JP2008178805A - Fluid stirring method and fluid stirring device - Google Patents

Fluid stirring method and fluid stirring device Download PDF

Info

Publication number
JP2008178805A
JP2008178805A JP2007014379A JP2007014379A JP2008178805A JP 2008178805 A JP2008178805 A JP 2008178805A JP 2007014379 A JP2007014379 A JP 2007014379A JP 2007014379 A JP2007014379 A JP 2007014379A JP 2008178805 A JP2008178805 A JP 2008178805A
Authority
JP
Japan
Prior art keywords
container
fluid
stirring
end side
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007014379A
Other languages
Japanese (ja)
Other versions
JP4845752B2 (en
Inventor
浩敏 ▲柳▼
Hirotoshi Yanagi
Kazuo Nomura
和夫 野村
Yasuhide Okazaki
泰英 岡▲崎▼
Emiko Azuma
恵美子 東
Masashi Miyashita
将志 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2007014379A priority Critical patent/JP4845752B2/en
Publication of JP2008178805A publication Critical patent/JP2008178805A/en
Application granted granted Critical
Publication of JP4845752B2 publication Critical patent/JP4845752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stirring method which enables a fluid in a container to be stirred at low cost by simple configuration. <P>SOLUTION: A heater 11 is installed in the outer periphery of a reaction container 1 to which reaction gas G1, a raw material of carbon nanotubes, is supplied and radiation heat absorption plates 12 are arranged at a plurality of points and prescribed intervals in the upper part of the reaction container 1 inside to locally heat the reaction gas G1, and the reaction gas G1 is stirred by spontaneous convection generated from the temperature difference. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、容器内の流体を攪拌する攪拌方法および攪拌装置に関するものである。   The present invention relates to a stirring method and a stirring device for stirring fluid in a container.

従来、容器中の液体を攪拌する攪拌装置としては、例えばパドル状の攪拌部材を容器内に配置して回転させるようにしたものがある(例えば、特許文献1参照)。また、容器を密閉する必要がある場合には、固定容器内に、反応容器を回転自在に配置するとともに、この反応容器内に攪拌部材を固定配置した状態で、磁力を介して、固定容器の外部に配置された回転装置により、反応容器だけを回転させることにより、攪拌部材との相対移動により、反応容器内に充填された液体などを攪拌するようにしたものがある(例えば、特許文献2参照)。
特開2001−24760号公報 特開平11−244680号公報
Conventionally, as an agitating device for agitating a liquid in a container, for example, a paddle-shaped agitating member is arranged in the container and rotated (for example, see Patent Document 1). In addition, when it is necessary to seal the container, the reaction container is rotatably arranged in the fixed container, and the stirring container is fixedly arranged in the reaction container. There is one in which only the reaction vessel is rotated by a rotating device arranged outside, and the liquid filled in the reaction vessel is stirred by relative movement with the stirring member (for example, Patent Document 2). reference).
Japanese Patent Laid-Open No. 2001-24760 Japanese Patent Laid-Open No. 11-244680

ところで、上述した攪拌装置の構成によると、容器内に攪拌部材が配置されているため、容器内のスペースが制約されるという問題がある。
さらに、特許文献2のように、容器の密閉性を維持する必要がある場合には、容器内の攪拌部材を外部から駆動する必要があり、そのための、構成が複雑になるとともに、コストが高くつくという問題がある。
By the way, according to the structure of the stirring apparatus mentioned above, since the stirring member is arrange | positioned in the container, there exists a problem that the space in a container is restricted.
Furthermore, when it is necessary to maintain the hermeticity of the container as in Patent Document 2, it is necessary to drive the stirring member in the container from the outside, which makes the configuration complicated and increases the cost. There is a problem of sticking.

そこで、本発明は、構成が簡単で且つ低コストで容器内の流体を攪拌し得る攪拌装置および攪拌方法を提供することを目的とする。   Then, an object of this invention is to provide the stirring apparatus and stirring method which can stir the fluid in a container with simple structure and low cost.

上記課題を解決するため、本発明の請求項1に係る流体の攪拌方法は、流体が充填される容器または容器内の所定領域を加熱および/または冷却して、流体に発生した温度差に起因する自然対流により、当該流体を攪拌する方法である。   In order to solve the above problems, the fluid stirring method according to claim 1 of the present invention is caused by a temperature difference generated in the fluid by heating and / or cooling a container filled with the fluid or a predetermined region in the container. In this method, the fluid is stirred by natural convection.

また、請求項2に係る流体の攪拌方法は、請求項1に記載の攪拌方法において、加熱速度または冷却速度を時間的に変化させる方法である。
また、請求項3に係る流体の攪拌方法は、請求項1または2に記載の攪拌方法において、容器が、一端側からカーボンナノチューブの原料ガスが供給されて基板上にカーボンナノチューブを生成するための筒状の反応容器とした方法である。
A fluid stirring method according to claim 2 is a method of changing the heating rate or the cooling rate with time in the stirring method according to claim 1.
The fluid stirring method according to claim 3 is the stirring method according to claim 1 or 2, wherein the container is supplied with a carbon nanotube source gas from one end side to generate carbon nanotubes on the substrate. In this method, a cylindrical reaction vessel is used.

また、請求項4に係る流体の攪拌方法は、請求項1または2に記載の攪拌方法において、容器が、一端側から被分離液が供給されるとともに他端側から膜分離体が挿入されて膜分離を行う筒状の分離容器とした方法である。   The fluid stirring method according to claim 4 is the stirring method according to claim 1 or 2, wherein the container is supplied with the liquid to be separated from one end side and the membrane separator is inserted from the other end side. This is a method of forming a cylindrical separation container for performing membrane separation.

また、請求項5に係る流体の攪拌装置は、流体が充填される容器の側壁部の所定領域に加熱手段および/または冷却手段を配置したものである。
また、請求項6に係る流体の攪拌装置は、請求項5に記載の攪拌装置において、加熱手段または冷却手段の温度を制御する温度制御装置を具備したものである。
According to a fifth aspect of the present invention, there is provided a fluid agitation apparatus in which heating means and / or cooling means are arranged in a predetermined region of a side wall portion of a container filled with fluid.
According to a sixth aspect of the present invention, there is provided the fluid stirring apparatus according to the fifth aspect, further comprising a temperature control device for controlling the temperature of the heating means or the cooling means.

また、請求項7に係る流体の攪拌装置は、請求項5または6に記載の攪拌装置における容器が、一端側からカーボンナノチューブの原料ガスが供給されて基板上にカーボンナノチューブを生成するための筒状の反応容器であるとともに、加熱手段または冷却手段を、反応容器の周壁部の下部または上部に配置したものである。   According to a seventh aspect of the present invention, there is provided the fluid agitator according to the seventh aspect, wherein the container in the agitator according to the fifth or sixth aspect is a cylinder for generating carbon nanotubes on a substrate by supplying a carbon nanotube source gas from one end side And a heating means or a cooling means are arranged at the lower part or the upper part of the peripheral wall of the reaction container.

さらに、請求項8に係る流体の攪拌装置は、請求項5または6に記載の攪拌装置における容器が、一端側に被分離液を供給し得る開口部が形成されるとともに他端側から膜分離体が挿入されて膜分離を行うための筒状の分離容器であるとともに、加熱手段または冷却手段を、分離容器の周壁部の下部または上部に配置したものである。   Furthermore, in the fluid stirring device according to claim 8, the container in the stirring device according to claim 5 or 6 is formed with an opening through which the liquid to be separated can be supplied on one end side and membrane-separated from the other end side. A cylindrical separation container for performing membrane separation by inserting a body, and heating means or cooling means are arranged at the lower part or upper part of the peripheral wall portion of the separation container.

上記攪拌方法および攪拌装置の構成によると、容器または容器内の所定領域を加熱および/または冷却して、流体に発生した温度差に起因する自然対流により、当該流体を攪拌させるようにしたので、例えば攪拌部材により容器内を攪拌する場合に比べて、容器内のスペースについては制約をそれ程受けることがないとともに、装置構成も簡単となり、特に容器に密閉性が必要とされる場合には、その構成が非常に簡単で且つ安価なものとなる。   According to the above stirring method and the configuration of the stirring device, the predetermined region in the container or the container is heated and / or cooled, and the fluid is stirred by natural convection due to the temperature difference generated in the fluid. For example, compared to the case where the inside of the container is agitated by the agitating member, the space in the container is not so much restricted, and the apparatus configuration is simplified, especially when the container needs to be sealed. The construction is very simple and inexpensive.

また、容器または容器内の加熱速度または冷却速度を時間的に変化させることにより、攪拌作用をより効果的に行うことができる。   Further, the stirring action can be more effectively performed by changing the heating rate or cooling rate in the vessel or the vessel with time.

[実施の形態1]
以下、本発明の実施の形態1に係る流体の攪拌装置および攪拌方法について説明する。
本実施の形態1においては、カーボンナノチューブを製造する際に、その反応ガスを反応容器内にて攪拌する場合について、すなわち攪拌装置および攪拌方法を、カーボンナノチューブの製造装置および製造方法の一部として説明する。
[Embodiment 1]
Hereinafter, a fluid stirring device and a stirring method according to Embodiment 1 of the present invention will be described.
In Embodiment 1, when producing carbon nanotubes, the reaction gas is stirred in a reaction vessel, that is, the stirring device and the stirring method are part of the carbon nanotube manufacturing device and manufacturing method. explain.

この製造装置は、図1および図2に示すように、カーボンナノチューブ(以下、CNTという)の原料となる反応ガス(原料ガスであり、具体的には、アセチレンとキャリアガスであるヘリウムガスとが混合されたもので、成分割合としては、例えばアセチレンが3%で残部がキャリアガスである)G1が一端側から他端側に流される横置き円筒状の反応容器(攪拌容器ということができる)1と、この反応容器1内に配置されてCNTを気相成長により生成させるための半円柱状の載置台2と、この載置台2に対応する反応容器1の周壁部(側壁部でもある)の上部内面(内周面)に配置された加熱手段3と、この加熱手段3の温度を制御する温度制御装置4とから構成されている。   As shown in FIG. 1 and FIG. 2, this manufacturing apparatus includes a reaction gas (a raw material gas, which is a raw material gas of carbon nanotubes (hereinafter referred to as CNT), specifically, acetylene and a helium gas as a carrier gas. The mixture ratio is, for example, 3% acetylene and the remainder is a carrier gas. A horizontal cylindrical reaction vessel in which G1 is flowed from one end side to the other end side (can be called a stirring vessel) 1, a semi-cylindrical mounting table 2 disposed in the reaction vessel 1 for generating CNTs by vapor phase growth, and a peripheral wall portion (also a side wall portion) of the reaction vessel 1 corresponding to the mounting table 2 The heating means 3 is disposed on the upper inner surface (inner peripheral surface) of the slab, and the temperature control device 4 controls the temperature of the heating means 3.

また、上記加熱手段3は、反応容器1の周壁部の周囲に(環状に)配置されたヒータ11と、上記反応容器1の周壁部の上部内面に所定間隔おきで且つ上下中心線(以下、鉛直中心線という)の両側に交互に(千鳥状に)複数箇所、例えば5箇所(個数に限定されるものではなく、3箇所、4箇所、6箇所、7箇所などであってもよい)に貼り付けられて部分的につまり局所的(所定領域)に高温を発生させるための輻射熱吸収板(例えば、カーボンやシリコン製の板が用いられる)12とから構成されている。また、反応容器1の一端側の端壁部1aには反応ガスG1の供給用ノズル5が設けられ、その他端側の端壁部1bには反応ガスG1を排出するための排出用ノズル6が設けられている。   The heating means 3 includes a heater 11 disposed around the peripheral wall portion of the reaction vessel 1 (annularly), and an upper and lower center line (hereinafter, referred to as “upper center line”) on the upper inner surface of the peripheral wall portion of the reaction vessel 1. Alternately (in a staggered manner) on both sides of the vertical center line), for example, 5 locations (not limited to the number, may be 3 locations, 4 locations, 6 locations, 7 locations, etc.) A radiant heat absorption plate (for example, a plate made of carbon or silicon) 12 is used to generate a high temperature partially, that is, locally (predetermined region). A reaction gas G1 supply nozzle 5 is provided on one end wall 1a of the reaction vessel 1, and a discharge nozzle 6 for discharging the reaction gas G1 is provided on the other end wall 1b. Is provided.

なお、上記加熱手段3は反応容器1の周壁部の中央部分に配置されており、したがって反応容器1を長さ方向で熱的に見れば、中央部分が加熱部Aに、一端側部分および他端側部分については加熱手段が配置されていない放冷部B,Cにされている。   The heating means 3 is disposed at the central portion of the peripheral wall portion of the reaction vessel 1. Therefore, when the reaction vessel 1 is viewed thermally in the length direction, the central portion becomes the heating portion A, one end side portion, and the other. The end-side portion is a cooling section B or C where no heating means is arranged.

上記構成において、CNTを製造する場合、加熱手段3により反応容器1内を所定温度まで加熱した状態で、供給用ノズル5から反応ガスG1を反応容器1内に供給する。すると、反応ガスG1は他端側に向かって流れ、載置台2に置かれた基板K上にCNTが気相成長により生成され、また加熱部Aにおいては、加熱手段3のヒータ11により熱が供給されるとともに、この部分に配置された輻射熱吸収板12に熱が吸収されて、局所的に高温部分が発生する。すなわち、輻射熱吸収板12が設けられた場所と設けられていない場所とでは温度差が生じ、反応ガスG1に対流(自然対流)が発生して攪拌(混合)され、したがってより均一な濃度のガス流となるため、品質の良いCNTが得られる。   In the above configuration, when producing CNTs, the reaction gas G1 is supplied into the reaction vessel 1 from the supply nozzle 5 while the inside of the reaction vessel 1 is heated to a predetermined temperature by the heating means 3. Then, the reactive gas G1 flows toward the other end, and CNTs are generated by vapor phase growth on the substrate K placed on the mounting table 2, and in the heating part A, heat is generated by the heater 11 of the heating means 3. While being supplied, heat is absorbed by the radiant heat absorbing plate 12 disposed in this portion, and a high temperature portion is locally generated. That is, a temperature difference occurs between the place where the radiant heat absorption plate 12 is provided and the place where the radiant heat absorption plate 12 is not provided, and convection (natural convection) is generated and stirred (mixed) in the reaction gas G1, so that a gas having a more uniform concentration. Since it becomes a flow, CNT with good quality can be obtained.

また、この加熱手段3においては、温度制御装置4により、所定時間間隔(例えば、3〜10分間隔)でもって、ヒータ11がオン・オフされ、すなわち輻射熱吸収板12での温度に変化が付けられる(温度に変化を付けなくても、十分な自然対流が得られる場合には、オン・オフ制御は行われない)。なお、ヒータをオン・オフするのではなく、ヒータ自身に温度変化(加熱速度の変化)を与えるようにしてもよい。   In the heating means 3, the temperature control device 4 turns the heater 11 on and off at a predetermined time interval (for example, every 3 to 10 minutes), that is, changes the temperature at the radiant heat absorbing plate 12. (On / off control is not performed when sufficient natural convection is obtained without changing the temperature). Instead of turning the heater on and off, a temperature change (change in heating rate) may be given to the heater itself.

図3の(a)〜(c)に、加熱部Aでの断面における反応ガスG1の流れの変化を経時的に示しておく。
また、反応容器1の入口側および出口側の放冷部B,Cでは、反応ガスG1の一部に渦流Vが生じている。
FIGS. 3A to 3C show changes in the flow of the reaction gas G1 in the cross section of the heating part A over time.
Further, in the cooling sections B and C on the inlet side and the outlet side of the reaction vessel 1, a vortex V is generated in a part of the reaction gas G1.

本実施の形態1の構成によると、反応容器内を局所的を加熱して反応ガスに発生した温度差に起因する自然対流により、当該反応ガスを攪拌させるようにしたので、例えば機械的攪拌部材により反応容器内を攪拌する場合に比べて、反応容器内のスペースについては制約をそれ程受けることがないとともに、装置構成も簡単となり、特に反応容器に密閉性が必要とされる場合には、その構成が非常に簡単で且つ安価なものとなる。また、反応容器内の加熱速度を時間的に変化させることにより、攪拌作用をより効果的に行うことができる。   According to the configuration of the first embodiment, the reaction gas is stirred by natural convection due to a temperature difference generated in the reaction gas by locally heating the inside of the reaction vessel. For example, a mechanical stirring member Compared to the case where the reaction vessel is agitated, the space in the reaction vessel is not so limited, and the apparatus configuration is simplified, especially when the reaction vessel requires a tight seal. The construction is very simple and inexpensive. Moreover, the stirring action can be more effectively performed by changing the heating rate in the reaction vessel with time.

ところで、上記実施の形態1においては、反応容器1の内周面に輻射熱吸収板12を配置したが、図4および図5に示すように、載置台2の円周外面に所定間隔おきで且つ鉛直中心線の両側に交互に(千鳥状に)複輻射熱吸収板12を貼り付けるようにしてもよい。この場合、載置台2に温度が高い部分と低い部分とが生じて反応ガスG1に自然対流部分が多数発生するため、反応ガスG1が効率よく攪拌される。   By the way, in Embodiment 1 described above, the radiant heat absorption plate 12 is arranged on the inner peripheral surface of the reaction vessel 1, but as shown in FIGS. 4 and 5, the outer peripheral surface of the mounting table 2 is spaced at predetermined intervals and You may make it affix the double radiation heat absorption board 12 on both sides of a vertical center line alternately (staggeredly). In this case, a portion having a high temperature and a portion having a low temperature are generated on the mounting table 2 and many natural convection portions are generated in the reaction gas G1, so that the reaction gas G1 is efficiently stirred.

さらに、図6および図7に示すように、反応容器1の周壁部の上部内面および載置台2の円周外面に輻射熱吸収板12にそれぞれ貼り付けるようにしてもよい。但し、反応容器1側に貼り付けられる輻射熱吸収板12と、載置台2側に貼り付けられる輻射熱吸収板12とは、鉛直中心線の両側に交互に(千鳥状に)配置される。   Further, as shown in FIGS. 6 and 7, the radiation heat absorbing plate 12 may be attached to the upper inner surface of the peripheral wall portion of the reaction vessel 1 and the outer circumferential surface of the mounting table 2, respectively. However, the radiant heat absorption plate 12 affixed to the reaction vessel 1 side and the radiant heat absorption plate 12 affixed to the mounting table 2 side are alternately (zigzag) arranged on both sides of the vertical center line.

この場合も、反応容器1側と載置台2側とに輻射熱吸収板12を配置したので、局所的に温度の高低差を設けることができるので、より一層、反応ガスG1に自然対流が生じ、効果的に攪拌が行われる。   Also in this case, since the radiant heat absorption plate 12 is arranged on the reaction vessel 1 side and the mounting table 2 side, a difference in temperature can be locally provided, so that natural convection is further generated in the reaction gas G1, Stirring is performed effectively.

勿論、上述した変形例の構成についても、温度制御装置により、実施の形態1と同様の温度制御が行われている。
[実施の形態2]
次に、本発明の実施の形態2に係る流体の攪拌装置および攪拌方法について説明する。
Of course, the temperature control similar to that of the first embodiment is also performed by the temperature control device in the configuration of the above-described modified example.
[Embodiment 2]
Next, a fluid stirring device and a stirring method according to Embodiment 2 of the present invention will be described.

本実施の形態2においては、例えば含水エタノール(以下、被分離液という)から水(以下、分離液という)を膜分離して無水エタノールを得る場合、すなわち攪拌装置および攪拌方法を、膜分離装置および膜分離方法の一部として説明する。   In the second embodiment, for example, when water (hereinafter referred to as a separation liquid) is subjected to membrane separation from water-containing ethanol (hereinafter referred to as a liquid to be separated) to obtain anhydrous ethanol, that is, the stirring device and the stirring method are referred to as a membrane separation device. And a part of the membrane separation method.

この膜分離装置は、図8および図9に示すように、一端側から被分離液G2が供給される開口部21aを有するとともに他端側に濃縮液(被分離液から分離液が除かれたもの)を取り出すための取出用ノズル22が設けられた横置き円筒状の分離容器(攪拌容器ということができる)21と、この分離容器21の他端側の端壁部21bから内部に挿入された筒状の分離膜体23とから構成されており、さらに上記分離容器21の周壁部(側壁部でもある)の下部に且つ分離膜体23に対応する複数箇所において、加熱手段としてのヒータ(例えば、抵抗加熱式のヒータが用いられる)24がその軸心方向に沿って所定間隔おきで且つ鉛直中心線の両側に交互に(千鳥状に)複数箇所に(例えば、5箇所に)配置されるとともに、これら各ヒータ24の温度を制御する温度制御装置25が具備されている。   As shown in FIGS. 8 and 9, this membrane separation apparatus has an opening 21a to which a separation liquid G2 is supplied from one end side, and a concentrated liquid (the separation liquid is removed from the separation liquid on the other end side). And a horizontal cylindrical separation container (which can be referred to as a stirring container) 21 provided with a take-out nozzle 22 for taking out the product) and an end wall portion 21b on the other end side of the separation container 21 to be inserted inside. A cylindrical separation membrane body 23, and a heater (as a heating means) at a plurality of locations below the peripheral wall portion (also a side wall portion) of the separation container 21 and corresponding to the separation membrane body 23. For example, a resistance heating type heater is used) 24 are arranged at predetermined intervals along the axial direction and alternately (staggered) at a plurality of locations (for example, 5 locations) on both sides of the vertical center line. And each of these Temperature controller 25 for controlling the temperature of 24 is provided.

このヒータ24については、実施の形態1で説明したように分離容器21の周囲に配置されるものではなく、局所的に配置されて加熱するものであり、また図面に示すように、周壁部に埋め込まれている。   The heater 24 is not disposed around the separation container 21 as described in the first embodiment, but is locally disposed and heated. As shown in the drawing, the heater 24 is disposed on the peripheral wall portion. Embedded.

なお、上記分離膜体23は、骨組としての筒状の支持体23aと、この支持体23aの外周面全体に被覆された分離膜23bとから構成されており、またこの支持体23aの構成を具体的に説明すれば、筒状部材の周壁部に、多数の開口部が形成されたものである。   The separation membrane body 23 includes a cylindrical support 23a as a framework and a separation membrane 23b that covers the entire outer peripheral surface of the support 23a. If it demonstrates concretely, many opening parts will be formed in the surrounding wall part of a cylindrical member.

上記構成において、被分離液G2がその開口部21aから分離容器21内に供給されると、他端側に向かって移動されるが、その分離液G2は、表面に設けられた分離膜23bを介して支持体23a内に移動し、被分離液G2の濃縮が行われる。   In the above configuration, when the liquid G2 to be separated is supplied into the separation container 21 from the opening 21a, the liquid G2 is moved toward the other end, but the separation liquid G2 is separated from the separation membrane 23b provided on the surface. Through the support 23a, and the liquid G2 to be separated is concentrated.

このとき、分離容器21に配置されたヒータ24により、局所的に加熱されて温度差が発生し、すなわち自然対流が発生して分離容器21と分離膜体23との間の環状空間部Sにて攪拌作用が行われ、したがって環状空間部S内での被分離液G2の濃度の均一化を図ることができるので、分離作用を効率よく行うことができる。なお、上記濃縮された濃縮液は取出用ノズル22から取り出される。   At this time, the heater 24 disposed in the separation container 21 is locally heated to generate a temperature difference, that is, natural convection is generated and the annular space S between the separation container 21 and the separation film body 23 is generated. Thus, the stirring action is performed, and therefore the concentration of the liquid G2 to be separated in the annular space S can be made uniform, so that the separation action can be performed efficiently. The concentrated liquid is taken out from the take-out nozzle 22.

また、本実施の形態2においても、実施の形態1と同様に、温度制御装置25により、所定時間間隔(例えば、3〜10分間隔)でもって、ヒータ24がオン・オフされて局所的に温度変化が付けられる(温度に変化を付けなくても、十分な自然対流が得られる場合には、オン・オフ制御は行われない)。なお、ヒータをオン・オフするのではなく、ヒータ自身に温度変化(加熱速度の変化)を与えるようにしてもよい。   Also in the second embodiment, similarly to the first embodiment, the heater 24 is turned on and off locally at a predetermined time interval (for example, every 3 to 10 minutes) by the temperature control device 25. A temperature change is applied (when sufficient natural convection is obtained without changing the temperature, on / off control is not performed). Instead of turning the heater on and off, a temperature change (change in heating rate) may be given to the heater itself.

このように、分離容器21の周壁部の複数箇所にヒータ24を配置したので、機械的攪拌部材を用いることなく、分離容器21内にて被分離液を攪拌することができる。すなわち、機械的攪拌部材を用いて攪拌する装置に比べて、構成が簡単となり安価な装置を提供することができる。   As described above, since the heaters 24 are arranged at a plurality of locations on the peripheral wall portion of the separation container 21, the liquid to be separated can be stirred in the separation container 21 without using a mechanical stirring member. That is, compared with a device that stirs using a mechanical stirring member, the configuration is simple and an inexpensive device can be provided.

ところで、上記実施の形態2においては、分離容器21の周壁部の下部にヒータ24を配置したが、図10および図11に示すように、冷却手段(具体的には、フィン付冷却器または水冷型冷却器が用いられる)31を所定間隔おきで且つ鉛直中心線の両側に交互に配置するようにしてもよい。なお、この冷却手段31についても、温度制御装置25により、所定時間間隔でもってオン・オフされて温度に変化が付けられる(温度に変化を付けなくても、十分な自然対流が得られる場合には、オン・オフ制御は行われない)。なお、冷却手段31をオン・オフするのではなく、冷却手段そのものに温度変化(冷却速度の変化)を与えるようにしてもよい。   In the second embodiment, the heater 24 is disposed below the peripheral wall portion of the separation container 21. However, as shown in FIGS. 10 and 11, cooling means (specifically, a finned cooler or a water cooler). The mold coolers 31) may be alternately arranged at predetermined intervals and on both sides of the vertical center line. The cooling means 31 is also turned on and off at predetermined time intervals by the temperature control device 25 to change the temperature (when sufficient natural convection can be obtained without changing the temperature). Is not controlled on / off). Instead of turning the cooling means 31 on and off, a temperature change (change in cooling rate) may be given to the cooling means itself.

この場合も、環状空間部S内の被分離液が適当間隔おきに冷却されるため、下方への流れ(自然対流)が生じるため、被分離液が攪拌される。
さらに、図12および図13に示すように、分離容器21の周壁部の上部に冷却手段31を配置するとともに下部に加熱手段としてのヒータ24を配置し、さらに冷却手段31とヒータ24とを軸心方向で所定間隔でもって交互に配置するようにしてもよい。
Also in this case, since the liquid to be separated in the annular space S is cooled at appropriate intervals, a downward flow (natural convection) is generated, so that the liquid to be separated is stirred.
Further, as shown in FIGS. 12 and 13, a cooling means 31 is disposed at the upper part of the peripheral wall portion of the separation container 21, and a heater 24 as a heating means is disposed at the lower part. Further, the cooling means 31 and the heater 24 are pivoted. You may make it arrange | position alternately with a predetermined space | interval in a heart direction.

この場合も、環状空間部S内の被分離液が適当間隔おきに、上部では冷却が、下部では加熱が行われるため、温度差による下方への流れと上方への流れとが同時に生じるため、被分離液がより一層攪拌される。   Also in this case, since the liquid to be separated in the annular space portion S is cooled at an appropriate interval and heated at the upper part and heated at the lower part, a downward flow and an upward flow due to a temperature difference occur simultaneously. The liquid to be separated is further stirred.

また、上記実施の形態2に係る構成においては、加熱手段または冷却手段を、それぞれ間隔をおいて配置したが、図14および図15、並びに図16および図17に示すように、所定長さに亘って(例えば、一端側が分離膜体の先端位置で他端側が取出用ノズル22の手前位置までの距離に亘って)、連続して配置するようにしてもよい。   Further, in the configuration according to the second embodiment, the heating unit or the cooling unit is arranged at intervals. However, as shown in FIGS. 14 and 15, and FIGS. 16 and 17, the heating unit or the cooling unit has a predetermined length. It may be arranged continuously (for example, over the distance from one end side to the front end position of the separation membrane body and the other end side to the position before the extraction nozzle 22).

勿論、この場合も、環状空間部S内の下部にて被分離液G2が加熱され、または環状空間部S内の上部にて被分離液G2が冷却されるので、どちらの場合も、被分離液に自然対流が発生するため、被分離液が攪拌される。   Of course, also in this case, the liquid G2 to be separated is heated in the lower part in the annular space S, or the liquid G2 to be separated is cooled in the upper part in the annular space S. Since natural convection occurs in the liquid, the liquid to be separated is stirred.

すなわち、被分離液の自然対流による攪拌により、被分離液の濃度の均一化が図られるため、膜分離作用が効率よく行われる。
なお、上述した実施の形態2においては、加熱手段としてのヒータおよび冷却手段を容器の周壁部(側壁部)に埋め込んだ状態として図示したが、勿論、容器の周壁部の内面または外面に配置してもよい。
That is, since the concentration of the liquid to be separated is made uniform by agitation by natural convection of the liquid to be separated, the membrane separation action is efficiently performed.
In Embodiment 2 described above, the heater and the cooling means as the heating means are illustrated as being embedded in the peripheral wall portion (side wall portion) of the container, but of course, the heater and the cooling means are disposed on the inner surface or the outer surface of the peripheral wall portion of the container. May be.

本発明の実施の形態1に係る攪拌装置を用いたCNT製造装置の縦断面図である。It is a longitudinal cross-sectional view of the CNT manufacturing apparatus using the stirring apparatus which concerns on Embodiment 1 of this invention. 同CNT製造装置の横断面を示す図で、(a)は図1のD1−D1断面図、(b)は図1のD2−D2断面図である。It is a figure which shows the cross section of the same CNT manufacturing apparatus, (a) is D1-D1 sectional drawing of FIG. 1, (b) is D2-D2 sectional drawing of FIG. 同CNT製造装置の中央位置での反応ガスの対流状態を時系列で示す横断面図である。It is a cross-sectional view which shows the convection state of the reactive gas in the center position of the CNT manufacturing apparatus in time series. 本発明の実施の形態1の変形例に係るCNT製造装置の縦断面図である。It is a longitudinal cross-sectional view of the CNT manufacturing apparatus which concerns on the modification of Embodiment 1 of this invention. 同変形例に係るCNT製造装置の横断面を示す図で、(a)は図4のD3−D3断面図、(b)は図4のD4−D4断面図である。It is a figure which shows the cross section of the CNT manufacturing apparatus which concerns on the modification, (a) is D3-D3 sectional drawing of FIG. 4, (b) is D4-D4 sectional drawing of FIG. 本発明の実施の形態1の他の変形例に係るCNT製造装置の縦断面図である。It is a longitudinal cross-sectional view of the CNT manufacturing apparatus which concerns on the other modification of Embodiment 1 of this invention. 同他の変形例に係るCNT製造装置の横断面を示す図で、(a)は図6のD5−D5断面図、(b)は図6のD6−D6断面図である。It is a figure which shows the cross section of the CNT manufacturing apparatus which concerns on the other modification, (a) is D5-D5 sectional drawing of FIG. 6, (b) is D6-D6 sectional drawing of FIG. 本発明の実施の形態2に係る攪拌装置を用いた膜分離装置の縦断面図である。It is a longitudinal cross-sectional view of the membrane separator using the stirring apparatus which concerns on Embodiment 2 of this invention. 同膜分離装置の横断面を示す図で、(a)は図8のE1−E1断面図、(b)は図8のE2−E2断面図である。It is a figure which shows the cross section of the same membrane separator, (a) is E1-E1 sectional drawing of FIG. 8, (b) is E2-E2 sectional drawing of FIG. 本発明の実施の形態2の他の変形例に係る膜分離装置の縦断面図である。It is a longitudinal cross-sectional view of the membrane separator which concerns on the other modification of Embodiment 2 of this invention. 同膜分離装置の横断面を示す図で、(a)は図10のE3−E3断面図、(b)は図10のE4−E4断面図である。It is a figure which shows the cross section of the same membrane separator, (a) is E3-E3 sectional drawing of FIG. 10, (b) is E4-E4 sectional drawing of FIG. 本発明の実施の形態2の他の変形例に係る膜分離装置の縦断面図である。It is a longitudinal cross-sectional view of the membrane separator which concerns on the other modification of Embodiment 2 of this invention. 同膜分離装置の横断面を示す図で、(a)は図12のE5−E5断面図、(b)は図12のE6−E6断面図である。It is a figure which shows the cross section of the same membrane separator, (a) is E5-E5 sectional drawing of FIG. 12, (b) is E6-E6 sectional drawing of FIG. 本発明の実施の形態2の他の変形例に係る膜分離装置の縦断面図である。It is a longitudinal cross-sectional view of the membrane separator which concerns on the other modification of Embodiment 2 of this invention. 図14のE7−E7断面図である。It is E7-E7 sectional drawing of FIG. 本発明の実施の形態2の他の変形例に係る膜分離装置の縦断面図である。It is a longitudinal cross-sectional view of the membrane separator which concerns on the other modification of Embodiment 2 of this invention. 図16のE8−E8断面図である。It is E8-E8 sectional drawing of FIG.

符号の説明Explanation of symbols

1 反応容器
2 載置台
3 加熱手段
4 温度制御装置
5 供給用ノズル
6 排出用ノズル
11 ヒータ
12 輻射熱吸収板
21 分離容器
21a 開口部
22 取出用ノズル
23 分離膜体
24 ヒータ
25 温度制御装置
31 冷却手段
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Mounting stand 3 Heating means 4 Temperature control apparatus 5 Supply nozzle 6 Discharge nozzle 11 Heater 12 Radiant heat absorption board 21 Separation container 21a Opening part 22 Extraction nozzle 23 Separation film body 24 Heater 25 Temperature control apparatus 31 Cooling means

Claims (8)

流体が充填される容器または容器内の所定領域を加熱および/または冷却して、流体に発生した温度差に起因する自然対流により、当該流体を攪拌することを特徴とする流体の攪拌方法。   A fluid stirring method comprising heating and / or cooling a container filled with a fluid or a predetermined region in the container, and stirring the fluid by natural convection due to a temperature difference generated in the fluid. 加熱速度または冷却速度を時間的に変化させることを特徴とする請求項1に記載の流体の攪拌方法。   2. The fluid stirring method according to claim 1, wherein the heating rate or the cooling rate is changed with time. 容器が、一端側からカーボンナノチューブの原料ガスが供給されて基板上にカーボンナノチューブを生成するための筒状の分離容器であることを特徴とする請求項1または2に記載の流体の攪拌方法。   The fluid stirring method according to claim 1 or 2, wherein the container is a cylindrical separation container for supplying a carbon nanotube source gas from one end side to generate carbon nanotubes on a substrate. 容器が、一端側から被分離液が供給されるとともに他端側から膜分離体が挿入されて膜分離を行う筒状の分離容器であることを特徴とする請求項1または2に記載の流体の攪拌方法。   The fluid according to claim 1 or 2, wherein the container is a cylindrical separation container in which a liquid to be separated is supplied from one end side and a membrane separator is inserted from the other end side to perform membrane separation. Stirring method. 流体が充填される容器の側壁部の所定領域に加熱手段および/または冷却手段を配置したことを特徴とする流体の攪拌装置。   A fluid stirring apparatus, wherein heating means and / or cooling means are arranged in a predetermined region of a side wall portion of a container filled with fluid. 加熱手段または冷却手段の温度を制御する温度制御装置を具備したことを特徴とする請求項5に記載の流体の攪拌装置。   6. The fluid stirring device according to claim 5, further comprising a temperature control device for controlling the temperature of the heating means or the cooling means. 容器が、一端側からカーボンナノチューブの原料ガスが供給されて基板上にカーボンナノチューブを生成するための筒状の反応容器であるとともに、加熱手段または冷却手段を、反応容器の周壁部の下部または上部に配置したことを特徴とする請求項5または6に記載の流体の攪拌装置。   The vessel is a cylindrical reaction vessel for supplying carbon nanotube raw material gas from one end side to generate carbon nanotubes on the substrate, and the heating means or cooling means is provided below or above the peripheral wall portion of the reaction vessel. The fluid agitating device according to claim 5 or 6, wherein the fluid agitating device is disposed. 容器が、一端側に被分離液を供給し得る開口部が形成されるとともに他端側から膜分離体が挿入されて膜分離を行うための筒状の分離容器であるとともに、加熱手段または冷却手段を、分離容器の周壁部の下部または上部に配置したことを特徴とする請求項5または6に記載の流体の攪拌装置。   The container is a cylindrical separation container in which an opening capable of supplying a liquid to be separated is formed on one end side and a membrane separator is inserted from the other end side to perform membrane separation, and heating means or cooling The fluid stirring device according to claim 5 or 6, wherein the means is disposed at a lower portion or an upper portion of the peripheral wall portion of the separation container.
JP2007014379A 2007-01-25 2007-01-25 Carbon nanotube production equipment Expired - Fee Related JP4845752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014379A JP4845752B2 (en) 2007-01-25 2007-01-25 Carbon nanotube production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014379A JP4845752B2 (en) 2007-01-25 2007-01-25 Carbon nanotube production equipment

Publications (2)

Publication Number Publication Date
JP2008178805A true JP2008178805A (en) 2008-08-07
JP4845752B2 JP4845752B2 (en) 2011-12-28

Family

ID=39723113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014379A Expired - Fee Related JP4845752B2 (en) 2007-01-25 2007-01-25 Carbon nanotube production equipment

Country Status (1)

Country Link
JP (1) JP4845752B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640078B2 (en) * 2010-03-31 2014-12-10 日本たばこ産業株式会社 Aerosol particle sampling device
JP2016083634A (en) * 2014-10-28 2016-05-19 東レエンジニアリング株式会社 Agitator
CN112604597A (en) * 2020-12-09 2021-04-06 河南理工大学 High-low concentration gas mixing device and using method thereof
CN114774839A (en) * 2021-10-15 2022-07-22 谢喜 Heat treatment equipment for iron casting rustless electric cooker inner container and manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273009A (en) * 1986-05-21 1987-11-27 Ube Ind Ltd Pervaporization separating method and device therefor
JPH07313846A (en) * 1994-05-24 1995-12-05 Kubota Corp Device for suppressing deposit on membrane surface in membrane separator
JPH0831758A (en) * 1994-07-15 1996-02-02 Shin Etsu Handotai Co Ltd Vapor growth and device therefor
JPH0950964A (en) * 1995-08-09 1997-02-18 Mitsubishi Electric Corp Sealed tube vapor growth ampoule
JPH10118637A (en) * 1996-10-18 1998-05-12 Mitsubishi Rayon Co Ltd Water purifier fitted with cooling function
JPH1174203A (en) * 1997-06-25 1999-03-16 Sony Corp Method and device for growing nitride iii-v compound semiconductor
JPH1190185A (en) * 1997-09-19 1999-04-06 Mitsubishi Rayon Co Ltd Clean water treating device and clean water treatment using same
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture
JP2004044064A (en) * 2002-05-22 2004-02-12 Showa Denko Kk Method for producing vapor-phase growth carbon fiber
JP2005060130A (en) * 2003-08-20 2005-03-10 Hitachi Zosen Corp Method for manufacturing carbon nanotube
JP2007203210A (en) * 2006-02-02 2007-08-16 Mitsui Eng & Shipbuild Co Ltd Membrane module and membrane separation process

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273009A (en) * 1986-05-21 1987-11-27 Ube Ind Ltd Pervaporization separating method and device therefor
JPH07313846A (en) * 1994-05-24 1995-12-05 Kubota Corp Device for suppressing deposit on membrane surface in membrane separator
JPH0831758A (en) * 1994-07-15 1996-02-02 Shin Etsu Handotai Co Ltd Vapor growth and device therefor
JPH0950964A (en) * 1995-08-09 1997-02-18 Mitsubishi Electric Corp Sealed tube vapor growth ampoule
JPH10118637A (en) * 1996-10-18 1998-05-12 Mitsubishi Rayon Co Ltd Water purifier fitted with cooling function
JPH1174203A (en) * 1997-06-25 1999-03-16 Sony Corp Method and device for growing nitride iii-v compound semiconductor
JPH1190185A (en) * 1997-09-19 1999-04-06 Mitsubishi Rayon Co Ltd Clean water treating device and clean water treatment using same
JPH11139815A (en) * 1997-11-07 1999-05-25 Canon Inc Carbon nanotube device and its manufacture
JP2004044064A (en) * 2002-05-22 2004-02-12 Showa Denko Kk Method for producing vapor-phase growth carbon fiber
JP2005060130A (en) * 2003-08-20 2005-03-10 Hitachi Zosen Corp Method for manufacturing carbon nanotube
JP2007203210A (en) * 2006-02-02 2007-08-16 Mitsui Eng & Shipbuild Co Ltd Membrane module and membrane separation process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640078B2 (en) * 2010-03-31 2014-12-10 日本たばこ産業株式会社 Aerosol particle sampling device
JP2016083634A (en) * 2014-10-28 2016-05-19 東レエンジニアリング株式会社 Agitator
CN112604597A (en) * 2020-12-09 2021-04-06 河南理工大学 High-low concentration gas mixing device and using method thereof
CN114774839A (en) * 2021-10-15 2022-07-22 谢喜 Heat treatment equipment for iron casting rustless electric cooker inner container and manufacturing method
CN114774839B (en) * 2021-10-15 2023-07-25 谢喜 Heat treatment equipment for stainless electric cooker liner of iron casting and manufacturing method

Also Published As

Publication number Publication date
JP4845752B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5249419B2 (en) Reactor
CN103007865B (en) Stirred tank
JP4845752B2 (en) Carbon nanotube production equipment
CN107812469A (en) Full-automatic magnetic stirring apparatus for chemical experiment
JP2010126405A (en) Device for synthesizing carbon nanotube
JP2008520626A (en) Reactor and method for reacting at least two gases in the presence of a liquid phase
US2299197A (en) Catalytic unit
CN212426031U (en) Medical stainless steel fermentation tank body
CN104801060A (en) Industrial crystallization kettle
KR102184495B1 (en) 7 normal cubic meter per hour hydrogen production apparatus
JPH10277378A (en) Agitating device for exothermic reactor
CN203227495U (en) Rotary type combined reaction kettle
CN206199282U (en) A kind of chemical reaction tank
JP5494414B2 (en) Crystal growth equipment
CN206526542U (en) A kind of crystallization kettle of internal face not crystallized stock
CN109045743A (en) The novel double down film melting crystallizer of one kind and its substance separating technology
Mikulionok Heat exchange apparatuses with fluidized bed (survey of patents)
JP7441231B2 (en) fixed bed equipment
JPH078780A (en) Agitating blade
CN213913809U (en) Organic synthesizer with heating and cooling functions
JP2019048261A (en) Reaction unit of microreactor and reactor having the same
JP2004020096A (en) Multi-tube type heat transfer agitating device
CN106423024A (en) Chemical reaction tank
RU171835U1 (en) MASS TRANSFER COLUMN
CN208865584U (en) A kind of pulvis agitator tank cooling device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees