JP2008178176A - Induction machine controller - Google Patents

Induction machine controller Download PDF

Info

Publication number
JP2008178176A
JP2008178176A JP2007007548A JP2007007548A JP2008178176A JP 2008178176 A JP2008178176 A JP 2008178176A JP 2007007548 A JP2007007548 A JP 2007007548A JP 2007007548 A JP2007007548 A JP 2007007548A JP 2008178176 A JP2008178176 A JP 2008178176A
Authority
JP
Japan
Prior art keywords
command
slip
induction machine
induction
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007007548A
Other languages
Japanese (ja)
Other versions
JP4948183B2 (en
Inventor
Masashi Takagi
正志 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2007007548A priority Critical patent/JP4948183B2/en
Publication of JP2008178176A publication Critical patent/JP2008178176A/en
Application granted granted Critical
Publication of JP4948183B2 publication Critical patent/JP4948183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Multiple Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problem of a conventional system that an operation error occurs in the speed of induction machines and the actual slippage of the induction machines increases and the induction machines get in step-out states, when the speed difference between the induction machines becomes large in the blanket control of a plurality of induction machines. <P>SOLUTION: A slip difference increase detection means which has estimated slippage and a slip command inputted and outputs a detection signal, and an operation logical unit which makes a control command from an operation command and a detection signal, are added anew, and the control command is inputted into a torque control means in place of the operation command. It can detect the idling of some axles and the increase of slip before the induction machine gets in a step-out state, and it can stop the torque control of the induction machine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、誘導機のトルク制御に関するもので、特に、複数台誘導機の一括トルク制御時の脱調状態を回避するものである。   The present invention relates to torque control of induction machines, and in particular, avoids a step-out state during collective torque control of a plurality of induction machines.

図2は、一従来例を示すブロック図である。101、102、103、104は誘導機、2は電流検出器、3は電力変換器、4はトルク制御手段、5は磁束演算器、6は周波数演算器、7はすべり演算器、8は速度演算器、9はすべり周波数演算器である。
図2において、誘導機は4台しか示されていないが、複数台であれば、何台であっても良い。以下、誘導機は4台であるとして説明する。
FIG. 2 is a block diagram showing a conventional example. 101, 102, 103, 104 are induction machines, 2 is a current detector, 3 is a power converter, 4 is torque control means, 5 is a magnetic flux calculator, 6 is a frequency calculator, 7 is a slip calculator, and 8 is a speed. A calculator 9 is a slip frequency calculator.
In FIG. 2, only four induction machines are shown, but any number of induction machines may be used as long as there are a plurality of induction machines. Hereinafter, description will be made assuming that there are four induction machines.

電流検出器2は、電力変換器3につながる個々の誘導機に流れる電流の相毎の総和である総和電流iを検出する。
電圧系磁束演算器5は、総和電流iと電力変換器3に入力される電圧指令vから、誘導機磁束φを式(1)で演算する。

Figure 2008178176
ここで、R1は全誘導機の一次抵抗合成値、L2は二次自己インダクタンス合成値、Mは相互インダクタンス合成値、LeKは漏れインダクタンス合成値である。漏れインダクタンス合成値LeKは、
Figure 2008178176
で与えられる。ここで、L1は全誘導機の一次自己インダクタンス合成値である。 The current detector 2 detects a total current i that is a sum of currents flowing through the individual induction machines connected to the power converter 3 for each phase.
The voltage system magnetic flux calculator 5 calculates the induction machine magnetic flux φ from the total current i and the voltage command v input to the power converter 3 by the equation (1).
Figure 2008178176
Here, R1 is a primary resistance composite value of all induction machines, L2 is a secondary self-inductance composite value, M is a mutual inductance composite value, and LeK is a leakage inductance composite value. The leakage inductance composite value LeK is
Figure 2008178176
Given in. Here, L1 is a primary self-inductance composite value of all induction machines.

周波数演算器6は、誘導機磁束φから、式(3)を用いて誘導機周波数ω1を演算する。

Figure 2008178176
ここで、FAとFBは誘導機磁束φの成分である。
すべり演算器7は、総和電流iと誘導機磁束φから、式(4)を用いて推定すべりωscを演算する。
Figure 2008178176
ここで、R2は全誘導機の二次抵抗合成値である。
速度演算器8は、誘導機周波数ω1と推定すべりωscから、式(5)を用いて誘導機速度ωmを演算する。
Figure 2008178176
The frequency calculator 6 calculates the induction machine frequency ω1 using the equation (3) from the induction machine magnetic flux φ.
Figure 2008178176
Here, FA and FB are components of the induction machine magnetic flux φ.
The slip calculator 7 calculates the estimated slip ωsc from the total current i and the induction machine magnetic flux φ using the equation (4).
Figure 2008178176
Here, R2 is a secondary resistance composite value of all induction machines.
The speed calculator 8 calculates the induction machine speed ωm using the equation (5) from the induction machine frequency ω1 and the estimated slip ωsc.
Figure 2008178176

式(5)で演算される誘導機速度ωmは、個々の誘導機速度の平均値となり、式(6)で示される値となる。

Figure 2008178176
ここで、ωm1は誘導機101の速度、ωm2は誘導機102の速度、ωm3は誘導機103の速度、ωm4は誘導機104の速度である。 The induction machine speed ωm calculated by Expression (5) is an average value of the individual induction machine speeds, and is a value represented by Expression (6).
Figure 2008178176
Here, ωm1 is the speed of the induction machine 101, ωm2 is the speed of the induction machine 102, ωm3 is the speed of the induction machine 103, and ωm4 is the speed of the induction machine 104.

すべり周波数演算器9は、磁束指令φ*、トルク指令τ*から、式(7)を用いてすべり指令ωsrを演算する。

Figure 2008178176
The slip frequency calculator 9 calculates the slip command ωsr from the magnetic flux command φ * and the torque command τ * using the equation (7).
Figure 2008178176

トルク制御手段4は、運転指令NがONのときは、誘導機速度ωmと総和電流iを基に、全誘導機のすべりと磁束とトータルトルクがすべり指令ωsr、磁束指令φ*、トルク指令τ*となるような電圧指令vを出力する。運転指令NがOFFのときは、電圧指令vを0として、誘導機を無制御状態とする。
電力変換器3は、電圧指令vを増幅し、負荷である誘導機101〜104に電力を供給する。
When the operation command N is ON, the torque control means 4 determines the slip command ωsr, the flux command φ *, and the torque command τ based on the induction machine speed ωm and the total current i. Output a voltage command v such that *. When the operation command N is OFF, the voltage command v is set to 0, and the induction machine is brought into an uncontrolled state.
The power converter 3 amplifies the voltage command v and supplies power to the induction machines 101 to 104 that are loads.

運転指令Nは、トルク制御手段4へ入力する代わりに電力変換器3へ入力し、運転指令NがONで電圧指令vに相当する電力を誘導機101〜104に供給し、運転指令NがOFFで電力供給停止としても、同等の機能を得ることができる。   The operation command N is input to the power converter 3 instead of being input to the torque control means 4, and when the operation command N is ON, power corresponding to the voltage command v is supplied to the induction machines 101 to 104, and the operation command N is OFF. Even when the power supply is stopped, the same function can be obtained.

以上の構成とすることにより、運転指令NがONのときは、複数台誘導機のトータルトルクをトルク指令τ*に制御することができる。運転指令NをOFFにすれば、複数台誘導機を無制御状態にすることができる。   With the above configuration, when the operation command N is ON, the total torque of a plurality of induction machines can be controlled to the torque command τ *. If the operation command N is turned OFF, a plurality of induction machines can be brought into an uncontrolled state.

車両においては、台車制御、1車両制御が一般的であるため、複数台誘導機の一括トルク制御が多用されている。   In vehicles, since bogie control and vehicle control are common, collective torque control of multiple induction machines is frequently used.

特開平11−069895JP-A-11-069895

従来技術においては、以下に示す問題点がある。
車両において一括制御している一部車輪軸が空転し、例えば誘導機103の速度ωm3がωm1とωm2とωm4に比べて大きくなった場合、式(6)によれば、ωm1、ωm2、ωm3、ωm4に対する誘導機速度ωmの演算誤差が発生する。誘導機103の空転が大きく、誘導機速度ωmの演算誤差が大きくなれば、誘導機103が脱調状態となる。さらに、誘導機103の空転が大きくなれば、誘導機103だけでなく、誘導機101や誘導機102や誘導機104も脱調状態となる。
The prior art has the following problems.
When some wheel shafts that are collectively controlled in the vehicle are idling and, for example, the speed ωm3 of the induction machine 103 is higher than ωm1, ωm2, and ωm4, according to equation (6), ωm1, ωm2, ωm3, A calculation error of the induction machine speed ωm with respect to ωm4 occurs. If the idling of the induction machine 103 is large and the calculation error of the induction machine speed ωm is large, the induction machine 103 is in a step-out state. Furthermore, if the idling of the induction machine 103 becomes large, not only the induction machine 103 but also the induction machine 101, the induction machine 102, and the induction machine 104 will be out of step.

また、一部車輪軸の滑走が大きくなった場合も、空転時と同じく、誘導機が脱調状態になる可能性がある。   In addition, when the sliding of some wheel shafts becomes large, the induction machine may be out of step as in the case of idling.

誘導機が脱調状態になると、トルク制御不能となり、最悪の場合、過電流や過電圧により、誘導機破壊、電力変換器素子破壊へとつながる。
本発明は、以上の問題点を解決するためになされたものである。
When the induction machine goes out of step, torque control becomes impossible, and in the worst case, overcurrent and overvoltage lead to destruction of the induction machine and power converter element.
The present invention has been made to solve the above problems.

請求項1による発明によれば、前述の問題点を解決するために、複数台誘導機を持ち、全誘導機の総和電流と電圧から誘導機磁束を演算する磁束演算器と、該誘導機磁束と該総和電流から推定すべりを演算するすべり演算器と、前記誘導機磁束と前記推定すべりから誘導機速度を演算する速度演算器と、磁束指令とトルク指令からすべり指令を演算するすべり指令演算器を有し、前記総和電流と前記誘導機速度と該すべり指令と該磁束指令と該トルク指令と運転指令を基に該複数台誘導機のトルクを一括制御するトルク制御手段を有する誘導機制御装置において、前記推定すべりと前記すべり指令を入力し検知信号を出力するすべり差拡大検知手段と、該運転指令と該検知信号から制御指令を作成する運転論理器を新たに追加し、前記運転指令の代わりに該制御指令を該トルク制御手段に入力することを特徴とする。 According to the first aspect of the present invention, in order to solve the above-described problem, a magnetic flux calculator having a plurality of induction machines and calculating the induction machine magnetic flux from the total current and voltage of all induction machines, and the induction machine magnetic flux A slip calculator that calculates an estimated slip from the total current, a speed calculator that calculates an induction machine speed from the induction machine magnetic flux and the estimated slip, and a slip command calculator that calculates a slip command from a magnetic flux command and a torque command And an induction machine control device having torque control means for collectively controlling the torque of the induction machines based on the total current, the induction machine speed, the slip command, the magnetic flux command, the torque command, and the operation command. A slip difference expansion detecting means for inputting the estimated slip and the slip command and outputting a detection signal; and a driving logic unit for creating a control command from the driving command and the detection signal. Wherein the input to the torque control means control command in place of.

誘導機が脱調状態となる前に、一部車輪軸の空転、滑走が大きくなったことを検知でき、誘導機のトルク制御を停止させることができる。   Before the induction machine is out of step, it can be detected that some of the wheel shafts are idling and sliding, and torque control of the induction machine can be stopped.

すべり差拡大検知手段10を新たに追加することにより、全誘導機中の一部車輪軸に空転あるいは滑走が発生していることが検知できる。検知した信号を運転論理器11にて処理して制御指令を作成し、トルク制御手段4に入力することにより、誘導機のトルク制御を停止させることができる。   By newly adding the slip difference expansion detecting means 10, it is possible to detect that idling or sliding has occurred on some wheel shafts in all the induction machines. The detected logic is processed by the operation logic unit 11 to create a control command and input it to the torque control means 4 to stop the torque control of the induction machine.

図1は、本発明の一実施例を示すブロック図であり、10はすべり差拡大検知手段、11は運転論理器である。   FIG. 1 is a block diagram showing an embodiment of the present invention, in which 10 is a slip difference enlargement detecting means and 11 is an operation logic unit.

すべり差拡大検知手段10は、推定すべりωscとすべり指令ωsrを入力し、検知信号Kを出力する。
図3は、すべり差拡大検知手段の一実施例を示す図であり、|ωsc−ωsr|>αでKをON、|ωsc−ωsr|<αでKをOFFとする。ただし、αは検知閾値であり、0以上の値である。
The slip difference enlargement detecting means 10 receives the estimated slip ωsc and the slip command ωsr and outputs a detection signal K.
FIG. 3 is a diagram showing an embodiment of the slip difference enlargement detecting means, wherein K is turned on when | ωsc−ωsr |> α, and K is turned off when | ωsc−ωsr | <α. However, α is a detection threshold value and is a value of 0 or more.

検知信号Kは、複数台誘導機中の一部車輪軸に空転あるいは滑走が発生していることを示している。αと空転あるいは滑走の度合いは連動しており、αを0に近くすると、少しの空転、滑走で検知信号KがONとなる。逆に、αを大きくすると、少しの空転、滑走では、検知信号KがONとなり難くなる。   The detection signal K indicates that some of the wheel shafts in the plurality of induction machines are idling or sliding. α and the degree of idling or sliding are linked to each other, and when α is close to 0, the detection signal K is turned ON with a slight idling or gliding. On the other hand, if α is increased, the detection signal K is difficult to be turned ON with a little idling or sliding.

誘導機101〜104の中で誘導機103だけが空転し、ωm1、ωm2、ωm4に対して、ωm3が大きくなったとする。式(6)により、速度演算誤差は、ωm>ωm1、ωm>ωm2、ωm>ωm4、ωm<ωm3となる。その結果、トルク指令τ*、磁束指令φ*から演算されるすべり指令ωsrに対して、誘導機101、102、104の実すべりは大きくなり、誘導機103の実すべりは小さくなる。   It is assumed that only the induction machine 103 idles among the induction machines 101 to 104, and ωm3 becomes larger than ωm1, ωm2, and ωm4. According to equation (6), the speed calculation errors are ωm> ωm1, ωm> ωm2, ωm> ωm4, and ωm <ωm3. As a result, with respect to the slip command ωsr calculated from the torque command τ * and the magnetic flux command φ *, the actual slips of the induction machines 101, 102, and 104 increase, and the actual slip of the induction machine 103 decreases.

この状態で、総和電流iを一定となるようにトルク制御手段4でトルク制御を実施すると、トータルトルクはトルク指令τ*に一致するが、式(4)による推定すべりωscは、誘導機101、102、103、104の平均値となり、すべり指令ωsrと異なる。
|ωsc−ωsr|の大きさは、空転の度合いによるが、空転が大きければ、|ωsc−ωsr|の大きさは大きくなる。その結果、すべり差拡大検知手段10の検知信号がONとなる。ここでは空転を例としたが、滑走の場合も同様である。
In this state, when torque control is performed by the torque control means 4 so that the total current i is constant, the total torque coincides with the torque command τ *, but the estimated slip ωsc according to the equation (4) is the induction machine 101, The average value of 102, 103, 104 is different from the slip command ωsr.
The magnitude of | ωsc−ωsr | depends on the degree of idling. However, if idling is large, | ωsc−ωsr | As a result, the detection signal of the slip difference enlargement detecting means 10 is turned on. Here, the idling is taken as an example, but the same applies to the case of sliding.

運転論理器11は、運転指令Nと検知信号Kの論理演算を行い、制御指令NNを出力する。運転指令NがON、検知信号KがOFFであれば、制御指令NNはONとなる。   The operation logic unit 11 performs a logical operation of the operation command N and the detection signal K, and outputs a control command NN. If the operation command N is ON and the detection signal K is OFF, the control command NN is ON.

トルク制御手段4は、制御指令NNがONのときは、誘導機速度ωmと総和電流iを基に、全誘導機の磁束とトータルトルクが磁束指令φ*、トルク指令τ*となるような電圧指令vを出力する。制御指令NNがOFFのときは、電圧指令vを0として、誘導機を無制御状態とする。   When the control command NN is ON, the torque control means 4 is based on the induction machine speed ωm and the total current i so that the magnetic flux and total torque of all induction machines become the flux command φ * and the torque command τ *. Command v is output. When the control command NN is OFF, the voltage command v is set to 0, and the induction machine is set to a non-control state.

制御指令NNは、トルク制御手段4へ入力する代わりに電力変換器3へ入力し、制御指令NNがONで電圧指令vに相当する電力を誘導機101〜104に供給し、制御指令NNがOFFで電力供給停止としても、同等の機能を得ることができる。   The control command NN is input to the power converter 3 instead of being input to the torque control means 4, and when the control command NN is ON, power corresponding to the voltage command v is supplied to the induction machines 101 to 104, and the control command NN is OFF. Even when the power supply is stopped, the same function can be obtained.

以上の構成とすることにより、誘導機が脱調状態となる前に、一部車軸の空転、滑走が大きくなったことを検知でき、誘導機のトルク制御を停止させることができる。ここで、図3の検知閾値αを調整することにより、誘導機のトルク制御を停止させる一部車軸の空転、滑走の度合いを調整することができる。   By adopting the above configuration, it is possible to detect that the idling and sliding of some axles have increased before the induction machine is in a step-out state, and torque control of the induction machine can be stopped. Here, by adjusting the detection threshold value α in FIG. 3, it is possible to adjust the degree of idling and sliding of some axles that stop the torque control of the induction machine.

車両制御の一部車輪軸の空転、滑走による速度演算誤差に限らず、トルクの一括制御対象となっている複数台誘導機の一部の軸速度に差ができた場合であっても、本発明は有効である。   This is not limited to the speed calculation error due to idling or sliding of some wheel shafts in vehicle control, but even if there is a difference in the shaft speeds of some induction machines that are subject to collective torque control. The invention is effective.

車両のような複数台誘導機制御において、一部車輪軸の空転、滑走を検知することができる。さらに、一部車輪軸の空転、滑走が大きくなることにより発生する誘導機脱調状態に至る前に、検知信号Kにより誘導機制御を停止させることができる。   In the control of a plurality of induction machines such as a vehicle, it is possible to detect idling and sliding of some wheel shafts. Furthermore, the induction machine control can be stopped by the detection signal K before reaching the induction machine step-out state caused by the idling and sliding of some wheel shafts.

車両制御の一部車輪軸の空転、滑走による速度演算誤差に限らず、トルクの一括制御対象となっている複数台誘導機の一部の軸速度に差ができた場合であっても、誘導機脱調状態に至る前に、検知信号Kにより誘導機制御を停止させることができる。   Not only the speed calculation error due to idling or sliding of some wheel shafts in vehicle control, but also when there is a difference in the shaft speed of some induction machines that are subject to collective torque control. The induction machine control can be stopped by the detection signal K before reaching the machine step-out state.

誘導機制御を停止することにより、誘導機脱調状態が原因である過電流や過電圧による誘導機破壊、電力変換器3の素子破壊を防止することができる。   By stopping the induction machine control, it is possible to prevent the destruction of the induction machine and the element destruction of the power converter 3 due to the overcurrent and overvoltage caused by the induction machine step-out state.

図1は、本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention. 図2は、一従来例を示すブロック図である。FIG. 2 is a block diagram showing a conventional example. 図3は、すべり差拡大検知手段の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the slip difference enlargement detecting means.

符号の説明Explanation of symbols

101 誘導機
102 誘導機
103 誘導機
104 誘導機
2 電流検出器
3 電力変換器
4 トルク制御手段
5 磁束演算器
6 周波数演算器
7 すべり演算器
8 速度演算器
9 すべり周波数演算器
10 すべり差拡大検知手段
11 運転論理器

i・・・総和電流
v・・・電圧指令
τ*・・・トルク指令
φ*・・・磁束指令
ω1・・・誘導機周波数
ωm・・・誘導機速度
ωsc・・・推定すべり
ωsr・・・すべり指令
φ・・・誘導機磁束
N・・・運転指令
K・・・検知信号
NN・・・制御指令
DESCRIPTION OF SYMBOLS 101 Induction machine 102 Induction machine 103 Induction machine 104 Induction machine 2 Current detector 3 Power converter 4 Torque control means 5 Magnetic flux calculator 6 Frequency calculator 7 Slip calculator 8 Speed calculator 9 Slip frequency calculator 10 Slip difference expansion detection Means 11 Operation logic unit

i ... Total current v ... Voltage command τ * ... Torque command φ * ... Magnetic flux command ω1 ... Induction machine frequency ωm ... Induction machine speed ωsc ... Estimated slip ωsr ... Slip command φ ... Induction machine magnetic flux N ... Operation command K ... Detection signal NN ... Control command

Claims (1)

複数台誘導機を持ち、全誘導機の総和電流と電圧から誘導機磁束を演算する磁束演算器と、該誘導機磁束と該総和電流から推定すべりを演算するすべり演算器と、前記誘導機磁束と前記推定すべりから誘導機速度を演算する速度演算器と、磁束指令とトルク指令からすべり指令を演算するすべり指令演算器を有し、前記総和電流と前記誘導機速度と該すべり指令と該磁束指令と該トルク指令と運転指令を基に該複数台誘導機のトルクを一括制御するトルク制御手段を有する誘導機制御装置において、
前記推定すべりと前記すべり指令を入力し検知信号を出力するすべり差拡大検知手段と、該運転指令と該検知信号から制御指令を作成する運転論理器を新たに追加し、前記運転指令の代わりに該制御指令を該トルク制御手段に入力することを特徴とする誘導機制御装置。

A magnetic flux calculator having a plurality of induction machines and calculating the induction machine magnetic flux from the total current and voltage of all induction machines, the slip calculation unit calculating the estimated slip from the induction machine magnetic flux and the total current, and the induction machine magnetic flux And a speed calculator that calculates the induction machine speed from the estimated slip, and a slip command calculator that calculates a slip command from the magnetic flux command and the torque command, the total current, the induction machine speed, the slip command, and the magnetic flux In the induction machine control device having torque control means for collectively controlling the torque of the induction machines based on the command, the torque instruction and the operation instruction,
A slip difference expansion detecting means for inputting the estimated slip and the slip command and outputting a detection signal, and a driving logic unit for creating a control command from the driving command and the detection signal are newly added, instead of the driving command. An induction machine control device that inputs the control command to the torque control means.

JP2007007548A 2007-01-17 2007-01-17 Induction machine controller Expired - Fee Related JP4948183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007548A JP4948183B2 (en) 2007-01-17 2007-01-17 Induction machine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007548A JP4948183B2 (en) 2007-01-17 2007-01-17 Induction machine controller

Publications (2)

Publication Number Publication Date
JP2008178176A true JP2008178176A (en) 2008-07-31
JP4948183B2 JP4948183B2 (en) 2012-06-06

Family

ID=39704779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007548A Expired - Fee Related JP4948183B2 (en) 2007-01-17 2007-01-17 Induction machine controller

Country Status (1)

Country Link
JP (1) JP4948183B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124554A (en) * 2008-11-18 2010-06-03 Toyo Electric Mfg Co Ltd Induction machine control device
JP2010263745A (en) * 2009-05-11 2010-11-18 Toyo Electric Mfg Co Ltd Device for control of induction machine
CN102684575A (en) * 2012-05-11 2012-09-19 杭州电子科技大学 One-to-many control system of industrial frequency converter for textile machine and realization method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143800A (en) * 1993-09-27 1995-06-02 Matsushita Electric Works Ltd Vector control method and system for induction motor
JPH08191584A (en) * 1995-01-11 1996-07-23 Japan Servo Co Ltd Ac motor with reducer
JP2001086799A (en) * 1999-09-16 2001-03-30 Toyo Electric Mfg Co Ltd Speed sensorless control device
JP2003348706A (en) * 1996-09-25 2003-12-05 Hitachi Ltd Device for controlling power converter for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143800A (en) * 1993-09-27 1995-06-02 Matsushita Electric Works Ltd Vector control method and system for induction motor
JPH08191584A (en) * 1995-01-11 1996-07-23 Japan Servo Co Ltd Ac motor with reducer
JP2003348706A (en) * 1996-09-25 2003-12-05 Hitachi Ltd Device for controlling power converter for vehicle
JP2001086799A (en) * 1999-09-16 2001-03-30 Toyo Electric Mfg Co Ltd Speed sensorless control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124554A (en) * 2008-11-18 2010-06-03 Toyo Electric Mfg Co Ltd Induction machine control device
JP2010263745A (en) * 2009-05-11 2010-11-18 Toyo Electric Mfg Co Ltd Device for control of induction machine
CN102684575A (en) * 2012-05-11 2012-09-19 杭州电子科技大学 One-to-many control system of industrial frequency converter for textile machine and realization method
CN102684575B (en) * 2012-05-11 2014-11-05 杭州电子科技大学 One-to-many control system of industrial frequency converter for textile machine and realization method

Also Published As

Publication number Publication date
JP4948183B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP6483039B2 (en) Power converter
JP5826292B2 (en) Motor control device and electric power steering device
JP4297971B2 (en) Electric motor control device
JP2007300749A (en) Motor controller
JP4948183B2 (en) Induction machine controller
JP6216639B2 (en) Motor control device
JP2008043111A (en) Induction machine controller
JP4999474B2 (en) Induction machine controller
WO2017135258A1 (en) Cooling fan control device
JP5321622B2 (en) Motor control method and apparatus
JP6304401B2 (en) Motor control device and control method
JP2010124554A (en) Induction machine control device
JP4905936B2 (en) Induction machine controller
JP5921031B2 (en) Induction machine controller
JP2010263745A (en) Device for control of induction machine
JP5921030B2 (en) Induction machine controller
JP2004096828A (en) Electric vehicle controller
JP2007082313A (en) Induction machine control device
JP2015126621A (en) Electric vehicle control drive
JP6173612B2 (en) Rotation angle detection device and rotation angle detection method
WO2016194140A1 (en) Elevator control device and elevator control method
US9276512B2 (en) Motor controller and construction machine provided therewith
JP2009005478A (en) Induction machine controller
JP6800278B2 (en) Rotating electric machine control device
JP2009273270A (en) Induction-machine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees