JP2008175710A - Flow velocity measuring device - Google Patents

Flow velocity measuring device Download PDF

Info

Publication number
JP2008175710A
JP2008175710A JP2007009933A JP2007009933A JP2008175710A JP 2008175710 A JP2008175710 A JP 2008175710A JP 2007009933 A JP2007009933 A JP 2007009933A JP 2007009933 A JP2007009933 A JP 2007009933A JP 2008175710 A JP2008175710 A JP 2008175710A
Authority
JP
Japan
Prior art keywords
suction pipe
flow velocity
suction
image
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007009933A
Other languages
Japanese (ja)
Other versions
JP5030208B2 (en
Inventor
Koichi Nishino
耕一 西野
Yuji Nagai
優治 永井
Ichiro Harada
一郎 原田
Yuichi Yashiro
裕一 屋代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Yokohama National University NUC
Original Assignee
Hitachi Plant Technologies Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd, Yokohama National University NUC filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007009933A priority Critical patent/JP5030208B2/en
Publication of JP2008175710A publication Critical patent/JP2008175710A/en
Application granted granted Critical
Publication of JP5030208B2 publication Critical patent/JP5030208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and easily measure the flow velocity distribution in a suction pipe installed in a reservoir tank in a flow velocity measuring device. <P>SOLUTION: The flow velocity measuring device 50 includes the reservoir tank 10 for reserving fluid 2 into which particles P are mixed, the cylindrical suction pipe 1 whose lower end is dipped into the fluid 2, and a measuring section 30 for measuring the flow velocity distribution of the fluid flowing inside the suction pipe 1. The suction pipe 1 has a transparent part and a dark part, and the measuring section 30 has a light source 5, an image photographing means 6, and an image analyzing means 22. The light source 5 emits pulse-like sheet light O into the suction pipe 1. The image photographing means 6 photographs images of the particle P group in the sheet light O synchronously with the light source pulse through the transparent part of the suction pipe 1 at the position opposite to the surface of the sheet light O against a background of the dark part 7 of the suction pipe 1. The image analyzing means 22 calculates the flow velocity distribution by determining the variation of the position of the particle P group based on the plurality of the photographed images. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流速測定装置に係り、特に、ポンプ吸込水槽の模型試験における水槽内に設置された吸込管内の流速分布を計測する流速測定装置に好適なものである。   The present invention relates to a flow velocity measuring device, and is particularly suitable for a flow velocity measuring device that measures a flow velocity distribution in a suction pipe installed in a water tank in a model test of a pump suction water tank.

従来の流体の流動計測システムとしては、特開2003−84005号公報(特許文献1)に示されたものがある。   A conventional fluid flow measurement system is disclosed in Japanese Patent Laid-Open No. 2003-84005 (Patent Document 1).

この流動計測システムは、レーザ光を発振させるレーザ発振装置と、発振されたレーザ光を流体の流動場内にシート状に投入させるレーザシート形成用走査光学系と、この走査光学系からのレーザシート上の2次元粒子軌跡画像を撮像する画像撮像手段と、前記レーザ発振装置と画像撮像手段をタイミングをとって同期化駆動させるタイミングコントロール手段と、前記画像撮像手段で撮像された2時刻の粒子軌跡画像の輝度パターンを比較・解析し、個々の粒子の移動方向および移動量を計測する画像処理手段とを備える。   This flow measurement system includes a laser oscillation device that oscillates laser light, a scanning optical system for forming a laser sheet that oscillates the oscillated laser light into a fluid flow field, and a laser sheet from the scanning optical system. Image capturing means for capturing a two-dimensional particle trajectory image, timing control means for synchronously driving the laser oscillation device and the image capturing means at timing, and a two-time particle trajectory image captured by the image capturing means Image processing means for comparing / analyzing the luminance patterns of the particles and measuring the movement direction and movement amount of each particle.

そして、前記流体の流動場は、透過用ガラスで構成された貯留槽で形成され、その貯留槽の下面から流体を供給し、その貯留槽の上面からオーバーフローした流体を貯留槽の下面の供給口に戻して循環することにより形成される。前記走査光学系は貯留槽の上面開口の上方からレーザ光を投入するように設置され、前記画像撮像手段は、貯留槽の側面に設置されている。   The fluid flow field is formed by a storage tank made of permeable glass, supplies the fluid from the lower surface of the storage tank, and supplies the fluid overflowing from the upper surface of the storage tank to the supply port on the lower surface of the storage tank. It is formed by circulating back to. The scanning optical system is installed so that laser light is input from above the upper surface opening of the storage tank, and the image pickup means is installed on the side surface of the storage tank.

特開2003−84005号公報JP 2003-84005 A

しかしながら、上述した特許文献1の流動計測システムでは、貯留槽内における流体の流動場の流速分布を測定するものであって、貯留槽の流体内に下端部が浸漬されその下面部開口面より流体を吸込む吸込管内を流れる流体の流速分布を測定することについては開示されていない。例えば、ポンプ吸込水槽の模型試験における水槽内に設置された吸込管内の流速分布を計測することについては開示されていない。このような吸込管内を流れる流体の流速分布を測定する場合、吸込管が上方に延びているため、吸込管の上方からレーザ光を投入するように走査光学系を設置することが困難であり、画像撮像手段で撮像するシート状のレーザ光の背景に貯留槽内の流体が介在するため、撮像精度が低下することが考えられる。   However, in the flow measurement system of Patent Document 1 described above, the flow velocity distribution of the flow field of the fluid in the storage tank is measured, and the lower end is immersed in the fluid of the storage tank, and the fluid flows from the lower surface opening surface. It is not disclosed to measure the flow velocity distribution of the fluid flowing through the suction pipe. For example, it is not disclosed about measuring the flow velocity distribution in the suction pipe installed in the water tank in the model test of the pump suction water tank. When measuring the flow velocity distribution of the fluid flowing in such a suction pipe, since the suction pipe extends upward, it is difficult to install a scanning optical system so as to inject laser light from above the suction pipe. Since the fluid in the storage tank is interposed in the background of the sheet-like laser light picked up by the image pickup means, it is conceivable that the image pickup accuracy is lowered.

本発明の目的は、貯留槽内に設置された吸込管内の流速分布を精度良く且つ簡便に計測することが可能な流速測定装置を提供することにある。   An object of the present invention is to provide a flow velocity measuring apparatus capable of accurately and easily measuring a flow velocity distribution in a suction pipe installed in a storage tank.

前述の目的を達成するために、本発明は、粒子が混入された流体を貯留する貯留槽と、前記貯留槽の流体内に下端部が浸漬されその下面より流体を吸込む円筒状の吸込管と、前記吸込管内を流れる流体の流速分布を測定する測定部とを備え、前記吸込管は透明な部分と暗色部分とを有し、測定部は、前記吸込管の外周面に取り付けられた光源及び画像撮影手段と、流速を演算する画像解析手段とを備え、前記光源は、前記吸込管の透明部分を通して、その吸込管内にシート光を所定パルスで照射するように構成され、前記画像撮影手段は、前記吸込管の暗色部分を背景にして前記シート光の面に対向する位置の前記吸込管の透明部分を通して、前記シート光内の粒子群の画像を前記光源のパルスと同期して撮影するように構成され、画像解析手段は、前記画像撮影手段によって撮影された複数の画像から粒子群の位置の変化を求めて流速分布を演算するように構成されているものである。   In order to achieve the above-described object, the present invention includes a storage tank that stores a fluid mixed with particles, a cylindrical suction pipe that has a lower end immersed in the fluid of the storage tank, and sucks the fluid from its lower surface. A measuring part for measuring a flow velocity distribution of the fluid flowing in the suction pipe, the suction pipe having a transparent part and a dark part, and the measuring part includes a light source attached to the outer peripheral surface of the suction pipe and An image capturing means; and an image analyzing means for calculating a flow velocity, wherein the light source is configured to irradiate a sheet light into the suction tube with a predetermined pulse through the transparent portion of the suction tube. The image of the particle group in the sheet light is taken in synchronism with the pulse of the light source through the transparent portion of the suction tube at a position facing the sheet light surface with the dark portion of the suction tube in the background. Configured for image analysis Stage are those that are configured to calculate the change calculated flow velocity distribution of the position of the particles from the photographed plurality of image by the image capturing means.

係る本発明のより好ましい具体的な構成例は次の通りである。
(1)透明な管に暗色部分を設けることにより前記吸込管の透明部分と暗色部分とを構成したこと。
(2)暗色な管に一部に透明な窓を設けることにより前記吸込管の透明部分と暗色部分とを構成したこと。
(3)前記光源及び前記画像撮影手段を取り付けた前記吸込管の吸込み部を配管部に対して別部材で形成し、この吸込み部を前記配管部に対して着脱可能で且つ周方向に回転して取り付け可能とする構造で結合したこと。
(4)前記(3)において、前記吸込管は前記光源及び前記画像撮影手段を取り付けた吸込管とその他の吸込管とからなる複数本の吸込管で構成され、前記その他の吸込管は、その吸込み部を配管部に対して別部材で形成し、この吸込み部を前記光源及び前記画像撮影手段を取り付けた吸込管の吸込み部と取替え可能な構造としたこと。
(5)前記画像撮影手段を取り付ける箇所の前記吸込管の外周面に平面部を形成し、この平面部に前記画像撮影手段を取り付けたこと。
(6)前記(5)において、前記吸込管の平面部を前記吸込管の外周面に形成した溝の底面で形成し、この溝内に前記画像撮影手段の少なくとも一部を収納したこと。
A more preferable specific configuration example of the present invention is as follows.
(1) The transparent portion and the dark portion of the suction tube are configured by providing a dark portion on the transparent tube.
(2) A transparent portion and a dark portion of the suction pipe are configured by providing a transparent window in a part of the dark pipe.
(3) The suction portion of the suction pipe to which the light source and the image photographing means are attached is formed as a separate member with respect to the piping portion, and the suction portion is detachable from the piping portion and rotates in the circumferential direction. Connected with a structure that can be attached.
(4) In the above (3), the suction pipe is composed of a plurality of suction pipes composed of a suction pipe to which the light source and the image photographing means are attached and other suction pipes. The suction part is formed as a separate member with respect to the pipe part, and the suction part is structured to be replaceable with a suction part of a suction pipe to which the light source and the image photographing means are attached.
(5) A flat portion is formed on the outer peripheral surface of the suction pipe at a position where the image photographing means is attached, and the image photographing means is attached to the flat portion.
(6) In (5), the flat portion of the suction pipe is formed on the bottom surface of a groove formed on the outer peripheral surface of the suction pipe, and at least a part of the image photographing means is accommodated in the groove.

本発明の流速測定装置によれば、貯留槽内に設置された吸込管内の流速分布を精度良く且つ簡便に計測することが可能である。   According to the flow velocity measuring apparatus of the present invention, it is possible to accurately and easily measure the flow velocity distribution in the suction pipe installed in the storage tank.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。なお、本発明は、それぞれの実施形態を必要に応じて適宜に組み合わせることにより、さらに効果的なものとすることを含むものである。
(第1実施形態)
本発明の第1実施形態の流速測定装置を図1を用いて説明する。図1は本発明の第1実施形態の流速測定装置50の斜視説明図である。なお、図1では、吸込管1の下端部周辺を表すように、貯留槽10の一部を破断して図示してある。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent. In addition, this invention includes making it more effective by combining each embodiment suitably as needed.
(First embodiment)
A flow velocity measuring apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory perspective view of a flow velocity measuring device 50 according to the first embodiment of the present invention. In FIG. 1, a part of the storage tank 10 is broken and illustrated so as to represent the periphery of the lower end portion of the suction pipe 1.

本実施形態の流速測定装置50は、例えばポンプ吸込水槽の模型試験における水槽内に設置された吸込管内を流れる流体(水)の流速分布を計測するための装置である。流速測定装置50は、トレーサである粒子Pが混入された流体2を貯留する貯留槽10と、貯留槽10の流体2内に下端部が浸漬されてその下面開口より流体2を吸込む円筒状の吸込管1と、この吸込管1内を流れる流体2の流速分布を測定する測定部30とを備えている。   The flow velocity measuring device 50 of the present embodiment is a device for measuring the flow velocity distribution of the fluid (water) flowing through the suction pipe installed in the water tank in the model test of the pump suction water tank, for example. The flow velocity measuring device 50 has a storage tank 10 for storing the fluid 2 mixed with the particles P as a tracer, and a cylindrical shape in which the lower end is immersed in the fluid 2 of the storage tank 10 and the fluid 2 is sucked from the lower surface opening. A suction pipe 1 and a measurement unit 30 that measures the flow velocity distribution of the fluid 2 flowing through the suction pipe 1 are provided.

貯留槽10は、流体2を一時的に貯留するためのものであり、前後に長い箱状または筒状に形成されている。貯留槽10は、一側(背面側)の流体供給口から流体2が供給され、他側(前面側)近傍に設置された吸込管1を通して流体2が吐出されるように構成されている。吸込管1と流体供給口とはブースタポンプを介して接続され、流体2が貯留槽10及び吸込管1を通して循環されるようになっている。なお、本実施形態では、吸込管1に暗色部分を設けて測定装置を設置したことにより、貯留槽10を透明な部材とする必要がないため、貯留槽10を安価な部材で製作することができる。   The storage tank 10 is for temporarily storing the fluid 2 and is formed in a box shape or a cylindrical shape that is long in the front-rear direction. The storage tank 10 is configured such that the fluid 2 is supplied from a fluid supply port on one side (back side), and the fluid 2 is discharged through a suction pipe 1 installed near the other side (front side). The suction pipe 1 and the fluid supply port are connected via a booster pump, and the fluid 2 is circulated through the storage tank 10 and the suction pipe 1. In this embodiment, since the suction pipe 1 is provided with a dark color portion and the measuring device is installed, it is not necessary to make the storage tank 10 a transparent member. Therefore, the storage tank 10 can be manufactured with an inexpensive member. it can.

吸込管1は透明な部分と暗色部分とを有するように構成されている。この透明な部分は、後述する光源であるストロボ5或いは画像撮影手段であるカメラ6のシート光Oの照射または撮影を可能とする透明度であればよい。本実施形態では、透明な管を用いて透明部分を構成し、その透明な管に暗色(例えば、黒系色)のシート7を取り付けて暗色部分を構成するようにしている。なお、シート7の代わりに暗色の塗装を施してもよい。吸込管1は、下面が開口され、貯留槽10内を垂直に上方に延びている。   The suction pipe 1 is configured to have a transparent portion and a dark portion. This transparent portion may be transparent so long as it can irradiate or shoot the sheet light O of a strobe 5 that is a light source described later or a camera 6 that is an image photographing means. In the present embodiment, a transparent portion is formed using a transparent tube, and a dark color portion is formed by attaching a dark color (for example, black color) sheet 7 to the transparent tube. A dark paint may be applied instead of the sheet 7. The suction pipe 1 has an open bottom surface and extends vertically upward in the storage tank 10.

測定部30は、PIV(Particle Image Velocimetry)法による測定部であり、吸込管1の外周面に取り付けられたストロボ5及びカメラ6と、制御装置21と、流速を演算するコンピュータである画像解析手段22とを備えて構成されている。なお、PIV法は、流体中に流体2に追従性のある粒子Pを入れ、適宜の厚さのシート光をパルス的に発光して流体2中に可視化断面を製作し、該可視化断面の粒子Pを光らせ、その発光時間内にカメラ6を露光して可視化断面内のトレーサを映像化して捕え、その画像データをコンピュータ22に入力し、繰返し連続して撮像した二画像のデータに対して相互相関計算を適用することによって流体の速度ベクトルを得、該速度ベクトルに基づいて渦度、歪み速度、レイノルズ応力等のデータを求めて可視化がなされる。   The measuring unit 30 is a measuring unit based on the PIV (Particle Image Velocimetry) method, and includes an electronic flash 5 and a camera 6 attached to the outer peripheral surface of the suction pipe 1, a control device 21, and an image analysis unit that is a computer that calculates a flow velocity. 22. In the PIV method, particles P that follow the fluid 2 are put in the fluid, a sheet light having an appropriate thickness is emitted in a pulsed manner to produce a visualized cross section in the fluid 2, and the particles in the visualized cross section are produced. P is emitted, the camera 6 is exposed within the emission time, the tracer in the visualization cross section is visualized and captured, the image data is input to the computer 22, and the two image data repeatedly taken continuously are mutually correlated. By applying the correlation calculation, a fluid velocity vector is obtained, and based on the velocity vector, data such as vorticity, strain velocity, and Reynolds stress are obtained and visualized.

ストロボ5は、吸込管1の透明部分を通して、その吸込管1内の吸込み流れFにシート光Oを所定パルスで照射するように構成されている。このシート光Oは吸込管1の中心を通って径方向でシート状面を形成する。このストロボ5は、流体2に浸漬されるため、防水構造となっている。   The strobe 5 is configured to irradiate the suction flow F in the suction pipe 1 with a predetermined pulse through the transparent portion of the suction pipe 1. The sheet light O forms a sheet-like surface in the radial direction through the center of the suction pipe 1. Since the strobe 5 is immersed in the fluid 2, it has a waterproof structure.

カメラ6は、吸込管1のシート7を背景にしてシート光Oの面に対向する位置の吸込管1の透明部分を通して、シート光O内の粒子P群の画像をストロボ5のパルスと同期して撮影するように構成されている。ストロボ5とカメラ6とは吸込管1の周方向に90度ずれた位置に設置され、シート7はカメラ6の周方向の反対側に少なくとも半周にわたって設置されている。このカメラ6は、流体2に浸漬されるため、防水構造となっている。   The camera 6 synchronizes the image of the particles P in the sheet light O with the pulse of the strobe 5 through the transparent portion of the suction pipe 1 at a position facing the surface of the sheet light O with the sheet 7 of the suction tube 1 in the background. It is configured to shoot. The strobe 5 and the camera 6 are installed at positions shifted by 90 degrees in the circumferential direction of the suction pipe 1, and the sheet 7 is installed on at least half the circumference on the opposite side of the circumferential direction of the camera 6. Since this camera 6 is immersed in the fluid 2, it has a waterproof structure.

制御装置21は、ストロボ5のシート光の照射やカメラ6の画像撮影などを制御するものであり、ストロボ5及びカメラ6と制御線を介して接続されている。   The control device 21 controls the irradiation of the sheet light of the strobe 5 and the image capturing of the camera 6 and is connected to the strobe 5 and the camera 6 via a control line.

コンピュータ22は、カメラ6によって撮影された複数の画像から粒子P群の位置の変化を求めて流速分布を演算するように構成されている。この流速分布の演算では、相互相関法が用いられている。この相互相関法は、まず、1枚目の画像の検査領域と2枚目の画像の探査領域との相互相関関数を求め、次いで、その相関関数のピークを示す領域を求め、そして、その移動量から一定領域内の粒子の速度を算出する。なお、速度ベクトルは検査領域毎に算出する。   The computer 22 is configured to calculate a flow velocity distribution by obtaining a change in the position of the particle P group from a plurality of images taken by the camera 6. A cross-correlation method is used in the calculation of the flow velocity distribution. In this cross-correlation method, first, a cross-correlation function between the inspection area of the first image and the exploration area of the second image is obtained, then an area showing the peak of the correlation function is obtained, and the movement The velocity of the particles in a certain region is calculated from the quantity. Note that the velocity vector is calculated for each inspection region.

本実施形態によれば、貯留槽10内に設置された吸込管1内の流速分布を精度良く且つ簡便に計測することが可能な流速測定装置を提供することができる。即ち、貯留槽10の流体2内に下端部が浸漬された吸込管1の外周面にストロボ5及びカメラ6を取り付けているので、貯留槽10の外部から吸込管1内の流速分布を計測する場合に比較して、吸込管1内の流速分布を精度良く且つ簡便に計測することが可能である。また、吸込管1を透明な部分と暗色部分とに分け、ストロボ5が吸込管1の透明部分を通してパルス状にシート光Oを照射し、カメラ6が吸込管1の暗色部分を背景にしてシート光Oの面に対向する位置の吸込管1の透明部分を通して、シート光O内の粒子P群の画像をストロボ5のパルスと同期して撮影するようにしているので、吸込管1が透明で貯留槽10の外部に暗色部が設けられている場合に比較して、吸込管1内の流速分布を精度良く且つ簡便に計測することが可能である。
(第2実施形態)
次に、本発明の第2実施形態の流速測定装置50について図2を用いて説明する。図2は本発明の第2実施形態の流速測定装置50における吸込管1の吸込み部の周辺図である。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
According to the present embodiment, it is possible to provide a flow velocity measuring device that can accurately and easily measure the flow velocity distribution in the suction pipe 1 installed in the storage tank 10. That is, since the strobe 5 and the camera 6 are attached to the outer peripheral surface of the suction pipe 1 whose lower end is immersed in the fluid 2 of the storage tank 10, the flow velocity distribution in the suction pipe 1 is measured from the outside of the storage tank 10. Compared to the case, the flow velocity distribution in the suction pipe 1 can be measured accurately and easily. Further, the suction pipe 1 is divided into a transparent portion and a dark color portion, the strobe 5 irradiates the sheet light O in a pulse shape through the transparent portion of the suction tube 1, and the camera 6 makes a sheet with the dark color portion of the suction pipe 1 as a background. Since the image of the particle P group in the sheet light O is photographed in synchronization with the pulse of the strobe 5 through the transparent portion of the suction tube 1 at a position facing the surface of the light O, the suction tube 1 is transparent. Compared with the case where the dark color part is provided outside the storage tank 10, the flow velocity distribution in the suction pipe 1 can be measured with high accuracy and in a simple manner.
(Second Embodiment)
Next, a flow velocity measuring device 50 according to a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a peripheral view of the suction part of the suction pipe 1 in the flow velocity measuring device 50 according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第2実施形態では、暗色な管を用いて吸込管1の暗色部分を構成し、暗色な管の一部に透明な窓25、26を設けて吸込管1の透明部分を構成している。窓25と窓26と周方向に90度ずれて設けられている。ストロボ5は窓25の外面に取り付けられ、カメラ6は窓26の外面に取り付けられる。吸込管1の暗色部分は、その管の材料が暗色であっても、或いは管の外面に暗色の塗装することにより構成されるようにしてもよい。   In the second embodiment, a dark color portion of the suction tube 1 is configured using a dark color tube, and transparent windows 25 and 26 are provided in a part of the dark color tube to configure a transparent portion of the suction tube 1. . The window 25 and the window 26 are provided so as to be shifted by 90 degrees in the circumferential direction. The strobe 5 is attached to the outer surface of the window 25, and the camera 6 is attached to the outer surface of the window 26. The dark portion of the suction tube 1 may be configured by coating the outer surface of the tube with a dark color even if the tube material is dark.

この第2実施形態によれば、吸込管1全体を透明にしてシート7を取り付ける第1実施形態に比較して、吸込管1を安価に製作することができる。
(第3実施形態)
次に、本発明の第3実施形態の流速測定装置50について図3及び図4を用いて説明する。図3は本発明の第3実施形態の流速測定装置50の斜視説明図、図4は図3の流速測定装置50の画像の歪み補正の校正作業を説明する図である。この第3実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
According to this 2nd Embodiment, compared with 1st Embodiment which attaches the sheet | seat 7 by making the suction pipe 1 whole transparent, the suction pipe 1 can be manufactured cheaply.
(Third embodiment)
Next, a flow velocity measuring device 50 according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 3 is an explanatory perspective view of the flow velocity measuring device 50 according to the third embodiment of the present invention, and FIG. 4 is a diagram for explaining calibration work for correcting image distortion of the flow velocity measuring device 50 of FIG. The third embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第3実施形態では、吸込管1を別部材からなる吸込み部1aと配管部1bとに分離している。吸込み部1aは、ストロボ5、カメラ6及びシート7を第1実施形態と同様に取り付けて構成されている。また、吸込み部1aと配管部1bとは、吸込み部1aが配管部1bに対して着脱可能で且つ周方向に回転して取り付け可能とするルーズフランジ構造12に構成されている。かかる構成により、吸込み部1aを配管部1bに対して周方向に回転することにより、吸込管1内のあらゆる方向の流速分布を計測することが可能となり、吸込管1内のより詳細な流れ計測が可能となる。   In this 3rd Embodiment, the suction pipe 1 is isolate | separated into the suction part 1a which consists of another member, and the piping part 1b. The suction part 1a is configured by attaching the strobe 5, the camera 6 and the seat 7 in the same manner as in the first embodiment. Moreover, the suction part 1a and the piping part 1b are comprised by the loose flange structure 12 which the suction part 1a can attach or detach with respect to the piping part 1b, and can be rotated and attached to the circumferential direction. With this configuration, by rotating the suction part 1a in the circumferential direction with respect to the pipe part 1b, it becomes possible to measure the flow velocity distribution in all directions in the suction pipe 1, and more detailed flow measurement in the suction pipe 1 Is possible.

また、この種の流速測定装置50では、流速分布の計測を開始する前に、吸込管1にカメラ6とドット式の格子板23等を取り付けて、計測状態と同条件である水中において画像の歪み補正の校正作業を実施する必要がある。この第3実施形態によれば、図4に示すようにカメラ6を取り付けた吸込み部1aを単独の状態で、別の容器内において簡便に校正作業を実施することできることから、貯留槽10に取り付けた吸込管1での作業性が悪い状態での校正作業が回避できる。
(第4実施形態)
次に、本発明の第4実施形態の流速測定装置50について図5を用いて説明する。図5は本発明の第4実施形態の流速測定装置50の斜視説明図である。この第4実施形態は、次に述べる点で第3実施形態と相違するものであり、その他の点については第3実施形態と基本的には同一であるので、重複する説明を省略する。
Further, in this type of flow velocity measuring device 50, before the measurement of the flow velocity distribution is started, the camera 6 and the dot-type lattice plate 23 and the like are attached to the suction pipe 1 so that an image can be captured in water under the same conditions as the measurement state. It is necessary to carry out calibration work for distortion correction. According to the third embodiment, as shown in FIG. 4, the suction part 1 a to which the camera 6 is attached can be easily calibrated in another container in a single state. In addition, calibration work in a state where workability of the suction pipe 1 is poor can be avoided.
(Fourth embodiment)
Next, a flow velocity measuring device 50 according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a perspective explanatory view of a flow velocity measuring device 50 according to the fourth embodiment of the present invention. The fourth embodiment is different from the third embodiment in the points described below, and the other points are basically the same as those in the third embodiment, and thus redundant description is omitted.

この第4実施形態では、吸込管1は、ストロボ5、カメラ6及びシート7を取り付けた吸込管1Aと、ストロボ5、カメラ6及びシート7を取り付けていないその他の吸込管1Bとからなる複数本の吸込管で構成されている。その他の吸込管1Bは、その吸込み部1a’をその配管部1bに対して別部材で形成し、この吸込み部1a’を吸込管1Aの吸込み部1aと取替え可能な構造となっている。なお、吸込み部1a’は、ストロボ5、カメラ6及びシート7を取り付ける部分を除いて、吸込み部1aと同一形状となっている。   In the fourth embodiment, the suction pipe 1 includes a plurality of suction pipes 1A each having a strobe 5, a camera 6 and a seat 7 and other suction pipes 1B having no strobe 5, the camera 6 and the seat 7 attached. It consists of a suction pipe. The other suction pipe 1B has a structure in which the suction part 1a 'is formed as a separate member from the pipe part 1b, and the suction part 1a' can be replaced with the suction part 1a of the suction pipe 1A. The suction portion 1a 'has the same shape as the suction portion 1a except for the portion to which the strobe 5, the camera 6 and the seat 7 are attached.

かかる第4実施形態によれば、1組のストロボ5及びカメラ6を備えた吸込管1Aにより複数の吸込管の流速分布の計測を簡単に行うことができる。
(第5実施形態)
次に、本発明の第5実施形態の流速測定装置50について図6を用いて説明する。図6は本発明の第5実施形態の流速測定装置50の吸込管1の吸込み部の周辺図である。この第5実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
According to the fourth embodiment, the flow velocity distributions of a plurality of suction pipes can be easily measured by the suction pipe 1A provided with a set of the strobe 5 and the camera 6.
(Fifth embodiment)
Next, a flow velocity measuring device 50 according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a peripheral view of the suction portion of the suction pipe 1 of the flow velocity measuring device 50 according to the fifth embodiment of the present invention. The fifth embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第5実施形態では、吸込管1の外周曲面に平面部27を設け、この位置にストロボ5及びカメラ6を取り付けている。吸込管1の外周面が複雑な曲面を有する場合は、画像の歪み補正の校正作業自体が不可能となる場合がある。その際には、このように吸込管1の外周面に平面部27を設けることで、校正作業が非常に簡便に実施できる。なお、第5実施形態では、ストロボ5とカメラ6の周方向の配置関係を第1実施形態と逆にしてあるが、この場合でも第1実施形態と同様に流速分布の計測が可能である。
(第6実施形態)
次に、本発明の第6実施形態の流速測定装置50について図7を用いて説明する。図7は本発明の第6実施形態の流速測定装置50の吸込管1の吸込み部の周辺図である。なお、図7(a)は吸込管1の吸込み部の外周面が単なる筒状であり、図7(b)は吸込管1の吸込み部の外周面が膨らんでいる筒状である。
In the fifth embodiment, a flat portion 27 is provided on the outer peripheral curved surface of the suction pipe 1, and the strobe 5 and the camera 6 are attached to this position. When the outer peripheral surface of the suction pipe 1 has a complicated curved surface, the calibration work itself for correcting image distortion may be impossible. In that case, the calibration work can be carried out very simply by providing the flat portion 27 on the outer peripheral surface of the suction pipe 1 in this way. In the fifth embodiment, the arrangement relationship of the strobe 5 and the camera 6 in the circumferential direction is reversed from that of the first embodiment, but even in this case, the flow velocity distribution can be measured as in the first embodiment.
(Sixth embodiment)
Next, a flow velocity measuring device 50 according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a peripheral view of the suction portion of the suction pipe 1 of the flow velocity measuring device 50 according to the sixth embodiment of the present invention. 7A shows a cylindrical shape in which the outer peripheral surface of the suction portion of the suction pipe 1 is simply cylindrical, and FIG. 7B shows a cylindrical shape in which the outer peripheral surface of the suction portion of the suction pipe 1 swells.

この第6実施形態は、次に述べる点で第5実施形態と相違するものであり、その他の点については第5実施形態と基本的には同一であるので、重複する説明を省略する。   The sixth embodiment is different from the fifth embodiment in the points described below, and the other points are basically the same as those in the fifth embodiment, and thus redundant description is omitted.

この第6実施形態では、吸込管1の平面部27を吸込管1の外周面に形成した溝28の底面で形成し、各溝28にストロボ5、カメラ6の少なくとも一部を収納している。これによって、吸込管1の近傍流れへのストロボ5及びカメラ6の影響を抑制でき、精度良く吸込管内の流速分布が計測可能となる。なお、図示を省略してあるが、ストロボ5、カメラ6及び溝28を覆うようにカバーが設けられている。   In the sixth embodiment, the flat portion 27 of the suction pipe 1 is formed by the bottom surface of the groove 28 formed on the outer peripheral surface of the suction pipe 1, and at least a part of the strobe 5 and the camera 6 is accommodated in each groove 28. . Thereby, the influence of the strobe 5 and the camera 6 on the flow in the vicinity of the suction pipe 1 can be suppressed, and the flow velocity distribution in the suction pipe can be accurately measured. Although not shown, a cover is provided so as to cover the strobe 5, the camera 6, and the groove 28.

本発明の第1実施形態の流速測定装置の斜視説明図である。It is an isometric view explanatory drawing of the flow velocity measuring device of a 1st embodiment of the present invention. 本発明の第2実施形態の流速測定装置における吸込管の吸込み部の周辺図である。It is a peripheral view of the suction part of the suction pipe in the flow velocity measuring apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の流速測定装置の斜視説明図である。It is a perspective explanatory view of the flow velocity measuring device of a 3rd embodiment of the present invention. 図3の流速測定装置の画像の歪み補正の校正作業を説明する図である。It is a figure explaining the calibration operation | work of the distortion correction of the image of the flow velocity measuring apparatus of FIG. 本発明の第4実施形態の流速測定装置の斜視説明図である。It is a perspective explanatory view of a flow velocity measuring device according to a fourth embodiment of the present invention. 本発明の第5実施形態の流速測定装置の吸込管の吸込み部の周辺図である。It is a peripheral view of the suction part of the suction pipe of the flow velocity measuring apparatus of 5th Embodiment of this invention. 本発明の第6実施形態の流速測定装置の吸込管の吸込み部の周辺図である。It is a peripheral view of the suction part of the suction pipe of the flow velocity measuring apparatus of 6th Embodiment of this invention.

符号の説明Explanation of symbols

1,1A,1B…吸込管、1a,1a’…吸込み部、1b…配管部、2…作動流体(水)、5…ストロボ(光源)、6…カメラ(画像撮影手段)、7…黒色系のシート、10…貯留槽、12…ルーズフランジ構造、21…制御装置、22…コンピュータ(画像解析手段)、23…格子板、25、26…窓、27…平面部、28…溝、30…測定部、50…流速測定装置、F…吸込管内の吸込み流れ、P…粒子(トレーサ)。   DESCRIPTION OF SYMBOLS 1,1A, 1B ... Suction pipe, 1a, 1a '... Suction part, 1b ... Piping part, 2 ... Working fluid (water), 5 ... Strobe (light source), 6 ... Camera (image photographing means), 7 ... Black system 10 ... Reservoir, 12 ... Loose flange structure, 21 ... Control device, 22 ... Computer (image analysis means), 23 ... Lattice plate, 25, 26 ... Window, 27 ... Planar part, 28 ... Groove, 30 ... Measuring unit, 50 ... flow velocity measuring device, F ... suction flow in suction pipe, P ... particle (tracer).

Claims (7)

粒子が混入された流体を貯留する貯留槽と、
前記貯留槽の流体内に下端部が浸漬されその下面より流体を吸込む円筒状の吸込管と、
前記吸込管内を流れる流体の流速分布を測定する測定部とを備え、
前記吸込管は透明な部分と暗色部分とを有し、
測定部は、前記吸込管の外周面に取り付けられた光源及び画像撮影手段と、流速を演算する画像解析手段とを備え、
前記光源は、前記吸込管の透明部分を通して、その吸込管内にシート光を所定パルスで照射するように構成され、
前記画像撮影手段は、前記吸込管の暗色部分を背景にして前記シート光の面に対向する位置の前記吸込管の透明部分を通して、前記シート光内の粒子群の画像を前記光源のパルスと同期して撮影するように構成され、
画像解析手段は、前記画像撮影手段によって撮影された複数の画像から粒子群の位置の変化を求めて流速分布を演算するように構成されている
ことを特徴とする流速測定装置。
A storage tank for storing fluid mixed with particles;
A cylindrical suction pipe whose lower end is immersed in the fluid of the storage tank and sucks fluid from its lower surface,
A measurement unit for measuring the flow velocity distribution of the fluid flowing in the suction pipe,
The suction pipe has a transparent part and a dark part;
The measurement unit includes a light source and an image photographing unit attached to the outer peripheral surface of the suction pipe, and an image analysis unit that calculates a flow velocity.
The light source is configured to irradiate sheet light with a predetermined pulse into the suction pipe through the transparent portion of the suction pipe,
The image photographing means synchronizes the image of the particle group in the sheet light with the pulse of the light source through the transparent portion of the suction tube at a position facing the surface of the sheet light with the dark portion of the suction tube as a background. Configured to shoot,
The image analysis means is configured to calculate a flow velocity distribution by obtaining a change in the position of the particle group from a plurality of images photographed by the image photographing means.
請求項1において、透明な管に暗色部分を設けることにより前記吸込管の透明部分と暗色部分とを構成したことを特徴とする流速測定装置。   2. The flow velocity measuring apparatus according to claim 1, wherein the transparent portion and the dark portion of the suction pipe are formed by providing a dark portion on the transparent tube. 請求項1において、暗色な管に一部に透明な窓を設けることにより前記吸込管の透明部分と暗色部分とを構成したことを特徴とする流速測定装置。   2. The flow velocity measuring apparatus according to claim 1, wherein a transparent portion and a dark portion of the suction pipe are formed by providing a transparent window in a part of the dark pipe. 請求項1において、前記光源及び前記画像撮影手段を取り付けた前記吸込管の吸込み部を配管部に対して別部材で形成し、この吸込み部を前記配管部に対して着脱可能で且つ周方向に回転して取り付け可能とする構造で結合したことを特徴とする流速測定装置。   In Claim 1, the suction part of the said suction pipe which attached the said light source and the said image pick-up means is formed in another member with respect to a piping part, and this suction part can be attached or detached with respect to the said piping part, and is the circumferential direction. A flow velocity measuring device characterized by being coupled with a structure that can be rotated and attached. 請求項4において、前記吸込管は前記光源及び前記画像撮影手段を取り付けた吸込管とその他の吸込管とからなる複数本の吸込管で構成され、前記その他の吸込管は、その吸込み部を配管部に対して別部材で形成し、この吸込み部を前記光源及び前記画像撮影手段を取り付けた吸込管の吸込み部と取替え可能な構造としたことを特徴とする流速測定装置。   5. The suction pipe according to claim 4, wherein the suction pipe is composed of a plurality of suction pipes including a suction pipe to which the light source and the image photographing means are attached and other suction pipes. A flow velocity measuring device, wherein the suction portion is formed as a separate member with respect to the portion, and the suction portion can be replaced with a suction portion of a suction pipe to which the light source and the image photographing means are attached. 請求項1において、前記画像撮影手段を取り付ける箇所の前記吸込管の外周面に平面部を形成し、この平面部に前記画像撮影手段を取り付けたことを特徴とする流速測定装置。   2. The flow velocity measuring apparatus according to claim 1, wherein a flat portion is formed on an outer peripheral surface of the suction pipe where the image photographing means is attached, and the image photographing means is attached to the flat portion. 請求項6において、前記吸込管の平面部を前記吸込管の外周面に形成した溝の底面で形成し、この溝内に前記画像撮影手段の少なくとも一部を収納したことを特徴とする流速測定装置。   7. The flow velocity measurement according to claim 6, wherein a flat portion of the suction pipe is formed by a bottom surface of a groove formed on an outer peripheral surface of the suction pipe, and at least a part of the image photographing means is accommodated in the groove. apparatus.
JP2007009933A 2007-01-19 2007-01-19 Suction pipe flow velocity measuring device in pump suction water tank model test Active JP5030208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009933A JP5030208B2 (en) 2007-01-19 2007-01-19 Suction pipe flow velocity measuring device in pump suction water tank model test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009933A JP5030208B2 (en) 2007-01-19 2007-01-19 Suction pipe flow velocity measuring device in pump suction water tank model test

Publications (2)

Publication Number Publication Date
JP2008175710A true JP2008175710A (en) 2008-07-31
JP5030208B2 JP5030208B2 (en) 2012-09-19

Family

ID=39702837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009933A Active JP5030208B2 (en) 2007-01-19 2007-01-19 Suction pipe flow velocity measuring device in pump suction water tank model test

Country Status (1)

Country Link
JP (1) JP5030208B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243197A (en) * 2009-04-01 2010-10-28 Toshiba Corp System for measuring fluid velocity
JP2012251877A (en) * 2011-06-03 2012-12-20 Ihi Corp Method and device for measuring shear stress distribution of flow field

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237358A (en) * 1986-04-07 1987-10-17 Babcock Hitachi Kk Method for analyzing motion of fluid containing particles and moving in space
JPH08285648A (en) * 1995-04-18 1996-11-01 Toshiba Corp Flow meter
JPH1019919A (en) * 1996-06-28 1998-01-23 Matsushita Electric Ind Co Ltd Method and apparatus for measuring streamline
JPH10115299A (en) * 1996-10-09 1998-05-06 Hitachi Ltd Vortex preventing device for pump suction water tank
JPH11295119A (en) * 1998-04-10 1999-10-29 Hitachi Ltd Flow detecting method of hydraulic machinery
JP2005037252A (en) * 2003-07-15 2005-02-10 Matsushita Electric Ind Co Ltd Fluid-measuring apparatus
JP2007147286A (en) * 2005-11-24 2007-06-14 Hitachi Plant Technologies Ltd Rotational flow measuring apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237358A (en) * 1986-04-07 1987-10-17 Babcock Hitachi Kk Method for analyzing motion of fluid containing particles and moving in space
JPH08285648A (en) * 1995-04-18 1996-11-01 Toshiba Corp Flow meter
JPH1019919A (en) * 1996-06-28 1998-01-23 Matsushita Electric Ind Co Ltd Method and apparatus for measuring streamline
JPH10115299A (en) * 1996-10-09 1998-05-06 Hitachi Ltd Vortex preventing device for pump suction water tank
JPH11295119A (en) * 1998-04-10 1999-10-29 Hitachi Ltd Flow detecting method of hydraulic machinery
JP2005037252A (en) * 2003-07-15 2005-02-10 Matsushita Electric Ind Co Ltd Fluid-measuring apparatus
JP2007147286A (en) * 2005-11-24 2007-06-14 Hitachi Plant Technologies Ltd Rotational flow measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243197A (en) * 2009-04-01 2010-10-28 Toshiba Corp System for measuring fluid velocity
JP2012251877A (en) * 2011-06-03 2012-12-20 Ihi Corp Method and device for measuring shear stress distribution of flow field

Also Published As

Publication number Publication date
JP5030208B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US8638358B2 (en) Color-coded backlighted single camera three-dimensional defocusing particle image velocimetry system
JP5878328B2 (en) Precision solder resist registration inspection method
US10247750B2 (en) Online measuring method of particle velocity in multiphase system
JP4942083B2 (en) Pressure distribution measurement system and calibration probe
CN102818555A (en) System and method for measuring a distance to an object
US9612144B2 (en) Method and arrangement for measuring flow rate of optically non-homogenous material
JP2007069217A (en) Method and apparatus for detecting spreading-state of releasing agent
JP2016099195A (en) Method and apparatus for measuring flow rate of particle image
US10168196B2 (en) Immersion-type online multiphase measuring instrument and method
KR101163206B1 (en) Scanning Apparatus for Drilling Holes Using Image Sensors and Razer Sensors
JP5030208B2 (en) Suction pipe flow velocity measuring device in pump suction water tank model test
JP2008102011A (en) Hole inside inspection device and hole inside inspection method
CN106705845B (en) Bubble volume measurement method in a kind of liquid environment
US10386284B2 (en) Device and method for measurement of dispersed objects using fluorescent and non-fluorescent imaging with laser
JP6366172B2 (en) Flow field measurement method using microbubbles and flow field measurement device for aquarium
CN111323360A (en) Image acquisition equipment and detection device for particles in liquid
JP2004177312A (en) Three dimensional temperature/velocity simultaneous measuring method of fluid
JP5312237B2 (en) Particle image velocity measuring device
Imai et al. Random-dot pressure-sensitive paint for time-resolved measurement of deformation and surface pressure of transonic wing flutter
Fouras et al. An improved, free surface, topographic technique
JP2011017603A (en) Method for measuring particle image flow velocity
Pandey et al. Comparison of blur elimination techniques for PSP images of rotating surfaces
JP2005147744A (en) Wave pressure measurement instrumentation in experimental water tank
JP2007205868A (en) Device and method for optical shape inspection
Tse et al. Lagrangian measurement of fluid and particle motion using a field‐deployable Volumetric Particle Imager (VoPI)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350