JP2008175699A - Salt damage detector - Google Patents

Salt damage detector Download PDF

Info

Publication number
JP2008175699A
JP2008175699A JP2007009646A JP2007009646A JP2008175699A JP 2008175699 A JP2008175699 A JP 2008175699A JP 2007009646 A JP2007009646 A JP 2007009646A JP 2007009646 A JP2007009646 A JP 2007009646A JP 2008175699 A JP2008175699 A JP 2008175699A
Authority
JP
Japan
Prior art keywords
insulator
discharge
salt damage
discharge electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009646A
Other languages
Japanese (ja)
Inventor
Hikari Takigasaki
光 瀧ヶ崎
Yoshiharu Taki
祥治 滝
Naoaki Fukatsu
尚明 深津
Hitoshi Noujiyou
仁志 能條
Koji Kishi
幸治 岸
Tsutomu Tashiro
務 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Power Systems Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, J Power Systems Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2007009646A priority Critical patent/JP2008175699A/en
Publication of JP2008175699A publication Critical patent/JP2008175699A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Insulators (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a salt damage detector capable of previously, accurately detecting discharge of a facility of an actually used outdoor distribution line to be monitored. <P>SOLUTION: A pair of discharge electrodes 4A having an acute-angled pointed section 4a are disposed in an actually used insulator 1. Thus, an appropriate gap between the pointed sections 4a used as discharge parts can be easily set according to the environment of a field, and the partial discharge characteristic can be adjusted according to a dirt state of the insulator 1 surface. Accordingly, the actually used insulator 1 can be used as a sensor for salt damage prediction and monitoring, and the situation that the actually used insulator 1 of a real machine without using a simulation insulator or the like generates discharge by the salt damage can be detected previously and accurately. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、屋外配電線を支持する支持碍子等の配電用機材に対し、塩害により発生する部分放電の発生を事前に検出する塩害検出装置に関するものである。   The present invention relates to a salt damage detection device that detects in advance the occurrence of partial discharge caused by salt damage on power distribution equipment such as a support insulator that supports an outdoor distribution line.

従来、高圧配電線の電気的絶縁部材として碍子が広く使用されている。海岸に近い地域では、海上からの風によって海塩成分が運ばれ、碍子表面に塩分が付着し、降雨、結露等により塩分に水分が供給されると、碍子の表面抵抗値が急激に低下して碍子表面の耐フラッシュオーバー電圧が大幅に低下することにより表面漏洩電流が流れ、放電が発生し、最終的には表面閃絡が生じて停電に至ることがある。この局部放電は、強烈な発光事象(放電発光)を伴うとともに配電用機材の劣化、ひいては発火等の被害を及ぼし、公衆災害に至る場合がある。   Conventionally, insulators have been widely used as electrical insulating members for high-voltage distribution lines. In areas close to the coast, sea salt components are carried by the wind from the sea, and salt is attached to the insulator surface.If moisture is supplied to the salt due to rain, condensation, etc., the surface resistance value of the insulator decreases rapidly. If the flashover voltage on the insulator surface is significantly reduced, a surface leakage current flows and a discharge occurs, eventually causing a surface flash and a power failure. This local discharge is accompanied by an intense light emission event (discharge light emission) and may cause deterioration of power distribution equipment and eventually damage such as ignition, resulting in a public disaster.

このような塩害に起因する放電発光及び公衆災害の発生を事前に予防するため、従来から定期的に碍子の清掃を行う等の対策が取られてきた。また、碍子の汚損状態を常時監視するものとして、碍子に流れる漏れ電流を検出することにより汚損状況を監視するものがある(例えば、特許文献1参照。)。   In order to prevent discharge luminescence and public disasters caused by such salt damage in advance, measures such as periodically cleaning the insulator have been taken. Moreover, as what always monitors the contamination state of an insulator, there exists what monitors a contamination state by detecting the leakage current which flows into an insulator (for example, refer patent document 1).

また、監視対象の碍子と同一環境に監視対象の碍子より汚損されやすい模擬碍子を設置し、この模擬碍子の汚損状況を監視するものがある(例えば、特許文献2参照。)。
特開平6−153374号公報 特開平10−312723号公報
In addition, there is a type in which a simulated insulator that is more easily contaminated than the monitored insulator is installed in the same environment as the monitored insulator, and the state of contamination of the simulated insulator is monitored (for example, see Patent Document 2).
JP-A-6-153374 JP 10-31723 A

しかし、従来の塩害予測・監視によると、地域や地形により塩害の発生状況が異なり、さらに同一地域でも気象変動等によって塩害の発生状況が異なることから、漏れ電流だけでは汚損を精度良く監視することができない。また、模擬碍子等を用いた汚損監視では、実際に使用されている碍子等の配電用機材の汚損状況と必ずしも一致しないため、塩害発生を精度良く検出することができないという問題がある。特に、強塩害地区では塩害による放電を十分に防止できない場合があり、顧客からの放電発光に起因する夜間通報に苦慮してきた。   However, according to conventional salt damage prediction and monitoring, the occurrence of salt damage varies depending on the region and topography, and the occurrence of salt damage varies due to weather fluctuations in the same region. I can't. Further, in the pollution monitoring using a simulated insulator or the like, there is a problem that the occurrence of salt damage cannot be detected with high accuracy because it does not necessarily match the condition of contamination of power distribution equipment such as an insulator that is actually used. In particular, in areas with strong salt damage, discharge due to salt damage may not be sufficiently prevented, and it has been difficult to report at night due to discharge luminescence from customers.

従って、本発明の目的は、実際に使用されている監視対象の屋外配電線の設備における放電を事前に精度良く検出することのできる塩害検出装置を提供することにある。   Therefore, the objective of this invention is providing the salt damage detection apparatus which can detect the discharge in the facility of the outdoor distribution line of the monitoring object actually used accurately in advance.

本発明は上記目的を達成するため、塩害に基づく放電の事前予測を行う屋外配電線の設備と同一環境に設けられ、電気絶縁性に優れた素材で形成された碍子と、前記碍子の外周面に設けられ、前記塩害による汚損に基づいて前記碍子が有する放電電圧より小なる電圧で放電を生じる電極形状で形成された放電電極を有することを特徴とする塩害検出装置を提供する。   In order to achieve the above object, the present invention provides an insulator that is provided in the same environment as an outdoor distribution line facility that performs a preliminary prediction of discharge based on salt damage, and an outer peripheral surface of the insulator that is formed of a material excellent in electrical insulation. A salt damage detection apparatus comprising: a discharge electrode formed in an electrode shape that generates a discharge at a voltage lower than a discharge voltage of the insulator based on contamination due to the salt damage.

本発明によれば、実際に使用されている監視対象の屋外配電線の設備における放電を事前に精度良く検出することができる。   ADVANTAGE OF THE INVENTION According to this invention, the discharge in the equipment of the outdoor distribution line of the monitoring object actually used can be detected accurately in advance.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る塩害検出装置を示し、(a)は塩害検出装置の概略構成図、(b)は放電電極の一部を示す平面図である。
(First embodiment)
1A and 1B show a salt damage detection apparatus according to a first embodiment of the present invention. FIG. 1A is a schematic configuration diagram of the salt damage detection apparatus, and FIG. 1B is a plan view showing a part of a discharge electrode.

この塩害検出装置10は、図1(a)に示すように上部に高圧配電線を保持する電線保持部1Aを有し、磁器等の絶縁性材料で円筒状に形成される碍子1と、金属材料で形成されて支柱等への支持固定に用いる鍔部2Aを有するボルト部2と、ボルト部2に装着されるナット3およびワッシャー3Aと、円筒状の碍子1の外周面に環状に取り付けられる放電電極4と、放電電極4と導線5を介して接続される高圧電源6と、放電電極4における放電に基づく電流を導線5から検出する電流検出部7と、電流検出部7で検出された電流に基づいて部分放電の判定を行う判定部8とを有する。この塩害検出装置10では電流検出部7として変流器を用いている。   As shown in FIG. 1 (a), the salt damage detection apparatus 10 has an electric wire holding part 1A for holding a high-voltage distribution line at the top, an insulator 1 formed in a cylindrical shape with an insulating material such as porcelain, and a metal A bolt portion 2 having a flange portion 2A formed of a material and used for supporting and fixing to a support column, a nut 3 and a washer 3A mounted on the bolt portion 2, and an outer peripheral surface of the cylindrical insulator 1 are attached in an annular shape. Detected by the discharge electrode 4, the high-voltage power supply 6 connected to the discharge electrode 4 through the conducting wire 5, the current detection unit 7 for detecting the current based on the discharge in the discharge electrode 4 from the conducting wire 5, and the current detection unit 7 And a determination unit 8 configured to determine partial discharge based on the current. In the salt damage detection apparatus 10, a current transformer is used as the current detection unit 7.

放電電極4は、耐腐食性に優れるステンレス等の金属板をプレス加工等によって成形することにより形成されており、碍子1の外周面に巻き付け可能な長手方向のサイズを有している。第1の実施の形態では、塩害予測・監視を行う現地に既設で実際に使用されている碍子1に対し、全体がジグザグ形状をなすとともに鋭角な突部としての尖状部4aを有する一対の放電電極4Aを用意し、この一対の放電電極4Aの尖状部4aが所定のギャップ(間隔)をおいて対向するように碍子1の外周面上に一対の放電電極4Aを位置決めし、図1(b)に示す端部4bを溶接することによって一対の放電電極4Aを環状に巻きつけて固定している。尖状部4aの先端は隣接する尖状部4aと一定の距離wを有して設けられている。本実施の形態では、放電電極4を構成する金属板の厚さを1〜2mmとしており、尖状部4a間のギャップは現地の環境等によって異なるが、2〜10mmの間隔を有するように設けることが望ましい。 The discharge electrode 4 is formed by forming a metal plate such as stainless steel having excellent corrosion resistance by pressing or the like, and has a longitudinal size that can be wound around the outer peripheral surface of the insulator 1. In the first embodiment, with respect to the insulator 1 that is actually used in the field where salt damage prediction / monitoring is actually performed, a pair of zigzags as a whole and having a pointed portion 4a as an acute protrusion A discharge electrode 4A is prepared, and the pair of discharge electrodes 4A are positioned on the outer peripheral surface of the insulator 1 so that the pointed portions 4a of the pair of discharge electrodes 4A face each other with a predetermined gap (interval). A pair of discharge electrodes 4A are wound in an annular shape and fixed by welding the end 4b shown in FIG. The tip of the pointed portion 4a is provided with a certain distance w A from the adjacent pointed portion 4a. In the present embodiment, the thickness of the metal plate constituting the discharge electrode 4 is 1 to 2 mm, and the gap between the pointed portions 4a varies depending on the local environment or the like, but is provided to have an interval of 2 to 10 mm. It is desirable.

この塩害検出装置10は、6.6kVの配電系統における塩害監視を行うにあたって高圧電源6から導線5を介して一対の放電電極4Aに単相400Vを印加する。碍子1に汚損を生じていない状態では碍子1に取り付けられた一対の放電電極4A間に電流は流れないが、碍子1に塩分が付着して汚損され、降雨、結露等により塩分に水分が供給されると、碍子の表面抵抗値が急激に低下して一対の放電電極4A間に放電が生じ易い状況が形成され、汚損が進行すると一対の放電電極4Aの尖状部4a間で部分放電が生じる。   The salt damage detection apparatus 10 applies a single phase 400V to the pair of discharge electrodes 4A from the high voltage power source 6 through the lead wire 5 when performing salt damage monitoring in a 6.6 kV distribution system. In a state where the insulator 1 is not fouled, no current flows between the pair of discharge electrodes 4A attached to the insulator 1, but salt is attached to the insulator 1 and fouled, and moisture is supplied to the salt due to rain, condensation, etc. As a result, the surface resistance value of the insulator sharply decreases, and a situation in which discharge is likely to occur between the pair of discharge electrodes 4A is formed. When the contamination progresses, partial discharge occurs between the pointed portions 4a of the pair of discharge electrodes 4A. Arise.

部分放電に基づく電流は電流検出部7で検出されて判定部8に出力される。判定部8は、予め設定されている電流値以上の値が検出されたときに塩害発生と判定する。   The current based on the partial discharge is detected by the current detection unit 7 and output to the determination unit 8. The determination unit 8 determines that salt damage has occurred when a value equal to or greater than a preset current value is detected.

(第1の実施の形態の効果)
上記した第1の実施の形態によると、鋭角な尖状部4aを有する一対の放電電極4Aを実機として実際に使用されている碍子1に設けているので、放電部位となる尖状部4a間の適切なギャップを現地の環境に応じて容易に設定でき、碍子1表面の汚損状況に応じた部分放電特性の調整が可能になる。そのため、実際に使用されている碍子1を塩害予測・監視用のセンサとして用いることができ、模擬碍子等によらないで実際に使用されている配電用機材(実機)の碍子1が塩害による放電を生じうる状況を事前に精度良く検出することが可能になる。
(Effects of the first embodiment)
According to the first embodiment described above, the pair of discharge electrodes 4A having the sharp pointed parts 4a are provided in the insulator 1 that is actually used as an actual machine, so the gaps between the pointed parts 4a that become discharge parts are provided. The appropriate gap can be easily set according to the local environment, and the partial discharge characteristics can be adjusted according to the contamination state of the insulator 1 surface. Therefore, the insulator 1 actually used can be used as a sensor for prediction and monitoring of salt damage, and the insulator 1 of the distribution equipment (actual machine) actually used without using the simulated insulator etc. is discharged due to salt damage. It is possible to accurately detect a situation that may cause

そのため、例えば、実際に使用されている複数の碍子1に対し、一対の放電電極4Aに設けられる尖状部4a間のギャップを異なる値で段階的に設定したグループを構成し、各グループについて部分放電に基づく電流を監視することによって、塩害による放電の事前予測だけでなく、汚損の進行状況を把握するシステムに適用することもできる。   Therefore, for example, for a plurality of insulators 1 that are actually used, a group in which gaps between the pointed portions 4a provided on the pair of discharge electrodes 4A are set in stages with different values is configured, and each group has a partial By monitoring the current based on the discharge, it can be applied not only to the preliminary prediction of the discharge due to salt damage, but also to a system for grasping the progress of contamination.

放電電極4の構造として、第1の実施の形態では金属板をジグザグ状にプレス加工した放電電極4を説明したが、汚損が運ばれる風向に合わせて放電部位を設けることができるものであれば他の構成であっても良く、例えば、くし型状あるいは鋸刃状の鋭利な突部を有する一対の放電電極4Aを用意し、突起同士が所定のギャップを有するように配置されるものであってもよい。これによって、碍子1の表面の湿潤状態を制御するといった特殊な機能を保持させることなく、放電電極4で容易に放電を発生させることが可能となる。   As the structure of the discharge electrode 4, the first embodiment has described the discharge electrode 4 in which a metal plate is pressed into a zigzag shape. However, as long as the discharge site can be provided in accordance with the wind direction in which the contamination is carried. For example, a pair of discharge electrodes 4A having sharp comb-shaped or saw-tooth shaped protrusions are prepared, and the protrusions are arranged so as to have a predetermined gap. May be. This makes it possible to easily generate a discharge at the discharge electrode 4 without maintaining a special function of controlling the wet state of the insulator 1 surface.

なお、第1の実施の形態では、一対の放電電極4Aからなる放電電極4を碍子1の表面に設けた構成を説明したが、放電電極4Aは少なくとも2つ設ければ尖状部4a間に放電を発生させることが可能であるので、2つ以上の放電電極4Aからなる放電電極4を構成しても良い。この場合には放電部位が増加するので、塩害に基づく部分放電の検出感度が向上する。   In the first embodiment, the configuration in which the discharge electrode 4 including the pair of discharge electrodes 4A is provided on the surface of the insulator 1 has been described. However, if at least two discharge electrodes 4A are provided, the gap between the pointed portions 4a is provided. Since discharge can be generated, the discharge electrode 4 including two or more discharge electrodes 4A may be configured. In this case, since the number of discharge sites increases, the detection sensitivity of partial discharge based on salt damage is improved.

また、汚損の著しい地区においては、一対の放電電極4A間に汚損が蓄積される場合があるため、一対の放電電極4Aと碍子1とが直接接触することなく一定の隙間を有して配置される構造を適用することにより汚損の蓄積等による検出精度の低下を回避することができる。   Further, in a region where the contamination is significant, the contamination may accumulate between the pair of discharge electrodes 4A. Therefore, the pair of discharge electrodes 4A and the insulator 1 are arranged with a certain gap without being in direct contact with each other. By applying this structure, it is possible to avoid a decrease in detection accuracy due to accumulation of contamination.

第1の実施の形態では、電流検出部7として変流器を用いているが、変流器に限定されず、部分放電を直接的または間接的に検出可能な他の構成であってもよい。   In the first embodiment, a current transformer is used as the current detection unit 7. However, the current detection unit 7 is not limited to the current transformer, and may have another configuration capable of directly or indirectly detecting partial discharge. .

また、第1の実施の形態では、塩害予測・監視を行う現地で実際に使用されている実機としての碍子1に放電電極4を設ける構成を説明したが、監視対象の碍子や電線等の機器の近傍に上記した放電電極4を有するパイロット碍子を設けて塩害検出を行うことも可能である。この場合、パイロット碍子は監視対象の碍子と同一の材料構造を有するものを用いることがより好ましい。   In the first embodiment, the configuration in which the discharge electrode 4 is provided in the insulator 1 as an actual machine that is actually used in the field where salt damage prediction / monitoring is performed has been described. It is also possible to perform salt damage detection by providing a pilot insulator having the above-described discharge electrode 4 in the vicinity thereof. In this case, it is more preferable to use a pilot insulator having the same material structure as the insulator to be monitored.

(第2の実施の形態)
図2は、本発明の第2の実施の形態に係る塩害検出装置を示す概略構成図である。以下の説明において、第1の実施の形態と同一の構成および機能を有する部分については同一の符号を付している。
(Second Embodiment)
FIG. 2 is a schematic configuration diagram showing a salt damage detection apparatus according to the second embodiment of the present invention. In the following description, parts having the same configuration and function as those of the first embodiment are denoted by the same reference numerals.

この塩害検出装置10は、第1の実施の形態で説明した放電電極4Aに代えて、耐腐食性に優れるステンレス等の金属板からなり、先端部分に尖状部4aを有する電極片40と、一定の間隔を有して平行に配置される電極片40を連結する連結部41とを有する一対の放電電極4Bによって放電電極4を構成している点で相違しており、放電電極4が碍子1の外周面に環状に固定されている構成において共通している。   This salt damage detection apparatus 10 is made of a metal plate such as stainless steel having excellent corrosion resistance instead of the discharge electrode 4A described in the first embodiment, and an electrode piece 40 having a pointed portion 4a at the tip portion; The difference is that the discharge electrode 4 is constituted by a pair of discharge electrodes 4B having a connecting portion 41 that connects electrode pieces 40 arranged in parallel with a certain interval. This is common in a configuration in which it is fixed to the outer peripheral surface of 1 in an annular shape.

図3は、第2の実施の形態に係る放電電極を示し、(a)は放電電極全体を示す図、(b)は(a)のA方向から見た放電電極の一部を示す図、(c)は(a)のB方向から見た放電電極の一部を示す図である。   FIG. 3 shows a discharge electrode according to a second embodiment, (a) is a view showing the entire discharge electrode, (b) is a view showing a part of the discharge electrode as viewed from the A direction of (a), (C) is a figure which shows a part of discharge electrode seen from the B direction of (a).

電極片40は、図3(a)に示すように隣接する電極片40と一定の距離wを有して隔てられた状態で連結部41に溶接によって固定されており、長辺方向の一端を尖状に加工した尖状部4aを有している。そのため、尖状部4aの先端も一定の距離wを有して設けられる。 As shown in FIG. 3A, the electrode piece 40 is fixed to the connecting portion 41 by welding in a state of being separated from the adjacent electrode piece 40 by a certain distance w, and one end in the long side direction is fixed. It has a pointed portion 4a processed into a pointed shape. Therefore, the tip of the pointed section 4a is also provided with a certain distance w A.

この放電電極4Bは、碍子1の外周面に固定されたとき、図3(b)に示すように電極片40が碍子1の外周面に密接し、連結部41と碍子1との間に隙間dを生じることから、電極片40の間に汚損を生じにくく、かつ汚損を生じても降雨等による洗浄性が良好となるような構成を有している。なお、図3(b)においては説明の便宜上、碍子1の部分を平面状に図示している。   When the discharge electrode 4B is fixed to the outer peripheral surface of the insulator 1, as shown in FIG. 3B, the electrode piece 40 is in close contact with the outer peripheral surface of the insulator 1, and a gap is formed between the connecting portion 41 and the insulator 1. Since d is generated, the electrode pieces 40 are less likely to be contaminated, and even if the contamination occurs, the cleaning performance by rain or the like is improved. In addition, in FIG.3 (b), the part of the insulator 1 is shown in planar form for convenience of explanation.

電極片40は、図3(c)に示すように尖状部4aの先端に向かうにつれて厚みが小になる楔状に形成されている。   As shown in FIG. 3C, the electrode piece 40 is formed in a wedge shape whose thickness decreases toward the tip of the pointed portion 4a.

(第2の実施の形態の効果)
上記した第2の実施の形態によると、第1の実施の形態の好ましい効果に加えて、電極片40が一定の距離wを有して隔てられた状態で連結部41に固定された放電電極4を用いることにより、耐汚損性に優れ、かつ汚損物質の洗浄性に優れた構成とすることができる。
(Effect of the second embodiment)
According to the second embodiment described above, in addition to the preferable effects of the first embodiment, the discharge electrode fixed to the connecting portion 41 in a state where the electrode pieces 40 are separated by a certain distance w. By using 4, it can be set as the structure excellent in stain resistance and the washing | cleaning property of a pollutant.

(第3の実施の形態)
図4は、本発明の第3の実施の形態に係る塩害検出装置を示す概略構成図である。
(Third embodiment)
FIG. 4 is a schematic configuration diagram showing a salt damage detection apparatus according to the third embodiment of the present invention.

この塩害検出装置10は、第2の実施の形態で説明した放電電極4Bに代えて、先端部分に尖状部4aを有する電極片40を連結部41の外側に固定し、連結部41と碍子1との間に電極支持部42を設けた一対の放電電極4Cによって放電電極4を構成している点で相違しており、放電電極4が碍子1の外周面に環状に取り付けられる構成において共通している。   In this salt damage detection device 10, instead of the discharge electrode 4B described in the second embodiment, an electrode piece 40 having a pointed portion 4a at the tip is fixed to the outside of the connecting portion 41, and the connecting portion 41 and the insulator are fixed. 1 is different in that the discharge electrode 4 is constituted by a pair of discharge electrodes 4C provided with an electrode support portion 42 between them, and is common in a configuration in which the discharge electrode 4 is annularly attached to the outer peripheral surface of the insulator 1. is doing.

図5は、第3の実施の形態に係る放電電極を示し、(a)は放電電極全体を示す図、(b)は(a)のA方向から見た放電電極の一部を示す図、(c)は(a)のB方向から見た放電電極の一部を示す図である。   FIG. 5 shows a discharge electrode according to a third embodiment, (a) is a view showing the entire discharge electrode, (b) is a view showing a part of the discharge electrode as viewed from the A direction of (a), (C) is a figure which shows a part of discharge electrode seen from the B direction of (a).

電極片40は、図5(a)に示すように隣接する電極片40と一定の距離wを有して隔てられた状態で連結部41の碍子側とは反対側の外側に溶接によって固定されており、長辺方向の一端を尖状に加工した尖状部4aを有している。そのため、尖状部4aの先端も一定の距離wを有して設けられる。 As shown in FIG. 5A, the electrode piece 40 is fixed to the outside of the connecting portion 41 opposite to the insulator side by welding while being separated from the adjacent electrode piece 40 by a certain distance w. And has a pointed portion 4a obtained by processing one end in the long side direction into a pointed shape. Therefore, the tip of the pointed section 4a is also provided with a certain distance w A.

この放電電極4Cは、碍子1の外周面に固定されたとき、図5(b)に示すように電極支持部42によって連結部41と碍子1との間に隙間dを有するように配置される。電極支持部42は連結部41に溶接によって固定されており、連結部41、電極片40とともに一体化された構成を有する。電極片40は図5(c)に示すように折り曲げ部40Bで碍子1側に折り曲げられており、そのことによって尖状部4aが碍子1の外周面に接触した構成を有するので、電極片40の間に汚損を生じにくく、かつ汚損を生じても洗浄性が良好となるような構成を有している。なお、図5(b)においても説明の便宜上、碍子1の部分を平面状に図示している。   When the discharge electrode 4C is fixed to the outer peripheral surface of the insulator 1, as shown in FIG. 5B, the discharge electrode 4C is disposed by the electrode support portion 42 so as to have a gap d between the connecting portion 41 and the insulator 1. . The electrode support portion 42 is fixed to the connecting portion 41 by welding, and has a configuration integrated with the connecting portion 41 and the electrode piece 40. As shown in FIG. 5C, the electrode piece 40 is bent to the side of the insulator 1 at the bent portion 40B, whereby the pointed portion 4a is in contact with the outer peripheral surface of the insulator 1, so that the electrode piece 40 It has a structure in which it is difficult to cause fouling during cleaning, and the cleaning performance is good even if fouling occurs. In addition, also in FIG.5 (b), the part of the insulator 1 is shown in planar form for convenience of explanation.

第3の実施の形態においても、電極片40は、図5(c)に示すように尖状部4aの先端に向かうにつれて厚みが小になる楔状に形成されている。   Also in the third embodiment, the electrode piece 40 is formed in a wedge shape whose thickness decreases toward the tip of the pointed portion 4a as shown in FIG. 5 (c).

(第3の実施の形態の効果)
上記した第3の実施の形態によると、第2の実施の形態の好ましい効果に加えて、耐汚損性、汚損物質の洗浄性のより向上した構成とすることができる。
(Effect of the third embodiment)
According to the third embodiment described above, in addition to the preferable effects of the second embodiment, it is possible to obtain a configuration in which the stain resistance and the cleaning property of the pollutant are further improved.

なお、本発明は上記した各実施の形態に限定されず、本発明の技術思想を逸脱あるいは変更しない範囲内で種々な変形が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from or changing the technical idea of the present invention.

例えば、上記した塩害検出装置は実際に使用されている碍子1を監視対象とするものであるが、碍子に限定されず電線等の屋外配電線の設備に適用することができる。   For example, the salt damage detection apparatus described above is intended to monitor the insulator 1 that is actually used, but is not limited to the insulator, and can be applied to facilities for outdoor distribution lines such as electric wires.

また、放電電極4についても碍子1の外周面に一対の放電電極4A〜4Cを環状に装着するものに限定されず、風向によって死角を生じることがないように外周面に分散して複数箇所に設けられるものであっても良い。   Further, the discharge electrode 4 is not limited to the one in which the pair of discharge electrodes 4A to 4C are annularly mounted on the outer peripheral surface of the insulator 1, and is dispersed on the outer peripheral surface so as not to cause blind spots due to the wind direction. It may be provided.

図1は、本発明の第1の実施の形態に係る塩害検出装置を示し、(a)は塩害検出装置の概略構成図、(b)は放電電極の一部を示す平面図である。1A and 1B show a salt damage detection apparatus according to a first embodiment of the present invention. FIG. 1A is a schematic configuration diagram of the salt damage detection apparatus, and FIG. 1B is a plan view showing a part of a discharge electrode. 図2は、本発明の第2の実施の形態に係る塩害検出装置を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a salt damage detection apparatus according to the second embodiment of the present invention. 図3は、第2の実施の形態に係る放電電極を示し、(a)は放電電極全体を示す図、(b)は(a)のA方向から見た放電電極の一部を示す図、(c)は(a)のB方向から見た放電電極の一部を示す図である。FIG. 3 shows a discharge electrode according to a second embodiment, (a) is a view showing the entire discharge electrode, (b) is a view showing a part of the discharge electrode as viewed from the A direction of (a), (C) is a figure which shows a part of discharge electrode seen from the B direction of (a). 図4は、本発明の第3の実施の形態に係る塩害検出装置を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a salt damage detection apparatus according to the third embodiment of the present invention. 図5は、第3の実施の形態に係る放電電極を示し、(a)は放電電極全体を示す図、(b)は(a)のA方向から見た放電電極の一部を示す図、(c)は(a)のB方向から見た放電電極の一部を示す図である。FIG. 5 shows a discharge electrode according to a third embodiment, (a) is a view showing the entire discharge electrode, (b) is a view showing a part of the discharge electrode as viewed from the A direction of (a), (C) is a figure which shows a part of discharge electrode seen from the B direction of (a).

符号の説明Explanation of symbols

1…碍子、1A…電線保持部、2…ボルト部、2A…鍔部、3…ナット、3A…ワッシャー、4…放電電極、4A〜4C…放電電極、4a…尖状部、4b…端部、5…導線、6…高圧電源、7…電流検出部、8…判定部、10…塩害検出装置、40…電極片、40B…折り曲げ部、41…連結部、42…電極支持部 DESCRIPTION OF SYMBOLS 1 ... insulator 1A ... electric wire holding part, 2 ... bolt part, 2A ... collar part, 3 ... nut, 3A ... washer, 4 ... discharge electrode, 4A-4C ... discharge electrode, 4a ... pointed part, 4b ... end part DESCRIPTION OF SYMBOLS 5 ... Conductor, 6 ... High voltage power supply, 7 ... Current detection part, 8 ... Determination part, 10 ... Salt damage detection apparatus, 40 ... Electrode piece, 40B ... Bending part, 41 ... Connection part, 42 ... Electrode support part

Claims (4)

塩害に基づく放電の事前予測を行う屋外配電線の設備と同一環境に設けられ、電気絶縁性に優れた素材で形成された碍子と、
前記碍子の外周面に設けられ、前記塩害による汚損に基づいて前記碍子が有する放電電圧より小なる電圧で放電を生じる電極形状で形成された放電電極を有することを特徴とする塩害検出装置。
An insulator made of a material with excellent electrical insulation, installed in the same environment as the facilities of an outdoor distribution line that performs preliminary prediction of discharge based on salt damage,
A salt damage detection apparatus comprising: a discharge electrode provided on an outer peripheral surface of the insulator and formed in an electrode shape that generates a discharge at a voltage lower than a discharge voltage of the insulator based on the contamination due to the salt damage.
前記放電電極は、前記碍子の外周面に環状に巻き付け可能な長手方向のサイズを有し、前記長手方向に所定の距離をおいて複数の鋭利な突部が配置されていることを特徴とする請求項1記載の塩害検出装置。   The discharge electrode has a longitudinal size that can be annularly wound around an outer peripheral surface of the insulator, and a plurality of sharp protrusions are arranged at a predetermined distance in the longitudinal direction. The salt damage detection apparatus according to claim 1. 前記放電電極は、前記碍子の外周面との間に一定の隙間を有して環状に固定されることを特徴とする請求項1記載の塩害検出装置。   The salt damage detection device according to claim 1, wherein the discharge electrode is fixed in an annular shape with a certain gap between the discharge electrode and an outer peripheral surface of the insulator. 前記放電電極は、前記碍子の外周面に環状に装着される一対の放電電極からなり、前記一対の放電電極は複数の鋭利な突部を有して前記複数の突部が一定の間隔をおいて対向配置されるように前記碍子の外周面に固定されていることを特徴とする請求項1記載の塩害検出装置。   The discharge electrode includes a pair of discharge electrodes that are annularly attached to the outer peripheral surface of the insulator, and the pair of discharge electrodes has a plurality of sharp protrusions, and the plurality of protrusions are spaced apart from each other. The salt damage detection device according to claim 1, wherein the salt damage detection device is fixed to an outer peripheral surface of the insulator so as to be opposed to each other.
JP2007009646A 2007-01-18 2007-01-18 Salt damage detector Pending JP2008175699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009646A JP2008175699A (en) 2007-01-18 2007-01-18 Salt damage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009646A JP2008175699A (en) 2007-01-18 2007-01-18 Salt damage detector

Publications (1)

Publication Number Publication Date
JP2008175699A true JP2008175699A (en) 2008-07-31

Family

ID=39702827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009646A Pending JP2008175699A (en) 2007-01-18 2007-01-18 Salt damage detector

Country Status (1)

Country Link
JP (1) JP2008175699A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540026A (en) * 2012-01-05 2012-07-04 中国电力科学研究院 Oil cup for insulating oil impact characteristic research
WO2016063737A1 (en) * 2014-10-20 2016-04-28 株式会社デンソー Particulate matter detection sensor
CN105973941A (en) * 2016-04-29 2016-09-28 南方电网科学研究院有限责任公司 Method for measuring damp degree of insulator surface dirt by using angular phase difference, and apparatus thereof
CN107422200A (en) * 2017-05-18 2017-12-01 中国电力科学研究院 Transformer fault simulation system
CN108983054A (en) * 2018-08-06 2018-12-11 国网上海市电力公司 A kind of regulating transformer partial discharge simulator
CN110259649A (en) * 2019-07-31 2019-09-20 上海电气风电集团有限公司 A kind of high-frequency impulse insulation performance testing device and its test method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540026A (en) * 2012-01-05 2012-07-04 中国电力科学研究院 Oil cup for insulating oil impact characteristic research
CN102540026B (en) * 2012-01-05 2015-12-09 中国电力科学研究院 A kind of lubricating cup for the research of insulating oil impact characteristics
WO2016063737A1 (en) * 2014-10-20 2016-04-28 株式会社デンソー Particulate matter detection sensor
JP2016080566A (en) * 2014-10-20 2016-05-16 株式会社デンソー Particulate matter detection sensor
CN105973941A (en) * 2016-04-29 2016-09-28 南方电网科学研究院有限责任公司 Method for measuring damp degree of insulator surface dirt by using angular phase difference, and apparatus thereof
CN107422200A (en) * 2017-05-18 2017-12-01 中国电力科学研究院 Transformer fault simulation system
CN107422200B (en) * 2017-05-18 2021-02-19 中国电力科学研究院 Transformer fault simulation system
CN108983054A (en) * 2018-08-06 2018-12-11 国网上海市电力公司 A kind of regulating transformer partial discharge simulator
CN110259649A (en) * 2019-07-31 2019-09-20 上海电气风电集团有限公司 A kind of high-frequency impulse insulation performance testing device and its test method

Similar Documents

Publication Publication Date Title
JP2008175699A (en) Salt damage detector
CN1790041A (en) Method and system for monitoring partial discharge in gas-insulated apparatus
JP5119868B2 (en) Electric dust collector
JP6033499B2 (en) Insulation deterioration monitoring device
KR102063833B1 (en) Busbar monitoring device of switchgear
JP2009236887A (en) Insulation fault detecting electrode structure and insulation fault detecting method
JP4432081B2 (en) DC power cable abnormality detection device
KR200490361Y1 (en) Prod type Magnetic Particle Testing Device
JP2000340393A (en) Prevention of sputtering phenomenon ozone generation, and light emission of discharge electrode or electricity removal electrode for high voltage applying electricity removal device or electrification removal device in vacuum layer and its manufacture
JP4374598B2 (en) Feeding cable monitoring device
JP2000067670A (en) Leakage current measuring device for insulator
JP2001228197A (en) Insulator monitoring device
JP3138321B2 (en) Insulator insulation deterioration judgment method
KR200490363Y1 (en) Prod type Magnetic Particle Testing Device
RU139574U1 (en) DKI INSULATION CONTROL SENSOR
KR102677159B1 (en) Grounding rod for telecommunications equipment that can be inspected at all times
JPH08220158A (en) Deterioration detector for creeping insulation
JPH07280676A (en) Method for monitoring abnormality of concrete
JP2005043220A (en) Sensor and method for monitoring crack in concrete structure
Yuji et al. Problem solving of partial discharge on the distribution line
JPS63128274A (en) Monitoring device for stain of insulator
JP2017170289A (en) Maintenance method of lead discharge wire
RU2161789C2 (en) Unit of indicators of corrosion rate of underground metal structures
JPH0688001B2 (en) Corona discharge device
JP2004181381A (en) Discharge electrode of electrostatic precipitator