fiber amplifier
JP2000012938A (en) * 1998-06-25 2000-01-14 Mitsubishi Electric Corp Optical amplifier
JP2002530898A (en) * 1998-11-20 2002-09-17 コーニング・インコーポレーテッド L-band amplification using detuned 980 nm excitation light
JP2000244043A (en) * 1999-02-24 2000-09-08 Nec Corp Optical amplifier
JP2002261362A (en) * 2001-03-02 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
JP2002374024A (en) * 2001-06-14 2002-12-26 Fujitsu Ltd Optical amplifier
JP2004006634A (en) * 2002-04-22 2004-01-08 Mitsubishi Cable Ind Ltd Light amplifier
JP2004103929A (en) * 2002-09-11 2004-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
JP2006505958A (en) * 2002-11-08 2006-02-16 フルカワ アメリカ,インコーポレイテッド System, method and computer program product for modeling EDFA

Also Published As

Publication number Publication date
JP5204975B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5779606B2 (en) Amplifying optical fiber and fiber laser device using the same
JP6058669B2 (en) High power fiber pump light source with high brightness and low noise output in the wavelength range of about 974-1030 nm
JP4784406B2 (en) Fiber laser apparatus and laser processing method
JP5124490B2 (en) Fiber laser
JP2007035696A (en) Fiber laser device
JP2014033098A (en) Fiber laser device
JP2007134626A (en) Double-clad fiber, optical fiber amplifier, and fiber laser
JP6294486B2 (en) Ultra high power single mode fiber laser system
JP5204975B2 (en) Fiber amplifier
JP5114388B2 (en) Optical amplifier, fiber laser, and reflected light removal method
JP3875234B2 (en) Thulium doped fiber amplifier
JP5398804B2 (en) Fiber laser equipment
US11276982B2 (en) Optical fiber amplifier for operation in two micron wavelength region
JP6261726B2 (en) Optical amplifier using optical fiber
JP2002252399A (en) Optical amplifier
US8717668B1 (en) Transport fiber amplifier for beam quality improvement
US8059334B2 (en) Optical fiber amplifier system and method
JP4469795B2 (en) Optical amplifier
JP2001274490A (en) Optical amplifier
US20060274404A1 (en) Optical fiber amplifier system and method
Melo et al. Stimulated Raman scattering mitigation through amplified spontaneous emission simultaneous seeding on high power double-clad fiber pulse amplifiers
JP5392073B2 (en) Optical amplifier
KR100311220B1 (en) Driving method for fiber amplifier using multi photon pumping and fiber amplifier using the same
CA2509529C (en) Optical fiber amplifier system and method
JP2020088229A (en) Optical amplifier and optical amplification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R151 Written notification of patent or utility model registration

Ref document number: 5204975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3