JP2008178847A - Electrodialysis apparatus - Google Patents

Electrodialysis apparatus Download PDF

Info

Publication number
JP2008178847A
JP2008178847A JP2007016254A JP2007016254A JP2008178847A JP 2008178847 A JP2008178847 A JP 2008178847A JP 2007016254 A JP2007016254 A JP 2007016254A JP 2007016254 A JP2007016254 A JP 2007016254A JP 2008178847 A JP2008178847 A JP 2008178847A
Authority
JP
Japan
Prior art keywords
tank
treated
liquid
exchange membrane
liquid tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007016254A
Other languages
Japanese (ja)
Inventor
Atsushi Terada
厚志 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007016254A priority Critical patent/JP2008178847A/en
Publication of JP2008178847A publication Critical patent/JP2008178847A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodialysis apparatus connected to a treating liquid tank causing no local heating in the tank and allowing measurement of weight variation of the treating liquid in the tank. <P>SOLUTION: An electrolyte cell is provided with at least a positive electrode, a positive electrode chamber, a negative electrode, a negative electrode chamber, and an ion exchange membrane. The treating liquid tank is connected to the electrolyte cell, and is provided with a balance capable of measuring the weight variation of the treating liquid in the tank, and a means heating the treating liquid. A product of an overall heat transfer coefficient and a heat transfer area of the means is 2-12 W/K per 1L of the volume of the treating liquid tank. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気透析装置に関する。   The present invention relates to an electrodialysis apparatus.

電気透析装置は、少なくとも陽極(2)、陽極室(3)、陰極(4)、陰極室(5)およびイオン交換膜を電解槽に具備し、該電解槽には、アニオンおよびカチオンを含む水溶液が充填されている。塩水を濃縮する場合には、イオン交換膜として、陽極室(3)から、アニオン交換膜(7−1)、カチオン交換膜(6−1)、アニオン交換膜(7−2)およびカチオン交換膜(6−2)が順番に具備され、アニオン交換膜(7−1)およびカチオン交換膜(6−1)の間に脱塩室(8−1)、カチオン交換膜(6−1)およびアニオン交換膜(7−2)の間に濃縮室(9)、並びに、アニオン交換膜(7−2)およびカチオン交換膜(6−2)の間に脱塩室(8−1)が具備されている図1の電解槽(1)などが用いられる。図1に基づいて電気透析装置の原理を詳しく説明すると、陽極(2)および陰極(4)に電圧を印加すれば、脱塩室(8−1)のカチオンはカチオン交換膜(6−1)を透過して濃縮室(9)に移動し、脱塩室(8−2)のアニオンはアニオン交換膜(7−2)を透過して濃縮室(9)に移動する。脱塩室に被処理液(11)を流通させれば、濃縮室(9)には被処理液の濃縮液(12)が流通することになる。具体的には、被処理液に希釈塩水を用い、アニオンとして塩素イオン、カチオンとしてナトリウムイオンを用いた場合、濃縮された塩水を濃縮室(9)から得ることができる。
最近、イオン交換樹脂の吸着容量の確保や劣化の防止及びイオン交換樹脂からの溶出物量の低減の観点から、連続した電気透析装置の間に冷却機能を有する温度調節器を設けることが特許文献1に記載されている。
また、工業的な規模の電気透析装置の事前検討用に好適な小型の電気透析装置が市販されている(例えば、非特許文献1)。
The electrodialysis apparatus includes at least an anode (2), an anode chamber (3), a cathode (4), a cathode chamber (5) and an ion exchange membrane in an electrolytic cell, and the electrolytic cell contains an anion and a cation. Is filled. When concentrating salt water, as an ion exchange membrane, from an anode chamber (3), an anion exchange membrane (7-1), a cation exchange membrane (6-1), an anion exchange membrane (7-2), and a cation exchange membrane (6-2) in order, and a desalting chamber (8-1), a cation exchange membrane (6-1), and an anion between an anion exchange membrane (7-1) and a cation exchange membrane (6-1). A concentration chamber (9) is provided between the exchange membrane (7-2), and a desalting chamber (8-1) is provided between the anion exchange membrane (7-2) and the cation exchange membrane (6-2). The electrolytic cell (1) shown in FIG. 1 is used. The principle of the electrodialysis apparatus will be described in detail with reference to FIG. 1. When voltage is applied to the anode (2) and the cathode (4), cations in the desalting chamber (8-1) are converted into cation exchange membranes (6-1). The anion in the desalting chamber (8-2) permeates the anion exchange membrane (7-2) and moves to the concentration chamber (9). If the liquid to be treated (11) is circulated in the desalting chamber, the concentrated liquid (12) of the liquid to be treated is circulated in the concentration chamber (9). Specifically, when diluted salt water is used for the liquid to be treated and chlorine ions are used as anions and sodium ions are used as cations, concentrated salt water can be obtained from the concentration chamber (9).
Recently, from the viewpoint of securing the adsorption capacity of an ion exchange resin, preventing its deterioration, and reducing the amount of eluate from the ion exchange resin, it has been proposed to provide a temperature controller having a cooling function between successive electrodialysis apparatuses. It is described in.
Moreover, a small electrodialysis apparatus suitable for prior examination of an industrial scale electrodialysis apparatus is commercially available (for example, Non-Patent Document 1).

特開平11−128691号公報(段落番号0013)JP 11-128691 A (paragraph number 0013) http://www.astom-corp.jp/ja/ja-main2.html(小型卓上電気透析装置)http://www.astom-corp.jp/en/ja-main2.html (Small desktop electrodialysis machine)

電気透析装置によって電気透析を行うと、特許文献1の[0008]〜[0009]にも記載されているように、通常、室温程度の被処理液がより高い温度となる。
本発明者は、高い温度で電気透析を工業的に行うことの可否を検討するため、非特許文献1のような小型の電気透析装置を用いたところ、放熱量が多いためか、電気透析を行うだけでは温度が上昇せず、工業的な電気透析装置で実現される40℃程度の温度に上昇させることは困難であることが明らかになった。
そこで、小型の電気透析装置に被処理液槽を設け、該被処理液槽の被処理液をヒーターで110℃程度に加熱して該装置に循環させる場合を検討したところ、局所的な加熱にとどまるためか、40分経過して40℃程度の温度に上昇させることができなかった。尚、局所的な加熱により被処理液に含まれる熱的に不安定な物質が破壊される可能性や、ヒーター近傍では沸騰して危険なため、ヒーターをこれ以上加熱することは困難であった。
さらに、被処理液槽の被処理液を攪拌させて局所的な加熱を回避することも検討したが、攪拌機を用いると被処理液槽が振動してしまい、被処理液の重量変化の測定が困難になった。小型電気透析装置に接続された被処理液の重量変化のデータは、工業的な電気透析装置への検討に必要不可欠なデータである。
本発明の目的は、被処理液槽を接続した電気透析装置であって、該被処理液槽における局所的な加熱を生じることなく、かつ、該被処理液槽における被処理液の重量変化が測定可能な電気透析装置を提供することである。
When electrodialysis is performed by an electrodialysis apparatus, as described in [0008] to [0009] of Patent Document 1, a liquid to be treated at about room temperature usually has a higher temperature.
In order to examine whether or not to perform electrodialysis industrially at a high temperature, the present inventor used a small electrodialysis apparatus such as Non-Patent Document 1, and because of the large amount of heat release, It has become clear that the temperature does not rise only by carrying out, and it is difficult to raise the temperature to about 40 ° C. realized by an industrial electrodialysis apparatus.
Therefore, a case where a liquid tank to be treated is provided in a small electrodialysis apparatus, and the liquid to be treated in the liquid tank to be treated is heated to about 110 ° C. with a heater and circulated through the apparatus. It was not possible to raise the temperature to about 40 ° C. after 40 minutes because of staying. In addition, it is difficult to heat the heater any more because there is a possibility that the thermally unstable substance contained in the liquid to be treated is destroyed by local heating, and it is dangerous to boil near the heater. .
Furthermore, although it was examined that the liquid to be treated in the liquid tank to be treated is stirred to avoid local heating, the liquid tank to be treated vibrates when the stirrer is used, and the change in the weight of the liquid to be treated can be measured. It became difficult. The data on the change in the weight of the liquid to be treated connected to the small electrodialysis apparatus is indispensable for the examination of an industrial electrodialysis apparatus.
An object of the present invention is an electrodialysis apparatus to which a liquid tank to be treated is connected, and does not cause local heating in the liquid tank to be treated, and the weight change of the liquid to be treated in the liquid tank to be treated It is to provide a measurable electrodialyzer.

すなわち、本発明は、少なくとも陽極、陽極室、陰極、陰極室およびイオン交換膜を電解槽に具備し、該電解槽には被処理液槽が接続されており、該被処理液槽には、該被処理液槽内の被処理液の重量変化が測定可能な秤と被処理液を加熱する手段が具備されており、該手段の総括伝熱係数と伝熱面積との積が、該被処理液槽の容積1Lあたり、2〜12W/Kである電気透析装置である。   That is, the present invention comprises at least an anode, an anode chamber, a cathode, a cathode chamber, and an ion exchange membrane in an electrolytic cell, and a liquid tank to be treated is connected to the electrolytic cell. A scale capable of measuring the weight change of the liquid to be treated in the liquid tank to be treated and a means for heating the liquid to be treated are provided, and the product of the overall heat transfer coefficient and the heat transfer area of the means is the This is an electrodialysis apparatus having a capacity of 2 to 12 W / K per liter of the treatment liquid tank.

本発明によれば、小型の電気透析装置であっても所望の温度に加熱することができ、被処理液槽における局所的な加熱を生じることなく、被処理液槽における被処理液の重量変化が測定可能であり、結果として、簡便な設備で工業的な電気透析装置に適用できるかどうかの検討が可能となった。   According to the present invention, even a small electrodialysis apparatus can be heated to a desired temperature, and the change in the weight of the liquid to be treated in the liquid tank to be treated without causing local heating in the liquid tank to be treated. As a result, it has become possible to examine whether it can be applied to an industrial electrodialysis apparatus with simple equipment.

以下、本発明の実施の一態様として、図1の電解槽に被処理液槽(21)、濃縮槽(22)および電解液槽(20)が具備された図2に基づいて説明する。
本発明の電気透析装置の電解槽(1)には、被処理液槽(21)が接続されている。被処理液とは食塩の濃縮の場合には、通常、食塩の脱塩室(8−1及び8−2)に相当する室に接続される。図2のように2室(複数)の脱塩室を1つの被処理液槽(21)に接続してもよいし、複数の室をそれぞれ異なる被処理液槽(21)に接続してもよい。
食塩の濃縮の場合には、脱塩室(8−1及び8−2)に、被処理液槽(21)から食塩水がポンプなどによって循環される(11)。
Hereinafter, as an embodiment of the present invention, description will be made based on FIG. 2 in which the electrolytic bath of FIG. 1 is provided with a liquid bath (21), a concentration bath (22), and an electrolytic bath (20).
The liquid tank (21) to be treated is connected to the electrolytic cell (1) of the electrodialysis apparatus of the present invention. In the case of concentration of salt, the liquid to be treated is usually connected to a chamber corresponding to a salt desalting chamber (8-1 and 8-2). As shown in FIG. 2, two (several) demineralization chambers may be connected to one liquid tank (21) to be processed, or a plurality of chambers may be connected to different liquid tanks (21) to be processed. Good.
In the case of concentration of the salt, the salt solution is circulated from the liquid tank (21) to the desalting chamber (8-1 and 8-2) by a pump or the like (11).

被処理液槽(21)には、該被処理液槽内の被処理液の重量変化が測定可能な秤(23)と被処理液を加熱する手段(13)が具備されている。
該手段の総括伝熱係数と伝熱面積との積が、該被処理液槽の容積1Lあたり、2〜12W/K、好ましくは4〜7W/Kである。
上記の積が2W/K以上であると、加熱温度を高くすることが容易な傾向があることから好ましく、12W/K以下であると局所的な加熱が抑制される傾向があることから好ましい。
上記範囲の総括伝熱係数と伝熱面積との積を与えるためには、容積あたりの伝熱面積が大きくなるよう設定するか、総括伝熱係数を大きくすればよい。具体的には、コイルヒーターなどの蛇管型熱交換器、プレート状熱交換器などなど容積あたりの伝熱面積が大きい熱交換器を用い、かつ、該熱交換器の伝熱部分がステンレス鋼、チタン鋼、鉄鋼、アルミニウムなどの金属製であることが好ましい。
The treatment liquid tank (21) is provided with a scale (23) capable of measuring a change in the weight of the treatment liquid in the treatment liquid tank and a means (13) for heating the treatment liquid.
The product of the overall heat transfer coefficient and the heat transfer area of the means is 2 to 12 W / K, preferably 4 to 7 W / K per 1 L of the volume of the liquid tank to be treated.
When the above product is 2 W / K or more, it is preferable because the heating temperature tends to be easily increased, and when it is 12 W / K or less, local heating tends to be suppressed.
In order to give the product of the overall heat transfer coefficient and the heat transfer area in the above range, the heat transfer area per volume may be set to be large, or the overall heat transfer coefficient may be increased. Specifically, a heat exchanger having a large heat transfer area per volume such as a coiled heat exchanger such as a coil heater or a plate heat exchanger is used, and the heat transfer portion of the heat exchanger is stainless steel, It is preferably made of a metal such as titanium steel, steel, and aluminum.

加熱手段の総括伝熱係数としては、通常、45〜300W/(m・K)、好ましくは、90〜160W/(m・K)である。 The overall heat transfer coefficient of the heating means is usually 45 to 300 W / (m 2 · K), preferably 90 to 160 W / (m 2 · K).

被処理液槽は、通常、20〜80℃、好ましくは、30〜60℃程度に調整される。熱交換器などの熱媒温度は、所望の被処理液温度よりも5〜25℃高く設定すれば、所望の被処理液温度に調整される。本発明の電気透析装置によれば、この温度差の加熱でも被処理液槽を所望の温度を設定することができ、しかも、攪拌することがなくとも局所的な加熱を生じることない。   A to-be-processed liquid tank is 20-20 degreeC normally, Preferably, it adjusts to about 30-60 degreeC. When the temperature of the heat medium such as a heat exchanger is set 5 to 25 ° C. higher than the desired temperature of the liquid to be treated, it is adjusted to the desired temperature of the liquid to be treated. According to the electrodialysis apparatus of the present invention, the temperature of the liquid tank to be treated can be set to a desired temperature even by heating at this temperature difference, and local heating does not occur without stirring.

被処理液の重量変化が測定可能な秤(23)とは、通常、上皿天秤などが挙げられる。秤(23)がデジタル天秤であれば、測定された値が直ちにコンピュータなどに転送することができることから好ましい。   The scale (23) capable of measuring the change in the weight of the liquid to be treated usually includes an upper pan balance. If the balance (23) is a digital balance, it is preferable because the measured value can be immediately transferred to a computer or the like.

濃縮室(9)には、通常、ポンプなどによって、濃縮槽(22)から塩水が循環されている(12)。図2は、1つの濃縮室(9)に1つの濃縮槽(22)が接続されているが、複数の濃縮室にそれぞれの濃縮槽が接続されていてもよいし、複数の濃縮室に1つの濃縮槽(22)が接続されていてもよい。
また、電解槽内には、イオン交換膜を複数、用いて、脱塩室および濃縮室が複数、存在していてもよい。
In the concentration chamber (9), salt water is usually circulated from the concentration tank (22) by a pump or the like (12). In FIG. 2, one concentration tank (22) is connected to one concentration chamber (9), but each concentration tank may be connected to a plurality of concentration chambers, or 1 to a plurality of concentration chambers. Two concentration tanks (22) may be connected.
Further, a plurality of ion-exchange membranes may be used in the electrolytic cell, and a plurality of desalting chambers and concentration chambers may exist.

陽極室(3)及び陰極室(4)には、通常、ポンプなどによって、電解液槽(20)から塩水などの電解液が循環されている(10)。図2には、1つの電解液槽(20)で接続されているが、陽極室(3)及び陰極室(4)がそれぞれの電解液槽(20)を有していてもよい。   In the anode chamber (3) and the cathode chamber (4), an electrolytic solution such as salt water is usually circulated from the electrolytic solution tank (20) by a pump or the like (10). In FIG. 2, although connected by one electrolyte tank (20), the anode chamber (3) and the cathode chamber (4) may have each electrolyte tank (20).

被処理液槽以外の各槽にも、秤(23)がそれぞれ具備されていてもよい。また、被処理液槽を含む各槽には、導電率計、pHメーターなどの機器が具備されていてもよい。   Each tank other than the liquid tank to be processed may be provided with a scale (23). In addition, each tank including the liquid tank to be processed may be equipped with devices such as a conductivity meter and a pH meter.

本発明に用いられる電気透析装置の陽極としては、例えば、白金、白金を被覆したチタン、カーボン、ニッケル、ルテニウムを被覆したチタン、イリジウムを被覆したチタンなどが挙げられる。また、陰極としては、鉄、ニッケル、白金、白金を被覆したチタン、カーボン、ステンレス鋼などが挙げられる。
電気透析装置の陽極および陰極などの電極の構造としては、例えば、メッシュ状、格子状、板状等の構造が挙げられる。
Examples of the anode of the electrodialyzer used in the present invention include platinum, titanium coated with platinum, carbon, nickel, titanium coated with ruthenium, and titanium coated with iridium. Examples of the cathode include iron, nickel, platinum, titanium coated with platinum, carbon, and stainless steel.
Examples of the structure of the electrode such as the anode and the cathode of the electrodialysis apparatus include a mesh shape, a lattice shape, a plate shape, and the like.

本発明で用いられるアニオン交換膜としては、例えば、アニオン交換基含有モノマーの重合体、アニオン交換基含有モノマーと炭化水素系モノマーとの共重合体などが挙げられる。
ここで、アニオン交換基含有モノマーとしては、例えば、1〜3級アミノ基、第4級アンモニウム基などを含有するモノマーなどが挙げられる。
具体的には、N−ビニルイミダゾール、N−ビニル−2−メチルイミダゾール、N−ビニル−2,4−ジメチルイミダゾール、N−ビニル−2−エチルイミダゾール、N−ビニル−2−エチル−4−メチルイミダゾール、2−ビニルイミダゾール、1−メチル−2−ビニルイミダゾール等のビニルイミダゾール類;4−ビニルピリジン等のビニルピリジン類などの複素環系モノマー等が挙げられる。
また、3級アミノ基含有重合体を、塩化メチル、沃化メチル、ジブロモヘキサン、硫酸ジメチルなどにより第4級アンモニウム塩に変換してもよい。
Examples of the anion exchange membrane used in the present invention include a polymer of an anion exchange group-containing monomer, a copolymer of an anion exchange group-containing monomer and a hydrocarbon monomer, and the like.
Here, examples of the anion exchange group-containing monomer include monomers containing a primary to tertiary amino group, a quaternary ammonium group, and the like.
Specifically, N-vinylimidazole, N-vinyl-2-methylimidazole, N-vinyl-2,4-dimethylimidazole, N-vinyl-2-ethylimidazole, N-vinyl-2-ethyl-4-methyl Examples thereof include vinyl imidazoles such as imidazole, 2-vinylimidazole and 1-methyl-2-vinylimidazole; and heterocyclic monomers such as vinylpyridines such as 4-vinylpyridine.
Further, the tertiary amino group-containing polymer may be converted to a quaternary ammonium salt with methyl chloride, methyl iodide, dibromohexane, dimethyl sulfate or the like.

本発明で用いられるカチオン交換膜としては、例えば、カチオン交換基含有モノマーの重合体、カチオン交換基含有モノマーと炭化水素系モノマーとの共重合体、炭化水素系モノマーの重合体を濃硫酸、発煙硫酸などでスルホン化して得られる重合体などが挙げられる。
ここで、カチオン交換基含有モノマーとしては、例えば、スルホン酸基(−SO )、カルボキシル基(−CO )、フェノール性水酸基などを含有するモノマーなどが挙げられ、具体的には、ビニルスルホン酸、スチレンスルホン酸、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ビニルフェノールなどが挙げられる。
Examples of the cation exchange membrane used in the present invention include a polymer of a cation exchange group-containing monomer, a copolymer of a cation exchange group-containing monomer and a hydrocarbon monomer, and a polymer of a hydrocarbon monomer as concentrated sulfuric acid or fuming. Examples thereof include a polymer obtained by sulfonation with sulfuric acid or the like.
Here, examples of the cation exchange group-containing monomer include monomers containing a sulfonic acid group (—SO 3 ), a carboxyl group (—CO 2 ), a phenolic hydroxyl group, and the like. Examples thereof include vinyl sulfonic acid, styrene sulfonic acid, acrylic acid, methacrylic acid, maleic acid, itaconic acid, and vinyl phenol.

また、炭化水素系モノマーとしては、例えば、エチレン、プロピレン、ブテン、アクリロニトリル、アクロレイン、メチルビニルケトン、塩化ビニル、塩化ビニリデン、スチレン、アクリル酸エステル、メタクリル酸エステル、マレイン酸エステル、無水マレイン酸、イタコン酸エステル、無水イタコン酸、ジビニルベンゼン、ジビニルトルエン、トリビニルシクロヘキサン、ジビニルナフタレン、クロロメチルスチレンなどが挙げられる。   Examples of the hydrocarbon monomer include ethylene, propylene, butene, acrylonitrile, acrolein, methyl vinyl ketone, vinyl chloride, vinylidene chloride, styrene, acrylic ester, methacrylic ester, maleic ester, maleic anhydride, itacone. Examples include acid esters, itaconic anhydride, divinylbenzene, divinyltoluene, trivinylcyclohexane, divinylnaphthalene, chloromethylstyrene, and the like.

アニオン交換膜およびカチオン交換膜としては、その製造方法から、例えば、重合型、縮合型、均一型、不均一型などが挙げられる。また、これらイオン交換膜には補強心材があってもよい。さらに、炭化水素系のものとフッ素系のものの複合膜であってもよい。
本発明で用いられるアニオン交換膜およびカチオン交換膜は、通常、厚さ0.1〜0.6mm程度、電気抵抗0.2〜10Ω・cm2程度である。
本発明に用いられるイオン交換膜としては、例えば、ネオセプタ(商品名、(株)アストム製)、セレミオン(商品名、旭硝子(株)製)、フレミオン(商品名、旭硝子(株)製)、ナフィオン(商品名、デュポン製)などの市販品のイオン交換膜を使用してもよい。
また、アストム(株)などから市販されている、バイポーラ膜のように、アニオン交換膜とカチオン交換膜が張り合わせたイオン交換膜を使用してもよい。
Examples of the anion exchange membrane and the cation exchange membrane include a polymerization type, a condensation type, a uniform type, and a heterogeneous type because of their production methods. These ion exchange membranes may have a reinforcing core. Further, it may be a composite film of a hydrocarbon type and a fluorine type.
The anion exchange membrane and cation exchange membrane used in the present invention usually have a thickness of about 0.1 to 0.6 mm and an electrical resistance of about 0.2 to 10 Ω · cm 2 .
Examples of the ion exchange membrane used in the present invention include Neoceptor (trade name, manufactured by Astom Co., Ltd.), Selemion (trade name, manufactured by Asahi Glass Co., Ltd.), Flemion (trade name, manufactured by Asahi Glass Co., Ltd.), and Nafion. Commercially available ion exchange membranes such as (trade name, manufactured by DuPont) may be used.
Further, an ion exchange membrane in which an anion exchange membrane and a cation exchange membrane are bonded together, such as a bipolar membrane commercially available from Astom Co., Ltd., may be used.

本発明に用いられる電解槽は、少なくとも陽極(2)、陽極室(3)、陰極(4)、陰極室(5)およびイオン交換膜を具備しており、最も少ない構成要件を図3に示し、水の電気分解による水素製造などに用いられる。
また、イオン交換膜の配列順序も目的によって適宜、設計すればよく、例えば、特開2006−306753号公報の図1のように、陰極室、アニオン交換膜、脱塩室、カチオン交換膜、濃縮室、アニオン交換膜および陽極室が順次、配列されていてもよい。
The electrolytic cell used in the present invention comprises at least an anode (2), an anode chamber (3), a cathode (4), a cathode chamber (5), and an ion exchange membrane. Used for hydrogen production by electrolysis of water.
In addition, the arrangement sequence of the ion exchange membrane may be appropriately designed depending on the purpose. For example, as shown in FIG. 1 of JP-A-2006-306753, the cathode chamber, the anion exchange membrane, the desalting chamber, the cation exchange membrane, the concentration The chamber, the anion exchange membrane, and the anode chamber may be sequentially arranged.

本発明では被処理液槽に加熱手段を必須構成要件として具備するが、電解槽(20)および脱塩槽(21)に加熱手段を具備していてもよい。
被処理液槽が1L程度の小型電気透析装置であれば、被処理液槽のみに加熱手段が具備されていれば、速やかに、脱塩室を昇温させることができる。
In the present invention, a heating means is provided as an essential constituent in the liquid tank to be treated, but a heating means may be provided in the electrolytic cell (20) and the desalting tank (21).
If the liquid tank to be treated is a small electrodialysis apparatus of about 1 L, the desalting chamber can be quickly heated up if only the liquid tank to be treated is equipped with heating means.

以下、実施例及び比較例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

(実施例1)
図2の構成を有する小型卓上電気透析装置(アストム社製)に、ステンレス製コイル状の熱交換器(13、総括伝熱係数83m・K、伝熱面積4.5×10−2、これらの積は4.2W/K)を具備した被処理液槽(21、1L)に被処理液を入れて、脱塩室(8−1および8−2)並びに被処理液槽(21)に循環させ、食塩水を希釈した。
加熱手段を具備していない濃縮槽(22)に食塩水を入れて、濃縮室(9)および濃縮槽(22)に循環させ、食塩水を濃縮した。
加熱手段を具備していない電解液槽(20)に電解液として希釈塩水を入れて、電解液槽(20)、陽極室(3)および陰極室(4)に循環させた。
続いて、電圧10Vを両極に印加し、被処理液槽(21)内と濃縮槽(22)内の温度変化を図4に示した。
透析開始から20分経過するまでは、熱交換器の温度を40℃に設定すると、非処理液槽内の温度は20分程度で30℃を超え、濃縮槽内の温度も同じように30℃を超えた。続いて、20分経過後、熱交換器の温度を45℃に設定すると、被処理液槽内の温度は30分で40℃に達し、ほぼ一定となり、濃縮槽内の温度も同じように30分で40℃に一定になった(図4参照)。
図4からも明らかなように、熱交換器の温度設定直後から、被処理液槽内および濃縮槽内の温度は略一致していることから、速やかに昇温されること、および局所的な加熱が生じていないことがわかる。
(Example 1)
A stainless steel coiled heat exchanger (13, overall heat transfer coefficient 83 m 2 · K, heat transfer area 4.5 × 10 −2 m 2 ) was added to a small desktop electrodialyzer having the configuration of FIG. , These products are 4.2 W / K), put the liquid to be processed into the liquid tank (21, 1L), the desalting chamber (8-1 and 8-2) and the liquid tank (21 ) And diluted saline.
Saline was put into a concentration tank (22) not equipped with a heating means and circulated through the concentration chamber (9) and the concentration tank (22) to concentrate the saline.
Diluted brine was added as an electrolytic solution to an electrolytic bath (20) that did not have a heating means, and was circulated through the electrolytic bath (20), the anode chamber (3), and the cathode chamber (4).
Subsequently, a voltage of 10 V was applied to both electrodes, and the temperature changes in the liquid tank (21) to be processed and the concentration tank (22) are shown in FIG.
If the temperature of the heat exchanger is set to 40 ° C. until 20 minutes have passed since the start of dialysis, the temperature in the non-treatment liquid tank exceeds 30 ° C. in about 20 minutes, and the temperature in the concentration tank is similarly 30 ° C. Exceeded. Subsequently, when the temperature of the heat exchanger is set to 45 ° C. after 20 minutes, the temperature in the liquid tank reaches 40 ° C. in 30 minutes and becomes almost constant, and the temperature in the concentration tank is also 30. It became constant at 40 ° C. in minutes (see FIG. 4).
As is clear from FIG. 4, immediately after setting the temperature of the heat exchanger, the temperatures in the liquid tank to be treated and in the concentration tank are substantially the same, so that the temperature can be raised quickly and locally It can be seen that no heating has occurred.

(比較例1)
加熱手段として、セラミック製投げ込みヒーター(棒状、総括伝熱係数と伝熱面積の積が0.6W/K)を用い、熱交換器の温度を110℃に設定した以外は実施例と同様に行ったところ、40分経過しても被処理液槽内の温度は上昇しなかった。
(Comparative Example 1)
As a heating means, a ceramic casting heater (bar-shaped, product of overall heat transfer coefficient and heat transfer area is 0.6 W / K) was used, and the same procedure as in Example was performed except that the heat exchanger temperature was set to 110 ° C. As a result, the temperature in the liquid tank to be treated did not rise even after 40 minutes.

電解槽の一例(電気透析の原理説明図)Example of electrolytic cell (Principle of electrodialysis principle) 本発明の電気透析装置の概略図Schematic diagram of the electrodialysis apparatus of the present invention 本発明に用いられる電解槽の最小形態Minimum form of electrolytic cell used in the present invention 実施例1の被処理液槽内と濃縮槽内の温度変化Temperature change in the liquid tank to be treated and the concentration tank in Example 1

本発明の電気透析装置は、海水の濃縮による食塩の製造、アミノ酸溶液の脱塩精製、メッキ廃液からの金属塩の回収等に利用可能である。   The electrodialysis apparatus of the present invention can be used for production of sodium chloride by concentration of seawater, desalting and purification of amino acid solution, recovery of metal salt from plating waste liquid, and the like.

Claims (2)

少なくとも陽極、陽極室、陰極、陰極室およびイオン交換膜を電解槽に具備し、該電解槽には被処理液槽が接続されており、該被処理液槽には、該被処理液槽内の被処理液の重量変化が測定可能な秤と被処理液を加熱する手段が具備されており、該手段の総括伝熱係数と伝熱面積との積が、該被処理液槽の容積1Lあたり、2〜12W/Kである電気透析装置。   The electrolytic bath includes at least an anode, an anode chamber, a cathode, a cathode chamber, and an ion exchange membrane, and a liquid tank to be treated is connected to the electrolytic tank. And a means for heating the liquid to be processed, and the product of the overall heat transfer coefficient and the heat transfer area of the means is a volume of 1 L of the liquid to be processed. An electrodialyzer that is 2-12 W / K. 被処理液を加熱する手段が蛇管型熱交換器である請求項1に記載の電気透析装置。   The electrodialysis apparatus according to claim 1, wherein the means for heating the liquid to be treated is a serpentine heat exchanger.
JP2007016254A 2007-01-26 2007-01-26 Electrodialysis apparatus Pending JP2008178847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016254A JP2008178847A (en) 2007-01-26 2007-01-26 Electrodialysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016254A JP2008178847A (en) 2007-01-26 2007-01-26 Electrodialysis apparatus

Publications (1)

Publication Number Publication Date
JP2008178847A true JP2008178847A (en) 2008-08-07

Family

ID=39723153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016254A Pending JP2008178847A (en) 2007-01-26 2007-01-26 Electrodialysis apparatus

Country Status (1)

Country Link
JP (1) JP2008178847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520168A (en) * 2009-03-12 2012-09-06 エボニック デグサ ゲーエムベーハー Production of high purity suspension containing precipitated silica by electrodialysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520168A (en) * 2009-03-12 2012-09-06 エボニック デグサ ゲーエムベーハー Production of high purity suspension containing precipitated silica by electrodialysis

Similar Documents

Publication Publication Date Title
Jiang et al. A comprehensive review on the synthesis and applications of ion exchange membranes
Khan et al. Development of BPPO-based anion exchange membranes for electrodialysis desalination applications
Strathmann et al. Ion-exchange membranes in the chemical process industry
US9768502B2 (en) Anion exchange membranes and process for making
Tzanetakis et al. Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt
JP5889907B2 (en) Method for producing a monomer solution for producing a cation exchange membrane
Długołęcki et al. Transport limitations in ion exchange membranes at low salt concentrations
Alvarado et al. Electrodeionization: Principles, strategies and applications
Tanaka Ion-exchange membrane electrodialysis for saline water desalination and its application to seawater concentration
CA2884791A1 (en) High-performance anion exchange membranes and methods of making same
Strathmann Ion-exchange membrane processes in water treatment
Singh et al. High performance cross-linked dehydro-halogenated poly (vinylidene fluoride-co-hexafluoro propylene) based anion-exchange membrane for water desalination by electrodialysis
Kulshrestha et al. Large scale preparation of polyethylene based ion exchange membranes and their application for water desalination
Li et al. Cation-exchange membranes with controlled porosity in electrodialysis application
Merkel et al. High effective electrodialytic whey desalination at high temperature
Shen et al. Synthesis of quaternary ammonium hydroxide from its halide salt by bipolar membrane electrodialysis (BMED): effect of molecular structure of ammonium compounds on the process performance
Alvarado et al. Investigation of current routes in electrodeionization system resin beds during chromium removal
Tanaka Regularity in ion-exchange membrane characteristics and concentration of sea water
JP2008178847A (en) Electrodialysis apparatus
Rajput et al. Effect of environmental temperature and applied potential on water desalination performance using electrodialysis
Strathmann Electrodialytic membrane processes and their practical application
Nishimura et al. Preparation and characterization of anion-exchange membranes with a semi-interpenetrating network structure of poly (vinyl alcohol) and poly (allyl amine)
Farrokhzad et al. Selective composite cation-exchange membrane based on S-PVDF
Venugopal et al. Synthetic salt water desalination by electrodialysis using reinforced ion exchange membranes for acid–base production
Venugopal et al. Evaluation of the efficiency of brackish desalination ion exchange membranes using electrodialysis process

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515