JP2008180657A - Method and program for estimating vibration life of aerial electric wire - Google Patents

Method and program for estimating vibration life of aerial electric wire Download PDF

Info

Publication number
JP2008180657A
JP2008180657A JP2007015632A JP2007015632A JP2008180657A JP 2008180657 A JP2008180657 A JP 2008180657A JP 2007015632 A JP2007015632 A JP 2007015632A JP 2007015632 A JP2007015632 A JP 2007015632A JP 2008180657 A JP2008180657 A JP 2008180657A
Authority
JP
Japan
Prior art keywords
electric wire
wire
vibration
overhead
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007015632A
Other languages
Japanese (ja)
Other versions
JP4696083B2 (en
Inventor
Yutaka Katagiri
豊 片桐
Hikari Takigasaki
光 瀧ケ崎
Fuminori Shiga
史則 志賀
Tadahiro Takahashi
忠大 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Power Systems Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, J Power Systems Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2007015632A priority Critical patent/JP4696083B2/en
Publication of JP2008180657A publication Critical patent/JP2008180657A/en
Application granted granted Critical
Publication of JP4696083B2 publication Critical patent/JP4696083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and program for estimating vibration lifetime of an aerial electric wire, capable of estimating the lifetime due to the vibration fatigue of the aerial electric wire mounted to an electric wire gripping section of a discharge clamp. <P>SOLUTION: The vibration frequency of the electric wire is calculated, based on the distance between poles and the relaxation rate of the aerial electric wire, the wind speed generating frequency is calculated based on the wind direction angle and turbulence of the wind, and the wind speed generating frequency is converted into a stress-generating frequency (S102). The stress generated for each wind speed is determined for the stress-generating frequency, the repetition number, until the wire of the aerial electric wire is disconnected is calculated, based on the vibration frequency (S106-S108). The occurrence time of the disconnection, due to vibration fatigue in the electric wire gripping section of the discharge clamp of the aerial electric wire, is predicted from the repetition number (S110). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放電クランプの電線把持部に取り着けられた架空電線が振動疲労を起こして断線するのを予測する架空電線の振動寿命推定方法及び振動寿命推定プログラムに関するものである。   The present invention relates to a vibration life estimation method and a vibration life estimation program for an overhead wire that predicts that an overhead wire attached to a wire gripping portion of a discharge clamp will cause vibration fatigue and break.

例えば、高圧6600V系統の高圧架空電線の線路では、碍子部を有する放電クランプが配電設備の電線支持部の一部材として広く使用されている。放電クランプは、落雷等により電線の絶縁体の被覆が破壊され、その絶縁破壊点に続流アークが集中し、この部位から電線の損傷や溶断を防止するために、絶縁体の被覆を剥ぎ取り導体を露出させた導体部分を把持する電線把持部から電流を大地に放電させるために設けられている。   For example, in a high-voltage 6600V high-voltage overhead electric wire line, a discharge clamp having a lever portion is widely used as a member of a wire support portion of a distribution facility. In the discharge clamp, the insulation of the wire insulation is destroyed by lightning, etc., and the continuation arc concentrates on the insulation breakdown point, and in order to prevent the wire from being damaged or blown, the insulation coating is stripped off. It is provided in order to discharge the current to the ground from the electric wire gripping portion that grips the conductor portion where the conductor is exposed.

この放電クランプの電線把持部には、絶縁体が剥離されて導体がむき出しになった架空電線(以下、電線という)が直接把持されている。一方、電線や放電クランプは風によって振動するため、この繰り返しの振動による曲げ応力が電線把持部に集中する。振動が電線把持部に長時間付与されると、絶縁体剥離部分の導体に損傷等の経年劣化を招き、放置すると破断に至り断線するおそれがある。特に、配電線路の通過ルートが、市街地、住宅密集地、通学路、重要幹線道路など、地域環境に密接した場所にある場合、断線により電線が落下したり、または垂れ下がったりすると感電や物損を含む事故を招く可能性がある。   The electric wire gripping portion of the discharge clamp directly grips an aerial wire (hereinafter referred to as an electric wire) from which the insulator has been peeled and the conductor is exposed. On the other hand, since the electric wire and the discharge clamp vibrate due to the wind, the bending stress due to the repeated vibration concentrates on the electric wire gripping portion. When vibration is applied to the electric wire gripping portion for a long time, the conductor at the part where the insulator is peeled may be deteriorated over time such as damage, and if left untreated, it may break and break. In particular, if the route of the distribution line is close to the local environment, such as urban areas, densely populated houses, school roads, and important trunk roads, if the cable falls or drops due to disconnection, electric shock or property damage may occur. May cause accidents.

そこで、放電クランプの電線把持部における電線の異常を診断し、断線による電線の落下、または垂れ下がりを未然に防止して感電事故や物損事故を防止することが望まれている。   Therefore, it is desired to diagnose an abnormality of the electric wire in the electric wire gripping portion of the discharge clamp and prevent an electric shock accident and a property damage accident by preventing the electric wire from dropping or drooping due to disconnection.

放電クランプの電線把持部の電線の異常を診断する方法として電線の耐振動寿命を推定する方法があり、電線等の所定部位に歪ゲージを貼り付けると共に電線に繰り返し振動を与えて、動歪振幅と耐振寿命の実測値との相関関係を予め得てマスターカーブとして記録し、予測対象の電線の動歪振幅を歪ゲージで検出し、この歪ゲージにより求められた動歪振幅とマスターカーブとを照合し、電線の耐振動寿命を予測する耐振寿命予測方法が知られている(例えば、特許文献1参照)。
特開2003−185551号公報
As a method of diagnosing abnormalities in the electric wire gripping part of the discharge clamp, there is a method of estimating the vibration-resistant life of the electric wire. A strain gauge is attached to a predetermined part of the electric wire, etc. Is obtained in advance and recorded as a master curve, the dynamic strain amplitude of the electric wire to be predicted is detected with a strain gauge, and the dynamic strain amplitude and master curve obtained by this strain gauge are obtained. A vibration-resistant life prediction method that collates and predicts the vibration-resistant life of an electric wire is known (for example, see Patent Document 1).
JP 2003-185551 A

しかし、従来の耐振寿命予測方法によると、データが電線の動歪振幅のみであるため、屋外での風力、風向、風速等の風に関する気象状況(風況条件)が一定でない条件下に晒されて振動している電線の寿命を推定できないという問題がある。   However, according to the conventional anti-vibration life prediction method, since the data is only the dynamic strain amplitude of the electric wire, the weather condition (wind condition) related to wind such as outdoor wind force, wind direction, wind speed, etc. is exposed under non-constant conditions. There is a problem that the life of a vibrating wire cannot be estimated.

本発明の目的は、放電クランプの電線把持部に取り着けられた架空電線の振動疲労による寿命を推定することが可能な架空電線の振動寿命推定方法及びプログラムを提供することにある。   An object of the present invention is to provide a vibration life estimation method and program for an overhead electric wire capable of estimating the lifetime due to vibration fatigue of the overhead wire attached to the electric wire gripping portion of the discharge clamp.

本発明は、上記目的を達成するため、寿命推定対象の架空電線が存在する地域の風況条件に基づいて風速発生頻度を計算し、前記風速発生頻度を応力発生頻度に変換する第1のステップと、前記架空電線の架線条件に基づいて前記架空電線の振動周波数を算出する第2のステップと、前記応力発生頻度と前記振動周波数に基づいて前記架空電線の素線が断線に至るまでの繰り返し回数を計算する第3のステップと、前記繰り返し回数から前記架空電線の放電クランプの電線把持部における振動疲労による断線の発生時期を予測する第4のステップとを含むことを特徴とする架空電線の振動寿命推定方法を提供する。   In order to achieve the above object, the present invention calculates a wind speed generation frequency based on a wind condition in a region where an overhead electric wire subject to life estimation exists, and converts the wind speed generation frequency into a stress generation frequency. And a second step of calculating a vibration frequency of the overhead wire based on the overhead wire condition of the overhead wire, and a repetition until the strands of the overhead wire are broken based on the stress occurrence frequency and the vibration frequency. A third step of calculating the number of times, and a fourth step of predicting the occurrence time of disconnection due to vibration fatigue in the wire gripping portion of the discharge clamp of the overhead wire from the number of repetitions. A vibration life estimation method is provided.

また、本発明は、上記目的を達成するため、コンピュータを、寿命推定対象の架空電線が存在する地域の風況条件に基づいて風速発生頻度を計算し、前記風速発生頻度を応力発生頻度に変換する風況条件処理部、及び、前記風況条件処理部による前記応力発生頻度と前記架空電線の振動周波数に基づいて前記架空電線の素線が断線に至るまでの繰り返し回数を計算し、前記繰り返し回数から前記架空電線の放電クランプの電線把持部における振動疲労による断線の発生時期を予測計算する演算部として機能させるための架空電線の振動寿命推定プログラムを提供する。   In order to achieve the above object, the present invention calculates a wind speed generation frequency based on a wind condition in a region where an overhead electric wire subject to life estimation exists, and converts the wind speed generation frequency into a stress generation frequency. Calculating the number of repetitions until the wire of the overhead wire is broken based on the stress generation frequency and the vibration frequency of the overhead wire by the wind condition processing unit. An overhead electric wire vibration life estimation program for functioning as an arithmetic unit for predicting and calculating the occurrence timing of disconnection due to vibration fatigue in the electric wire gripping portion of the electric discharge clamp of the overhead electric wire from the number of times.

本発明の架空電線の振動寿命推定方法及び振動寿命推定プログラムによれば、放電クランプの電線把持部に取り着けられた架空電線の振動疲労による寿命を推定することが可能になる。   According to the vibration life estimation method and the vibration life estimation program of the overhead electric wire of the present invention, it is possible to estimate the life due to vibration fatigue of the overhead electric wire attached to the electric wire gripping portion of the discharge clamp.

(振動寿命推定システムの構成)
図1は、本発明の実施の形態に係る振動寿命推定システムを示す概略構成図である。
振動寿命推定システム10は、振動寿命推定の処理を行う振動寿命推定装置1と、振動動寿命推定装置1による振動寿命推定の処理に利用されるデータベース部2と、通信線8を介してデータベース部2に接続されたホストコンピュータ3とを備えて構成されている。
(Configuration of vibration life estimation system)
FIG. 1 is a schematic configuration diagram showing a vibration life estimation system according to an embodiment of the present invention.
The vibration life estimation system 10 includes a vibration life estimation device 1 that performs vibration life estimation processing, a database unit 2 that is used for vibration life estimation processing by the vibration dynamic life estimation device 1, and a database unit via a communication line 8. 2 and a host computer 3 connected to 2.

振動寿命推定装置1は、例えば、パーソナルコンピュータを用いることも、専用の装置として構成することもできる。   For example, the vibration life estimation apparatus 1 can be a personal computer or a dedicated apparatus.

データベース部2は、風速毎の発生応力のデータ、S(応力)−N(繰り返し数)曲線のデータ等を格納する不揮発性メモリ、ハードディスクドライブ等の記憶部を備えて構成されている。   The database unit 2 includes a storage unit such as a non-volatile memory and a hard disk drive that store data on the stress generated at each wind speed, data on an S (stress) -N (number of repetitions) curve, and the like.

ホストコンピュータ3は、例えば、パーソナルコンピュータを用いて構成されている。   The host computer 3 is configured using, for example, a personal computer.

振動寿命推定装置1は、オペレータが各種の入力を行う際に用いる入力部4と、入力部4が接続された演算処理部5と、演算処理部5に接続されたディスプレイ6とを備えて構成されている。   The vibration life estimation apparatus 1 includes an input unit 4 used when an operator performs various inputs, an arithmetic processing unit 5 connected to the input unit 4, and a display 6 connected to the arithmetic processing unit 5. Has been.

入力部4は、キーボード及びマウス等の入力デバイスから構成されている。   The input unit 4 includes input devices such as a keyboard and a mouse.

演算処理部5は、振動寿命推定処理を実行するためのプログラムを格納した不揮発性メモリ、ハードディスクドライブ等による記憶部51と、記憶部51に格納されたプログラムに従って処理を実行するCPU52及びその周辺回路等を備えて構成されている。   The arithmetic processing unit 5 includes a non-volatile memory storing a program for executing a vibration life estimation process, a storage unit 51 such as a hard disk drive, a CPU 52 for executing processing according to the program stored in the storage unit 51, and its peripheral circuits Etc. are provided.

ディスプレイ6は、例えば、液晶表示器等を用いて構成されている。   The display 6 is configured using, for example, a liquid crystal display.

(インターフェイス画面)
図2は、振動寿命推定処理の実行時に振動寿命推定装置のディスプレイに表示されるインターフェイス画面を示す図である。
(Interface screen)
FIG. 2 is a diagram illustrating an interface screen displayed on the display of the vibration life estimation apparatus when the vibration life estimation process is executed.

インターフェイス画面7は、推定地域欄71、電線種類入力欄72、終了欄73、データ設定欄74、架線条件入力/寿命推定結果表示欄75、地域表示欄76等を含んでいる。   The interface screen 7 includes an estimated area column 71, an electric wire type input column 72, an end column 73, a data setting column 74, an overhead line condition input / life estimation result display column 75, an area display column 76, and the like.

データ設定欄74は、電柱入力欄74a、風乱れ入力欄74b、主方向(風向角)入力欄74c等を含んでいる。   The data setting column 74 includes a utility pole input column 74a, a wind turbulence input column 74b, a main direction (wind direction angle) input column 74c, and the like.

架線条件入力/寿命推定結果表示欄75は、弛度率入力欄75a、推定寿命表示欄75b、径間長入力欄75c、断線レベル表示欄75d等を含んでいる。   The overhead line condition input / life estimation result display field 75 includes a sag rate input field 75a, an estimated life display field 75b, a span length input field 75c, a disconnection level display field 75d, and the like.

以上の各入力欄への入力は、例えば、オペレータが入力部4を操作して手入力することにより行われる。   The input to the above input fields is performed, for example, by an operator manually operating the input unit 4 to input.

(振動寿命推定システムの動作)
図3は、図1に示す演算処理部の処理を示すフローチャートである。
(Operation of vibration life estimation system)
FIG. 3 is a flowchart showing processing of the arithmetic processing unit shown in FIG.

図4は、風速発生頻度を示す特性図である。   FIG. 4 is a characteristic diagram showing the wind speed occurrence frequency.

図5は、図3のステップS103でデータベースとして読み込まれる「発生応力−想定風速」特性図である。   FIG. 5 is a characteristic diagram of “generated stress—assumed wind speed” read as a database in step S103 of FIG.

図6は、断線回数の計算に用いられる「繰り返し歪−繰り返し回数」特性図である。   FIG. 6 is a characteristic diagram of “repetitive strain−repetition count” used for calculating the number of disconnections.

図7は、図3のステップS107でデータベースとして読み込まれる許容応力の特性図である。   FIG. 7 is a characteristic diagram of allowable stress read as a database in step S107 of FIG.

以下に、図1〜図7を参照して本発明の実施の形態に係る振動寿命推定システムの動作を説明する。   The operation of the vibration life estimation system according to the embodiment of the present invention will be described below with reference to FIGS.

まず、オペレータが入力部4を操作して図2の「推定地域」欄71をクリックし、寿命を推定しようとする電柱が存在する地域を指定する。ここでは、想定地域として図2に示すように、「那須地域」が選択され、地域表示欄76に表示されている。   First, the operator operates the input unit 4 and clicks the “estimated area” column 71 in FIG. 2 to specify the area where the utility pole for which the lifetime is to be estimated exists. Here, as shown in FIG. 2, “Nasu area” is selected as the assumed area and is displayed in the area display column 76.

更に、計算に必要な架線条件として、電線種類、径間長(電柱間距離)、弛度率、電線単位重量、電線地上高、及び風況条件(風の向き、風の乱れ)等を入力部4から入力する(S101)。上記各条件から、以下の関係を把握することができる。   Furthermore, as the overhead wire conditions necessary for the calculation, input the wire type, span length (distance between poles), sag rate, wire unit weight, wire ground height, wind condition (wind direction, wind turbulence), etc. Input from the unit 4 (S101). From the above conditions, the following relationship can be grasped.

(1)電線種類、風の向き→横振れ量、風圧荷重
(2)径間長、弛度率 →電柱間の電線の振動周波数、発生応力変化
(3)風の乱れ →風の変動を数値化
(4)電線単位重量 →風圧荷重、電線の横振れ量
(1) Electric wire type, wind direction → lateral runout, wind pressure load (2) span length, sag rate → electric wire vibration frequency between utility poles, changes in generated stress (3) wind turbulence → wind fluctuation numerical value (4) Weight per unit of wire → Wind pressure load, amount of side deflection of the wire

演算処理部5は、上記(2)の条件に基づいて架線条件処理、すなわち、張力及び振動周波数を計算すると共に、上記(3)に基づいて風況条件処理、すなわち、風速発生頻度を統計的に評価するために、過去数年分(例えば、10年分)の気象データ(例えば、アメダスデータ)から図4に示すように風速発生頻度分布を求め、風速発生頻度分布が近似するワイブル(Weibull)分布の尺度係数(C)形状係数(k)を計算する。図4の場合、約3m/sに風速の発生頻度が集中していることが分かる。上記のように求めた尺度係数(C)と形状係数(k)から、風速に対する発生応力に変換する処理を実行する(S102)。   The arithmetic processing unit 5 calculates the overhead wire condition process, that is, the tension and the vibration frequency based on the condition (2) above, and statistically calculates the wind condition condition process, that is, the wind speed occurrence frequency based on the above (3). In order to evaluate the wind speed generation frequency distribution as shown in FIG. 4 from the weather data (for example, AMeDAS data) for the past several years (for example, 10 years), weibull (Weibull) ) Calculate scale factor (C) shape factor (k) of distribution. In the case of FIG. 4, it can be seen that the generation frequency of the wind speed is concentrated at about 3 m / s. A process of converting the scale factor (C) and the shape factor (k) obtained as described above into the generated stress with respect to the wind speed is executed (S102).

電線が振動疲労による断線に至るには、許容応力を超えた応力が電線に発生したとき、その繰り返し回数が累積することで破壊して断線に至ることから、電線に風が当たり振動する場合には、風速によって風圧荷重が変化することにより発生応力も刻々に変化する。この発生応力の風速毎の大きさは、実験データを基に、風速別の放電クランプの電線把持部での発生応力を求めている。また、その応力の実線路での発生頻度を求めることにより、一定期間の応力の合計累積発生回数を求めることができるので、風の振動によって発生する応力の頻度は、風速の発生頻度から換算している。   In order for a wire to break due to vibration fatigue, when stress exceeding the allowable stress occurs in the wire, the number of repetitions accumulates, causing breakage and breakage. The generated stress changes moment by moment as the wind pressure load changes depending on the wind speed. The magnitude of the generated stress for each wind speed is obtained based on the experimental data and the generated stress at the wire gripping portion of the discharge clamp for each wind speed. In addition, by calculating the frequency of occurrence of the stress on the actual line, the total number of times the stress has been generated over a certain period can be determined, so the frequency of stress generated by wind vibration is converted from the frequency of wind speed. ing.

次に、演算処理部5は、ホストコンピュータ3を介してデータベース部2に接続し、風速毎の発生応力(歪み)のデータを取得する(S103)。発生応力は、図5に示すように、実験データにより、電線が取り着けられた放電クランプの電線把持部に発生する応力を、例えば、秒速0〜40mについて2m/s間隔とし、弛度率1〜8%について1%毎に「発生応力−風速」の関係を予め求めたものである。このデータは、弛度率によって応力が増減し、風速に対する応力が変わることから必要になるものである。なお、本明細書中でいう「取り着ける」とは、部材同士が面接触してゆるみや隙間を生じることなく固定されている状態を示している。   Next, the arithmetic processing unit 5 is connected to the database unit 2 via the host computer 3 and acquires data on the generated stress (strain) for each wind speed (S103). As shown in FIG. 5, the generated stress is, based on experimental data, the stress generated in the electric wire gripping part of the discharge clamp to which the electric wire is attached, for example, at an interval of 2 m / s for 0 to 40 m / s, and a sag rate of 1 The relationship of “generated stress-wind speed” is obtained in advance for every 1% for ˜8%. This data is necessary because the stress increases or decreases depending on the sag rate, and the stress with respect to the wind speed changes. Note that “attachable” in the present specification indicates a state in which members are fixed without causing surface contact and loosening or gaps.

次に、演算処理部5は、張力・グッドマン線図から許容応力(疲労限度応力)を計算し(S104)、図7に示す許容応力特性図を得る。電線の素線の断線が進行すると、残った素線は分担応力が増加するため、許容応力が低下し、応力の発生頻度が増える。電線材料の持つ許容応力は、素線の断線によって架線張力を分担する個々の素線荷重が変化するため、許容応力が低下したときの累積応力も計算する。   Next, the arithmetic processing unit 5 calculates an allowable stress (fatigue limit stress) from the tension / Goodman diagram (S104), and obtains an allowable stress characteristic diagram shown in FIG. As the breakage of the wire of the electric wire proceeds, since the shared stress of the remaining wire increases, the allowable stress decreases and the frequency of occurrence of stress increases. The allowable stress of the electric wire material is calculated by calculating the cumulative stress when the allowable stress decreases because the individual wire load sharing the overhead wire tension changes due to the breakage of the wire.

次に、上記ステップS102で計算した振動周波数と、データベース部2に格納された振動疲労特性(図6に示すマスターカーブであるS−N曲線)とに基づいて、素線が破断して断線に至るまでの振動回数(繰り返し回数)を計算する(S105)。   Next, based on the vibration frequency calculated in step S102 and the vibration fatigue characteristics stored in the database unit 2 (the SN curve which is the master curve shown in FIG. 6), the strand breaks and breaks. The number of times of vibration (number of repetitions) is calculated (S105).

素線が繰り返し曲げ応力によって振動疲労する断線回数は、以下の式(1)により算出するが、応力(繰り返し歪)による断線回数は、素線の疲労試験により求めた図6に示すS−N曲線より割り出すことができるため、ある応力での振動回数の総和が断線回数になる。図6に示す特性は、発生歪εに対応する破断回数nの関係について工場試験を行い、εi=f(ni)の関係を求めることにより作成され、データベースとしてデータベース部2に格納されている。   The number of breaks in which the wires are subjected to vibration fatigue due to repeated bending stress is calculated by the following equation (1). The number of breaks due to stress (repetitive strain) is obtained from the fatigue test of the wires shown in FIG. Since it can be determined from the curve, the total number of vibrations at a certain stress is the number of disconnections. The characteristics shown in FIG. 6 are created by conducting a factory test on the relationship of the number of breaks n corresponding to the generated strain ε, and obtaining the relationship of εi = f (ni), and are stored in the database unit 2 as a database.

Figure 2008180657
(但し、niは、歪εiが作用した回数、Niは、S−N曲線上のiに対応するn値である。)
Figure 2008180657
(Where ni is the number of times the strain εi has been applied, and Ni is the n value corresponding to i on the SN curve.)

繰り返される振動により電線の素線が断線に至るまでの回数は、疲労限度応力線図により、ある応力での破断回数を求めることができるので、風速によって発生する応力を予め実験により求め、振動周波数からは一定期間の振動回数を算出することで、風速発生頻度から換算した応力発生頻度から、ある応力の振動回数合計に対する割合が求まる。このことから、風速によって異なる応力の合計発生回数を累積することにより破断して断線にいたるまでの回数を求めることができる。   The number of times until the wire of the electric wire breaks due to repeated vibrations can be determined from the fatigue limit stress diagram, so the number of breaks at a certain stress can be obtained. Therefore, by calculating the number of vibrations in a certain period, the ratio of the stress to the total number of vibrations can be obtained from the stress frequency calculated from the wind speed frequency. From this, by accumulating the total number of occurrences of different stresses depending on the wind speed, it is possible to obtain the number of times until breaking and breaking.

素線切れが進行すると、未切断の素線で分担する荷重が増加し、素線の断線が加速的に進む可能性がある。そこで、電線サイズ及び素線本数毎に断線に至る振動回数を計算し、この結果に基づいて断線年数を計算する。   As the wire breakage progresses, the load shared by the uncut strands increases, and the breakage of the strands may progress at an accelerated rate. Therefore, the number of vibrations that result in disconnection is calculated for each wire size and the number of strands, and the disconnection years are calculated based on this result.

まず、電線サイズ毎の素線本数(x)を入力(例えば、240SQ:x=1)し、これをパラメータにする(S106)と共に、素線切れで変化する許容歪をデータベース部2から読み込み(S107)、上記ステップS102で求めた振動周波数と上記ステップS104で求めた図7に示す許容応力特性の繰り返し応力とから、素線本数xの電線が破断し断線に至るまでの振動回数を計算する(S108)。この計算は、上記ステップS107〜S109のループにより、x,x−1・・・,1の素線本数について順次実施し、上記ステップS109でx=0が判定されるまで繰り返し実施する。   First, the number of strands (x) for each wire size is input (for example, 240 SQ: x = 1), and this is used as a parameter (S106), and the allowable strain that changes due to strand breakage is read from the database unit 2 ( S107), from the vibration frequency obtained in step S102 and the repetitive stress of the allowable stress characteristic shown in FIG. 7 obtained in step S104, the number of vibrations until the number of wires x breaks and breaks is calculated. (S108). This calculation is sequentially performed for the number of strands x, x−1,..., 1 by the loop of steps S107 to S109, and is repeated until x = 0 is determined in step S109.

上記計算による全ての応力の振動回数は、材料の疲労限度応力(許容応力)を超える応力が発生する場合のみをカウントする。その応力累積発生回数が、データベース部2に格納されているS−N曲線上で断線に至るまでの総回数から、振動疲労による断線年数(電線の施設時点からの年数)を計算する(S110)。また、電線の種類によって異なる素線の断線本数を求めることで、断線発生の初期段階・中期段階・危険段階を求める。   The number of vibrations of all stresses by the above calculation is counted only when a stress exceeding the fatigue limit stress (allowable stress) of the material is generated. From the total number of times that the cumulative number of occurrences of the stress reaches disconnection on the SN curve stored in the database unit 2, the number of years of disconnection due to vibration fatigue (the number of years from the time of the facility of the wire) is calculated (S110). . In addition, by determining the number of wire breaks that differ depending on the type of electric wire, the initial stage, middle stage, and danger stage of the occurrence of disconnection are obtained.

上記ステップS110で算出された断線年数は、演算処理部5によって、図2に示すインターフェイス画面7の推定寿命表示欄75bに表示される(S111)。更に、断線レベル表示欄75dには、素線の断線量に応じた表示(素線が1,2本断線、素線の半分が断線、素線の全てが断線等)がなされる。   The disconnection years calculated in step S110 are displayed in the estimated life display column 75b of the interface screen 7 shown in FIG. 2 by the arithmetic processing unit 5 (S111). Further, in the disconnection level display column 75d, a display corresponding to the disconnection dose of the strands (one or two strands are disconnected, half of the strands are disconnected, all the strands are disconnected, etc.) is displayed.

(実施の形態の効果)
上記した実施の形態によれば、数年分の気象データに基づいて風速発生頻度を計算し、この風速発生頻度を応力発生頻度に変換し、応力発生頻度及び線路の架線条件から求めた振動周波数に基づいて当該箇所の繰り返し回数(振動回数)を計算し、その累積結果から電線が破断して断線に至るまでの寿命を推定するようにしたので、従来は困難であった放電クランプの電線把持部に取り着けられた架空電線の振動疲労による寿命を推定することができる。
(Effect of embodiment)
According to the above-described embodiment, the wind speed occurrence frequency is calculated based on several years of weather data, the wind speed occurrence frequency is converted into the stress occurrence frequency, and the vibration frequency obtained from the stress occurrence frequency and the overhead condition of the track The number of repetitions (vibration frequency) of the relevant part is calculated based on the above, and the life until the wire breaks and breaks is estimated from the accumulated result. The life due to vibration fatigue of the overhead electric wire attached to the part can be estimated.

(実施例1)
次に、本発明の実施例について説明する。
まず、実線路において、電柱高さ、電線の弛み、径間長、風向を実測し、これらの数値を振動寿命推定装置1の記憶部51に格納されている図3に示す処理内容の寿命推定ソフトウェアに入力して計算した結果と、実線路から電線を撤去し、解体調査を実施したものとで検証を行った。
(Example 1)
Next, examples of the present invention will be described.
First, on the actual track, the height of the power pole, the slackness of the electric wire, the span length, and the wind direction are measured, and these values are stored in the storage unit 51 of the vibration life estimation apparatus 1 and the life estimation of the processing content shown in FIG. The verification was performed using the results of calculation input to the software and the results of the dismantling investigation after removing the wires from the actual track.

例えば、径間長が約35mで、電線が径間長に対して約5.0%の弛みをもって架線されていた箇所で、当該箇所の風の乱れを実測データから算出して入力した場合、素線が断線に至る年数を、寿命推定ソフトによって施設開始からの年数で求めたとき、誤差が2年程度で撤去電線の調査結果と整合していることがわかった。これは、撤去電線の解体調査の結果より、約2年寿命が短い計算結果となり、線路運用上厳しい側の予測結果となる。   For example, when the span length is about 35 m and the wire is wired with a slack of about 5.0% with respect to the span length, and the wind turbulence at the location is calculated and input from the measured data, When the number of years until the wire breaks was calculated from the number of years from the start of the facility using the life estimation software, it was found that the error was about two years and was consistent with the survey results of the removed wires. This is a calculation result with a short life of about two years from the result of the dismantling investigation of the removed electric wire, and is a prediction result on the strict side in terms of track operation.

従って、本実施例によれば、電線が取り着けられた放電クランプの電線把持部に風が当たって電線が振動することで発生する振動疲労から電線の断線時期を予測することが可能となり、配電設備の設備保守管理上の電線張替え・点検サイクルの目安を得ることができ、振動疲労により断線に至った場合でも、電線が落下したり、または垂れ下がったりすることによる感電による人身事故・設備損壊・家屋損壊等を未然に防止することができる。   Therefore, according to the present embodiment, it becomes possible to predict the disconnection timing of the electric wire from the vibration fatigue generated when the electric wire vibrates due to the wind hitting the electric wire gripping portion of the discharge clamp to which the electric wire is attached. It is possible to obtain a guideline for the wire replacement / inspection cycle for facility maintenance management of facilities, and even if the wire breaks due to vibration fatigue, personal injury due to electric shock due to dropping or sagging, facility damage, house Damage or the like can be prevented in advance.

[他の実施の形態]
なお、本発明は、上記各実施の形態に限定されず、本発明の技術思想を逸脱あるいは変更しない範囲内で種々な変形が可能である。
[Other embodiments]
The present invention is not limited to the above embodiments, and various modifications can be made without departing from or changing the technical idea of the present invention.

本発明の実施の形態に係る振動寿命推定システムを示す概略構成図である。It is a schematic structure figure showing a vibration life presumption system concerning an embodiment of the invention. 振動寿命推定処理の実行時に測定装置のディスプレイに表示されるインターフェイス画面を示す図である。It is a figure which shows the interface screen displayed on the display of a measuring device at the time of execution of a vibration life estimation process. 図1に示す演算処理部の処理を示すフローチャートである。It is a flowchart which shows the process of the arithmetic processing part shown in FIG. 風速発生頻度を示す特性図である。It is a characteristic view which shows a wind speed generation frequency. 図3のステップS103でデータベースとして読み込まれる「発生応力−想定風速」特性図である。FIG. 4 is a “generated stress—assumed wind speed” characteristic diagram read as a database in step S103 of FIG. 3. 断線回数の計算に用いられる「繰り返し歪−繰り返し回数」特性図である。It is a "repetitive strain-repetition number" characteristic view used for calculation of the number of breaks. 図3のステップS107でデータベースとして読み込まれる許容応力の特性図である。FIG. 4 is a characteristic diagram of allowable stress read as a database in step S107 of FIG.

符号の説明Explanation of symbols

1…振動寿命推定装置、2…データベース部、3…ホストコンピュータ、4…入力部、5…演算処理部、6…ディスプレイ、7…インターフェイス画面、8…通信線、10…振動寿命推定システム、51…記憶部、52…CPU、71…推定地域欄、72…電線種類入力欄、73…終了欄、74…データ設定欄、74a…電柱入力欄、74b…風乱れ入力欄、74c…主方向入力欄、75…架線条件入力/寿命推定結果表示欄、75a…弛度率入力欄、75b…推定寿命表示欄、75c…径間長入力欄、75d…断線レベル表示欄、76…地域表示欄 DESCRIPTION OF SYMBOLS 1 ... Vibration life estimation apparatus, 2 ... Database part, 3 ... Host computer, 4 ... Input part, 5 ... Operation processing part, 6 ... Display, 7 ... Interface screen, 8 ... Communication line, 10 ... Vibration life estimation system, 51 ... Storage section, 52 ... CPU, 71 ... Estimated area column, 72 ... Electric wire type input column, 73 ... End column, 74 ... Data setting column, 74a ... Electric pole input column, 74b ... Wind turbulence input column, 74c ... Main direction input Field 75 ... overhead wire condition input / life estimation result display field, 75a ... sag rate input field, 75b ... estimated life display field, 75c ... span length input field, 75d ... disconnection level display field, 76 ... area display field

Claims (5)

寿命推定対象の架空電線が存在する地域の風況条件に基づいて風速発生頻度を計算し、前記風速発生頻度を応力発生頻度に変換する第1のステップと、
前記架空電線の架線条件に基づいて前記架空電線の振動周波数を算出する第2のステップと、
前記応力発生頻度と前記振動周波数に基づいて前記架空電線の素線が断線に至るまでの繰り返し回数を計算する第3のステップと、
前記繰り返し回数から前記架空電線の放電クランプの電線把持部における振動疲労による断線の発生時期を予測する第4のステップとを含むことを特徴とする架空電線の振動寿命推定方法。
A first step of calculating a wind speed generation frequency based on a wind condition in a region where an overhead electric wire subject to life estimation exists, and converting the wind speed generation frequency into a stress generation frequency;
A second step of calculating a vibration frequency of the overhead electric wire based on an overhead wire condition of the overhead electric wire;
A third step of calculating the number of repetitions until the wire of the overhead wire reaches breakage based on the stress generation frequency and the vibration frequency;
And a fourth step of predicting the occurrence time of disconnection due to vibration fatigue in the electric wire gripping portion of the discharge clamp of the overhead electric wire from the number of repetitions.
前記第1のステップは、前記風況条件として、風向角及び風の乱れを用いることを特徴とする請求項1に記載の架空電線の振動寿命推定方法。   2. The method for estimating a vibration life of an overhead electric wire according to claim 1, wherein the first step uses a wind direction angle and wind turbulence as the wind condition. 前記第4のステップは、前記振動疲労断線の発生時期として、施設時から電線の破断に至るまでの年数を算出することを特徴とする請求項1に記載の架空電線の振動寿命推定方法。   The method for estimating the vibration life of an overhead electric wire according to claim 1, wherein the fourth step calculates the number of years from the time of the facility until the breakage of the electric wire as the occurrence time of the vibration fatigue disconnection. コンピュータを、
寿命推定対象の架空電線が存在する地域の風況条件に基づいて風速発生頻度を計算し、前記風速発生頻度を応力発生頻度に変換する風況条件処理部、及び、
前記風況条件処理部による前記応力発生頻度と前記架空電線の振動周波数に基づいて前記架空電線の素線が断線に至るまでの繰り返し回数を計算し、前記繰り返し回数から前記架空電線の放電クランプの電線把持部における振動疲労による断線の発生時期を予測計算する演算部として機能させるための架空電線の振動寿命推定プログラム。
Computer
A wind speed condition processing unit that calculates the wind speed occurrence frequency based on the wind condition condition of the region where the overhead wire to be estimated for life exists, and converts the wind speed occurrence frequency into a stress occurrence frequency, and
Based on the stress generation frequency by the wind condition processing unit and the vibration frequency of the overhead wire, the number of repetitions until the wire of the overhead wire is broken is calculated, and the discharge clamp of the overhead wire is calculated from the number of repetitions. A vibration life estimation program for an overhead electric wire to function as a calculation unit that predicts and calculates the occurrence time of disconnection due to vibration fatigue in the wire gripping portion.
前記演算部は、前記架空電線の架線条件に基づいて前記振動周波数を算出することを特徴とする請求項4に記載の架空電線の振動寿命推定プログラム。   The said operation part calculates the said vibration frequency based on the overhead wire conditions of the said overhead wire, The vibration lifetime estimation program of the overhead wire of Claim 4 characterized by the above-mentioned.
JP2007015632A 2007-01-25 2007-01-25 Vibration life estimation method and vibration life estimation program for overhead wire Expired - Fee Related JP4696083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015632A JP4696083B2 (en) 2007-01-25 2007-01-25 Vibration life estimation method and vibration life estimation program for overhead wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015632A JP4696083B2 (en) 2007-01-25 2007-01-25 Vibration life estimation method and vibration life estimation program for overhead wire

Publications (2)

Publication Number Publication Date
JP2008180657A true JP2008180657A (en) 2008-08-07
JP4696083B2 JP4696083B2 (en) 2011-06-08

Family

ID=39724658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015632A Expired - Fee Related JP4696083B2 (en) 2007-01-25 2007-01-25 Vibration life estimation method and vibration life estimation program for overhead wire

Country Status (1)

Country Link
JP (1) JP4696083B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002271A1 (en) * 2011-06-30 2013-01-03 大電株式会社 Method for selecting flex-resistant conductive material, and cable using same
JP2014174113A (en) * 2013-03-12 2014-09-22 Tokyo Electric Power Co Inc:The Method for predicting probability density distribution of repeated load caused to strung wire implement due to natural wind
CN110006525A (en) * 2019-01-24 2019-07-12 广东省特种设备检测研究院珠海检测院 A kind of defeated aerial pipeline distribution stress system of condition monitoring of length and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347451A (en) * 1993-06-07 1994-12-22 Tokyo Electric Power Co Inc:The Deterioration monitoring method for aerial distribution line
JPH09236673A (en) * 1996-02-28 1997-09-09 Fujita Corp Analysis method for edited data of ground weather observation
JP2003185551A (en) * 2001-12-17 2003-07-03 Sumitomo Wiring Syst Ltd Method for predicting duration of electric wire against vibration or the like
JP2004191360A (en) * 2002-11-28 2004-07-08 Yazaki Corp Flex life prediction method of electric wire and/or electric wire protection member accompanying vibration, its device and its program
JP2006317460A (en) * 2006-06-26 2006-11-24 Central Res Inst Of Electric Power Ind Method of creating contour diagram of physical quantity, and method of estimating physical quantity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347451A (en) * 1993-06-07 1994-12-22 Tokyo Electric Power Co Inc:The Deterioration monitoring method for aerial distribution line
JPH09236673A (en) * 1996-02-28 1997-09-09 Fujita Corp Analysis method for edited data of ground weather observation
JP2003185551A (en) * 2001-12-17 2003-07-03 Sumitomo Wiring Syst Ltd Method for predicting duration of electric wire against vibration or the like
JP2004191360A (en) * 2002-11-28 2004-07-08 Yazaki Corp Flex life prediction method of electric wire and/or electric wire protection member accompanying vibration, its device and its program
JP2006317460A (en) * 2006-06-26 2006-11-24 Central Res Inst Of Electric Power Ind Method of creating contour diagram of physical quantity, and method of estimating physical quantity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002271A1 (en) * 2011-06-30 2013-01-03 大電株式会社 Method for selecting flex-resistant conductive material, and cable using same
JP2014174113A (en) * 2013-03-12 2014-09-22 Tokyo Electric Power Co Inc:The Method for predicting probability density distribution of repeated load caused to strung wire implement due to natural wind
CN110006525A (en) * 2019-01-24 2019-07-12 广东省特种设备检测研究院珠海检测院 A kind of defeated aerial pipeline distribution stress system of condition monitoring of length and method

Also Published As

Publication number Publication date
JP4696083B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
EP2641099B1 (en) Cable fatigue monitor and method thereof
WO2020044660A1 (en) State identification system, state identification device, state identification method, and non-transitory computer readable medium
JPWO2020044655A1 (en) Utility pole deterioration detection system, utility pole deterioration detection device, utility pole deterioration detection method, and program
JP4696083B2 (en) Vibration life estimation method and vibration life estimation program for overhead wire
CN109918854B (en) Composite insulation cross arm durability evaluation method and device
He et al. A method for analyzing stability of tower-line system under strong winds
Zhao et al. Aeolian vibration‐based structural health monitoring system for transmission line conductors
CN111859767A (en) Power transmission line icing risk simulation evaluation method and device
WO2016117041A1 (en) Damage estimation device
JP4997097B2 (en) System and method for measuring tensile support strength
Kalombo et al. Fatigue performance of overhead conductors tested under the same value of H/w parameter
JP5962443B2 (en) Method and apparatus for predicting cable breakage life
JP2009156650A (en) Strength estimation apparatus
Stengel et al. Accelerated electrical and mechanical ageing tests of high temperature low sag (HTLS) conductors
JP2008064610A (en) Deterioration diagnosing method of aerial strip
EP4075109B1 (en) Method and device for monitoring severity of vibration in overhead power lines
Badibanga et al. The effect of mean stress on the fatigue behaviour of overhead conductor function of the H/w parameter
JP2010279202A (en) System for control of utility pole stress
Rong et al. Study on wind-induced fatigue performance of large-span transmission tower-line system considering the combined distribution probability of wind direction and speed
Rocha et al. Influence of 1350 and 6201 aluminum alloys on the fatigue life of overhead conductors–A finite element analysis
JP4191529B2 (en) Crack detection method and crack monitoring method for concrete structures
JP4920361B2 (en) Rotating machine stator coil remaining life evaluation device
JP5726771B2 (en) Anomaly detection system and anomaly detection method for columnar structures
CN112578218A (en) Method and device for identifying broken strands of overhead conductors
JP5694416B2 (en) Branch line status monitoring system and branch line status monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090312

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees