JP2008180400A - Hot-water supply heating device - Google Patents

Hot-water supply heating device Download PDF

Info

Publication number
JP2008180400A
JP2008180400A JP2007012292A JP2007012292A JP2008180400A JP 2008180400 A JP2008180400 A JP 2008180400A JP 2007012292 A JP2007012292 A JP 2007012292A JP 2007012292 A JP2007012292 A JP 2007012292A JP 2008180400 A JP2008180400 A JP 2008180400A
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
heating
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007012292A
Other languages
Japanese (ja)
Inventor
Shigeki Uno
茂岐 宇野
Masazumi Iwanaga
昌純 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007012292A priority Critical patent/JP2008180400A/en
Publication of JP2008180400A publication Critical patent/JP2008180400A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the dimension and weight of an apparatus and to improve efficiency by performing hot-water supply, air heating and bathing by a single heat source by combining a hot water supply heat exchanger and a latent heat recovery heat exchanger. <P>SOLUTION: A hot water supply circuit is formed from a water supply passage 1 to a hot water supply passage 3 through the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15, and a hot water supply circulation circuit 19 is formed so that hot water is taken out from the hot water supply heat exchanger 15, then supplied to a use-side heat exchanger 18, and returned to the latent heat recovery heat exchanger 16 through a circulation pump 17. A receiving pan 16j for receiving the dew condensation water is disposed at a lower part of the latent heat recovery heat exchanger 16, and a neutralizing device 42 is disposed to neutralize and discharge the received water. The neutralizing device 42 is composed of a neutralizer constituted by integrally molding a neutralizing agent charging chamber 42e of a trap structure and a drain passage 42f in a state of partitioned by a partitioning plate 42d, an electrode 42a disposed in a storage chamber, and a bypass circuit j raised higher than the electrode 42a and opened to the atmospheric air at its tip. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バーナの燃焼熱により加熱する給湯用熱交換器と、燃焼排ガスの潜熱を回収する潜熱回収熱交換器を備えた給湯装置に関し、特に、前記給湯用熱交換器と潜熱回収熱交換器で加熱された湯水を循環する給湯循環回路に利用側熱交換器を設けた給湯暖房装置に関するものである。   The present invention relates to a hot water supply heat exchanger that is heated by combustion heat of a burner, and a hot water supply device that includes a latent heat recovery heat exchanger that recovers latent heat of combustion exhaust gas, and in particular, the hot water supply heat exchanger and latent heat recovery heat exchange. The present invention relates to a hot water supply and heating apparatus in which a use side heat exchanger is provided in a hot water supply circulation circuit for circulating hot water heated by a heater.

従来この種の燃焼装置としては、給水路を通して供給される水をバーナの燃焼により加熱して給湯路に給湯する給湯用熱交換器と、入路を通して供給される加熱対象流体を前記バーナの燃焼により加熱して出路に流出する流体用熱交換器とが設けられている給湯装置であって、前記給湯用熱交換器が前記バーナの燃焼排ガスの顕熱を回収する給湯用顕熱熱交換部と、その給湯用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配置され、前記バーナの燃焼排ガスの潜熱を回収する給湯用潜熱熱交換部とを備えて構成され、前記流体用熱交換器が、前記バーナの燃焼排ガスの顕熱を回収する流体用顕熱熱交換部と、その流体用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配置され、前記バーナの燃焼排ガスの潜熱を回収する流体用潜熱熱交換部とを備えて構成され、前記給湯用顕熱熱交換部と流体用顕熱熱交換部とが、互いに熱伝導する状態で一体的に形成され、かつ、前記給湯用潜熱熱交換部と流体用潜熱熱交換部とが、互いに熱伝導する状態で一体的に形成された給湯装置が開示されている(例えば、特許文献1参照)。   Conventionally, as this type of combustion apparatus, a hot water supply heat exchanger that heats water supplied through a water supply channel by combustion of the burner to supply hot water to the hot water supply channel, and a heating target fluid supplied through an inlet channel burns the burner. A hot water supply apparatus provided with a heat exchanger for fluid that is heated by the gas and flows out to the outlet passage, wherein the hot water supply heat exchanger recovers sensible heat of the combustion exhaust gas of the burner And a sensible heat exchange section for hot water supply, arranged downstream of the flow direction of the combustion exhaust gas of the burner, comprising a latent heat heat exchange section for hot water supply for recovering the latent heat of the combustion exhaust gas of the burner, The fluid heat exchanger recovers the sensible heat of the combustion exhaust gas of the burner, and the fluid sensible heat exchange part is located downstream of the fluid sensible heat exchange part in the flow direction of the combustion exhaust gas of the burner. Disposed and the combustion exhaust gas of the burner A fluid latent heat exchange section for recovering the latent heat of the hot water supply, the sensible heat exchange section for hot water supply and the sensible heat exchange section for fluid are integrally formed in a state of conducting heat with each other, and A hot water supply apparatus is disclosed in which the latent heat heat exchange part for hot water supply and the latent heat heat exchange part for fluid are integrally formed in a state of conducting heat to each other (see, for example, Patent Document 1).

また、潜熱回収用熱交換器で潜熱を回収するときに燃焼排ガスが結露して強酸性のドレン水が発生する。このドレン水の排水構成として、潜熱回収用熱交換器の下方にドレン受けを設け、このドレン受けで受けたドレン水を中和器を通して排水するようにしたものがあり、中和器の構造として、内部に中和剤を装填するための略U字状のトラップ構造の装填空間を設け、同装填空間の一方の上端部にドレン水の入口を設け、他方の上端部に中和した処理水を排出する出口を設けたものが開示されている(例えば、特許文献2参照)。   Further, when the latent heat is recovered by the latent heat recovery heat exchanger, the combustion exhaust gas is condensed to generate strongly acidic drain water. As a drain water drainage configuration, there is a drain receiver provided below the heat exchanger for latent heat recovery, and drain water received by this drain receiver is drained through a neutralizer. The treated water is provided with a substantially U-shaped trap structure loading space for charging a neutralizing agent therein, a drain water inlet is provided at one upper end of the loading space, and the other upper end is neutralized. The thing which provided the exit which discharges | emits is disclosed (for example, refer patent document 2).

また、潜熱回収用熱交換器を備えた給湯暖房装置としては、それぞれにガスバーナ、一次熱交換器、二次熱交換器を備えた風呂給湯器と給湯暖房機で構成され、給湯及び風呂注湯時は風呂給湯器を用い、暖房及び風呂追い焚き時は給湯暖房機を用いるようにしたものが開示されている(例えば、特許文献3参照)。
特開2002−267262号公報 特開2001−241764号公報 特開2001−241641号公報
In addition, the hot water heater / heater equipped with a latent heat recovery heat exchanger is composed of a bath water heater and a hot water heater each equipped with a gas burner, primary heat exchanger, and secondary heat exchanger. A bath water heater is used at times, and a hot water heater is used at the time of heating and bathing (for example, see Patent Document 3).
JP 2002-267262 A JP 2001-241764 A JP 2001-241641 A

しかしながら、前記従来の給湯暖房装置は、バーナの燃焼ガスの流出経路中に給湯用熱交換器と流体用熱交換器をそれぞれ配置し、前記給湯用熱交換器に給湯用顕熱熱交換部と給湯用潜熱熱交換部を設け、前記流体用熱交換器に流体用顕熱熱交換部と流体用潜熱熱交換部を設けた構成としているため、顕熱熱交換部と潜熱熱交換部にそれぞれ給湯用熱交換器と流体用熱交換器を一体的に形成する必要があり、給湯用熱交換器及び流体用熱交換器として極めて複雑な構成を強いられるものであった。特に、潜熱熱交換部の構成として、耐食性を高めるためにステンレスパイプと銅管を用いた2重管構造とする場合などはその加工性に課題を有するものであった。   However, the conventional hot water heater is provided with a hot water heat exchanger and a fluid heat exchanger in the combustion gas flow path of the burner, and the hot water heat exchanger includes a sensible heat exchanger for hot water and Since a latent heat exchange unit for hot water supply is provided and the fluid heat exchanger is provided with a sensible heat exchange unit for fluid and a latent heat exchange unit for fluid, the sensible heat exchange unit and the latent heat exchange unit are respectively provided. It is necessary to integrally form the hot water supply heat exchanger and the fluid heat exchanger, and a very complicated configuration is imposed on the hot water supply heat exchanger and the fluid heat exchanger. In particular, when the structure of the latent heat exchange section is a double pipe structure using a stainless steel pipe and a copper pipe in order to improve the corrosion resistance, there is a problem in workability.

また、バーナで加熱される経路として、給湯用と流体用の2つの経路を形成しているた
め、配管構成が複雑になるとともに、単独運転時に運転停止側の熱交換器内の残水の沸騰が発生するという課題を有するものであった。
In addition, since two paths for hot water supply and fluid are formed as the paths heated by the burner, the piping configuration becomes complicated and the boiling of the residual water in the heat exchanger on the shutdown side during single operation It has a problem of generating.

さらに、潜熱回収用熱交換器で発生するドレン水を排出する構成にあっては、中和器で中和された処理水を自然落下で直接排水溝等に排水する構造であるため、排水工事の不備により排水が詰まるとドレン水のエアー置換がうまく行われず潜熱回収用熱交換器受け皿から中和器へドレン水が流れ落ちず、強酸性のドレン水が潜熱回収用熱交換器受け皿から溢れ熱交換器に落ちて腐食を起こす危険性があった。   Furthermore, in the configuration that drains the drainage heat generated by the latent heat recovery heat exchanger, it is structured to drain the treated water neutralized by the neutralizer directly into a drainage ditch, etc. by natural fall. If the drainage is clogged due to inadequate drainage, air replacement of the drain water will not be performed successfully, and the drain water will not flow from the latent heat recovery heat exchanger tray to the neutralizer, and strong acid drain water will overflow from the latent heat recovery heat exchanger tray. There was a risk of falling into the exchanger and causing corrosion.

加えて、能力面においても、従来の大型の給湯器などでは、器具の最小燃焼から最大燃焼までをカバーするバーナのターンダウンレシオ(TDR)を確保することができないので、バーナを複数の燃焼面に分けて構成し、燃焼させる燃焼面の数や、燃焼面に大小がある場合にはそれらの組み合わせ方を切り替えることで、器具の最小燃焼から最大燃焼までをカバーするようになっているが、器具の最大能力はあくまで予め設定された定格能力で決まるもので、定格能力を越えて燃焼させることはできないものであった。大きな能力を必要とする場合は、定格能力の大きな器具を選定して使用する必要があり、その場合、定格能力の大きさによっては種々の制約を受けることがあり、家庭用などではあまり大きな定格能力を有した給湯器はなかった。   In addition, in terms of capacity, conventional large water heaters and the like cannot secure a burner turn-down ratio (TDR) that covers from the minimum combustion to the maximum combustion of the appliance. It is configured to cover the range from the minimum combustion to the maximum combustion of the instrument by switching the number of combustion surfaces to be burned and the combination of those when there are large and small combustion surfaces, The maximum capacity of the appliance is determined only by the preset rated capacity, and cannot be burned beyond the rated capacity. When large capacity is required, it is necessary to select and use a device with a large rated capacity. In that case, there may be various restrictions depending on the size of the rated capacity. There was no hot water heater with the capability.

さらに、上記特許文献3のように2缶3水路方式の給湯風呂暖房装置は、給湯回路と暖房・風呂回路が別々の缶体で構成され、それぞれの缶体にバーナを備えた独立構成となっていたため、暖房運転時には暖房回路を形成する缶体に備えられたバーナの最大燃焼量の範囲内でしか燃焼させることができず、給湯運転時には給湯回路を形成する缶体に備えられたバーナの最大燃焼量の範囲内でしか燃焼させることができないものであった。   Further, as in Patent Document 3, the hot water bath heating apparatus of the two cans and three water channels system is configured with separate hot water supply circuits and heating / bath circuits, and each can body is provided with a burner. Therefore, during the heating operation, it can be burned only within the range of the maximum combustion amount of the burner provided in the can body forming the heating circuit, and during the hot water supply operation, the burner provided in the can body forming the hot water supply circuit can be burned. It could burn only within the range of the maximum amount of combustion.

よって、複数の場所で同時使用が頻繁に行われるような使い方をされる場合は、給湯器を複数台設置することで対応し、用途に応じてそれぞれの給湯器を使い分けるというものであり、設置場所、配管工事、費用面での負担が大きいものであった。   Therefore, when using in such a way that simultaneous use is frequently performed in multiple places, it can be handled by installing multiple water heaters, and each water heater is used properly according to the application. The burden on the location, piping work, and cost was great.

本発明は前記従来の課題を解決するもので、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とし、かつ、加熱経路の加熱源として給湯用バーナと暖房用バーナを併設した一体化構成とすることで、給湯性能を優先しつつ、各機能毎に予め定められた定格能力を有するバーナを所定の条件下で定格能力を超えて燃焼することができる、使い勝手のよい給湯暖房装置を提供する。   The present invention solves the above-mentioned conventional problems, and forms one heating path with a hot water supply heat exchanger and a latent heat recovery heat exchanger, and uses circulating water in the heating path to form a heating circuit or a bath circuit. By adopting a structure for supplying heat, it is possible to configure a use-side heat exchanger that is not related to the heat exchanger for hot water supply and the latent heat recovery heat exchanger. The heating path is mainly composed of a hot water supply circuit, and a hot water supply burner and a heating burner are provided as a heating source for the heating path, giving priority to hot water supply performance. On the other hand, an easy-to-use hot water supply and heating device capable of burning a burner having a rated capacity predetermined for each function in excess of the rated capacity under a predetermined condition is provided.

また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯暖房装置を提供することを目的とする。   In addition, by adopting a single heating path configuration mainly composed of a hot water supply circuit, the configuration for improving the corrosion resistance of the latent heat recovery heat exchanger is solved while solving the problem of residual water boiling in the heat exchanger during single operation. It is an object of the present invention to provide a hot water supply and heating device that is easy and highly efficient and reduces running costs.

さらに、排水工事の不備があっても潜熱回収用熱交換器で発生する強酸性の結露水を確実に中和器に導くことが可能な構成とすることと、中和装置の電極がドレン水につかるとバーナの燃焼を停止することで強酸性の結露水が潜熱回収用熱交換器受け皿から溢れることを防止し、耐久的に問題のない給湯暖房装置を提供することを目的とする。   Furthermore, even if there is a deficiency in drainage work, it is possible to ensure that strongly acidic dew condensation water generated in the heat exchanger for latent heat recovery can be guided to the neutralizer, and the electrode of the neutralizer is drain water. It is an object of the present invention to provide a hot water supply and heating device that is durable and has no problem by stopping the combustion of the burner to prevent overflow of strongly acidic condensed water from the latent heat recovery heat exchanger tray.

前記従来の課題を解決するために、本発明の給湯暖房装置は、給水路より供給される水
をバーナの燃焼により加熱し出湯路に湯水を供給する給湯用熱交換器と、前記バーナの燃焼排ガス経路中に配置し燃焼排ガスの潜熱を回収する潜熱回収用熱交換器とを備え、前記給湯用熱交換器と潜熱回収用熱交換器を直列に接続して、給水路から潜熱回収用熱交換器を通り給湯用熱交換器を経て出湯路に至る給湯回路を形成するとともに、前記給湯熱交換器から取り出し利用側熱交換器に供給した後、循環ポンプを介して前記潜熱回収用熱交換器に戻す給湯循環回路を形成し、前記給湯回路を利用するか、または、給湯循環回路を利用するか、または、給湯回路と給湯循環回路を同時に利用するかを選択できるようにした給湯暖房装置であって、前記潜熱回収用熱交換器の下方に該潜熱回収用熱交換器からの結露水を受ける潜熱回収用熱交換器受け皿を設けるとともに、前記潜熱回収用熱交換器受け皿で受けた結露水を中和して排水する中和装置を設け、前記中和装置は、仕切板で区切られたトラップ構造の中和剤充填室と中和剤充填室のドレン水入り口側に配設した電極と中和した水を排水接続口に導く排水通路と排水通路の一部を電極より高く立ち上げ、先端を大気開放したバイパス回路よりなり、前記中和装置の電極がドレン水につかるとバーナの燃焼を停止するようにしたものである。
In order to solve the above-described conventional problems, a hot water supply and heating apparatus according to the present invention includes a hot water supply heat exchanger that heats water supplied from a water supply channel by combustion of a burner and supplies hot water to a hot water supply channel, and combustion of the burner. A latent heat recovery heat exchanger disposed in the exhaust gas path for recovering the latent heat of the combustion exhaust gas, and connecting the hot water supply heat exchanger and the latent heat recovery heat exchanger in series so that the latent heat recovery heat is supplied from the water supply path. A hot water supply circuit that passes through the exchanger, passes through the heat exchanger for hot water supply and reaches the hot water outlet, is taken out from the hot water heat exchanger and supplied to the use side heat exchanger, and then the heat exchange for latent heat recovery is performed via a circulation pump. A hot water supply and heating device that forms a hot water supply circulation circuit to be returned to the heater and can select whether to use the hot water supply circuit, to use the hot water supply circulation circuit, or to use the hot water supply circuit and the hot water supply circulation circuit at the same time. And the latent A latent heat recovery heat exchanger tray for receiving condensed water from the latent heat recovery heat exchanger is provided below the recovery heat exchanger, and the condensed water received by the latent heat recovery heat exchanger tray is neutralized. A neutralization device for draining is provided, and the neutralization device is configured to trap the neutralized water with the neutralizer filling chamber having a trap structure partitioned by a partition plate and the electrode disposed on the drain water inlet side of the neutralizer filling chamber. The drainage passage leading to the drainage connection port and a part of the drainage passage rise up above the electrode and consist of a bypass circuit with the tip open to the atmosphere, so that the burner combustion stops when the electrode of the neutralizer is drained It is a thing.

上記構成によれば、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯暖房装置を提供することができる。   According to the said structure, it is set as the structure which forms one heating path | route with the heat exchanger for hot water supply, and the heat exchanger for latent heat collection | recovery, and supplies heat quantity to a heating circuit or a bath circuit using the circulating water of the said heating path | route. Therefore, it is possible to configure the use side heat exchanger not related to the hot water supply heat exchanger or the latent heat recovery heat exchanger, and realize the downsizing and weight reduction of the appliance by simplifying the main body configuration including the piping configuration. In addition, it is possible to provide an easy-to-use hot water supply apparatus that prioritizes hot water supply performance by mainly using the hot water supply circuit as the heating path, and by using a single heating path configuration mainly including the hot water supply circuit. Provided is a hot water supply and heating device that eliminates the problem of residual water boiling in the heat exchanger during operation, facilitates the structure for improving the corrosion resistance of the heat exchanger for recovering latent heat, and reduces the running cost with high efficiency. be able to

また、前記潜熱回収用熱交換器の下方に該潜熱回収用熱交換器からの結露水を受ける潜熱回収用熱交換器受け皿を設け、受けた結露水は自然落下で中和装置に導かれる。   In addition, a latent heat recovery heat exchanger tray for receiving condensed water from the latent heat recovery heat exchanger is provided below the latent heat recovery heat exchanger, and the received condensed water is guided to the neutralization device by natural fall.

前記中和装置は、仕切板で区切られたトラップ構造の中和剤充填室で結露水を確実に中和し、中和剤充填室のドレン水入り口側に配設した電極で排水の詰りを検出する。中和した水を排水接続口に導く排水通路の一部を電極より高く立ち上げ、先端を大気開放したバイパス回路を設けることで、排水が詰まった場合でも潜熱回収用熱交換器受け皿で受けた結露水が自然落下する体積の中和装置内空気がバイパス回路から排出され、結露水が中和装置にスムーズに導かれる。   The neutralizer reliably neutralizes condensed water in a trap structure neutralizer filling chamber partitioned by a partition plate, and clogs drainage with an electrode disposed on the drain water inlet side of the neutralizer filling chamber. To detect. Even if the drainage is clogged, a part of the drainage passage that leads neutralized water to the drainage connection port is raised higher than the electrode and the tip is opened to the atmosphere. The volume of air in the neutralizing device where the condensed water naturally falls is discharged from the bypass circuit, and the condensed water is smoothly guided to the neutralizing device.

中和装置内空気が結露水と置換されていくと、やがて中和剤充填室のドレン水入り口側に配設した電極が結露水につかり、排水詰りを検出しバーナの燃焼を停止することができる。この時バイパス回路が電極より高く中和水がバイパス回路から溢れ出ることはない。   When the air in the neutralizer is replaced with condensed water, the electrode installed on the drain water inlet side of the neutralizer filling chamber eventually catches the condensed water, detects clogging, and stops burning of the burner. it can. At this time, the bypass circuit is higher than the electrodes, and the neutralized water does not overflow from the bypass circuit.

本発明の給湯装置は、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができる。   The hot water supply apparatus of the present invention is configured to form one heating path with a hot water supply heat exchanger and a latent heat recovery heat exchanger, and to supply heat to a heating circuit or a bath circuit using circulating water in the heating path. This makes it possible to configure the heat exchanger on the use side that is not related to the heat exchanger for hot water supply or the latent heat recovery heat exchanger, and realizes downsizing and weight reduction of equipment by simplifying the main body configuration including the piping configuration. In addition, it is possible to provide an easy-to-use hot water supply apparatus that prioritizes hot water supply performance by using the hot water supply circuit as a main component of the heating path.

また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯装置を提供することがで
きる。
In addition, by adopting a single heating path configuration mainly composed of a hot water supply circuit, the configuration for improving the corrosion resistance of the latent heat recovery heat exchanger is solved while solving the problem of residual water boiling in the heat exchanger during single operation. It is possible to provide a hot water supply device that is easy and highly efficient with reduced running costs.

さらに、中和装置は、仕切板で区切られたトラップ構造の中和剤充填室と中和剤充填室のドレン水入り口側に配設した電極と中和した水を排水接続口に導く排水通路と排水通路の一部を電極より高く立ち上げ、先端を大気開放したバイパス回路を設け、排水工事の不備があっても潜熱回収用熱交換器で発生する強酸性の結露水を確実に中和器に導くことが可能になり、電極がドレン水につかるとバーナの燃焼を停止するようにすることで、強酸性の結露水が潜熱回収用熱交換器受け皿から溢れることを防止でき、耐久的に問題のない給湯暖房装置を提供することができる。   Further, the neutralizing device includes a trap structure neutralizing agent filling chamber partitioned by a partition plate, an electrode disposed on the drain water inlet side of the neutralizing agent filling chamber, and a drainage passage for leading the neutralized water to a drainage connection port. And a part of the drainage passage is raised higher than the electrode, and a bypass circuit with a tip open to the atmosphere is installed to reliably neutralize strongly acidic dew condensation water generated by the heat exchanger for latent heat recovery even if the drainage work is incomplete It is possible to prevent the strong acid condensation water from overflowing from the heat exchanger tray for latent heat recovery, and it is durable by stopping the combustion of the burner when the electrode is immersed in drain water. It is possible to provide a hot water supply and heating device that is free from problems.

第1の発明は、給水路より供給される水をバーナの燃焼により加熱し出湯路に湯水を供給する給湯用熱交換器と、前記バーナの燃焼排ガス経路中に配置し燃焼排ガスの潜熱を回収する潜熱回収用熱交換器とを備え、前記給湯用熱交換器と潜熱回収用熱交換器を直列に接続して、給水路から潜熱回収用熱交換器を通り給湯用熱交換器を経て出湯路に至る給湯回路を形成するとともに、前記給湯熱交換器から取り出し利用側熱交換器に供給した後、循環ポンプを介して前記潜熱回収用熱交換器に戻す給湯循環回路を形成し、前記給湯回路を利用するか、または、給湯循環回路を利用するか、または、給湯回路と給湯循環回路を同時に利用するか、を選択できるようにした給湯暖房装置であって、前記潜熱回収用熱交換器の下方に該潜熱回収用熱交換器からの結露水を受ける潜熱回収用熱交換器受け皿を設けるとともに、前記潜熱回収用熱交換器受け皿で受けた水を中和して排水する中和装置を設け、前記中和装置は、仕切板で区切られたトラップ構造の中和剤充填室と中和剤充填室のドレン水入り口側に配設した電極と中和した水を排水接続口に導く排水通路と排水通路の一部を電極より高く立ち上げ、先端を大気開放したバイパス回路よりなり、前記中和装置の電極がドレン水につかるとバーナの燃焼を停止するようにしたことを特徴とするものである。   A first aspect of the invention is a hot water supply heat exchanger that heats water supplied from a water supply channel by combustion of a burner and supplies hot water to a hot water supply channel, and recovers the latent heat of the combustion exhaust gas disposed in the combustion exhaust gas path of the burner. A latent heat recovery heat exchanger that connects the hot water supply heat exchanger and the latent heat recovery heat exchanger in series, passes through the latent heat recovery heat exchanger from the water supply channel, passes through the hot water supply heat exchanger, Forming a hot water supply circuit leading to the passage, and forming a hot water supply circulation circuit that is taken out from the hot water heat exchanger and supplied to the use side heat exchanger and then returned to the latent heat recovery heat exchanger via a circulation pump. A hot water heater / heater capable of selecting whether to use a circuit, to use a hot water supply circulation circuit, or to use a hot water supply circuit and a hot water supply circulation circuit at the same time, the latent heat recovery heat exchanger The heat exchanger for recovering the latent heat below A latent heat recovery heat exchanger tray for receiving condensed water from the vessel, and a neutralizing device for neutralizing and draining the water received by the latent heat recovery heat exchanger tray, A neutralization agent filling chamber with a trap structure separated by a plate, an electrode disposed on the drain water inlet side of the neutralization agent filling chamber, a drainage passage for guiding neutralized water to a drainage connection port, and a part of the drainage passageway as an electrode It comprises a bypass circuit which is raised higher and the tip is opened to the atmosphere, and burner combustion is stopped when the electrode of the neutralizer is immersed in drain water.

そして、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯暖房装置を提供することができる。   And by forming one heating path with the heat exchanger for hot water supply and the heat exchanger for latent heat recovery, and using the circulating water of the heating path to supply heat to the heating circuit and the bath circuit, Enables the configuration of the use side heat exchanger that is not related to the hot water supply heat exchanger or the latent heat recovery heat exchanger. By using a hot water supply circuit as a main route, it is possible to provide an easy-to-use hot water supply device that prioritizes hot water supply performance, and by adopting a single heating route configuration mainly consisting of a hot water supply circuit, It is possible to provide a hot water supply and heating device that solves the problem of residual water boiling in the exchanger, facilitates the structure for improving the corrosion resistance of the latent heat recovery heat exchanger, and achieves high efficiency and reduced running costs.

また、前記潜熱回収用熱交換器の下方に該潜熱回収用熱交換器からの結露水を受ける潜熱回収用熱交換器受け皿を設け、受けた結露水は自然落下で中和装置に導かれる。前記中和装置は、仕切板で区切られたトラップ構造の中和剤充填室で結露水を確実に中和し、中和剤充填室のドレン水入り口側に配設した電極で排水の詰りを検出する。   In addition, a latent heat recovery heat exchanger tray for receiving condensed water from the latent heat recovery heat exchanger is provided below the latent heat recovery heat exchanger, and the received condensed water is guided to the neutralization device by natural fall. The neutralizer reliably neutralizes condensed water in a trap structure neutralizer filling chamber partitioned by a partition plate, and clogs drainage with an electrode disposed on the drain water inlet side of the neutralizer filling chamber. To detect.

中和した水を排水接続口に導く排水通路の一部を電極より高く立ち上げ、先端を大気開放したバイパス回路を設けることで、排水が詰まった場合でも潜熱回収用熱交換器受け皿で受けた結露水が自然落下する体積分の中和装置内空気がバイパス回路から排出され、結露水が中和装置にスムーズに導かれる。   Even if the drainage is clogged, a part of the drainage passage that leads neutralized water to the drainage connection port is raised higher than the electrode and the tip is opened to the atmosphere. The amount of air in the neutralizing device for the volume that the condensed water naturally falls is discharged from the bypass circuit, and the condensed water is smoothly guided to the neutralizing device.

中和装置内空気が結露水と置換されていくと、やがて中和剤充填室のドレン水入り口側に配設した電極が結露水につかり、排水詰りを検出しバーナの燃焼を停止することができる。この時バイパス回路が電極より高い位置にあり、中和水がバイパス回路から溢れ出る
ことはない。
When the air in the neutralizer is replaced with condensed water, the electrode installed on the drain water inlet side of the neutralizer filling chamber eventually catches the condensed water, detects clogging, and stops burning of the burner. it can. At this time, the bypass circuit is located higher than the electrodes, and the neutralized water does not overflow from the bypass circuit.

第2の発明は、利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器として用い、給湯または暖房の単独利用、あるいは給湯と暖房の同時利用、を選択できるようにしたもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路を用いて給湯と暖房を行うように構成した給湯装置に限定したものであり、給湯と暖房を1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と暖房性能を同時に確保することができる。   2nd invention is used as a heat exchanger for heating which supplies a heat quantity to a heating circuit which has a heating device which performs heating, bathroom drying, etc. as a use side heat exchanger, hot water supply or single use of heating, or hot water supply and heating It can be selected for simultaneous use of the hot water supply device, and is limited to a hot water supply device configured to perform hot water supply and heating using a hot water supply circulation circuit constituted by a hot water supply heat exchanger and a latent heat recovery heat exchanger. Yes, by configuring hot water supply and heating with a single heating path, it is possible to reduce the size and weight of the equipment by simplifying the main body structure including the piping structure, and to increase the efficiency by recovering latent heat, Heating performance can be secured at the same time.

第3の発明は、利用側熱交換器として、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器として用い、給湯または風呂追い焚きの単独利用、あるいは給湯と風呂追い焚きの同時利用、を選択できるようにしたもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路を用いて給湯と風呂追い焚きを行うように構成した給湯装置に限定したものであり、給湯と風呂追い焚きを1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と風呂追い焚き性能を同時に確保することができる。   The third invention is used as a heat exchanger for a bath that supplies heat to a bath circuit that retreats a bath as a use-side heat exchanger, and uses either hot water or bath reheating alone, or hot water and bath reheating. Simultaneous use can be selected, and is limited to a hot water supply device configured to perform hot water supply and bath retreat using a hot water circulation circuit configured with a heat exchanger for hot water supply and a heat exchanger for latent heat recovery By configuring hot water supply and bath reheating with a single heating path, it is possible to reduce the size and weight of the equipment by simplifying the main body structure including the piping structure, and to improve efficiency by recovering latent heat. Hot water supply performance and bath reheating performance can be secured at the same time.

第4の発明は、利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器と、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を設け、給湯または暖房または風呂追い焚きの単独利用、あるいは給湯と暖房と風呂追い焚きのうち少なくとも2つの同時利用、を選択できるようにしたもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路を用いて給湯と暖房と風呂追い焚きを行うように構成した給湯装置に限定したものであり、給湯と暖房と風呂追い焚きを1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と暖房性能と風呂追い焚き性能を同時に確保することができる。   4th invention supplies heat quantity to the heat circuit for heating which supplies a heat quantity to the heating circuit which has a heating apparatus which performs heating, bathroom drying, etc. as a use side heat exchanger, and the bath circuit which retreats a bath This is a heat exchanger for hot water supply that can be used to select either single use of hot water supply or heating or bath reheating, or at least two simultaneous use of hot water supply and heating and reheating bath. And a hot water supply device configured to perform hot water supply, heating, and bath reheating using a hot water supply circulation circuit that is configured by a heat exchanger for recovering latent heat, and hot water supply, heating, and bath reheating are configured as one heating path. In addition to realizing a smaller and lighter appliance by simplifying the main body configuration including the piping configuration, it also improves hot water supply performance, heating performance, and bath reheating performance by improving efficiency through latent heat recovery. It can be secured at the time.

第5の発明は、利用側熱交換器として複数個設ける場合、給湯循環回路に対して各熱交換器を並列に接続し、給湯用熱交換器から供給される湯水温度が略同一となるようにしたもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路に複数の利用側熱交換器を並列に接続して使用することで、給湯循環回路の通路抵抗を小さくすることができ、循環ポンプの小型化・軽量化が可能になる。   In the fifth aspect of the present invention, when a plurality of use side heat exchangers are provided, the heat exchangers are connected in parallel to the hot water supply circulation circuit so that the hot water temperatures supplied from the hot water supply heat exchangers are substantially the same. By using a plurality of usage-side heat exchangers connected in parallel to a hot water supply circulation circuit composed of a hot water supply heat exchanger and a latent heat recovery heat exchanger, the passage resistance of the hot water supply circulation circuit is reduced. Therefore, the circulation pump can be reduced in size and weight.

第6の発明は、潜熱回収用熱交換器は、複数のステンレス綱製プレートフィンを貫通してステンレス綱製の受熱管を並設するとともに、前記受熱管に内通させて銅製の通水管を配設し、前記通水管の入水口を集合させて1つの入水経路を形成する入水ヘッダーと、前記通水管の出水口を集合させて1つの出水ヘッダーを設けることで、給水路より供給される水を複数の通水管経路を介して給湯用熱交換器に供給し、その過程で燃焼排ガスの潜熱を回収するようにしたもので、給水路より供給される1つの加熱経路で構成することで、受熱管と通水管の並設構成が簡素化できるとともに、通水管の入水口と出水口を入水ヘッダーと出水ヘッダーで集合させることにより潜熱回収用熱交換器内を複数の通水経路を介して通水することができ、給湯循環回路の通路抵抗を小さくすることができ、循環ポンプの小型化・軽量化が可能になる。   According to a sixth aspect of the present invention, the latent heat recovery heat exchanger has a stainless steel heat receiving pipe arranged in parallel through a plurality of stainless steel plate fins, and a copper water pipe is inserted through the heat receiving pipe. It is supplied from the water supply path by arranging and providing a water inlet header that collects the water inlets of the water pipe to form one water inlet path, and a water outlet header that gathers the water outlets of the water pipe and collects the water outlets. Water is supplied to the hot water supply heat exchanger via a plurality of water pipe paths, and the latent heat of the combustion exhaust gas is recovered in the process, and it is configured by one heating path supplied from the water supply path. In addition to simplifying the parallel arrangement of the heat receiving pipe and the water pipe, the water inlet and outlet of the water pipe are gathered by the water inlet header and the water outlet header so that the latent heat recovery heat exchanger can be routed through multiple water passages. Hot water supply It is possible to reduce the flow resistance of the ring circuit, it can be reduced in size and weight of the circulating pump.

第7の発明は、給水路より供給される水を潜熱回収用熱交換器及び給湯用熱交換器を迂回して出湯路に供給するバイパス通路を設け、前記バイパス通路は給湯循環回路の上流側の給水路より水を供給し、給湯用熱交換器で加熱された高温水と混合して所望の湯水を出湯路より供給するようにしたもので、給水路より供給される水の一部を潜熱回収用熱交換
器及び給湯用熱交換器を経由して加熱し、残りの給水の一部をバイパス通路より前記加熱水に混合して所望の湯水を確保する構成とすることで、加熱水を高温にすることができ、給湯用熱交換器内の湯温を上昇させることで、熱交換器での結露を防止し耐久性の向上を図ることができる。
In a seventh aspect of the present invention, there is provided a bypass passage for bypassing the water supplied from the water supply passage to bypass the latent heat recovery heat exchanger and the hot water supply heat exchanger to the outlet hot water passage, and the bypass passage is upstream of the hot water supply circulation circuit. The water is supplied from the water supply channel, mixed with the high temperature water heated by the heat exchanger for hot water supply, and the desired hot water is supplied from the hot water supply channel. Heating via a heat exchanger for latent heat recovery and a heat exchanger for hot water supply, and a part of the remaining water supply is mixed with the heating water from the bypass passage to secure desired hot water, By increasing the temperature of the hot water in the heat exchanger for hot water supply, it is possible to prevent dew condensation in the heat exchanger and improve durability.

第8の発明は、出湯路より供給される湯水を利用側熱交換器の二次側である風呂回路に供給する注湯回路を設け、前記注湯回路はバイパス通路の下流側の出湯路より混合された湯水を供給するようにしたもので、潜熱回収用熱交換器と給湯用熱交換器で効率よく加熱された湯水をバイパス通路より供給される水と混合して所望の湯水を確保した後、注湯回路より風呂回路に供給することで、効率のよい風呂運転が可能になる。   8th invention provides the pouring circuit which supplies the hot water supplied from the hot water supply path to the bath circuit which is the secondary side of a utilization side heat exchanger, and the said pouring circuit is from the hot water supply path downstream of a bypass channel. Mixed hot water was supplied, and the hot water efficiently heated by the heat exchanger for latent heat recovery and the heat exchanger for hot water supply was mixed with the water supplied from the bypass passage to secure the desired hot water. Later, by supplying the bath circuit from the pouring circuit, efficient bath operation becomes possible.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1において、まず給水路1より供給される水をバーナ2の燃焼により加熱し所定の温度に上昇した後、出湯路3に供給し、前記給水路1と出湯路3を連通して形成したバイパス通路4から給水路1より供給される水の一部をバイパス制御弁5を介して供給することで所望の湯水に調整し、給湯栓6より出湯する給湯回路を構成している。
(Embodiment 1)
In FIG. 1, first, water supplied from a water supply path 1 is heated by combustion of a burner 2 to rise to a predetermined temperature, then supplied to a hot water supply path 3, and the water supply path 1 and the hot water supply path 3 are formed in communication with each other. A part of water supplied from the water supply channel 1 from the bypass passage 4 is supplied through the bypass control valve 5 to adjust to a desired hot water, and a hot water supply circuit for discharging hot water from the hot water tap 6 is configured.

ここで、バーナ2はガス元電磁弁7、ガス比例弁8、ガス切替弁9が配設されたガス供給路10より燃料が供給され、燃焼用ファン11より燃焼用空気が供給されて、予め定められたシーケンスに従い燃焼動作が行われる。   Here, the burner 2 is supplied with fuel from a gas supply passage 10 provided with a gas source solenoid valve 7, a gas proportional valve 8, and a gas switching valve 9, and supplied with combustion air from a combustion fan 11, in advance. A combustion operation is performed according to a predetermined sequence.

そして、バーナ2の燃焼により発生する燃焼ガスは燃焼室12を通って排気通路13を経由し排気口14から器具外に排出される。この燃焼ガスの排気経路に燃焼ガスの顕熱を回収する給湯用熱交換器15と燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16を配設している。   Then, the combustion gas generated by the combustion of the burner 2 passes through the combustion chamber 12, passes through the exhaust passage 13, and is discharged out of the instrument from the exhaust port 14. A hot water supply heat exchanger 15 that recovers sensible heat of the combustion gas and a latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas are disposed in the exhaust path of the combustion gas.

具体的には、バーナ2の下流側燃焼室12に給湯用熱交換器15を設け、その下流側排気通路13に潜熱回収用熱交換器16を設け、前記給水路1より供給される水を、まず潜熱回収用熱交換器16に供給し燃焼排ガス中の潜熱を回収したのち、給湯用熱交換器15に供給しバーナ2の燃焼により所定の高温水に上昇させて出湯路3に供給する。   Specifically, a hot water supply heat exchanger 15 is provided in the downstream combustion chamber 12 of the burner 2, a latent heat recovery heat exchanger 16 is provided in the downstream exhaust passage 13, and water supplied from the water supply passage 1 is supplied. First, the heat is supplied to the latent heat recovery heat exchanger 16 to recover the latent heat in the combustion exhaust gas, and then supplied to the hot water supply heat exchanger 15 to be heated to a predetermined high temperature water by combustion of the burner 2 and supplied to the hot water outlet 3. .

このように従来の給湯用熱交換器15による熱回収に加え、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16を設けることで、総合的な熱効率を高め省エネを図るものである。   Thus, in addition to heat recovery by the conventional hot water supply heat exchanger 15, by providing the latent heat recovery heat exchanger 16 for recovering the latent heat of the combustion exhaust gas, the overall thermal efficiency is improved and energy saving is achieved.

次に、給湯用熱交換器15の出口から直接利用側熱交換器である暖房用熱交換器18に、潜熱回収用熱交換器16および給湯用熱交換器15で加熱された高温水を供給した後、循環ポンプ17を介して前記潜熱回収用熱交換器16の上流側給水路1に戻し、潜熱回収用熱交換器16から給湯用熱交換器15を通り暖房用熱交換器18に至る給湯循環回路19を構成している。   Next, high-temperature water heated by the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15 is supplied from the outlet of the hot water supply heat exchanger 15 to the heating heat exchanger 18 which is a direct use side heat exchanger. After that, it is returned to the upstream water supply channel 1 of the latent heat recovery heat exchanger 16 via the circulation pump 17 and passes from the latent heat recovery heat exchanger 16 through the hot water supply heat exchanger 15 to the heating heat exchanger 18. A hot water supply circulation circuit 19 is configured.

この給湯循環回路19は、給湯用熱交換器15の出口から直接利用側熱交換器に温水を供給するようにしているため、バーナ2で加熱された高温の湯水を利用して利用側負荷に熱量を供給することが可能であり、本実施の形態で説明する暖房回路などに用いると最適である。   Since the hot water supply circulation circuit 19 supplies hot water directly from the outlet of the hot water supply heat exchanger 15 to the use side heat exchanger, the hot water supplied from the burner 2 is used as a load on the use side. The amount of heat can be supplied, and it is most suitable when used for the heating circuit described in this embodiment.

そして、給湯回路3、給湯循環回路19への熱量供給源である給湯用熱交換器15の加
熱用バーナ2は、給湯用に設定された定格燃焼入力を有する第1バーナ2Aと暖房用に設定された定格燃焼入力を有する第2バーナ2Bで構成されており、それぞれの負荷要求に応じて定格燃焼入力範囲内で燃焼するようになっている。
The heating burner 2 of the hot water supply heat exchanger 15 which is a heat supply source for the hot water supply circuit 3 and the hot water supply circulation circuit 19 is set for heating with the first burner 2A having a rated combustion input set for hot water supply. The second burner 2B having the rated combustion input is configured to burn within the rated combustion input range according to each load requirement.

つまり、給湯運転時には第1バーナ2Aが燃焼可能な定格入力範囲内で給湯負荷に応じて燃焼量が制御され、暖房運転時には第2バーナ2Bが燃焼可能な定格入力範囲内で暖房負荷に応じて燃焼量が制御され、風呂運転時には第1バーナ2Aが燃焼可能な定格入力範囲内で給湯と風呂の同時運転をしたとき給湯性能に支障がでない範囲で設定された風呂用の定格入力範囲内で燃焼量が制御される。   That is, during the hot water supply operation, the combustion amount is controlled according to the hot water supply load within the rated input range in which the first burner 2A can combust, and during the heating operation, according to the heating load within the rated input range in which the second burner 2B can combust. Within the rated input range for the bath, which is set within the range where the hot water supply performance is not affected when the hot water and the bath are operated simultaneously within the rated input range where the first burner 2A can burn during bath operation. The amount of combustion is controlled.

この各機能毎に設定された定格燃焼入力範囲内で運転する状態を定格運転モードといい、従来の2缶3水路方式の給湯風呂暖房装置は前記定格運転モードでの運転しかできなかった。   The state of operation within the rated combustion input range set for each function is referred to as a rated operation mode, and the conventional two-can three-water channel hot water bath heater can only be operated in the rated operation mode.

つまり、従来の給湯風呂暖房装置は、給湯風呂回路と暖房回路が別々の缶体で構成され、それぞれの缶体にバーナを備えた独立構成となっていたため、暖房運転時には暖房回路を形成する缶体に備えられたバーナの最大燃焼量の範囲内でしか燃焼させることがでず、給湯運転時には給湯回路を形成する缶体に備えられたバーナの最大燃焼量の範囲内でしか燃焼させることができないものであった。   In other words, in the conventional hot water bath heating device, the hot water bath circuit and the heating circuit are composed of separate can bodies, and each can body has an independent configuration with a burner. It can be burned only within the range of the maximum combustion amount of the burner provided in the body, and can be burned only within the range of the maximum combustion amount of the burner provided in the can body forming the hot water supply circuit during hot water supply operation. It was impossible.

本実施の形態においては、上記した如く、給湯用熱交換器15、潜熱回収用熱交換器16で加熱された湯水を直接給湯用として用いるとともに、給湯循環回路19を形成しその循環水を利用して暖房回路20と風呂回路28に熱量を供給する1缶3水路方式とし、給湯用熱交換器15を加熱するバーナ2として、予め定格入力を設定した第1バーナ2Aと第2バーナ2Bを併設一体化した構成としているため、定格運転モードでの運転はもちろんのこと、所定の条件下ではそれぞれの機能における定格入力を超えた特別運転モードでの運転も可能になる。   In the present embodiment, as described above, the hot water heated by the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16 is directly used for hot water supply, and the hot water circulation circuit 19 is formed and the circulating water is used. As a burner 2 that heats the heat exchanger 15 for hot water supply, the first burner 2A and the second burner 2B that are set in advance with the rated input are used. Because of the integrated configuration, it is possible to operate not only in the rated operation mode but also in the special operation mode exceeding the rated input in each function under a predetermined condition.

暖房回路20は、暖房用熱交換器18の2次側に放熱機21等の負荷を接続して閉回路を形成し、暖房用循環ポンプ22で循環させることにより、前記暖房用熱交換器18で給湯循環回路19より供給される高温水と熱交換して暖房熱量を確保するようにしている。   The heating circuit 20 is connected to a load such as a radiator 21 on the secondary side of the heating heat exchanger 18 to form a closed circuit, and is circulated by the heating circulation pump 22, whereby the heating heat exchanger 18. Thus, heat is exchanged with the high-temperature water supplied from the hot water supply circuit 19 so as to ensure the amount of heating heat.

以上のように構成された給湯暖房装置について、以下その動作、作用を説明する。   The operation and action of the hot water heater configured as described above will be described below.

まず、給湯運転時には、給湯栓6を開くと給水路1に配設した給水側流量センサー23が通水を検知し、この通水信号で燃焼用ファン11が動作し同時にガス元電磁弁7、ガス比例弁8が開き、バーナ2Aに燃料と燃焼用空気が供給されて着火動作により燃焼が開始する。このバーナ2Aの燃焼開始により発生した燃焼ガスは燃焼室12から排気通路13を経由して排気口14より排出される。この燃焼ガスの排気動作の過程において燃焼室12に配設した給湯用熱交換器15と排気通路13に配設した潜熱回収用熱交換器16で給水路1より供給される水が加熱される。   First, at the time of hot water supply operation, when the hot water tap 6 is opened, the water supply side flow rate sensor 23 disposed in the water supply passage 1 detects water flow, and the combustion fan 11 is operated by this water flow signal and simultaneously the gas source solenoid valve 7, The gas proportional valve 8 is opened, fuel and combustion air are supplied to the burner 2A, and combustion is started by an ignition operation. Combustion gas generated by the combustion start of the burner 2 </ b> A is discharged from the exhaust port 14 through the exhaust passage 13 from the combustion chamber 12. In the process of exhausting the combustion gas, the water supplied from the water supply passage 1 is heated by the hot water supply heat exchanger 15 disposed in the combustion chamber 12 and the latent heat recovery heat exchanger 16 disposed in the exhaust passage 13. .

給湯用熱交換器15で所定の温度まで加熱された湯水は、前記給湯用熱交換器15と潜熱回収用熱交換器16を迂回するように給水路1と出湯路3を連通して設けたバイパス通路4に配設したバイパス制御弁5により入水側の水と混合される。   The hot water heated to a predetermined temperature by the hot water supply heat exchanger 15 is provided by connecting the hot water supply path 1 and the hot water supply path 3 so as to bypass the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16. The water is mixed with water on the incoming side by a bypass control valve 5 disposed in the bypass passage 4.

混合された湯は遠隔操作用リモコン24で設定した給湯設定温度になるよう出湯サーミスター25の信号によりバイパス制御弁5の開度を調整し、給湯接続口26を経て給湯栓6より給湯される。   The opening of the bypass control valve 5 is adjusted by a signal from the hot water thermistor 25 so that the mixed hot water reaches a hot water supply set temperature set by the remote control remote controller 24, and hot water is supplied from the hot water tap 6 through the hot water connection port 26. .

このとき、給湯栓6が複数箇所設置されており、この複数の給湯栓6から同時に出湯された場合は、バーナ2Aが定格入力の最大燃焼量で燃焼したとしても遠隔操作用リモコン24で設定した給湯設定温度まで上昇しないことがある。   At this time, a plurality of hot-water taps 6 are installed, and when the hot water is discharged from the plurality of hot-water taps 6 at the same time, even if the burner 2A burns at the maximum combustion amount of the rated input, the remote control 24 for remote operation is set. The hot water supply temperature may not rise.

つまり、複数の給湯栓6で同時使用されると、給湯用熱交換器15の通水量が増大してバーナ2Aの定格入力では所定の温度まで加熱することができない能力不足状態となる。   In other words, when used simultaneously with a plurality of hot water taps 6, the amount of water flow through the hot water heat exchanger 15 increases, resulting in an insufficiency state that cannot be heated to a predetermined temperature with the rated input of the burner 2A.

このような場合、従来であれば使用箇所を制限してバーナ2Aの定格能力範囲内で使用しなければならなかった。そこで、本実施の形態では、バーナ2Aが定格入力の最大燃焼量で燃焼しても給湯用熱交換器15の出口温度が所定の温度まで上昇しない場合は、給湯循環回路19の加熱用バーナであるバーナ2Bの燃焼を開始させ、バーナ2Aとバーナ2Bを同時燃焼させる特別運転モードに切り替えて給湯用熱交換器15を加熱することで、複数の給湯栓6で同時使用された場合でも所望の湯温を確保するようにしている。   In such a case, conventionally, it has been necessary to use within the rated capacity range of the burner 2A by restricting the use location. Therefore, in the present embodiment, if the outlet temperature of the hot water supply heat exchanger 15 does not rise to a predetermined temperature even when the burner 2A burns at the maximum combustion amount of the rated input, the heating burner of the hot water supply circulation circuit 19 Even if the burner 2B is used simultaneously by a plurality of hot water taps 6 by starting combustion of a certain burner 2B and switching to a special operation mode in which the burner 2A and the burner 2B are burned simultaneously to heat the hot water heat exchanger 15 The hot water temperature is ensured.

そして、特別運転モードは所定の期間を限定して燃焼可能とし、所定の期間が終了した時点、または、それ以内に給湯負荷がバーナ2Aの定格能力範囲内に減少した時点で解除し、通常の定格運転モードに戻すようにしている。この定格入力を超えて運転する特別運転モードの期間を限定することで、器具に表示されるそれぞれの能力表示、例えば、給湯能力表示、暖房能力表示、風呂能力表示との整合性が図れるものである。   The special operation mode is limited to a predetermined period and can be combusted. When the predetermined period ends, or when the hot water supply load decreases within the rated capacity range of the burner 2A within the predetermined period, the special operation mode is released. Return to the rated operation mode. By limiting the period of the special operation mode that operates beyond this rated input, it is possible to achieve consistency with each capacity display displayed on the appliance, for example, a hot water supply capacity display, a heating capacity display, and a bath capacity display. is there.

このように、給湯単独運転を選択する場合は、遠隔操作用リモコン24で所望の温度を設定し給湯栓6を開くことで、給湯負荷に応じて自動的に定格運転モードと特別運転モードを選択して運転を行うため、複数の給湯栓6で同時使用された場合でも設定された湯温の湯水を確保することができる。   As described above, when selecting the hot water supply single operation, the rated operation mode and the special operation mode are automatically selected according to the hot water supply load by setting a desired temperature with the remote control remote controller 24 and opening the hot water tap 6. Therefore, even if the hot water taps 6 are used at the same time, hot water having a set hot water temperature can be secured.

次に暖房運転時には、放熱機21等の暖房端末装置に内蔵した制御器(図示せず)の運転指令で、暖房回路20に設けた暖房用循環ポンプ22が駆動し、この運転指令に連動して給湯循環回路19の湯水を循環させる循環ポンプ17が駆動し、同時にバーナ2Bの着火動作により燃焼が開始する。このバーナ2Bの燃焼開始により発生した燃焼ガスは燃焼室12から排気通路13を経由して排気口14より排出される。   Next, at the time of heating operation, the heating circulation pump 22 provided in the heating circuit 20 is driven by an operation command of a controller (not shown) built in the heating terminal device such as the radiator 21, and the operation command is linked. Then, the circulation pump 17 for circulating the hot water in the hot water supply circulation circuit 19 is driven, and at the same time, combustion is started by the ignition operation of the burner 2B. The combustion gas generated by the start of combustion of the burner 2B is discharged from the exhaust port 14 via the exhaust passage 13 from the combustion chamber 12.

この燃焼ガスの排気動作の過程において燃焼室12に配設した給湯用熱交換器15と排気通路13に配設した潜熱回収用熱交換器16で給水路1より供給される水が加熱される。   In the process of exhausting the combustion gas, the water supplied from the water supply passage 1 is heated by the hot water supply heat exchanger 15 disposed in the combustion chamber 12 and the latent heat recovery heat exchanger 16 disposed in the exhaust passage 13. .

給湯用熱交換器15で加熱された湯水は循環ポンプ17で暖房用熱交換器18に供給され、水−水熱交換構成により熱交換され暖房回路20へ伝熱される。暖房用熱交換器18で受熱した暖房回路20の熱は、放熱機21で温風として放熱される。   Hot water heated by the hot water supply heat exchanger 15 is supplied to the heating heat exchanger 18 by the circulation pump 17, and heat is exchanged by the water-water heat exchange configuration and is transferred to the heating circuit 20. Heat of the heating circuit 20 received by the heating heat exchanger 18 is radiated as warm air by the radiator 21.

そして、暖房用熱交換器18で熱交換された高温水は潜熱回収用熱交換器16の上流側給水路1に戻し、給湯循環回路19を形成し、放熱機21からの暖房運転指令が発せられている間、所定の湯温に維持して循環を継続する。   And the high temperature water heat-exchanged with the heat exchanger 18 for heating returns to the upstream water supply path 1 of the heat exchanger 16 for latent heat collection | recovery, forms the hot-water supply circulation circuit 19, and issues the heating operation command from the radiator 21 While it is being circulated, it is maintained at a predetermined hot water temperature to continue circulation.

このように、暖房用熱交換器18に供給する湯水を給湯用熱交換器15の出口から直接取り出し給湯循環回路19を形成することで、暖房運転に必要な高温水を確保しつつ、暖房用熱交換器18の下流側の給湯循環回路19から分岐して給湯回路3を取り出すことで、給湯使用範囲の湯水を効率的に供給することが可能な給湯優先動作を確保することができる。   In this way, hot water supplied to the heating heat exchanger 18 is directly taken out from the outlet of the hot water supply heat exchanger 15 to form a hot water supply circulation circuit 19, thereby securing high-temperature water necessary for the heating operation and heating. By branching off from the hot water supply circulation circuit 19 on the downstream side of the heat exchanger 18 and taking out the hot water supply circuit 3, it is possible to ensure hot water supply priority operation capable of efficiently supplying hot water in the hot water use range.

ここで、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16は、排ガス経路に対して
給湯用熱交換器15の下流側に位置させ、給水経路に対して給湯用熱交換器15の上流側に位置させて設けており、潜熱回収熱交換器16で余熱された湯水を給湯用熱交換器15で加熱するようにしている。これによりバーナ2Bの燃焼で発生した熱量を効率よく熱交換することができ省エネにつながる。
Here, the latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas is located downstream of the hot water supply heat exchanger 15 with respect to the exhaust gas path, and is upstream of the hot water supply heat exchanger 15 with respect to the water supply path. The hot water remaining in the latent heat recovery heat exchanger 16 is heated by the hot water supply heat exchanger 15. As a result, the amount of heat generated by the combustion of the burner 2B can be efficiently exchanged, leading to energy saving.

また、暖房運転において、部屋の大きさや外気温等で定まる暖房負荷がバーナ2Bの定格入力範囲内で運転される通常運転の場合は問題ないが、暖房運転の初期において部屋が冷え切った状態の場合は、バーナ2Bの定格入力の最大燃焼量で燃焼したとしても部屋の温度が適温に上昇するまでに長い時間が必要になる。   Further, in the heating operation, there is no problem in the normal operation in which the heating load determined by the size of the room, the outside air temperature, etc. is operated within the rated input range of the burner 2B, but the room is cooled in the initial stage of the heating operation. In such a case, even if the burner 2B burns at the maximum combustion amount of the rated input, it takes a long time for the room temperature to rise to an appropriate temperature.

そこで、本実施の形態では、部屋が冷え切った状態で暖房運転を開始するコールドスタート時には、バーナ2Bに加え、給湯回路3の加熱用バーナであるバーナ2Aの燃焼を開始させ、バーナ2Bとバーナ2Aを同時燃焼させる特別運転モードに切り替えて給湯用熱交換器15を加熱することで、コールドスタート時の室温の早期立ち上げ性能を確保するようにしている。   Therefore, in the present embodiment, at the time of cold start in which the heating operation is started in a state where the room is completely cooled, in addition to the burner 2B, combustion of the burner 2A that is a heating burner of the hot water supply circuit 3 is started, and the burner 2B and the burner are started. By switching to the special operation mode in which 2A is simultaneously burned and heating the hot water supply heat exchanger 15, an early start-up performance of the room temperature at the cold start is ensured.

そして、特別運転モードは所定の期間を限定して燃焼可能とし、所定の期間が終了した時点、または、それ以内に暖房負荷がバーナ2Bの定格能力範囲内に減少した時点で解除し、通常の定格運転モードに戻すようにしている。   The special operation mode is limited to a predetermined period to allow combustion, and is released when the predetermined period ends, or when the heating load decreases within the rated capacity range of the burner 2B within the predetermined period. Return to the rated operation mode.

この定格入力を超えて運転する特別運転モードの期間を限定することで、器具に表示されるそれぞれの能力表示、例えば、給湯能力表示、暖房能力表示、風呂能力表示との整合性が図れるものである。   By limiting the period of the special operation mode that operates beyond this rated input, it is possible to achieve consistency with each capacity display displayed on the appliance, for example, a hot water supply capacity display, a heating capacity display, and a bath capacity display. is there.

このように、暖房単独運転を選択する場合は、暖房運転の開始時に暖房負荷に応じて自動的に定格運転モードと特別運転モードを選択して運転を行うため、室温の早期立ち上がり性能を確保することができる。   As described above, when selecting the heating single operation, the rated operation mode and the special operation mode are automatically selected according to the heating load at the start of the heating operation, so that the early start-up performance of the room temperature is ensured. be able to.

次に、上記定格運転モードと特別運転モードの一例として数値を用いて説明すると、通常の給湯暖房装置の暖房定格入力は15000kcal/h、給湯定格入力は45000kcal/hであり、それぞれ独立して設定されている。そして全燃焼入力が60000kcal/hあり、燃焼入力が15000kcal/hある第2バーナ(暖房用バーナ)2Bと、燃焼入力が45000kcal/hある第1バーナ(給湯用バーナ)2Aの少なくともどちらか一方の燃焼を行うことができるものである。   Next, using numerical values as an example of the rated operation mode and the special operation mode, the heating rated input of a normal hot water heater is 15000 kcal / h, and the hot water rated input is 45000 kcal / h, which are set independently. Has been. At least one of a second burner (heating burner) 2B having a total combustion input of 60000 kcal / h, a combustion input of 15000 kcal / h, and a first burner (hot water supply burner) 2A having a combustion input of 45000 kcal / h It can burn.

そして、暖房運転が早朝等の最初に要求されるコールドスタート時には、特別運転モードとして循環ポンプ17と暖房循環ポンプ22を駆動し、燃焼ファン11の空気とガスをバーナ2で混合し燃焼入力60000kcal/hの最大燃焼を開始する。すなわち第1バーナ2Aと第2バーナ2Bを同時に燃焼させることで、燃焼熱が給湯用熱交換器15、潜熱回収用熱交換器16を通過する際に、フィンを介して吸熱管へ多量に伝熱する。   Then, at the time of a cold start where heating operation is first required such as early morning, the circulation pump 17 and the heating circulation pump 22 are driven as a special operation mode, and the air and gas of the combustion fan 11 are mixed by the burner 2 and the combustion input is 60000 kcal / Start maximum combustion of h. That is, by burning the first burner 2A and the second burner 2B simultaneously, when the combustion heat passes through the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16, a large amount of heat is transferred to the heat absorption pipe via the fins. heat.

吸熱管で吸熱した高温水は循環ポンプ17で給湯循環回路19を循環し、暖房用熱交換器18で暖房回路20の温水を加熱することで、暖房の立ち上がり時間を定格燃焼入力15000kcal/hの第2バーナ2Bの単独運転に比べて大幅に短縮することが可能となる。   The hot water absorbed by the heat absorption pipe circulates in the hot water supply circulation circuit 19 by the circulation pump 17 and heats the hot water in the heating circuit 20 by the heating heat exchanger 18 so that the rising time of the heating is set to the rated combustion input of 15000 kcal / h. Compared to the single operation of the second burner 2B, it is possible to significantly shorten the operation.

実際の例を図2で説明すると、暖房運転が早朝等の最初に要求されるコールドスタート時には7000kcal程度の加熱量が必要であり、定格運転モードである15000kcal/hを超えて、特別運転モードの燃焼入力60000kcal/hまでバーナ2を構成する第1バーナ2Aと第2バーナ2Bを同時に燃焼させることで暖房を急速立ち上げすることにより、室温5℃から20℃に到達するまで60分要していたものが30分で実現可能となる。   An actual example will be described with reference to FIG. 2. When the cold start is first required for heating operation, such as early morning, a heating amount of about 7000 kcal is necessary, exceeding the rated operation mode of 15000 kcal / h, and in the special operation mode. The first burner 2A and the second burner 2B constituting the burner 2 are combusted simultaneously up to a combustion input of 60000 kcal / h, so that heating is rapidly started, and it takes 60 minutes to reach 20 ° C from room temperature 5 ° C. Can be realized in 30 minutes.

また、潜熱回収用熱交換器16の構成としては図3に示すように、ステンレス鋼製の側板16a、16bと、前記側板16a、16bの間に配列したステンレス鋼製のプレートフィン16cと、前記側板16a、16bとプレートフィン16cに設けた開口部に貫通させて並設したステンレス鋼製の鞘管16dと、前記鞘管16dに内通させ入水口16eと出水口16fを設けた複数の銅製通水管16gと、前記通水管16gの入水口16eを集合させて1つの入水経路を形成する入水ヘッダー16hと、前記通水管16gの出水口16fを集合させて1つの入水経路を形成する出水ヘッダー16iとを備え、前記通水管16gを排ガス経路内において2重管構造とし、前記入水ヘッダー16h、出水ヘッダー16iを介して並列の熱交換経路を形成するようにしている。   Further, as shown in FIG. 3, the latent heat recovery heat exchanger 16 has a side plate 16a, 16b made of stainless steel, a plate fin 16c made of stainless steel arranged between the side plates 16a, 16b, Stainless steel sheath pipes 16d that are arranged side by side through openings provided in the side plates 16a and 16b and the plate fins 16c, and a plurality of copper pipes that are internally passed through the sheath pipe 16d and are provided with a water inlet 16e and a water outlet 16f. A water inlet pipe 16g, a water inlet header 16h that gathers the water inlet 16e of the water pipe 16g to form one water inlet path, and a water outlet header that gathers the water outlet 16f of the water pipe 16g to form a water inlet path. 16i, and the water pipe 16g has a double pipe structure in the exhaust gas path, and the heat exchange path in parallel through the water inlet header 16h and the water outlet header 16i. And so as to form a.

この構成により、給水路1より供給される水は入水ヘッダー16hより複数の通水管16gを並列に流れて出水ヘッダー16iで集合され、給湯用熱交換器15に供給される。そして、排ガス経路内はステンレス鋼製の鞘管16dで通水管16gを覆っているため、結露水による腐食の問題も抑制され、燃焼排ガス中の潜熱を回収することで熱効率のアップを図ることができる。   With this configuration, the water supplied from the water supply channel 1 flows in parallel through the plurality of water pipes 16g from the water inlet header 16h, gathers at the water outlet header 16i, and is supplied to the hot water supply heat exchanger 15. And since the inside of the exhaust gas path covers the water conduit 16g with a stainless steel sheath tube 16d, the problem of corrosion due to condensed water is also suppressed, and the heat efficiency can be improved by recovering the latent heat in the combustion exhaust gas. it can.

また、通水管16gの入水口16eと出水口16fを入水ヘッダー16hと出水ヘッダー16iで集合させることにより潜熱回収用熱交換器16内を複数の通水経路を介して通水することができ、給湯循環回路19の通路抵抗を小さくすることができ、循環ポンプ17の小型化・軽量化が可能になる。   Further, by collecting the water inlet 16e and the water outlet 16f of the water pipe 16g with the water inlet header 16h and the water outlet header 16i, the latent heat recovery heat exchanger 16 can be passed through a plurality of water passages, The passage resistance of the hot water supply circulation circuit 19 can be reduced, and the circulation pump 17 can be reduced in size and weight.

さらに、通水管16gの一方側で集合して入水経路と出水経路を形成する構成とすることで、通水管16gの配設構成を簡素化し加工性の向上を図ることができる。   Furthermore, the arrangement of the water pipe 16g is simplified by simplifying the arrangement structure of the water pipe 16g by gathering on one side of the water pipe 16g to form the water inlet path and the water outlet path.

以上のように本実施の形態においては、給湯用熱交換器15と潜熱回収用熱交換器16で1つの加熱経路を形成し、前記加熱経路の循環水を利用して利用側負荷回路である暖房回路20に熱量を供給する構成としているため、前記給湯用熱交換器15や潜熱回収用熱交換器16に関連しない利用側熱交換器である暖房用熱交換器18の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器16の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯装置を提供することができる。   As described above, in the present embodiment, one heating path is formed by the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16, and the use side load circuit utilizes the circulating water of the heating path. Since the heat amount is supplied to the heating circuit 20, it is possible to configure the heating heat exchanger 18 that is a use side heat exchanger not related to the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16. The simplification of the main body configuration including the piping configuration can reduce the size and weight of the appliance, and can provide an easy-to-use hot water supply device that prioritizes the hot water supply performance by mainly using the hot water supply circuit as the heating path. Moreover, by adopting a single heating path configuration mainly composed of a hot water supply circuit, the problem of residual water boiling in the heat exchanger during single operation can be solved, and the corrosion resistance of the latent heat recovery heat exchanger 16 can be improved. Easy to configure And, it is possible to provide a water heater which thereby reducing the running cost with high efficiency.

また、通常使用条件の範囲内においては器具の定格能力内でバーナの燃焼を制御することが可能で、給湯要求能力または暖房能力が定格能力を越えた場合でも暖房用または給湯用に設定された能力を一時的に使用することが可能な構成としているため、給湯要求能力または暖房要求能力に対して給湯定格能力と暖房定格能力を加えた能力範囲内でバーナの燃焼を制御することができ、複数箇所で同時使用された場合でも所望の給湯温度、給湯量を確保することができ、さらに、室温が冷え切ったコールドスタートの暖房運転時にも短時間で室温を適温まで上昇させることができる。   In addition, it is possible to control the burner combustion within the rated capacity of the appliance within the range of normal use conditions, and even if the hot water required capacity or heating capacity exceeds the rated capacity, it is set for heating or hot water. Since the capacity can be temporarily used, the burner combustion can be controlled within the capacity range that includes the hot water rated capacity and heating rated capacity in addition to the hot water required capacity or the required heating capacity. Even when used at a plurality of locations at the same time, a desired hot water supply temperature and amount of hot water can be ensured, and the room temperature can be raised to an appropriate temperature in a short time even during cold start heating operation when the room temperature has cooled down.

(実施の形態2)
次に、本発明の第2の実施の形態における給湯暖房装置について図1を用いて説明する。本実施の形態は、第1の実施の形態における給湯暖房装置の利用側熱交換器として、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を用いた給湯暖房装置に関するものである。
(Embodiment 2)
Next, a hot water supply and heating apparatus according to a second embodiment of the present invention will be described with reference to FIG. This embodiment relates to a hot water heater using a bath heat exchanger that supplies heat to a bath circuit that replenishes the bath as a use side heat exchanger of the hot water heater in the first embodiment. It is.

風呂用熱交換器27は給湯循環回路19に接続され、潜熱回収用熱交換器16と給湯用熱交換器15で加熱された高温水を循環ポンプ17で循環させながら熱交換し風呂回路28に熱量を供給する。風呂回路28は風呂用循環ポンプ29、水量検知部30を通って浴槽31の湯を風呂用熱交換器27に供給し所定時間循環させることで浴槽水の追い焚きを行う。   The bath heat exchanger 27 is connected to the hot water supply circulation circuit 19, and heat exchange is performed while circulating the high-temperature water heated by the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15 through the circulation pump 17 to the bath circuit 28. Supply heat. The bath circuit 28 replenishes the bath water by supplying the hot water in the bath 31 to the bath heat exchanger 27 through the bath circulation pump 29 and the water amount detection unit 30 and circulating it for a predetermined time.

また、浴槽31へ湯張りを行う注湯回路32として、バイパス通路4の下流側の出湯路3から風呂回路28に連通する経路を形成している。   In addition, as a pouring circuit 32 for filling the bathtub 31 with hot water, a path communicating from the outlet hot water path 3 on the downstream side of the bypass passage 4 to the bath circuit 28 is formed.

次にその動作、作用を説明すると、風呂運転時には、遠隔操作用リモコン24で風呂運転の指示を行うと、風呂回路28に設けた風呂用循環ポンプ29が駆動し水流検知部30で浴槽水の循環が検知されると、その検知信号で給湯循環回路19の湯水を循環させる循環ポンプ17が駆動し、同時に第1バーナ2Aの着火動作により燃焼が開始される。   Next, the operation and action will be described. When bath operation is instructed by the remote control remote controller 24 during bath operation, the bath circulation pump 29 provided in the bath circuit 28 is driven and the water flow detection unit 30 performs bath water. When the circulation is detected, the circulation pump 17 that circulates the hot water in the hot water supply circuit 19 is driven by the detection signal, and at the same time, the combustion is started by the ignition operation of the first burner 2A.

なお、本実施の形態では風呂運転時の熱源として第1バーナ2Aを用いたが、第2バーナ2Bを用いても同様の作用効果を得られるものである。   In the present embodiment, the first burner 2A is used as a heat source during bath operation. However, similar effects can be obtained by using the second burner 2B.

この第1バーナ2Aの燃焼開始により発生した燃焼ガスは燃焼室12から排気通路13を経由して排気口14より排出される。この燃焼ガスの排気動作の過程において燃焼室12に配設した給湯用熱交換器15と排気通路13に配設した潜熱回収用熱交換器16で給水路1より供給される水が加熱される。   The combustion gas generated by the start of combustion of the first burner 2A is discharged from the exhaust port 14 via the exhaust passage 13 from the combustion chamber 12. In the process of exhausting the combustion gas, the water supplied from the water supply passage 1 is heated by the hot water supply heat exchanger 15 disposed in the combustion chamber 12 and the latent heat recovery heat exchanger 16 disposed in the exhaust passage 13. .

給湯用熱交換器15で加熱された湯水は循環ポンプ17で風呂用熱交換器27に供給され、水−水熱交換構成により熱交換され風呂回路28へ伝熱される。風呂用熱交換器27で受熱した風呂回路28の熱は、浴槽31の湯温を上昇させ所定の追い焚き湯温を確保する。   Hot water heated by the hot water supply heat exchanger 15 is supplied to the bath heat exchanger 27 by the circulation pump 17, and heat is exchanged by the water-water heat exchange configuration and is transferred to the bath circuit 28. The heat of the bath circuit 28 received by the bath heat exchanger 27 raises the hot water temperature of the bathtub 31 to ensure a predetermined hot water temperature.

そして、風呂用熱交換器27で熱交換された高温水は潜熱回収用熱交換器16の上流側給水路1に戻し、給湯循環回路19を形成し、遠隔操作用リモコン24で設定された所定の追い焚き条件を満足するまで所定の湯温に維持して循環を継続する。   Then, the high-temperature water heat-exchanged by the bath heat exchanger 27 is returned to the upstream water supply channel 1 of the latent heat recovery heat exchanger 16 to form a hot water supply circulation circuit 19, and a predetermined set by the remote-control remote controller 24. The circulation is continued at a predetermined hot water temperature until the reheating condition is satisfied.

また、風呂追い焚き運転において、浴槽水がある程度の温度を保ち、少しの追い焚きを行う程度であれば、予め定められた風呂定格入力範囲内で運転を行う定格運転モードで問題ないが、浴槽水が冷え切った状態において風呂追い焚きを行う場合は、第1バーナ2Aを用いて風呂定格入力の最大燃焼量で燃焼したとしても遠隔操作用リモコン24で設定した風呂設定温度まで上昇するのに長い時間が必要になる。   Also, in the bath chasing operation, as long as the bath water is kept at a certain temperature and is slightly chased, there is no problem in the rated operation mode in which the operation is performed within the predetermined bath rated input range. When the bath is reheated when the water is cold, even if the first burner 2A is used to burn at the maximum combustion amount of the bath rated input, the temperature rises to the bath set temperature set by the remote control remote control 24 It takes a long time.

そこで、本実施の形態では、浴槽水が冷え切ったコールドスタート状態で風呂追い焚き運転を開始する時には、第1バーナ2Aに加え、給湯循環回路19の加熱用バーナである第2バーナ2Bの燃焼を開始させ、第1バーナ2Aと第2バーナ2Bを同時燃焼させる特別運転モードに切り替えて給湯用熱交換器15を加熱することで、コールドスタート時の浴槽水温度の早期立ち上げ性能を確保するようにしている。   Therefore, in the present embodiment, when the bath reheating operation is started in a cold start state in which the bath water has cooled, in addition to the first burner 2A, the combustion of the second burner 2B which is the heating burner of the hot water supply circulation circuit 19 is performed. Is started, and the hot water supply heat exchanger 15 is heated by switching to a special operation mode in which the first burner 2A and the second burner 2B are simultaneously burned, thereby ensuring the early start-up performance of the bath water temperature at the cold start. I am doing so.

そして、特別運転モードは所定の期間を限定して燃焼可能とし、所定の期間が終了した時点、または、それ以内に浴槽水温度が上昇し負荷が風呂の定格能力範囲内に減少した時点で解除し、通常の定格運転モードに戻すようにしている。   The special operation mode can be burned for a predetermined period of time, and is released when the predetermined period ends or when the bath water temperature rises and the load falls within the rated capacity range of the bath. The normal rated operation mode is restored.

この定格入力を超えて運転する特別運転モードの期間を限定することで、器具に表示されるそれぞれの能力表示、例えば、給湯能力表示、暖房能力表示、風呂能力表示との整合性が図れるものである。   By limiting the period of the special operation mode that operates beyond this rated input, it is possible to achieve consistency with each capacity display displayed on the appliance, for example, a hot water supply capacity display, a heating capacity display, and a bath capacity display. is there.

このように、風呂単独運転を選択する場合は、風呂運転の開始時に風呂負荷に応じて自動的に定格運転モードと特別運転モードを選択して運転を行うため、浴槽水温度の早期立ち上がり性能を確保することができる。   In this way, when selecting a bath only operation, the rated operation mode and the special operation mode are automatically selected according to the bath load at the start of the bath operation. Can be secured.

実際の例を図4で説明する。冬場前日にためておいた浴槽水を再加熱する時には6000kcal程度の加熱量が必要であり、通常定格運転モードである定格燃焼入力11000kcal/hを超えて、特別運転モードの燃焼入力60000kcal/hまで第1バーナ2Aと第2バーナ2Bを同時に燃焼させる急速追い焚きにより浴槽水200Lで10℃から40℃まで沸き上げるのに32分要していたものが19分で沸き上げ可能となる。   An actual example will be described with reference to FIG. When reheating the bath water stored the day before winter, a heating amount of about 6000 kcal is required, exceeding the rated combustion input of 11000 kcal / h, which is the normal rated operation mode, to the combustion input of 60000 kcal / h in the special operation mode. The rapid reheating of the first burner 2A and the second burner 2B at the same time makes it possible to boil what took 32 minutes to boil from 10 ° C. to 40 ° C. with 200 L of bath water in 19 minutes.

このように、風呂用熱交換器27に供給する湯水を給湯用熱交換器15の出口から直接取り出し給湯循環回路19を形成することで、風呂運転に必要な高温水を確保しつつ、風呂用熱交換器27の下流側の給湯循環回路19から分岐して給湯回路3を取り出すことで、給湯使用範囲の湯水を効率的に供給することが可能な給湯優先動作を確保することができる。   In this way, hot water supplied to the bath heat exchanger 27 is directly taken out from the outlet of the hot water supply heat exchanger 15 to form the hot water supply circulation circuit 19, thereby ensuring high-temperature water necessary for bath operation, and for bath use. By branching off from the hot water supply circulation circuit 19 on the downstream side of the heat exchanger 27 and taking out the hot water supply circuit 3, it is possible to ensure hot water supply priority operation capable of efficiently supplying hot water in the hot water use range.

ここで、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16は、排ガス経路に対して給湯用熱交換器15の下流側に位置させ、給水経路に対して給湯用熱交換器15の上流側に位置させて設けており、潜熱回収熱交換器16で余熱された湯水を給湯用熱交換器15で加熱するようにしている。これにより、風呂追い焚き運転時においてもバーナ2の燃焼で発生した熱量を効率よく熱交換することができ省エネにつながる。   Here, the latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas is located downstream of the hot water supply heat exchanger 15 with respect to the exhaust gas path, and is upstream of the hot water supply heat exchanger 15 with respect to the water supply path. The hot water heated by the latent heat recovery heat exchanger 16 is heated by the hot water supply heat exchanger 15. As a result, the amount of heat generated by the combustion of the burner 2 can be efficiently exchanged even during the bath chasing operation, leading to energy saving.

また、注湯回路32をバイパス通路4の下流側の出湯路3より混合された湯水を供給するようにしたことで、潜熱回収用熱交換器16と給湯用熱交換器15で効率よく加熱された湯水をバイパス通路4より供給される水と混合して所望の湯水を確保した後、注湯回路32より風呂回路28に供給することで、効率のよい風呂運転が可能になる。   Further, by supplying hot water mixed in the pouring circuit 32 from the hot water outlet 3 on the downstream side of the bypass passage 4, the hot water is efficiently heated by the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15. After the hot water is mixed with the water supplied from the bypass passage 4 to secure the desired hot water, the hot water is supplied to the bath circuit 28 from the pouring circuit 32, thereby enabling an efficient bath operation.

以上のように本実施の形態においては、給湯と風呂追い焚きを1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と風呂追い焚き性能を同時に確保することができる。   As described above, in the present embodiment, the hot water supply and the bath reheating are configured by one heating path, thereby realizing a reduction in the size and weight of the appliance by simplifying the main body configuration including the piping configuration, and latent heat. By improving efficiency through recovery, it is possible to ensure both hot water supply performance and bath retreat performance at the same time.

また、通常使用条件の範囲内においては器具の定格能力内でバーナの燃焼を制御することが可能で、風呂要求能力が定格能力を越えた場合でも暖房用や給湯用に設定された能力を一時的に使用することが可能な構成としているため、風呂要求能力に対して給湯定格能力と暖房定格能力を加えた能力範囲内でバーナの燃焼を制御することができ、浴槽水が冷え切ったコールドスタートの風呂追い焚き運転時にも短時間で浴槽水を適温まで上昇させることができる。   In addition, burner combustion can be controlled within the rated capacity of the appliance within the normal operating conditions, and even if the required bath capacity exceeds the rated capacity, the capacity set for heating and hot water supply is temporarily stored. Because it is configured so that it can be used on a regular basis, the burner combustion can be controlled within the capacity range including the hot water supply rated capacity and the heating rated capacity in addition to the required bath capacity, and the cold bath water is cold. The bath water can be raised to an appropriate temperature in a short time during the start-up bathing operation.

(実施の形態3)
次に、本発明の第3の実施の形態における給湯暖房装置について図1を用いて説明する。
(Embodiment 3)
Next, a hot water supply / room heating apparatus according to a third embodiment of the present invention will be described with reference to FIG.

本実施の形態は、第1の実施の形態における給湯暖房装置の利用側熱交換器として、暖房や浴室乾燥等を行う放熱機21を有する暖房回路に熱量を供給する暖房用熱交換器と、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を用いた給湯暖房装置に関するものである。   This embodiment is a heating heat exchanger that supplies heat to a heating circuit having a radiator 21 that performs heating, bathroom drying, etc., as a use-side heat exchanger of the hot water heater in the first embodiment, The present invention relates to a hot water supply and heating device using a heat exchanger for a bath that supplies heat to a bath circuit that replenishes the bath.

暖房用熱交換器18と風呂用熱交換器27は給湯循環回路19に並列に接続され、潜熱
回収用熱交換器16と給湯用熱交換器15で加熱された高温水を循環ポンプ17で循環させながら熱交換し、暖房回路20または風呂回路28に熱量を供給する。
The heat exchanger 18 for heating and the heat exchanger 27 for bath 27 are connected in parallel to the hot water supply circulation circuit 19, and the high-temperature water heated by the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15 is circulated by the circulation pump 17. Then, heat is exchanged to supply heat to the heating circuit 20 or the bath circuit 28.

次にその動作、作用を説明すると、暖房運転時には、放熱機21の運転指令で、暖房回路20に設けた暖房ポンプ22が駆動し、連動して給湯循環回路19の温水を循環させるポンプ17が駆動することにより第2バーナ2Bに着火し、燃焼された熱を回収する給湯用熱交換器15で加熱された温水は暖房用熱交換器18で熱交換され暖房回路20へ伝熱される。暖房用熱交換器18で受熱した暖房回路20の熱は、放熱機21で温風として放熱される。   Next, the operation and action will be described. During the heating operation, the heating pump 22 provided in the heating circuit 20 is driven by the operation command of the radiator 21, and the pump 17 that circulates the hot water in the hot water supply circulation circuit 19 in conjunction with it. By driving, the hot water heated by the hot water heat exchanger 15 that ignites the second burner 2B and collects the burned heat is heat-exchanged by the heating heat exchanger 18 and transferred to the heating circuit 20. Heat of the heating circuit 20 received by the heating heat exchanger 18 is radiated as warm air by the radiator 21.

また、風呂運転時には、遠隔操作用リモコン24の運転指令で、風呂回路28に設けた風呂用循環ポンプ29が駆動し水流検知部30にて循環が検知されると、連動して給湯循環回路19の温水を循環させるポンプ17が駆動することにより第1バーナ2Aに着火し、燃焼された熱を回収する給湯用熱交換器15で加熱された温水は風呂用熱交換器27で熱交換され風呂回路28へ伝熱される。風呂用熱交換器27で受熱した風呂回路28の熱は、浴槽31へ循環し追い焚き加熱される。   Further, during the bath operation, when the bath circulation pump 29 provided in the bath circuit 28 is driven by the operation command of the remote control remote control 24 and the circulation is detected by the water flow detection unit 30, the hot water supply circulation circuit 19 is interlocked. When the pump 17 for circulating the hot water is driven, the first burner 2A is ignited, and the hot water heated by the hot water supply heat exchanger 15 for recovering the combusted heat is heat-exchanged by the bath heat exchanger 27 and bathed. Heat is transferred to the circuit 28. The heat of the bath circuit 28 received by the bath heat exchanger 27 is circulated to the bathtub 31 and reheated.

また、暖房と風呂同時運転時には、放熱機21と遠隔操作用リモコン24からの運転指令により、暖房回路20と風呂回路28のポンプ22、29が駆動し第1バーナ2Aと第2バーナ2Bの着火動作により燃焼が開始する。この燃焼により給湯循環回路19の循環水は潜熱回収用熱交換器16と給湯用熱交換器15で加熱され所定の高温水の状態を維持しながら循環する。この高温の循環水は暖房用熱交換器20と風呂用熱交換器27に略同一の温度で供給され、暖房回路20と風呂回路28に伝熱される。   During simultaneous heating and bath operation, the heating circuits 20 and the pumps 22 and 29 of the bath circuit 28 are driven by the operation commands from the radiator 21 and the remote control remote controller 24 to ignite the first burner 2A and the second burner 2B. Combustion is started by operation. By this combustion, the circulating water in the hot water supply circuit 19 is heated by the latent heat recovery heat exchanger 16 and the hot water heat exchanger 15 and circulates while maintaining a predetermined high-temperature water state. This high-temperature circulating water is supplied to the heating heat exchanger 20 and the bath heat exchanger 27 at substantially the same temperature, and is transferred to the heating circuit 20 and the bath circuit 28.

また、上記以外の組み合わせによる同時運転も可能であり、暖房用熱交換器20と風呂用熱交換器27とを給湯循環回路19に並列に構成しているため、循環回路の通路抵抗を小さくすることができ、循環ポンプ17の小型化・軽量化が可能となる。   Moreover, simultaneous operation by a combination other than the above is possible, and the heat exchanger 20 for heating and the heat exchanger 27 for bath 27 are configured in parallel to the hot water supply circulation circuit 19, so that the passage resistance of the circulation circuit is reduced. Therefore, the circulation pump 17 can be reduced in size and weight.

ここで各組み合わせによる同時運転について詳細に説明すると、例えば、給湯回路と暖房回路の同時運転の場合、それぞれの回路が定格入力範囲内の負荷で使用されている場合は、第1バーナ2Aと第2バーナ2Bはそれぞれの負荷要求に応じて定格入力範囲内で燃焼量を制御して運転を行うことができる。しかし、どちらかの負荷要求が定格入力範囲を超えた場合はそのまま運転を継続すると、負荷要求に対して供給能力が足りない能力不足の状態で運転をしなければないないことになる。   Here, the simultaneous operation by each combination will be described in detail. For example, in the case of simultaneous operation of a hot water supply circuit and a heating circuit, when each circuit is used with a load within the rated input range, the first burner 2A and the first The 2-burner 2B can be operated by controlling the combustion amount within the rated input range in accordance with each load requirement. However, if one of the load requirements exceeds the rated input range and the operation is continued as it is, the operation must be performed in a state where the supply capability is insufficient to meet the load requirement.

そこで、本実施の形態においては、各運転形態を同時運転する場合、優先順位を定め、優先順位の高い運転形態から定格入力を超える負荷要求があったときは、特別運転モードに切り替えることを許可するようにしている。   Therefore, in this embodiment, when each operation mode is operated simultaneously, a priority order is set, and when there is a load request exceeding the rated input from an operation mode with a high priority, switching to the special operation mode is permitted. Like to do.

例えば、給湯運転と暖房運転を同時運転する場合は、給湯運転に優先権を持たせ、給湯負荷が定格入力を超えた使い方をされた場合に、暖房運転を制限または一時停止状態として、暖房用バーナである第2バーナ2Bを給湯用の熱源として利用するものである。これにより、複数箇所で同時使用されるような給湯負荷の大きい状況になった場合でも、所望の湯水を確保することができる。   For example, when performing hot water supply operation and heating operation simultaneously, give priority to hot water supply operation, and if the hot water supply load is used beyond the rated input, the heating operation is restricted or paused for heating The second burner 2B, which is a burner, is used as a heat source for hot water supply. Thereby, even when it becomes the condition where the hot water supply load which is used simultaneously in several places becomes large, desired hot water can be ensured.

また、給湯負荷が定格入力範囲内に減少するか、所定の期間が終了した時点で特別運転モードを解除し、定格運転モードに戻すようにしているため、一時的に暖房運転を制限または停止したとしても大きな影響はでないものである。   In addition, when the hot water supply load falls within the rated input range or when the predetermined period ends, the special operation mode is canceled and the rated operation mode is restored, so the heating operation is temporarily limited or stopped. However, there is no big influence.

また、暖房運転の開始初期において、暖房運転が特別運転モードで行われているときに
優先順位の高い給湯運転が運転を開始すると、暖房運転の特別運転モードを解除して通常運転モードに戻し、さらに、給湯負荷が定格入力を超えるような要求であれば、暖房運転を制限または一時停止状態として給湯運転を特別運転モードに切り替えることで、給湯優先動作を確保するようにしている。
In addition, when the heating operation is performed in the special operation mode in the initial stage of the heating operation, when the hot water supply operation having a high priority is started, the special operation mode of the heating operation is canceled and returned to the normal operation mode, Furthermore, if the hot water supply load exceeds the rated input, the hot water supply priority operation is ensured by switching the hot water supply operation to the special operation mode with the heating operation restricted or temporarily stopped.

そして、給湯運転が終了した時点で暖房運転の特別運転モードの期間が終了していない場合は、再度、暖房運転を特別運転モードに戻して暖房運転を継続し、所定の期間が終了した場合、あるいは、暖房負荷が定格入力範囲以下に低下したとき、特別運転モードを解除し、通常運転モードに戻すようにしている。   And when the period of the special operation mode of the heating operation is not completed at the time when the hot water supply operation is finished, the heating operation is returned to the special operation mode again to continue the heating operation, and when the predetermined period is finished, Alternatively, when the heating load drops below the rated input range, the special operation mode is canceled and the normal operation mode is restored.

なお、本実施の形態では、給湯運転終了後の暖房運転の特別運転モードへの切替条件として、暖房運転開始初期に設定された期間内において切り替え可能としたが、この条件は給湯運転終了時点で再度期間を設定し直してもよく、給湯運転終了時点の暖房負荷の状態に応じて判断するようにしてもよく、本実施の形態に限定されるものではない。   In the present embodiment, as a condition for switching to the special operation mode of the heating operation after the hot water supply operation is completed, the switching can be performed within the period set at the beginning of the heating operation. The period may be set again, and it may be determined according to the state of the heating load at the end of the hot water supply operation, and is not limited to the present embodiment.

さらに、給湯運転が3箇所同時使用等で定格入力を超えた特別運転モードで作動しているときに暖房運転の開始要求があった場合は、給湯運転の特別運転モードが終了するまで暖房運転の開始を制限する待機モードを設けており、この待機モードを設けたことにより、予め定めた優先順位の高い運転を優先的に行うことができ、例えば、給湯優先動作を確保することで、必要に応じた給湯使用を最優先で行うことができ、使い勝手の向上を図ることができるものである。   Furthermore, if there is a request to start the heating operation when the hot water operation is operating in the special operation mode exceeding the rated input due to simultaneous use of three locations, etc., the heating operation is continued until the special operation mode of the hot water operation ends. A standby mode that restricts the start is provided, and by providing this standby mode, it is possible to preferentially perform a high priority operation, for example, by ensuring a hot water supply priority operation. The use of the corresponding hot water supply can be performed with the highest priority, and the usability can be improved.

また、他の組み合わせ、例えば、給湯運転と風呂追い焚き運転を同時運転する場合も上記同様、給湯運転に優先権を持たせるが、まず、第1バーナ2Aと第2バーナ2Bを同時に燃焼させ、それでも給湯負荷に対する供給能力が不足する場合、風呂追い焚き運転を制限または一時停止状態として、第1バーナ2Aと第2バーナ2Bを給湯用の熱源として利用するものである。   Also, in the case of simultaneous operation of other combinations, for example, hot water supply operation and bath reheating operation, priority is given to the hot water supply operation as described above. First, the first burner 2A and the second burner 2B are burned simultaneously, If the supply capacity for the hot water supply load is still insufficient, the bath chasing operation is restricted or temporarily stopped, and the first burner 2A and the second burner 2B are used as heat sources for hot water supply.

これにより、複数箇所で同時使用されるような給湯負荷の大きい状況になった場合でも、所望の湯水を確保することができる。また、給湯負荷が定格入力範囲内に減少するか、所定の期間が終了した時点で特別運転モードを解除し、定格運転モードに戻すようにしているため、一時的に風呂追い焚き運転を制限または停止したとしても大きな影響はでないものである。   Thereby, even when it becomes the condition where the hot water supply load which is used simultaneously in several places becomes large, desired hot water can be ensured. In addition, when the hot water supply load falls within the rated input range or when the predetermined period ends, the special operation mode is canceled and the rated operation mode is restored. Even if it stops, there is no big influence.

次に、風呂追い焚き運転と暖房運転を同時運転する場合は、風呂追い焚き運転に優先権を持たせ、風呂負荷が定格入力を超えた使い方をされた場合に、暖房運転を制限または一時停止状態として、暖房用バーナである第2バーナ2Bを風呂追い焚き用の熱源として利用するものである。   Next, when bathing and heating operation are performed simultaneously, priority is given to bathing operation, and heating operation is restricted or paused when the bath load exceeds the rated input. As a state, the 2nd burner 2B which is a heating burner is utilized as a heat source for bathing.

これにより、浴槽水が冷え切った風呂負荷が大きい状態から追い焚き運転をする場合でも短時間に所望の湯温まで立ち上げることができる。また、風呂負荷が定格入力範囲内に減少するか、所定の期間が終了した時点で特別運転モードを解除し、定格運転モードに戻すようにしているため、一時的に暖房運転を制限または停止したとしても大きな影響はでないものである。   This makes it possible to start up to a desired hot water temperature in a short time even when a chasing operation is performed from a state where the bath water is cold and the bath load is large. In addition, the special operation mode is canceled when the bath load decreases within the rated input range or the predetermined period ends, and the heating operation is temporarily limited or stopped because the mode is returned to the rated operation mode. However, there is no big influence.

また、給湯運転と風呂追い焚き運転と暖房運転を同時運転する場合は、給湯運転に優先権を持たせ、給湯負荷が定格入力を超えた使い方をされた場合に、風呂追い焚き運転及び暖房運転を制限または一時停止状態として、暖房用バーナである第2バーナ2Bを給湯用の熱源として利用するものである。   Also, when performing hot water supply operation, bath reheating operation and heating operation at the same time, give priority to hot water operation, and bath reheating operation and heating operation when the usage of hot water supply exceeds the rated input. The second burner 2B, which is a heating burner, is used as a heat source for hot water supply.

このように、複数の運転形態を同時運転する場合は、運転形態に優先順位を持たせ、優先順位の高い運転形態が定格入力を超える負荷要求をおこなったとき定格運転モードから特別運転モードに切り替えるようにし、所定の条件を満足した時点で特別運転モードを解除することで、給湯優先動作を確保しつつ、複数の同時運転を行うことができる。   As described above, when simultaneously operating a plurality of operation modes, give priority to the operation modes, and switch from the rated operation mode to the special operation mode when a high priority operation mode makes a load request exceeding the rated input. Thus, by releasing the special operation mode when a predetermined condition is satisfied, a plurality of simultaneous operations can be performed while ensuring hot water supply priority operation.

ここで、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16は、排ガス経路に対して給湯用熱交換器15の下流側に位置させ、給水経路に対して給湯用熱交換器15の上流側に位置させて設けており、潜熱回収熱交換器16で余熱された湯水を給湯用熱交換器15で加熱するようにしている。   Here, the latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas is located downstream of the hot water supply heat exchanger 15 with respect to the exhaust gas path, and is upstream of the hot water supply heat exchanger 15 with respect to the water supply path. The hot water heated by the latent heat recovery heat exchanger 16 is heated by the hot water supply heat exchanger 15.

これにより、複数の利用側負荷の運転時においてもバーナ2の燃焼で発生した熱量を効率よく熱交換することができ省エネにつながる。   Thereby, the heat quantity generated by the combustion of the burner 2 can be efficiently exchanged even during operation of a plurality of usage-side loads, leading to energy saving.

(実施の形態4)
次に、本発明の第4の実施の形態における給湯暖房装置について図1を用いて説明する。
(Embodiment 4)
Next, a hot water heater according to the fourth embodiment of the present invention will be described with reference to FIG.

本実施の形態も第1から第3の実施の形態と同様、給水路1より供給される水を給湯用熱交換器15により加熱して出湯路3に湯水を供給する給湯回路と、給湯用熱交換器15から取り出し利用側熱交換器に供給した後、給湯用循環ポンプ17を介して前記給湯用熱交換器15に至る給湯循環回路19と、前記利用側熱交換器としての暖房用熱交換器18と暖房や浴室乾燥等を行う暖房装置である放熱機21との間を暖房用循環ポンプ22を介して湯水が循環する暖房回路20と、前記利用側熱交換器としての風呂用熱交換器27と浴槽31との間を風呂用循環ポンプ29を介して湯水が循環する風呂回路28を有している。   In the present embodiment, similarly to the first to third embodiments, a hot water supply circuit for heating hot water supplied from the water supply passage 1 by the hot water supply heat exchanger 15 and supplying hot water to the hot water supply passage 3, and for hot water supply After being taken out from the heat exchanger 15 and supplied to the use side heat exchanger, the hot water supply circulation circuit 19 reaches the hot water supply heat exchanger 15 via the hot water supply circulation pump 17, and heating heat as the use side heat exchanger. A heating circuit 20 in which hot and cold water circulates between the exchanger 18 and a radiator 21 that is a heating device that performs heating, bathroom drying, and the like, and heat for the bath as the use side heat exchanger A bath circuit 28 in which hot and cold water circulates between the exchanger 27 and the bathtub 31 via a bath circulation pump 29 is provided.

なお、給湯用循環ポンプ17やバーナ2に供給されるガスの量を調整するガス比例弁8等は制御装置43により制御されており、制御装置43へは遠隔操作用リモコンである台所リモコン24a、暖房リモコン24b、浴室リモコン24c等から温度等の指令を発するようになっている。   The hot water circulation pump 17 and the gas proportional valve 8 that adjusts the amount of gas supplied to the burner 2 are controlled by the control device 43, and the control device 43 is controlled by a kitchen remote control 24a, which is a remote control remote control. A command such as temperature is issued from the heating remote controller 24b, the bathroom remote controller 24c, or the like.

以上の構成から、水を加熱して湯にするのは給湯用熱交換器15のみであり、この給湯用熱交換器15によって加熱された湯水を給湯、暖房、風呂の追焚き等全ての機能に使用するので、給湯、暖房、風呂の追焚き等のうちのいずれかの機能を行う場合にも、必要ならば給湯用熱交換器15の全能力を用いることができる。これにより、各機能別に加熱手段が設けられている場合と比較して、各機能の能力がアップした結果となる。   From the above configuration, only the hot water supply heat exchanger 15 heats water to make hot water, and all the functions such as hot water supply, heating, bathing, etc. are performed on the hot water heated by the hot water supply heat exchanger 15. Therefore, the full capacity of the hot water supply heat exchanger 15 can be used if necessary when performing any one of functions such as hot water supply, heating, and bathing. Thereby, compared with the case where the heating means is provided for each function, the result is that the capability of each function is improved.

給湯回路3においては、前述したように、給湯用熱交換器15のバーナ2の燃焼排ガス経路である排気通路13中の下流側でかつ給水路1における上流側に潜熱回収用熱交換器16が配置されている。   In the hot water supply circuit 3, as described above, the latent heat recovery heat exchanger 16 is provided downstream of the exhaust passage 13 that is the combustion exhaust gas path of the burner 2 of the hot water supply heat exchanger 15 and upstream of the water supply path 1. Has been placed.

従って、給水路1から供給された水等は、まず、潜熱回収用熱交換器16によってある程度予備加熱され、その後、給湯用熱交換器15によって本加熱されることになる。   Accordingly, water or the like supplied from the water supply channel 1 is first preheated to some extent by the latent heat recovery heat exchanger 16 and then heated by the hot water supply heat exchanger 15.

潜熱回収用交換器16の下方には潜熱回収用熱交換器16からの結露水を受ける潜熱回収用熱交換器受け皿16jが設けられており、さらに潜熱回収用熱交換器受け皿16jで受けた水を中和して排水する中和装置42が設けられている。   Below the latent heat recovery exchanger 16, there is provided a latent heat recovery heat exchanger tray 16j that receives condensed water from the latent heat recovery heat exchanger 16, and water received by the latent heat recovery heat exchanger tray 16j. A neutralizing device 42 for neutralizing and draining water is provided.

なお、中和装置42には、中和装置42内の水位を検出する電極42aが設けられており、制御装置43に電極42aからの信号が送られるようになっている。   The neutralizing device 42 is provided with an electrode 42 a for detecting the water level in the neutralizing device 42, and a signal from the electrode 42 a is sent to the control device 43.

また、中和装置42は、図5に示すように、仕切板42dで仕切られトラップ構造の中和剤充填室42eと排水通路42fを一体成型した容器42gと、この容器42gの上部開口を覆う蓋体42hよりなり、前記蓋体42hには前記中和剤収納室42eの最上流側に対応した部分に前記潜熱回収用熱交換器受け皿16jから供給される結露水を導く中和剤充填室のドレン入水口42iが設けられ、この入水口42iより供給された結露水はトラップ構造とした複数の中和剤充填室42eを通って中和された後、排水通路42fから給湯暖房装置外へ排水される。   Further, as shown in FIG. 5, the neutralizing device 42 is partitioned by a partition plate 42d and covers a container 42g integrally formed with a trap structure neutralizing agent filling chamber 42e and a drainage passage 42f, and an upper opening of the container 42g. The lid 42h includes a neutralizer filling chamber that guides condensed water supplied from the latent heat recovery heat exchanger tray 16j to a portion corresponding to the most upstream side of the neutralizer storage chamber 42e. The drain water inlet 42i is provided, and the condensed water supplied from the water inlet 42i is neutralized through a plurality of neutralizing agent filling chambers 42e having a trap structure, and then is discharged from the drain passage 42f to the outside of the hot water heater. Drained.

前記排水通路42fに対応する蓋体42hには電極42aより高く立ち上げ先端を大気開放したバイパス回路jが設けられている。そして、中和剤充填室42eには潜熱回収用熱交換器受け皿16jから供給される強酸性の結露水を中和するために酸化マグネシウム、炭酸カルシウム等の粒剤が中和剤42kとして充填されている。   A lid 42h corresponding to the drainage passage 42f is provided with a bypass circuit j that is higher than the electrode 42a and has a leading end opened to the atmosphere. The neutralizing agent filling chamber 42e is filled with granules such as magnesium oxide and calcium carbonate as a neutralizing agent 42k in order to neutralize strongly acidic condensed water supplied from the latent heat recovery heat exchanger tray 16j. ing.

このように構成された中和装置42は、排気通路13中に配設された潜熱回収用熱交換器16で熱交換される際に発生する酸性の結露水が潜熱回収用熱交換器受け皿16jで受けられ、パイプを介して入水口42iより供給され、中和剤充填室42eに充填された中和剤42kを略U字状に通過することで中和され、最下流側に設けた仕切板42dの上方のスリット穴から排水通路42fに送られ正常時には給湯暖房装置外へ排水される。   The neutralizing device 42 configured in this way is configured to remove acidic condensed water generated when heat is exchanged in the latent heat recovery heat exchanger 16 disposed in the exhaust passage 13, in the latent heat recovery heat exchanger tray 16 j. The partition provided on the most downstream side is neutralized by passing through a substantially U-shaped neutralizing agent 42k supplied from the water inlet 42i through a pipe and filled in the neutralizing agent filling chamber 42e. It is sent from the slit hole above the plate 42d to the drainage passage 42f and drained out of the hot water heater / heater when normal.

また、排水が詰まった時にはバイパス回路jがない場合はエアー置換ができないため結露水が中和剤充填室42eに導かれず潜熱回収用熱交換器受け皿16jから溢れでるが、バイパス回路jを設けることにより、結露水の体積分のエアーがバイパス回路jから押出されるため結露水がスムーズに中和装置42に導かれる。やがて中和装置42に結露水が満たされ電極42aが浸かると制御装置43に電極42aからの信号が送られ、バーナ2の燃焼を停止させ結露水の発生を止め、溢れを防止する。   Further, when the drainage is clogged, if the bypass circuit j is not present, air replacement cannot be performed, so that dew condensation water is not guided to the neutralizing agent filling chamber 42e and overflows from the latent heat recovery heat exchanger tray 16j, but a bypass circuit j is provided. As a result, air for the volume of the condensed water is pushed out from the bypass circuit j, so that the condensed water is smoothly guided to the neutralizing device 42. Eventually, when the neutralizing device 42 is filled with condensed water and the electrode 42a is immersed, a signal from the electrode 42a is sent to the control device 43 to stop the combustion of the burner 2 to stop the generation of condensed water and prevent overflow.

この時バイパス回路jの大気開放部が電極42aより高く構成されており、バイパス回路jから中和水が溢れることはない。また、バーナ2の燃焼を停止させると同時にエラー表示を行い使用者に排水詰りを知らせる。   At this time, the atmosphere open portion of the bypass circuit j is configured to be higher than the electrode 42a, and the neutralized water does not overflow from the bypass circuit j. Further, at the same time as the combustion of the burner 2 is stopped, an error is displayed to inform the user of the clogged drainage.

また、暖房回路20では、暖房用熱交換器18の2次側において加熱された湯水を暖房用循環ポンプ22により放熱機21に送って放熱し、その戻り湯水を一旦蓄えるタンク44が設けられている。   Further, the heating circuit 20 is provided with a tank 44 that heats hot water heated on the secondary side of the heating heat exchanger 18 to the radiator 21 by the heating circulation pump 22 to radiate heat and temporarily stores the returned hot water. Yes.

これにより、加熱時に湯水が膨張した際の体積の増加を吸収するとともに、蒸発等により暖房回路20を循環する湯水の量が減少した際に補うようになっている。   This absorbs an increase in volume when hot water expands during heating, and compensates for a decrease in the amount of hot water circulating in the heating circuit 20 due to evaporation or the like.

タンク44には、タンク44に収容されている湯水の量を測定する水位計44aが設けられている。また、タンク44内の水位が一定値よりも下がった場合には、給水路1から分岐してタンク44に接続されている補充管45により水が補充されるようになっており、暖房回路20の水が空になるのを防止している。   The tank 44 is provided with a water level gauge 44 a that measures the amount of hot water contained in the tank 44. Further, when the water level in the tank 44 falls below a certain value, water is replenished by a replenishment pipe 45 branched from the water supply channel 1 and connected to the tank 44, and the heating circuit 20 Prevents the water from emptying.

一方、タンク44をオーバーフローした湯水は、捨てられるようになっている。   On the other hand, the hot water overflowing the tank 44 is discarded.

なお、暖房用循環ポンプ22は暖房リモコン24bにより制御装置43を介して制御されるようになっている。また、水位計44aは制御装置43と接続されており、タンク44内の水位データが制御装置43に送られるようになっている。   The heating circulation pump 22 is controlled by the heating remote controller 24b via the control device 43. The water level gauge 44 a is connected to the control device 43, and the water level data in the tank 44 is sent to the control device 43.

風呂回路28では、浴槽31に湯張りされた湯水を風呂用循環ポンプ29で汲み上げて
風呂用熱交換器27の2次側に送って加熱(追焚き)し、加熱された湯水は浴槽31に戻るようになっている。
In the bath circuit 28, hot water filled in the bathtub 31 is pumped up by the bath circulation pump 29, sent to the secondary side of the bath heat exchanger 27, and heated (reheated). It comes to return.

風呂用循環ポンプ29は、浴室リモコン24cにより制御装置43を介して制御されるようになっている。   The bath circulation pump 29 is controlled via the control device 43 by the bathroom remote controller 24c.

次に、制御装置43による給湯時、暖房時、追焚き時における給湯用循環ポンプ17の制御について説明する。   Next, control of the hot water supply circulation pump 17 by the control device 43 during hot water supply, heating, and chasing will be described.

給湯停止時から給湯を開始した際には、通常、十分に加熱されていないので使用されない湯水(いわゆる「死水」)が発生する。これをなくすために、制御装置43は、給湯停止時であっても時々給湯用循環ポンプ17を作動させて、給湯用熱交換器15により循環する湯水の温度を一定以上に保つようにする。   When hot water supply is started after the hot water supply is stopped, hot water (so-called “dead water”) that is not used because it is not sufficiently heated is generated. In order to eliminate this, the control device 43 operates the hot water supply circulation pump 17 from time to time even when hot water supply is stopped, so as to keep the temperature of the hot water circulated by the hot water supply heat exchanger 15 above a certain level.

これにより、死水を減少させて給湯開始時に直ちに湯を供給することができる。   Thereby, dead water can be reduced and hot water can be supplied immediately at the time of hot water supply start.

また、給湯停止時には、給湯栓6を閉じると給湯が停止され、給水も停止するが、給湯用熱交換器15においては余熱により給湯用熱交換器15内に残っている湯水をさらに加熱(いわゆる「後沸き」)することになり、次に給湯栓6を開いたときにまず高温の湯がとび出すことになり危険である。   Further, when the hot water supply is stopped, the hot water supply is stopped when the hot water tap 6 is closed, and the water supply is also stopped. In the hot water supply heat exchanger 15, the hot water remaining in the hot water supply heat exchanger 15 is further heated by the remaining heat (so-called “so-called hot water supply”). "After boiling"), the next time the hot water tap 6 is opened, hot hot water will be discharged first, which is dangerous.

そこで、制御装置43は、給湯を停止した後もしばらく給湯用循環ポンプ17を作動させて湯水を循環させ、給湯用熱交換器15の余熱がおさまってから給湯用循環ポンプ17を停止させるように制御する。   Therefore, the control device 43 operates the hot water supply circulation pump 17 to circulate hot water for a while after stopping the hot water supply, and stops the hot water supply circulation pump 17 after the remaining heat of the hot water supply heat exchanger 15 is reduced. Control.

次に、暖房時における制御について説明する。   Next, control during heating will be described.

制御装置43は、暖房負荷の大きさに応じて給湯用循環ポンプ17の流量を制御する。   The control device 43 controls the flow rate of the hot water supply circulation pump 17 in accordance with the size of the heating load.

暖房装置である放熱機21の負荷が大きい場合すなわち放熱機21により暖房として放出される熱量が大きい場合には、暖房用熱交換器18から暖房回路20に供給しなければならない熱量が大きくなるため、給湯用循環ポンプ17によって給湯循環回路19を循環させる湯水の流量を増加させるように制御して、暖房回路20へ多くの熱量を伝達することができるようにしている。   When the load of the radiator 21 that is a heating device is large, that is, when the amount of heat released by the radiator 21 as heating is large, the amount of heat that must be supplied from the heating heat exchanger 18 to the heating circuit 20 increases. The hot water circulation pump 17 is controlled to increase the flow rate of hot water circulating through the hot water supply circulation circuit 19 so that a large amount of heat can be transmitted to the heating circuit 20.

一方、暖房負荷が小さいときには給湯用循環ポンプ17の流量を縮小するように制御する。すなわち、暖房負荷が小さいのに給湯用循環ポンプ17により多くの湯水を暖房用熱交換器18に循環させた場合には、高温の湯水がそのまま給湯用熱交換器15に戻ることになって熱効率が低下する。このため、給湯用循環ポンプ17の流量を縮小することにより熱効率が低下するのを防止する。   On the other hand, when the heating load is small, the flow rate of the hot water supply circulation pump 17 is controlled to be reduced. That is, when a large amount of hot water is circulated to the heating heat exchanger 18 by the hot water supply circulation pump 17 even though the heating load is small, the hot water is returned to the hot water supply heat exchanger 15 as it is. Decreases. For this reason, the thermal efficiency is prevented from being reduced by reducing the flow rate of the hot water supply circulation pump 17.

また、暖房開始時には給湯用循環ポンプ17の流量を増加するように制御して、暖房立ち上がり時に暖房用熱交換器18に多くの湯水が循環するようにしている。これにより、暖房立ち上がり時にすぐに暖かくなるようにすることができる。   In addition, the flow rate of the hot water supply circulation pump 17 is controlled to increase at the start of heating so that a large amount of hot water circulates in the heating heat exchanger 18 at the start of heating. Thereby, it can be made to become warm immediately at the time of heating start-up.

また、出湯路3から供給される湯水の流量が一定量(例えば10L/分程度)以上である場合には、給湯用循環ポンプ17を回さなくても暖房用熱交換器18に十分な湯水が供給されるので、給湯用循環ポンプ17を停止するように制御する。これにより、消費電力を減少することができる。   Further, when the flow rate of hot water supplied from the hot water supply passage 3 is a certain amount (for example, about 10 L / min) or more, sufficient hot water is supplied to the heating heat exchanger 18 without turning the hot water supply circulation pump 17. Therefore, the hot water supply circulation pump 17 is controlled to be stopped. Thereby, power consumption can be reduced.

なお、給湯と並行して暖房を行う場合には、給湯用循環ポンプ17の流量を縮小または停止させるように制御する。すなわち、給湯と暖房を並行して行う場合において、給水の水圧が低い(例えば50kPa程度以下)場合に給湯用循環ポンプ17の流量を大きくすると、循環の湯水の圧力が給水の圧力に勝って給水を押し止め、給水量が低下してしまうことになるので、循環の湯水の量を減少させることにより給水量の低下を防止して給湯量を増加させることができる。   When heating is performed in parallel with hot water supply, the flow rate of the hot water supply circulation pump 17 is controlled to be reduced or stopped. That is, in the case where hot water supply and heating are performed in parallel, if the flow rate of the hot water supply circulation pump 17 is increased when the water supply water pressure is low (for example, about 50 kPa or less), the circulating hot water pressure exceeds the water supply pressure. Therefore, the amount of hot water can be reduced by reducing the amount of circulating hot water, thereby preventing a decrease in the amount of hot water and increasing the amount of hot water.

以上のように、給湯、暖房または同時運転時に、負荷に応じて定格入力以上の燃焼を行う特別運転モードで負荷要求を満足させると共に、負荷に応じて給湯用循環ポンプ17の流量制御を行うことで、より幅広い負荷要求に対して能力不足のない運転を提供することができる。   As described above, during hot water supply, heating, or simultaneous operation, the load requirement is satisfied in the special operation mode in which combustion exceeds the rated input according to the load, and the flow rate control of the hot water supply circulation pump 17 is performed according to the load. Thus, it is possible to provide operation without capacity shortage for a wider range of load requirements.

次に、追焚き時における制御について説明する。   Next, control during chasing will be described.

制御装置43は、追焚き負荷の大きさに応じて給湯用循環ポンプ17の流量を制御する。風呂の追焚き負荷が大きい場合、すなわち浴槽31に湯張りされているお湯を大きな温度差で追焚きする場合には、風呂用熱交換器27から風呂回路28に供給しなければならない熱量が大きくなる。このため、給湯用循環ポンプ17によって循環させる湯水の流量を増加するように制御することにより、風呂回路28へ多くの熱量を伝達することができるようにしている。   The control device 43 controls the flow rate of the hot water supply circulation pump 17 according to the size of the additional load. When the reheating load of the bath is large, that is, when reheating the hot water filled in the bathtub 31 with a large temperature difference, the amount of heat that must be supplied from the bath heat exchanger 27 to the bath circuit 28 is large. Become. For this reason, by controlling to increase the flow rate of the hot water circulated by the hot water supply circulation pump 17, a large amount of heat can be transmitted to the bath circuit 28.

また、給湯と並行して風呂の追焚きを行う場合には、給湯用循環ポンプ17の流量を縮小または停止させるように制御する。これは、給湯と風呂の追焚き等を並行して行う場合において、給水の水圧が低い(例えば50kPa程度以下)場合に給湯用循環ポンプ17の流量を大きくすると、循環の湯水の圧力が給水の圧力に勝って給水を押し止め、給水量が低下してしまうことになるためである。   In addition, when bathing is performed in parallel with hot water supply, the flow rate of the hot water supply circulation pump 17 is controlled to be reduced or stopped. This is because, when performing hot water supply and bath retreating in parallel, when the water supply water pressure is low (for example, about 50 kPa or less), if the flow rate of the hot water supply circulation pump 17 is increased, the pressure of the circulating hot water is increased. This is because the water supply is suppressed by overcoming the pressure and the water supply amount is reduced.

従って、循環の湯水の量を減少させることにより給水量の低下を防止して給湯量を増加させることができる。   Therefore, by reducing the amount of circulating hot water, it is possible to prevent a decrease in the amount of water supply and increase the amount of hot water supply.

以上のように、給湯、風呂追い焚きまたは同時運転時に、負荷に応じて定格入力以上の燃焼を行う特別運転モードで負荷要求を満足させると共に、負荷に応じて給湯用循環ポンプ17の流量制御を行うことで、より幅広い負荷要求に対して能力不足のない運転を提供することができる。   As described above, during hot water supply, bathing or simultaneous operation, the load requirement is satisfied in the special operation mode in which combustion exceeds the rated input according to the load, and the flow rate control of the hot water supply circulation pump 17 is controlled according to the load. By doing so, it is possible to provide operation without capacity shortage for a wider range of load requirements.

以上のように、本発明にかかる給湯暖房装置は、給湯循環回路を主回路として給湯と暖房、または給湯と風呂、または給湯と暖房と風呂を単一の熱源とすることにより、器具の小型化・軽量化ができ、設置スペースの余裕確保、施工性の向上と、潜熱回収熱交換器を備えることにより、高効率化を実現しランニングコストの低減による省エネルギー化を図ることが可能となるため、ガス、石油の給湯風呂装置、給湯暖房機等の用途にも適用できる。   As described above, the hot water supply and heating device according to the present invention is a downsized appliance by using a hot water supply circulation circuit as a main circuit and hot water supply and heating, or hot water supply and bath, or hot water supply, heating, and bath as a single heat source.・ Because it can be reduced in weight, installation space is secured, workability is improved, and a latent heat recovery heat exchanger is provided, so it is possible to achieve high efficiency and save energy by reducing running costs. It can also be applied to uses such as gas and oil hot water bath equipment and hot water heaters.

本発明の実施の形態1〜4における給湯暖房装置の構造図Structure diagram of hot water supply and heating device in Embodiments 1 to 4 of the present invention 本発明の実施の形態1における給湯暖房装置の暖房運転の一例を示す説明図Explanatory drawing which shows an example of the heating operation of the hot-water supply heating apparatus in Embodiment 1 of this invention 同給湯暖房装置の潜熱回収熱交換器の構造図Structure diagram of latent heat recovery heat exchanger of the hot water heater 本発明の実施の形態2における給湯暖房装置の風呂運転の一例を示す説明図Explanatory drawing which shows an example of the bath operation of the hot-water supply heater in Embodiment 2 of this invention 本発明の実施の形態4における中和装置の構造図Structure diagram of neutralization apparatus in Embodiment 4 of the present invention

符号の説明Explanation of symbols

1 給水路
2 バーナ(加熱手段)
2A 第1バーナ
2B 第2バーナ
3 出湯路
13 排気通路(排熱経路)
15 給湯用熱交換器
16 潜熱回収用熱交換器
16j 潜熱回収用熱交換器受け皿
17 給湯用循環ポンプ
18 暖房用熱交換器(利用側熱交換器)
19 給湯循環回路
20 暖房回路
21 放熱機
22 暖房用循環ポンプ
23 流量センサ
27 風呂用熱交換器(利用側熱交換器)
28 風呂回路
29 風呂用循環ポンプ
31 浴槽
42 中和装置
42a 電極
42d 仕切板
42e 中和剤充填室
42f 排水通路
42j バイパス回路
44 タンク
1 Water supply path 2 Burner (heating means)
2A 1st burner 2B 2nd burner 3 Hot water outlet 13 Exhaust passage (exhaust heat passage)
DESCRIPTION OF SYMBOLS 15 Heat exchanger for hot water supply 16 Heat exchanger for latent heat recovery 16j Heat exchanger tray for latent heat recovery 17 Circulating pump for hot water supply 18 Heat exchanger for heating (use side heat exchanger)
DESCRIPTION OF SYMBOLS 19 Hot water supply circulation circuit 20 Heating circuit 21 Radiator 22 Circulation pump 23 for heating 23 Flow sensor 27 Heat exchanger for baths (use side heat exchanger)
28 Bath circuit 29 Bath circulation pump 31 Bath 42 Neutralizer 42a Electrode 42d Partition plate 42e Neutralizer filling chamber 42f Drain passage 42j Bypass circuit 44 Tank

Claims (8)

給水路より供給される水をバーナの燃焼により加熱し出湯路に湯水を供給する給湯用熱交換器と、前記バーナの燃焼排ガス経路中に配置し燃焼排ガスの潜熱を回収する潜熱回収用熱交換器とを備え、前記給湯用熱交換器と潜熱回収用熱交換器を直列に接続して、給水路から潜熱回収用熱交換器を通り給湯用熱交換器を経て出湯路に至る給湯回路を形成するとともに、前記給湯熱交換器から取り出し利用側熱交換器に供給した後、循環ポンプを介して前記潜熱回収用熱交換器に戻す給湯循環回路を形成し、前記給湯回路を利用するか、または、給湯循環回路を利用するか、または、給湯回路と給湯循環回路を同時に利用するかを選択できるようにした給湯暖房装置であって、前記潜熱回収用熱交換器の下方に該潜熱回収用熱交換器からの結露水を受ける潜熱回収用熱交換器受け皿を設けるとともに、前記潜熱回収用熱交換器受け皿で受けたドレン水を中和して排水する中和装置を設け、前記中和装置は、仕切板で区切られたトラップ構造の中和剤充填室と中和剤充填室のドレン水入り口側に配設した電極と中和した水を排水接続口に導く排水通路と排水通路の一部を電極より高く立ち上げ、先端を大気開放したバイパス回路よりなり、前記中和装置の電極がドレン水につかるとバーナの燃焼を停止するようにした給湯暖房装置。 A hot water supply heat exchanger that heats the water supplied from the water supply passage by combustion of the burner and supplies hot water to the hot water supply passage, and heat exchange for latent heat recovery that is arranged in the combustion exhaust gas passage of the burner and recovers the latent heat of the combustion exhaust gas A hot water supply circuit that connects the heat exchanger for hot water supply and the heat exchanger for latent heat recovery in series, passes from the water supply passage through the heat exchanger for latent heat recovery, passes through the heat exchanger for hot water supply, and reaches the hot water supply passage. Forming and supplying from the hot water supply heat exchanger to the use side heat exchanger, forming a hot water supply circulation circuit that returns to the latent heat recovery heat exchanger via a circulation pump, and using the hot water supply circuit, Alternatively, a hot water supply and heating device that can select whether to use a hot water supply circulation circuit or to use a hot water supply circuit and a hot water supply circulation circuit at the same time, the latent heat recovery heat exchanger being below the latent heat recovery heat exchanger Condensed water from heat exchanger A heat exchanger tray for receiving the latent heat is provided, and a neutralization device for neutralizing and draining drain water received by the heat exchanger tray for latent heat recovery is provided. The neutralization device is partitioned by a partition plate A trap structure neutralizing agent filling chamber and an electrode disposed on the drain water inlet side of the neutralizing agent filling chamber, a drainage passage for guiding the neutralized water to the drainage connection port, and a part of the drainage passage are raised higher than the electrode, A hot water heater / heater comprising a bypass circuit whose tip is open to the atmosphere, and which stops burning of the burner when the electrode of the neutralizer is immersed in drain water. 利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器として用い、給湯または暖房の単独利用、あるいは給湯と暖房の同時利用、を選択できるようにした請求項1記載の給湯暖房装置。 Use as a heat exchanger for heating that supplies the amount of heat to a heating circuit that has a heating device that performs heating, bathroom drying, etc., as the use side heat exchanger, and selects either hot water supply or heating alone or simultaneous use of hot water and heating The hot water supply and heating device according to claim 1, wherein the hot water supply and heating device can be used. 利用側熱交換器として、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器として用い、給湯または風呂追い焚きの単独利用、あるいは給湯と風呂追い焚きの同時利用、を選択できるようにした請求項1記載の給湯暖房装置。 As a use side heat exchanger, it can be used as a bath heat exchanger that supplies heat to the bath circuit that performs bath renewal, and can select either hot water supply or bath reheating alone, or simultaneous use of hot water and bath reheating The hot water supply and heating device according to claim 1, which is configured as described above. 利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器と、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を設け、給湯または暖房または風呂追い焚きの単独利用、あるいは給湯と暖房と風呂追い焚きのうち少なくとも2つの同時利用、を選択できるようにした請求項1記載の給湯暖房装置。 Heating heat exchanger for supplying heat to a heating circuit having a heating device that performs heating, bathroom drying, etc. as a use side heat exchanger, and a heat exchanger for bath that supplies heat to a bath circuit that retreats the bath The hot water supply and heating device according to claim 1, wherein the hot water supply or heating or bath reheating can be used alone, or at least two simultaneous use of hot water supply, heating, and bath reheating can be selected. 利用側熱交換器として複数個設ける場合、給湯循環回路に対して各熱交換器を並列に接続し、給湯用熱交換器から供給される湯水温度が略同一となるようにした請求項1または4記載の給湯暖房装置。 When a plurality of use-side heat exchangers are provided, the heat exchangers are connected in parallel to the hot water supply circulation circuit so that the hot water temperatures supplied from the hot water supply heat exchangers are substantially the same. 4. A hot water supply / heating apparatus according to 4. 潜熱回収用熱交換器は、複数のステンレス綱製プレートフィンを貫通してステンレス綱製の受熱管を並設するとともに、前記受熱管に内通させて銅製の通水管を配設し、前記通水管の入水口を集合させて1つの入水経路を形成する入水ヘッダーと、前記通水管の出水口を集合させて1つの出水ヘッダーを設けることで、給水路より供給される水を複数の通水管経路を介して給湯用熱交換器に供給し、その過程で燃焼排ガスの潜熱を回収するようにした請求項1〜5のいずれか1項記載の給湯暖房装置。 The heat exchanger for latent heat recovery has a stainless steel heat receiving pipe arranged side by side through a plurality of stainless steel plate fins, and a copper water pipe arranged in the heat receiving pipe. A plurality of water pipes supply water supplied from the water supply channel by gathering water inlets of the water pipes to form one water inlet path and providing one water outlet header by gathering the water outlets of the water pipes. The hot water supply and heating device according to any one of claims 1 to 5, wherein the hot water supply / heater is supplied to a heat exchanger for hot water supply via a path, and the latent heat of the combustion exhaust gas is recovered in the process. 給水路より供給される水を潜熱回収用熱交換器及び給湯用熱交換器を迂回して出湯路に供給するバイパス通路を設け、前記バイパス通路は給湯循環回路の上流側の給水路より水を供給し、給湯用熱交換器で加熱された高温水と混合して所望の湯水を出湯路より供給するようにした請求項1〜6のいずれか1項記載の給湯暖房装置。 A bypass passage is provided for supplying water supplied from the water supply passage to the outlet hot water passage bypassing the latent heat recovery heat exchanger and the hot water supply heat exchanger, and the bypass passage draws water from a water supply passage upstream of the hot water supply circulation circuit. The hot water supply and heating device according to any one of claims 1 to 6, wherein the hot water is supplied and mixed with high-temperature water heated by a heat exchanger for hot water supply to supply desired hot water from a hot water outlet. 出湯路より供給される湯水を利用側熱交換器の二次側である風呂回路に供給する注湯回路を設け、前記注湯回路はバイパス回路の下流側の出湯路より混合された湯水を供給するようにした請求項1〜7のいずれか1項記載の給湯暖房装置。 A hot water supply circuit is provided for supplying hot water supplied from the hot water outlet to the bath circuit on the secondary side of the use side heat exchanger, and the hot water supply circuit supplies hot water mixed from the hot water outlet downstream of the bypass circuit. The hot water supply / room heating device according to any one of claims 1 to 7, wherein:
JP2007012292A 2007-01-23 2007-01-23 Hot-water supply heating device Pending JP2008180400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012292A JP2008180400A (en) 2007-01-23 2007-01-23 Hot-water supply heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012292A JP2008180400A (en) 2007-01-23 2007-01-23 Hot-water supply heating device

Publications (1)

Publication Number Publication Date
JP2008180400A true JP2008180400A (en) 2008-08-07

Family

ID=39724431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012292A Pending JP2008180400A (en) 2007-01-23 2007-01-23 Hot-water supply heating device

Country Status (1)

Country Link
JP (1) JP2008180400A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033255A (en) * 2009-07-31 2011-02-17 Rinnai Corp Hot water supply heating system
JP2011033202A (en) * 2009-07-29 2011-02-17 Noritz Corp Water heater
JP2011179761A (en) * 2010-03-02 2011-09-15 Nishimatsu Constr Co Ltd Hot water supply system
WO2012026889A1 (en) 2010-08-23 2012-03-01 Siop Elektronika D.O.O. Electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033202A (en) * 2009-07-29 2011-02-17 Noritz Corp Water heater
JP2011033255A (en) * 2009-07-31 2011-02-17 Rinnai Corp Hot water supply heating system
JP2011179761A (en) * 2010-03-02 2011-09-15 Nishimatsu Constr Co Ltd Hot water supply system
WO2012026889A1 (en) 2010-08-23 2012-03-01 Siop Elektronika D.O.O. Electric motor

Similar Documents

Publication Publication Date Title
JP5200842B2 (en) Water heater
JP2019117013A (en) Hot water supply heating system
JP2006275309A (en) Hot-water supply heating device
JP2008180400A (en) Hot-water supply heating device
JP2006266557A (en) Hot water supply heating device
JP2006266560A (en) Hot water supply heating device
JP4479553B2 (en) Hot water heater
JP5901920B2 (en) Solar heat utilization system
KR200446160Y1 (en) System for automatically control heating and hot water in briquette boiler
JP4867273B2 (en) Water heater
JP2006266561A (en) Hot water supplying heating device
JP2006266562A (en) Hot water supply heating device
JP2006266558A (en) Hot water supply heating device
JP2006292238A (en) Hot water supply heating apparatus
JP4602062B2 (en) Water heater
JP4624091B2 (en) Water heater
JP2006266556A (en) Hot water supply heating device
JP2006266559A (en) Hot water supplying heating device
JP2008057809A (en) Heat pump type hot water supply apparatus
JP2019117005A (en) Hot water supply heating system
JP2019117010A (en) Hot water supply heating system
JP2007101052A (en) Hot water supply apparatus
JP4770377B2 (en) Water heater
JP2019117018A (en) Hot water supply heating system
JP2006057989A (en) Hot-water supply apparatus