JP2008180099A - Reducer addition valve, and reducer supply device with the same - Google Patents

Reducer addition valve, and reducer supply device with the same Download PDF

Info

Publication number
JP2008180099A
JP2008180099A JP2007012407A JP2007012407A JP2008180099A JP 2008180099 A JP2008180099 A JP 2008180099A JP 2007012407 A JP2007012407 A JP 2007012407A JP 2007012407 A JP2007012407 A JP 2007012407A JP 2008180099 A JP2008180099 A JP 2008180099A
Authority
JP
Japan
Prior art keywords
reducing agent
valve
injection
exhaust gas
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007012407A
Other languages
Japanese (ja)
Inventor
Akihiro Matsuyama
明広 松山
Makoto Masuda
誠 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007012407A priority Critical patent/JP2008180099A/en
Priority to DE102007055928A priority patent/DE102007055928A1/en
Publication of JP2008180099A publication Critical patent/JP2008180099A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of purification efficiency of an exhaust gas by restraining variation in a traveling direction of reducer spray even when an exhaust gas flow velocity changes, in a reducer addition valve 1. <P>SOLUTION: According to this reducer addition valve 1, an injection angle θ1 of a first nozzle hole is larger than an injection angle θ2 of a second nozzle hole. Thereby, the traveling direction of the reducer spray can be operated by injecting the reducer only from the first nozzle hole or injecting it from both the first and second nozzle holes. That is to say, when an exhaust gas flow velocity is varied to a reducing side, and the reducer spray is made to be hardly swept by the exhaust gas, it can be corrected that the traveling direction of the reducer spray is excessively directed toward the upstream side by injecting the reducer only from the first nozzle hole, and conversely, when the exhaust gas flow velocity is varied to an increasing side, and the reducer spray is made to be easily swept by the exhaust gas, it can be corrected that the traveling direction of the reducer spray is excessively directed toward the downstream side by injecting the reducer from both the first and second nozzle holes. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に、排ガスが通る排気管に装着され、この排気管の内部に還元剤を噴射する還元剤添加弁に関する。   The present invention mainly relates to a reducing agent addition valve that is attached to an exhaust pipe through which exhaust gas passes and injects a reducing agent into the exhaust pipe.

従来から、エンジンからの排ガスに含まれる窒素酸化物(NO)を還元して浄化するために、排ガスに還元剤を供給する還元剤添加弁が公知である(例えば、特許文献1参照)。この還元剤は、例えば、尿素水であり、尿素の分解により発生するアンモニア(NH)が、触媒によりNOと反応して無害な窒素(N)や水(HO)を生成することで、NOが浄化される。 Conventionally, a reducing agent addition valve that supplies a reducing agent to exhaust gas in order to reduce and purify nitrogen oxides (NO x ) contained in exhaust gas from an engine is known (for example, see Patent Document 1). This reducing agent is, for example, urea water, and ammonia (NH 3 ) generated by decomposition of urea reacts with NO x by a catalyst to generate harmless nitrogen (N 2 ) and water (H 2 O). Thus, NO x is purified.

この還元剤添加弁には、還元剤を噴射する還元剤添加弁が排気管に、直接、装着されるものがあり、このような還元剤添加弁では、噴孔を含む還元剤添加弁の先端部が排気管の内部に突出する。そして、還元剤は、直接、排ガスが通る排気管に噴射され、排気ガスと混合した後に触媒に導かれる(例えば、特許文献1参照)。   In some of these reducing agent addition valves, a reducing agent addition valve for injecting the reducing agent is directly attached to the exhaust pipe. In such a reducing agent addition valve, the tip of the reducing agent addition valve including the injection hole is provided. The part protrudes inside the exhaust pipe. The reducing agent is directly injected into the exhaust pipe through which the exhaust gas passes, and after being mixed with the exhaust gas, the reducing agent is guided to the catalyst (see, for example, Patent Document 1).

ところで、排ガスの流速はエンジンの運転状態に応じて常に変動しており、噴射された還元剤(還元剤噴霧)の進行方向も排ガス流速とともに変動する。
すなわち、排ガス流速が大きくなると、還元剤噴霧は排ガスにより押し流されやすくなるので、還元剤噴霧の進行方向はより下流側を指向するようになる。このため、還元剤噴霧は、排ガスと充分に混合する前に触媒に到達する虞が高まる。
By the way, the flow rate of the exhaust gas constantly varies according to the operating state of the engine, and the traveling direction of the injected reducing agent (reducing agent spray) also varies with the exhaust gas flow rate.
That is, when the exhaust gas flow rate is increased, the reducing agent spray is easily swept away by the exhaust gas, so that the traveling direction of the reducing agent spray is directed further downstream. For this reason, there is an increased possibility that the reducing agent spray reaches the catalyst before being sufficiently mixed with the exhaust gas.

逆に排ガス流速が小さくなると、還元剤噴霧は排ガスにより押し流されにくくなるので、還元剤噴霧の進行方向はより上流側を指向するようになる。このため、還元剤噴霧は、触媒に到達する前に管壁に到達する虞が高まる。
そして、いずれの場合にも、NOの浄化反応に有効に費やされる尿素量が低下するため、排ガスの浄化効率が低下してしまう。
特開2006−125324号公報
On the other hand, when the exhaust gas flow rate is reduced, the reducing agent spray is less likely to be swept away by the exhaust gas, so that the traveling direction of the reducing agent spray is directed more upstream. For this reason, there is an increased possibility that the reducing agent spray reaches the tube wall before reaching the catalyst.
In any case, since the amount of urea that is effectively consumed for the NO x purification reaction is reduced, the purification efficiency of the exhaust gas is reduced.
JP 2006-125324 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、還元剤添加弁において、排ガス流速が変動しても還元剤噴霧の進行方向の変動を抑制し、排ガスの浄化効率の低下を阻止することにある。   The present invention has been made in order to solve the above-described problems. The purpose of the present invention is to suppress fluctuations in the traveling direction of the reducing agent spray in the reducing agent addition valve even if the exhaust gas flow rate fluctuates. The purpose is to prevent a decrease in purification efficiency.

〔請求項1の手段〕
請求項1に記載の還元剤添加弁は、排ガスが通る排気管に装着され、排気管の内部に還元剤を噴射するものである。そして、還元剤添加弁は、排気管の内部に突出する先端部に複数の噴孔を有するボディと、ボディに収容され複数の噴孔を開閉する2つの弁体とを備える。そして、排気管の径方向と複数の噴孔の各々の孔軸との間に形成される噴射角を、孔軸が排気管の径方向よりも下流側を指向する場合を正側として定義すると、複数の噴孔の内で一方の弁体により開閉される第1噴孔の噴射角と、他方の弁体により開閉される第2噴孔の噴射角とは、互いに異なる。
[Means of Claim 1]
The reducing agent addition valve according to claim 1 is attached to an exhaust pipe through which exhaust gas passes, and injects the reducing agent into the exhaust pipe. The reducing agent addition valve includes a body having a plurality of injection holes at a tip portion protruding into the exhaust pipe, and two valve bodies that are accommodated in the body and open and close the plurality of injection holes. And, defining the injection angle formed between the radial direction of the exhaust pipe and the hole axis of each of the plurality of nozzle holes as the positive side when the hole axis points downstream from the radial direction of the exhaust pipe The injection angle of the first injection hole that is opened and closed by one valve element in the plurality of injection holes is different from the injection angle of the second injection hole that is opened and closed by the other valve element.

これにより、還元剤を噴射する噴孔を第1、第2噴孔から選択することで、還元剤噴霧の進行方向を操作することができる。つまり、第1、第2噴孔の内で噴射角の大きい方の噴孔から噴射すれば、還元剤噴霧の進行方向はより下流側を指向する。逆に、噴射角の小さい方の噴孔から噴射すれば、還元剤噴霧の進行方向はより上流側を指向する。   Thereby, the advancing direction of a reducing agent spray can be operated by selecting the nozzle hole which injects a reducing agent from a 1st, 2nd nozzle hole. That is, if the injection is performed from the injection hole having the larger injection angle among the first and second injection holes, the traveling direction of the reducing agent spray is directed to the downstream side. Conversely, if the injection is made from the injection hole with the smaller injection angle, the traveling direction of the reducing agent spray is directed further upstream.

このため、排ガス流速が大きくなる方に変動し、還元剤噴霧が排ガスにより押し流されやすくなる場合には、噴射角の小さい方の噴孔から噴射することで、還元剤噴霧の進行方向が過剰に下流側を指向するのを修正できる。逆に、排ガス流速が小さくなる方に変動し、還元剤噴霧が排ガスにより押し流されにくくなる場合には、噴射角の大きい方の噴孔から噴射することで、還元剤噴霧の進行方向が過剰に上流側を指向するのを修正できる。
以上により、排ガス流速が変動しても還元剤噴霧の進行方向の変動を抑制し、排ガスの浄化効率の低下を阻止することができる。
For this reason, when the exhaust gas flow velocity fluctuates and the reducing agent spray is easily swept away by the exhaust gas, the traveling direction of the reducing agent spray is excessive by injecting from the injection hole with the smaller injection angle. It can be corrected to direct downstream. On the contrary, when the exhaust gas flow velocity fluctuates and the reducing agent spray becomes difficult to be swept away by the exhaust gas, the traveling direction of the reducing agent spray is excessive by injecting from the injection hole with the larger injection angle. It can be corrected to point upstream.
As described above, even if the exhaust gas flow rate fluctuates, fluctuations in the traveling direction of the reducing agent spray can be suppressed, and reduction in exhaust gas purification efficiency can be prevented.

〔請求項2の手段〕
請求項2に記載の還元剤添加弁によれば、2つの弁体は、一方の弁体が筒状に設けられ、他方の弁体が一方の弁体の内周に収容される内外2重構造である。
これにより、還元剤を噴射する噴孔を第1、第2噴孔から選択することが可能な還元剤添加弁を、容易に設けることができる。
[Means of claim 2]
According to the reducing agent addition valve according to claim 2, the two valve bodies include an inner / outer duplex in which one valve body is provided in a cylindrical shape and the other valve body is accommodated on the inner periphery of the one valve body. Structure.
Thereby, the reducing agent addition valve which can select the nozzle hole which injects a reducing agent from a 1st, 2nd nozzle hole can be provided easily.

〔請求項3の手段〕
請求項3に記載の還元剤添加弁によれば、一方の弁体は、他方の弁体よりも先に開弁方向に駆動される。そして、第1噴孔の噴射角および第2噴孔の噴射角が両方ともに正の角度であり、第1噴孔の噴射角は、第2噴孔の噴射角よりも大きい。
これにより、排ガス流速が小さい場合に第1噴孔のみを開放し、排ガス流速が大きい場合に第1、第2噴孔の両方または第2噴孔のみを開放することで、還元剤噴霧の進行方向の変動を抑制し、排ガスの浄化効率の低下を阻止することができる。
[Means of claim 3]
According to the reducing agent addition valve of the third aspect, the one valve body is driven in the valve opening direction before the other valve body. The injection angle of the first injection hole and the injection angle of the second injection hole are both positive angles, and the injection angle of the first injection hole is larger than the injection angle of the second injection hole.
Thereby, when the exhaust gas flow rate is small, only the first injection hole is opened, and when the exhaust gas flow rate is large, both the first and second injection holes or only the second injection hole are opened, so that the progress of the reducing agent spray. It is possible to suppress a change in direction and prevent a reduction in exhaust gas purification efficiency.

〔請求項4の手段〕
請求項4に記載の還元剤添加弁は、請求項3に記載の還元剤添加弁であって、第2噴孔の孔径が第1噴孔の孔径よりも大きい。
これにより、還元剤の噴射量は、第2噴孔のみから噴射される場合の方が第1噴孔のみから噴射される場合よりも多くなる。このため、排ガス流速に応じて還元剤の噴射量を可変することができる。
[Means of claim 4]
The reducing agent addition valve according to claim 4 is the reducing agent addition valve according to claim 3, wherein the diameter of the second injection hole is larger than the diameter of the first injection hole.
As a result, the amount of reducing agent injected is greater when injected only from the second nozzle holes than when injected only from the first nozzle holes. For this reason, the injection amount of the reducing agent can be varied according to the exhaust gas flow rate.

〔請求項5の手段〕
請求項5に記載の還元剤供給装置は、請求項1ないし請求項4のいずれか1つに記載の還元剤添加弁と、還元剤添加弁の作動を制御する制御手段とを備える。そして、制御手段は、排ガスの流速に応じて開閉する噴孔数を可変する。
[Means of claim 5]
A reducing agent supply apparatus according to a fifth aspect includes the reducing agent addition valve according to any one of the first to fourth aspects, and a control unit that controls the operation of the reducing agent addition valve. And a control means changes the number of nozzle holes opened and closed according to the flow velocity of exhaust gas.

最良の形態1の還元剤添加弁は、排ガスが通る排気管に装着され、排気管の内部に還元剤を噴射するものである。そして、還元剤添加弁は、排気管の内部に突出する先端部に複数の噴孔を有するボディと、ボディに収容され複数の噴孔を開閉する2つの弁体とを備える。そして、排気管の径方向と複数の噴孔の各々の孔軸との間に形成される噴射角を、孔軸が排気管の径方向よりも下流側を指向する場合を正側として定義すると、複数の噴孔の内で一方の弁体により開閉される第1噴孔の噴射角と、他方の弁体により開閉される第2噴孔の噴射角とは、互いに異なる。   The reducing agent addition valve of the best mode 1 is attached to an exhaust pipe through which exhaust gas passes, and injects the reducing agent into the exhaust pipe. The reducing agent addition valve includes a body having a plurality of injection holes at a tip portion protruding into the exhaust pipe, and two valve bodies that are accommodated in the body and open and close the plurality of injection holes. And, defining the injection angle formed between the radial direction of the exhaust pipe and the hole axis of each of the plurality of nozzle holes as the positive side when the hole axis points downstream from the radial direction of the exhaust pipe The injection angle of the first injection hole that is opened and closed by one valve element in the plurality of injection holes is different from the injection angle of the second injection hole that is opened and closed by the other valve element.

また、2つの弁体は、一方の弁体が筒状に設けられ、他方の弁体が一方の弁体の内周に収容される内外2重構造である。
また、一方の弁体は、他方の弁体よりも先に開弁方向に駆動される。そして、第1噴孔の噴射角および第2噴孔の噴射角が両方ともに正の角度であり、第1噴孔の噴射角は、第2噴孔の噴射角よりも大きい。
The two valve bodies have an inner / outer dual structure in which one valve body is provided in a cylindrical shape and the other valve body is accommodated in the inner periphery of the one valve body.
Further, one valve body is driven in the valve opening direction before the other valve body. The injection angle of the first injection hole and the injection angle of the second injection hole are both positive angles, and the injection angle of the first injection hole is larger than the injection angle of the second injection hole.

〔実施例1の構成〕
実施例1の還元剤添加弁1の構成を、図1ないし図3を用いて説明する。
還元剤添加弁1は、エンジンからの排ガスに還元剤を噴射して供給するものであり、噴射された還元剤は、排ガスに含まれる窒素酸化物(NO)を還元して浄化する。この還元剤は、例えば、尿素水であり、尿素の分解により発生するアンモニア(NH)が、触媒によりNOと反応して無害な窒素(N)や水(HO)を生成することで、NOが浄化される。
[Configuration of Example 1]
The configuration of the reducing agent addition valve 1 of Example 1 will be described with reference to FIGS. 1 to 3.
The reducing agent addition valve 1 injects and supplies a reducing agent to exhaust gas from the engine, and the injected reducing agent reduces and purifies nitrogen oxides (NO x ) contained in the exhaust gas. This reducing agent is, for example, urea water, and ammonia (NH 3 ) generated by decomposition of urea reacts with NO x by a catalyst to generate harmless nitrogen (N 2 ) and water (H 2 O). Thus, NO x is purified.

なお、還元剤添加弁1は、所定のタンク2から還元剤を吸引して吐出する供給ポンプ3、供給ポンプ3および還元剤添加弁1の作動を制御する電子制御装置(以下、ECU4とする)等とともに還元剤供給装置5を構成する。また、還元剤添加弁1は、排ガスが通る排気管6に装着され、排気管6の内部に還元剤を噴射する。   The reducing agent addition valve 1 includes a supply pump 3 that sucks and discharges the reducing agent from a predetermined tank 2, an electronic control device that controls the operation of the supply pump 3 and the reducing agent addition valve 1 (hereinafter referred to as ECU 4). The reducing agent supply device 5 is configured together with the above. The reducing agent addition valve 1 is attached to an exhaust pipe 6 through which exhaust gas passes, and injects the reducing agent into the exhaust pipe 6.

ここで、ECU4は、制御機能および演算機能を発揮するCPU、ROMおよびRAM等の記憶装置、入力装置ならびに出力装置等により構成される周知のマイクロコンピュータであり、エンジンの運転状態に応じて、各種の機器のアクチュエータに指令して機器の駆動制御を行うものである。すなわち、ECU4は、還元剤添加弁1および供給ポンプ3等の作動を制御する制御手段として機能する。   Here, the ECU 4 is a well-known microcomputer composed of a CPU, a ROM, a RAM, and other storage devices, an input device, an output device, and the like that perform a control function and an arithmetic function. The actuator of the device is instructed to control the drive of the device. That is, the ECU 4 functions as a control unit that controls the operation of the reducing agent addition valve 1, the supply pump 3, and the like.

還元剤添加弁1は、2つの弁体9、10により複数の噴孔11、12を開閉して還元剤を噴射するノズル13と、ECU4からの指令に応じて弁体9、10を駆動するための駆動力を発生するアクチュエータ14とを備える。
ここで、アクチュエータ14は、例えば、ソレノイドコイル(図示せず)を有し、このソレノイドコイルへの通電および非通電に応じて、後記する背圧室15に還元剤を流出入させて弁体9、10を駆動する電磁弁である(以下、アクチュエータ14を電磁弁14とする)。
The reducing agent addition valve 1 drives the valve bodies 9 and 10 according to a command from the ECU 4 and a nozzle 13 that opens and closes the plurality of injection holes 11 and 12 by the two valve bodies 9 and 10 to inject the reducing agent. And an actuator 14 that generates a driving force for the purpose.
Here, the actuator 14 has, for example, a solenoid coil (not shown), and in response to energization and non-energization of the solenoid coil, a reductant is caused to flow into and out of the back pressure chamber 15 to be described later, thereby the valve body 9. 10 (hereinafter, the actuator 14 is referred to as an electromagnetic valve 14).

ノズル13は、排気管6の内部に突出する先端部に複数の噴孔11、12を有するボディ20と、ボディ20に収容され噴孔11、12を開閉する2つの弁体9、10とを具備する(以下、噴孔11を第1噴孔11とし、噴孔12を第2噴孔12とする)。   The nozzle 13 includes a body 20 having a plurality of injection holes 11 and 12 at a tip portion protruding into the exhaust pipe 6, and two valve bodies 9 and 10 that are accommodated in the body 20 and open and close the injection holes 11 and 12. (Hereinafter, the nozzle hole 11 is referred to as the first nozzle hole 11 and the nozzle hole 12 is referred to as the second nozzle hole 12).

弁体9、10は、一方の弁体9が筒状に設けられ、他方の弁体10が弁体9の内周に収容される内外2重構造をなす。すなわち、弁体9は、ボディ20に設けられた支持部22により軸方向に摺動自在に支持され、弁体10は、外周面が弁体9の内周面に摺接し、弁体9により軸方向に摺動自在に支持されている。   The valve bodies 9 and 10 have a double structure in which one valve body 9 is provided in a cylindrical shape and the other valve body 10 is accommodated on the inner periphery of the valve body 9. That is, the valve body 9 is slidably supported in the axial direction by a support portion 22 provided on the body 20, and the valve body 10 has an outer peripheral surface that is in sliding contact with an inner peripheral surface of the valve body 9. It is slidably supported in the axial direction.

また、弁体9、10は、各々の先端に、ボディ20に形成されたシート面23に着座するシート部24、25が設けられている。そして、シート部24、25が、各々、シート面23から離座することで第1、第2噴孔11、12が開放され、シート部24、25が、各々、シート面23に着座することで第1、第2噴孔11、12が閉鎖される。   In addition, the valve bodies 9 and 10 are provided with seat portions 24 and 25 that are seated on a seat surface 23 formed on the body 20 at their respective tips. Then, the first and second injection holes 11 and 12 are opened by the seat portions 24 and 25 being separated from the seat surface 23, and the seat portions 24 and 25 are respectively seated on the seat surface 23. Thus, the first and second nozzle holes 11 and 12 are closed.

また、ノズル13は、弁体9、10に対し閉弁方向に液圧を及ぼす還元剤が流出入する背圧室15を後端側に形成し、弁体9、10に対し開弁方向に液圧を及ぼす還元剤が流出入するノズル室28を先端側に形成する。さらに、弁体9、10は、各々、スプリング29、30により閉弁方向に付勢されている。   In addition, the nozzle 13 forms a back pressure chamber 15 on the rear end side through which a reducing agent that exerts a fluid pressure in the valve closing direction on the valve bodies 9 and 10 flows in and closes the valve bodies 9 and 10 in the valve opening direction. A nozzle chamber 28 through which a reducing agent that exerts a hydraulic pressure flows in and out is formed on the tip side. Further, the valve bodies 9, 10 are urged in the valve closing direction by springs 29, 30, respectively.

ここで、背圧室15は、供給ポンプ3に通じる流入流路32およびタンク2へのリターン流路33に通じる流出流路34が接続し、流入流路32および流出流路34を介して還元剤が流出入する。ここで、流出流路34は、流入流路32よりも還元剤の流量が大きくなるように設けられ、電磁弁14により開閉される。   Here, the back pressure chamber 15 is connected to the inflow channel 32 that leads to the supply pump 3 and the outflow channel 34 that leads to the return channel 33 to the tank 2, and is reduced via the inflow channel 32 and the outflow channel 34. The agent flows in and out. Here, the outflow channel 34 is provided so that the flow rate of the reducing agent is larger than that of the inflow channel 32, and is opened and closed by the electromagnetic valve 14.

この結果、電磁弁14が作動して流出流路34が開放されると、背圧室15からの流出流量が背圧室15への流入流量よりも大きくなり、背圧室15の液圧が低下する(以下、背圧室15の液圧を背圧と呼ぶ)。また、電磁弁14が作動を停止して流出流路34が閉鎖されると、背圧室15からの還元剤の流出が止まり、低下した背圧が上昇する。   As a result, when the solenoid valve 14 is activated and the outflow passage 34 is opened, the outflow flow rate from the back pressure chamber 15 becomes larger than the inflow flow rate into the back pressure chamber 15, and the hydraulic pressure in the back pressure chamber 15 is increased. (Hereinafter, the hydraulic pressure in the back pressure chamber 15 is referred to as back pressure). Further, when the solenoid valve 14 stops operating and the outflow passage 34 is closed, the outflow of the reducing agent from the back pressure chamber 15 stops and the reduced back pressure increases.

また、ノズル室28は、供給ポンプ3に通じる供給流路36から還元剤が流入する。ノズル室28の還元剤は、シート部24がシート面23に着座しているとき、シート部24の外周側の先端面に液圧を及ぼしている。つまり、弁体9は、ノズル室28の液圧により開弁方向に付勢されている。   Further, the reducing agent flows into the nozzle chamber 28 from the supply flow path 36 that communicates with the supply pump 3. The reducing agent in the nozzle chamber 28 exerts a hydraulic pressure on the outer peripheral end surface of the seat portion 24 when the seat portion 24 is seated on the seat surface 23. That is, the valve body 9 is urged in the valve opening direction by the hydraulic pressure in the nozzle chamber 28.

そして、背圧が低下すると、弁体9において、ノズル室28の液圧による付勢力の方が、スプリング29による付勢力および背圧による付勢力の和よりも強くなる。このため、弁体9が先に開弁方向に駆動されてシート部24がシート面23から離座する。この結果、第1噴孔11が開放され、第1噴孔11を通じて還元剤が噴射される(図3(a)参照)。同時に、シート部25の外周側の先端面にノズル室28の液圧が作用するようになる。つまり、弁体10も、ノズル室28の液圧により開弁方向に付勢されるようになる。   When the back pressure is reduced, in the valve body 9, the urging force due to the hydraulic pressure in the nozzle chamber 28 becomes stronger than the sum of the urging force due to the spring 29 and the urging force due to the back pressure. For this reason, the valve body 9 is first driven in the valve opening direction, and the seat portion 24 is separated from the seat surface 23. As a result, the first nozzle hole 11 is opened, and the reducing agent is injected through the first nozzle hole 11 (see FIG. 3A). At the same time, the hydraulic pressure of the nozzle chamber 28 acts on the outer peripheral end surface of the sheet portion 25. That is, the valve body 10 is also urged in the valve opening direction by the hydraulic pressure in the nozzle chamber 28.

そして、背圧の低下とともに弁体9の開弁方向への変位が続き、弁体9の後端が弁体10に設けられたストッパ38に当接すると(図3(b)参照)、弁体10には、自身に作用するノズル室28の液圧とともに弁体9に作用するノズル室28の液圧も作用するようになる。このため、弁体10においても、ノズル室28の液圧による付勢力の方が、スプリング30による付勢力および背圧による付勢力の和よりも強くなり、シート部25がシート面23から離座する。この結果、第2噴孔12も開放され、第1、第2噴孔11、12を通じて還元剤が噴射される(図3(c)参照)。   Then, as the back pressure decreases, the valve element 9 continues to be displaced in the valve opening direction, and when the rear end of the valve element 9 comes into contact with the stopper 38 provided on the valve element 10 (see FIG. 3B), The body 10 is also acted by the hydraulic pressure of the nozzle chamber 28 acting on the valve body 9 together with the hydraulic pressure of the nozzle chamber 28 acting on the body 10. Therefore, also in the valve body 10, the urging force due to the hydraulic pressure in the nozzle chamber 28 is stronger than the sum of the urging force due to the spring 30 and the urging force due to the back pressure, and the seat portion 25 is separated from the seat surface 23. To do. As a result, the second injection hole 12 is also opened, and the reducing agent is injected through the first and second injection holes 11 and 12 (see FIG. 3C).

そして、弁体10の後端がボディ20に設けられたストッパ40に当接するまで(図3(d)参照)、弁体9、10は開弁方向に変位を続ける。   Then, until the rear end of the valve body 10 comes into contact with the stopper 40 provided on the body 20 (see FIG. 3D), the valve bodies 9 and 10 continue to be displaced in the valve opening direction.

ここで、図2に示すように、排気管6の径方向と第1、第2噴孔11、12の各々の孔軸との間に形成される角度を噴射角θ1、θ2として定義し、噴射角θ1、θ2の正負を、孔軸が排気管6の径方向よりも下流側を指向する場合を正側として定義すると、噴射角θ1、θ2は両方とも正の角度であり、噴射角θ1は噴射角θ2よりも大きい。このため、還元剤噴霧の進行方向は、第1噴孔11から噴射する場合の方が第2噴孔12から噴射する場合よりも排ガスの流れ方向に関して下流側を指向する。   Here, as shown in FIG. 2, the angles formed between the radial direction of the exhaust pipe 6 and the hole axes of the first and second injection holes 11 and 12 are defined as injection angles θ1 and θ2, If the positive and negative of the injection angles θ1 and θ2 are defined as the positive side when the hole axis is directed downstream of the radial direction of the exhaust pipe 6, the injection angles θ1 and θ2 are both positive angles, and the injection angle θ1 Is larger than the injection angle θ2. For this reason, the traveling direction of the reducing agent spray is directed to the downstream side with respect to the flow direction of the exhaust gas when injecting from the first injection hole 11 than when injecting from the second injection hole 12.

そして、ECU4は、排ガス流速に応じて開閉する噴孔数を可変する。つまり、排ガス流速が小さいときは、第1噴孔11のみから還元剤が噴射されるように電磁弁14の作動期間等が決められ、排ガス流速が大きいときは、第1、第2噴孔11、12の両方から還元剤が噴射されるように電磁弁14の作動期間等が決められる。なお、排ガス流速は、エンジン回転数の検出値やアクセル開度の検出値等を用いて推測することができる。   And ECU4 changes the number of nozzle holes opened and closed according to exhaust gas flow velocity. That is, when the exhaust gas flow rate is small, the operation period of the electromagnetic valve 14 is determined so that the reducing agent is injected only from the first injection hole 11, and when the exhaust gas flow rate is large, the first and second injection holes 11. , 12, the operating period of the electromagnetic valve 14 is determined so that the reducing agent is injected from both. The exhaust gas flow rate can be estimated using a detected value of the engine speed, a detected value of the accelerator opening, or the like.

〔実施例1の効果〕
実施例1の還元剤添加弁1によれば、噴射角θ1は噴射角θ2よりも大きい。
これにより、還元剤を第1噴孔11のみから噴射したり、第1、第2噴孔11、12の両方から噴射したりすることで、還元剤噴霧の進行方向を操作することができる。つまり、排ガス流速が小さくなる方に変動し、還元剤噴霧が排ガスにより押し流されにくくなる場合には、第1噴孔11のみから噴射することで、還元剤噴霧の進行方向が過剰に上流側を指向するのを修正できる(図2(a)参照)。逆に、排ガス流速が大きくなる方に変動し、還元剤噴霧が排ガスにより押し流されやすくなる場合には、第1、第2噴孔11、12の両方から噴射することで、還元剤噴霧の進行方向が過剰に下流側を指向するのを修正できる(図2(b)参照)。
以上により、排ガス流速が変動しても還元剤噴霧の進行方向の変動を抑制し、排ガスの浄化効率の低下を阻止することができる。
[Effect of Example 1]
According to the reducing agent addition valve 1 of the first embodiment, the injection angle θ1 is larger than the injection angle θ2.
Thereby, the advancing direction of a reducing agent spray can be operated by injecting a reducing agent only from the 1st injection hole 11, or injecting it from both the 1st, 2nd injection holes 11 and 12. In other words, when the exhaust gas flow rate fluctuates and the reducing agent spray becomes difficult to be swept away by the exhaust gas, the reducing agent spray travels in an excessively upstream direction by injecting only from the first injection holes 11. The orientation can be corrected (see FIG. 2A). On the other hand, when the exhaust gas flow velocity fluctuates and the reducing agent spray is easily swept away by the exhaust gas, the reducing agent spray progresses by spraying from both the first and second injection holes 11 and 12. It is possible to correct that the direction is excessively directed downstream (see FIG. 2B).
As described above, even if the exhaust gas flow rate fluctuates, fluctuations in the traveling direction of the reducing agent spray can be suppressed, and reduction in exhaust gas purification efficiency can be prevented.

また、弁体9、10は、弁体9が筒状に設けられ、弁体10が弁体9の内周に収容される内外2重構造である。
これにより、第1噴孔11のみ、または第1、第2噴孔11、12の両方から還元剤を噴射できる還元剤添加弁1を、容易に設けることができる。
Further, the valve bodies 9 and 10 have an inner and outer double structure in which the valve body 9 is provided in a cylindrical shape and the valve body 10 is accommodated in the inner periphery of the valve body 9.
Thereby, the reducing agent addition valve 1 which can inject a reducing agent only from the 1st nozzle hole 11 or both the 1st, 2nd nozzle holes 11 and 12 can be provided easily.

〔変形例〕
実施例1の還元剤添加弁1は、第1噴孔11のみを開閉したり、第1、第2噴孔11、12の両方を開閉したりすることで、排ガス流速に応じた噴射量の還元剤を供給するものであったが、第2噴孔12のみを開閉できるようにしてもよい。
また、実施例1の還元剤添加弁1は、第1噴孔11の孔径と第2噴孔12の孔径との大小が明記されていないが、第2噴孔12の孔径を、第1噴孔11の孔径よりも大きくすることで、第2噴孔12からの噴射量を、第1噴孔11からの噴射量よりも多くすることができる。
[Modification]
The reducing agent addition valve 1 according to the first embodiment opens and closes only the first nozzle hole 11 or opens and closes both the first and second nozzle holes 11 and 12, so that the injection amount corresponding to the exhaust gas flow rate is increased. Although the reducing agent is supplied, only the second injection hole 12 may be opened and closed.
Further, in the reducing agent addition valve 1 of Example 1, the size of the hole diameter of the first injection hole 11 and the diameter of the second injection hole 12 is not specified, but the hole diameter of the second injection hole 12 is set to the first injection hole. By making it larger than the hole diameter of the hole 11, the injection amount from the second injection hole 12 can be made larger than the injection amount from the first injection hole 11.

また、実施例1の還元剤添加弁1の噴射角θ1、θ2は、両方とも正の角度であったが、小さいほうの噴射角θ2を負の角度にしてもよく、両方の噴射角θ1、θ2を負の角度にしてもよい。
また、実施例1の還元剤添加弁1によれば、弁体9、10は、弁体9が筒状に設けられ、弁体10が弁体9の内周に収容される内外2重構造であったが、弁体9、10を互いに接触しない独立構造とすることもできる。
In addition, the injection angles θ1 and θ2 of the reducing agent addition valve 1 of Example 1 were both positive angles, but the smaller injection angle θ2 may be a negative angle, and both injection angles θ1, θ2 may be a negative angle.
Further, according to the reducing agent addition valve 1 of the first embodiment, the valve bodies 9 and 10 have an inner / outer double structure in which the valve body 9 is provided in a cylindrical shape and the valve body 10 is accommodated on the inner periphery of the valve body 9. However, the valve bodies 9 and 10 may be independent structures that do not contact each other.

また、実施例1の電磁弁14は、流出流路34をリターン流路33に対して開閉する2方弁であったが、電磁弁14を、流入流路32および流出流路34とリターン流路33とが連通する開状態と、流入流路32および流出流路34と供給ポンプ3の吐出口とが連通する閉状態とを切り替える3方弁にしてもよい。   The electromagnetic valve 14 of the first embodiment is a two-way valve that opens and closes the outflow channel 34 with respect to the return channel 33. However, the electromagnetic valve 14 is connected to the inflow channel 32 and the outflow channel 34 with the return flow. A three-way valve that switches between an open state in which the passage 33 communicates and a closed state in which the inflow passage 32 and the outflow passage 34 communicate with the discharge port of the supply pump 3 may be used.

還元剤添加弁および還元剤供給装置の構成図である(実施例1)。(Example 1) which is a block diagram of a reducing agent addition valve and a reducing agent supply apparatus. (a)は排ガス流速が小さい場合の還元剤の噴射を示す説明図であり、(b)は排ガス流速が大きい場合の還元剤の噴射を示す説明図である(実施例1)。(A) is explanatory drawing which shows injection of a reducing agent when an exhaust gas flow velocity is small, (b) is explanatory drawing which shows injection of a reducing agent when an exhaust gas flow velocity is large (Example 1). (a)は第1噴孔のみが開放された状態の還元剤添加弁の構成図であり、(b)は一方の弁体が他方の弁体のストッパに当接した状態の還元剤添加弁の構成図であり、(c)は第1、第2噴孔の両方が開放された状態の還元剤添加弁の構成図であり、(d)は他方の弁体がボディのストッパに当接した状態の還元剤添加弁の構成図である(実施例1)。(A) is a block diagram of a reducing agent addition valve in a state where only the first nozzle hole is opened, and (b) is a reducing agent addition valve in a state where one valve element is in contact with a stopper of the other valve element. (C) is a block diagram of a reducing agent addition valve in a state in which both the first and second nozzle holes are open, and (d) is a diagram in which the other valve element abuts against a stopper of the body. (Example 1) which is the block diagram of the reducing agent addition valve of the state which carried out.

符号の説明Explanation of symbols

1 還元剤添加弁
4 ECU(制御手段)
5 還元剤供給装置
6 排気管
9 弁体(一方の弁体)
10 弁体(他方の弁体)
11 第1噴孔
12 第2噴孔
20 ボディ
θ1、θ2 噴射角
1 Reducing agent addition valve 4 ECU (control means)
5 Reducing agent supply device 6 Exhaust pipe 9 Valve body (one valve body)
10 Valve body (the other valve body)
11 First injection hole 12 Second injection hole 20 Body θ1, θ2 Injection angle

Claims (5)

排ガスが通る排気管に装着され、この排気管の内部に還元剤を噴射する還元剤添加弁において、
前記排気管の内部に突出する先端部に複数の噴孔を有するボディと、このボディに収容され前記複数の噴孔を開閉する2つの弁体とを備え、
前記排気管の径方向と前記複数の噴孔の各々の孔軸との間に形成される噴射角を、前記孔軸が前記排気管の径方向よりも下流側を指向する場合を正側として定義すると、
前記複数の噴孔の内で一方の弁体により開閉される第1噴孔の噴射角と、他方の弁体により開閉される第2噴孔の噴射角とは、互いに異なることを特徴とする還元剤添加弁。
In a reducing agent addition valve that is attached to an exhaust pipe through which exhaust gas passes and injects a reducing agent into the exhaust pipe,
A body having a plurality of nozzle holes at a tip projecting into the exhaust pipe, and two valve bodies that are accommodated in the body and open and close the plurality of nozzle holes,
The injection angle formed between the radial direction of the exhaust pipe and the hole axis of each of the plurality of nozzle holes is defined as a positive side when the hole axis is directed downstream from the radial direction of the exhaust pipe. When defined,
The injection angle of the first injection hole opened and closed by one valve body in the plurality of injection holes and the injection angle of the second injection hole opened and closed by the other valve body are different from each other. Reducing agent addition valve.
請求項1に記載の還元剤添加弁において、
前記2つの弁体は、前記一方の弁体が筒状に設けられ、前記他方の弁体が前記一方の弁体の内周に収容される内外2重構造であることを特徴とする還元剤添加弁。
The reducing agent addition valve according to claim 1,
The two valve bodies have a double structure in which the one valve body is provided in a cylindrical shape and the other valve body is accommodated in an inner periphery of the one valve body. Additive valve.
請求項1または請求項2に記載の還元剤添加弁において、
前記一方の弁体は、前記他方の弁体よりも先に開弁方向に駆動され、
前記第1噴孔の噴射角および前記第2噴孔の噴射角が両方ともに正の角度であり、
前記第1噴孔の噴射角は、前記第2噴孔の噴射角よりも大きいことを特徴とする還元剤添加弁。
In the reducing agent addition valve according to claim 1 or 2,
The one valve body is driven in the valve opening direction before the other valve body,
The injection angle of the first nozzle hole and the injection angle of the second nozzle hole are both positive angles,
The reducing agent addition valve, wherein an injection angle of the first nozzle hole is larger than an injection angle of the second nozzle hole.
請求項3に記載の還元剤添加弁において、
前記第2噴孔の孔径は、前記第1噴孔の孔径よりも大きいことを特徴とする還元剤添加弁。
In the reducing agent addition valve according to claim 3,
The reducing agent addition valve according to claim 1, wherein a hole diameter of the second nozzle hole is larger than a hole diameter of the first nozzle hole.
請求項1ないし請求項4のいずれか1つに記載の還元剤添加弁と、
この還元剤添加弁の作動を制御する制御手段とを備え、
この制御手段は、排ガスの流速に応じて開閉する噴孔数を可変することを特徴とする還元剤供給装置。
Reducing agent addition valve according to any one of claims 1 to 4,
Control means for controlling the operation of the reducing agent addition valve,
This control means varies the number of nozzle holes that are opened and closed in accordance with the flow rate of exhaust gas.
JP2007012407A 2007-01-23 2007-01-23 Reducer addition valve, and reducer supply device with the same Withdrawn JP2008180099A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007012407A JP2008180099A (en) 2007-01-23 2007-01-23 Reducer addition valve, and reducer supply device with the same
DE102007055928A DE102007055928A1 (en) 2007-01-23 2007-12-27 Reducing agent adding valve for use with internal combustion engine, has body including holes that are closed or opened by respective valve bodies, where injecting angle of one of holes is different from injecting angle of other hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012407A JP2008180099A (en) 2007-01-23 2007-01-23 Reducer addition valve, and reducer supply device with the same

Publications (1)

Publication Number Publication Date
JP2008180099A true JP2008180099A (en) 2008-08-07

Family

ID=39587463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012407A Withdrawn JP2008180099A (en) 2007-01-23 2007-01-23 Reducer addition valve, and reducer supply device with the same

Country Status (2)

Country Link
JP (1) JP2008180099A (en)
DE (1) DE102007055928A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265426A (en) * 2014-09-16 2015-01-07 安徽江淮汽车股份有限公司 Exhaust system and automobile
JP2019148250A (en) * 2018-02-28 2019-09-05 いすゞ自動車株式会社 Reductant injection device and method for controlling reductant injector
CN110520222A (en) * 2017-03-29 2019-11-29 康明斯排放处理公司 NO is used for using variable injecting angle nozzlexThe component and method of reducing agent dispensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011010641A1 (en) * 2011-02-09 2012-08-09 Emitec France S.A.S Injector for a urea-water solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715985B1 (en) 2004-10-29 2005-11-16 日産ディーゼル工業株式会社 Liquid reducing agent injection nozzle structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265426A (en) * 2014-09-16 2015-01-07 安徽江淮汽车股份有限公司 Exhaust system and automobile
CN110520222A (en) * 2017-03-29 2019-11-29 康明斯排放处理公司 NO is used for using variable injecting angle nozzlexThe component and method of reducing agent dispensing
US11047280B2 (en) 2017-03-29 2021-06-29 Cummins Emission Solutions Inc. Assembly and methods for NOx reducing reagent dosing with variable spray angle nozzle
JP2019148250A (en) * 2018-02-28 2019-09-05 いすゞ自動車株式会社 Reductant injection device and method for controlling reductant injector

Also Published As

Publication number Publication date
DE102007055928A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5010662B2 (en) Exhaust purification device
JP6477250B2 (en) Urea water supply system
JP4779959B2 (en) Exhaust purification device
US11143077B2 (en) System and method for varying reductant delivery pressure to aftertreatment systems
US8181448B2 (en) System for controlling urea injection quantity of vehicle and method thereof
JP4799289B2 (en) Engine exhaust purification system
JP4706631B2 (en) Exhaust purification device
WO2013191134A1 (en) Urea solution injection nozzle
US20070228191A1 (en) Cooled nozzle assembly for urea/water injection
JP2010255608A (en) Exhaust emission control system for internal combustion engine
JP2014005745A (en) Urea water injection device
JP2008180099A (en) Reducer addition valve, and reducer supply device with the same
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
JP6685728B2 (en) Exhaust gas purification device for internal combustion engine
JP2008180202A (en) Exhaust emission control device
JP2010281275A (en) Denitration equipment for scr, and control device thereof
JP2009257234A (en) Exhaust emission control system of internal combustion engine
JP4312807B2 (en) Exhaust purification device
JP2015507125A (en) How to operate the metering device
JP2006200511A (en) Exhaust emission control device
JP2009185621A (en) Exhaust emission control system for internal combustion engine
JP2021092207A (en) Reductant injection valve
JP2010031746A (en) Exhaust emission control device
JP2010065588A (en) Urea water injection system
JP6406134B2 (en) Reducing agent injection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090723