JP2008175695A - Method and instrument for measuring gas hydrate ratio - Google Patents

Method and instrument for measuring gas hydrate ratio Download PDF

Info

Publication number
JP2008175695A
JP2008175695A JP2007009540A JP2007009540A JP2008175695A JP 2008175695 A JP2008175695 A JP 2008175695A JP 2007009540 A JP2007009540 A JP 2007009540A JP 2007009540 A JP2007009540 A JP 2007009540A JP 2008175695 A JP2008175695 A JP 2008175695A
Authority
JP
Japan
Prior art keywords
gas hydrate
gas
cylindrical container
pressure
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007009540A
Other languages
Japanese (ja)
Other versions
JP4758917B2 (en
Inventor
Tetsuo Murayama
哲郎 村山
Toru Iwasaki
徹 岩崎
Shigeru Nagamori
茂 永森
Nobutaka Oya
信貴 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2007009540A priority Critical patent/JP4758917B2/en
Publication of JP2008175695A publication Critical patent/JP2008175695A/en
Application granted granted Critical
Publication of JP4758917B2 publication Critical patent/JP4758917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method which enables the efficient measurement of a gas hydrate ratio, and a gas hydrate measuring instrument. <P>SOLUTION: After the inside of a container 1, the inner volume 5 of which can be expanded and contracted, is kept to the pressure and temperature of generating gas hydrate, a sample 17 is introduced into the container 1. After the inner volume of the container 1 is contracted to discharge the gas in the container 1, the pressure in the container 1 is reduced to below the pressure of generating gas hydrate to decompose the gas hydrate into a raw material gas and raw material water, so that the gas hydrate ratio is calculated from the volume of the decomposed raw material gas and the volumes of the raw material water and that of deposited water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガスハイドレート率の測定方法及びその装置に関し、詳しくは、シリンダ・ピストン型の円筒容器を用いることによりガスハイドレート率を効率よく測定することができるガスハイドレート率の測定方法及びそれに用いる測定装置に関する。   The present invention relates to a gas hydrate rate measuring method and apparatus, and more particularly, to a gas hydrate rate measuring method capable of efficiently measuring a gas hydrate rate by using a cylinder / piston type cylindrical container, and The present invention relates to a measuring apparatus used for it.

近年、天然ガスやメタンなどの安全かつ経済的な輸送・貯蔵手段として、それら原料ガスの固体状の水和物であるガスハイドレートを用いる方法が注目されている。   In recent years, a method using gas hydrate, which is a solid hydrate of these raw material gases, has attracted attention as a safe and economical means for transporting and storing natural gas and methane.

このガスハイドレートは一般に高圧・低温下(例えば、天然ガスハイドレートでは5.4MPa、5℃)で生成され、その生成方法としては、原料水中に原料ガスを気泡として吹き込みながら撹拌するいわゆる「気液撹拌方式」(例えば、特許文献1を参照)や、原料ガス中に原料水を噴霧するいわゆる「水スプレー方式」(例えば、特許文献2を参照)が代表的なものとして知られている。   This gas hydrate is generally generated under high pressure and low temperature (for example, 5.4 MPa and 5 ° C. for natural gas hydrate). As a method for generating the gas hydrate, so-called “gas” in which the raw material gas is blown into the raw water while being bubbled. Typical examples of the “liquid stirring method” (see, for example, Patent Document 1) and the so-called “water spray method” (see, for example, Patent Document 2) in which raw water is sprayed into a raw material gas are known.

これらの生成方法により生成されたガスハイドレートは、多量の水の中に浮遊してスラリー状となっているか、若しくはガスハイドレートの周囲に水分が付着する程度に脱水されているため、その中のガスハイドレート率を直接測定することは一般に困難である。   The gas hydrate produced by these production methods floats in a large amount of water to form a slurry, or is dehydrated to such an extent that moisture adheres around the gas hydrate. It is generally difficult to directly measure the gas hydrate ratio.

現状のガスハイドレート率の測定方法の一例を以下に説明する。   An example of the current method for measuring the gas hydrate rate will be described below.

この測定方法においては、図9に示すように、あらかじめ内部をガスハイドレートの生成圧力及び生成温度(例えば、天然ガスハイドレートでは5.4MPa、5℃)に保持したサンプリング容器30を用いる。まず、サンプリング容器30をガスハイドレート生成容器31に、エアロックを構成する2つのボール弁32、33を介して接続する。そして、これらのボール弁32、33を同時に開くことにより、サンプリング容器30内にガスハイドレートと付着水からなる試料を導入する。この際には、ガスハイドレート生成容器31内に存在する未反応の原料ガスも導入される。所定の量を導入した後にボール弁32、33を閉じ、その中間部でサンプリング容器30を生成容器31から切り離す。切り離し後のサンプリング容器30を大気圧下でガスハイドレートが分解しない温度(約−20℃)まで冷却してから、ガス抜き弁34を開いて未反応の原料ガスを外部へ放出する。ガスを放出した後に、サンプリング容器30の総重量と風袋重量から試料の重量Wを求める。最後に、サンプリング容器30をガスハイドレートの生成温度以上まで加熱してガスハイドレートを原料ガスと原料水に分解した後に、サンプリング容器30内の残留水を取り出してその重量Wを測定する。 In this measurement method, as shown in FIG. 9, a sampling vessel 30 is used in which the interior is previously maintained at a gas hydrate production pressure and production temperature (for example, 5.4 MPa and 5 ° C. for natural gas hydrate). First, the sampling container 30 is connected to the gas hydrate generation container 31 via two ball valves 32 and 33 constituting an air lock. Then, by opening these ball valves 32 and 33 simultaneously, a sample made of gas hydrate and adhering water is introduced into the sampling container 30. At this time, unreacted source gas existing in the gas hydrate production vessel 31 is also introduced. After the predetermined amount is introduced, the ball valves 32 and 33 are closed, and the sampling container 30 is separated from the production container 31 at an intermediate portion thereof. After the separation, the sampling container 30 is cooled to a temperature at which the gas hydrate is not decomposed at atmospheric pressure (about −20 ° C.), and then the gas vent valve 34 is opened to release the unreacted source gas to the outside. After releasing the gas, the weight W s of the sample is obtained from the total weight of the sampling container 30 and the tare weight. Finally, the sampling vessel 30 is heated to a gas hydrate production temperature or higher to decompose the gas hydrate into raw material gas and raw water, and then the residual water in the sampling vessel 30 is taken out and its weight Ww is measured.

このようにして測定した試料の重量Wと残留水(付着水+原料水)の重量Wから、ガスハイドレートを生成していた原料ガスの重量Wを求める。
=W−W ---(1)
From the weight W s of the sample thus measured and the weight W w of the residual water (attached water + raw material water), the weight W g of the raw material gas that has generated the gas hydrate is obtained.
W g = W s −W w --- (1)

ガスハイドレートの重量Wは、原料ガスの水和数をnとすると以下のようになる。
=W×(1+n×M/M) ---(2)
ここで、M及びMは、それぞれ原料ガスの分子量及び原料水の平均分子量を表す。
The weight W h of the gas hydrate is as follows when the hydration number of the raw material gas is n.
W h = W g × (1 + n × M w / M g ) --- (2)
Here, Mw and Mg represent the molecular weight of the raw material gas and the average molecular weight of the raw material water, respectively.

従って、ガスハイドレート率α(重量%)は、次のように求められる。
α=W/W×100 ---(3)
Accordingly, the gas hydrate rate α h (% by weight) is obtained as follows.
α h = W h / W s × 100 --- (3)

しかし、このようなガスハイドレート率の測定方法では、サンプリング容器の取扱いや冷却・加熱工程が必要となるため、測定に手間と時間がかかり効率が悪いという問題があった。
特開2000−302701号公報 特開2000−264852号公報
However, such a method for measuring a gas hydrate rate has a problem in that it requires labor and time for the measurement because the sampling container needs to be handled and a cooling / heating process is required.
JP 2000-302701 A JP 2000-264852 A

本発明の目的は、ガスハイドレート率を効率よく測定することができる測定方法とその装置を提供することにある。   The objective of this invention is providing the measuring method and its apparatus which can measure a gas hydrate rate efficiently.

上記の目的を達成するため、本発明のガスハイドレート率の測定方法は、ガスハイドレートと付着水とからなる試料中のガスハイドレート率の測定方法であって、内容積が拡縮可能に構成された円筒容器内を前記ガスハイドレートの生成圧力及び生成温度に保持した後、前記円筒容器内に前記試料を導入し、次いで前記円筒容器の内容積を縮小して該円筒容器内のガスを放出した後、前記円筒容器内の圧力を前記生成圧力未満に減圧して前記ガスハイドレートを原料ガスと原料水とに分解し、前記原料ガスの体積と、前記原料水と前記付着水との体積と、から前記ガスハイドレート率を求めることを特徴とするものである。   In order to achieve the above object, the method for measuring a gas hydrate rate of the present invention is a method for measuring a gas hydrate rate in a sample composed of a gas hydrate and adhering water, and the internal volume can be expanded and contracted. After maintaining the generated pressure and temperature of the gas hydrate in the cylindrical container, the sample is introduced into the cylindrical container, and then the internal volume of the cylindrical container is reduced to reduce the gas in the cylindrical container. After discharging, the pressure in the cylindrical container is reduced to less than the generation pressure to decompose the gas hydrate into raw material gas and raw water, and the volume of the raw material gas, the raw water and the adhering water The gas hydrate rate is obtained from the volume.

この測定方法においては、円筒容器内の圧力を生成圧力未満に減圧する際に、同時に円筒容器内の温度を生成温度超まで昇温して、ガスハイドレートを原料ガスと原料水とに分解することが望ましい。   In this measurement method, when the pressure in the cylindrical container is reduced to less than the generation pressure, the temperature in the cylindrical container is simultaneously raised to a generation temperature exceeding, and the gas hydrate is decomposed into the raw material gas and the raw water. It is desirable.

また、本発明のガスハイドレート率の測定装置は、保温ジャケットを備えた円筒容器内にピストンを摺動自在に挿設し、前記円筒容器上部に接続された2方向の切替手段の一方に圧力調整弁を接続し、他方にガス流量計を接続してなる。   In the gas hydrate ratio measuring apparatus of the present invention, a piston is slidably inserted in a cylindrical container provided with a heat insulation jacket, and pressure is applied to one of the two-way switching means connected to the upper part of the cylindrical container. A control valve is connected, and a gas flow meter is connected to the other.

円筒容器上部と切替手段の間には、試料検知部とバッファー部とを順に接続することが望ましい。   It is desirable to connect a sample detection part and a buffer part in order between the cylindrical container upper part and the switching means.

試料検知部には、赤外線式センサー又はサイトグラスが好ましく用いられる。   An infrared sensor or sight glass is preferably used for the sample detector.

本発明のガスハイドレート率の測定方法によれば、内容積が拡縮可能に構成された円筒容器内をガスハイドレートの生成圧力及び生成温度に保持した後に円筒容器内に前記試料を導入し、次いで前記円筒容器の内容積を縮小して円筒容器内のガスを放出した後、円筒容器内の圧力をガスハイドレートの生成圧力未満に減圧してガスハイドレートを原料ガスと原料水とに分解して、原料ガスの体積と、原料水と付着水との体積と、からガスハイドレート率を求めるようにしたので、サンプリング容器等の取扱いや加熱・冷却工程が不要となるため、効率的にガスハイドレート率の測定を行うことができる。   According to the method for measuring a gas hydrate rate of the present invention, the sample is introduced into the cylindrical container after holding the generation pressure and the generation temperature of the gas hydrate inside the cylindrical container configured to expand and contract the internal volume, Next, after reducing the internal volume of the cylindrical container to release the gas in the cylindrical container, the pressure in the cylindrical container is reduced below the generation pressure of the gas hydrate to decompose the gas hydrate into raw material gas and raw water. Since the gas hydrate rate is calculated from the volume of the raw material gas and the volume of the raw material water and the adhering water, the handling of the sampling container and the heating / cooling process are not required. The gas hydrate rate can be measured.

以下に、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明に係るガスハイドレート率の測定方法は、原料ガスと原料水から生成されたガスハイドレートと、そのガスハイドレートに付着している原料水(以下、単に「付着水」という。)とからなる試料中に含まれるガスハイドレート率を測定するものである。   The method for measuring a gas hydrate rate according to the present invention includes a gas hydrate generated from a raw material gas and raw material water, and raw material water adhering to the gas hydrate (hereinafter simply referred to as “adhered water”). The gas hydrate rate contained in the sample consisting of is measured.

代表的な原料ガスとしては天然ガスが例示されるが、所定の圧力及び温度でガスハイドレートを生成するものならば特に種類は問わず、天然ガスの成分であるメタン、エタン、プロパンなどの炭化水素ガス及びそれらの混合ガス、あるいは二酸化炭素、硫化水素及びそれらの混合ガスなどでもよい。また、ガスハイドレートの生成圧力及び生成温度とは、上記のそれぞれの原料ガスと原料水からガスハイドレートを生成する際の圧力範囲及び温度範囲をいう。   Natural gas is exemplified as a typical raw material gas, but any kind of carbon gas such as methane, ethane, or propane, which is a component of natural gas, may be used as long as it produces gas hydrate at a predetermined pressure and temperature. Hydrogen gas and a mixed gas thereof, or carbon dioxide, hydrogen sulfide, and a mixed gas thereof may be used. Further, the gas hydrate production pressure and production temperature refer to a pressure range and a temperature range in producing gas hydrate from each of the above raw material gases and raw water.

このようなガスハイドレート率の測定方法を実施するために、図1に示すようなガスハイドレート率の測定装置が用いられる。   In order to carry out such a method for measuring the gas hydrate rate, a gas hydrate rate measuring device as shown in FIG. 1 is used.

この測定装置は、筒形の容器1とその内部を摺動可能なピストン2から主に構成される。容器1の側面は、ボール弁3を介してガスハイドレート生成容器(以下、単に「生成容器」という。)4に接続されている。また、容器1の内部はピストン2を境に2つに分けられ、容器1の上部側に第1空間部5が、ロッド7の側に第2空間部6が、それぞれ形成されている。   This measuring apparatus is mainly composed of a cylindrical container 1 and a piston 2 that can slide inside thereof. A side surface of the container 1 is connected to a gas hydrate production container (hereinafter simply referred to as “production container”) 4 via a ball valve 3. The interior of the container 1 is divided into two parts with the piston 2 as a boundary. A first space part 5 is formed on the upper side of the container 1 and a second space part 6 is formed on the rod 7 side.

第1空間部5の端面の排出口には、切替手段である三方弁8と排水弁9が接続されており、その三方弁8の切替先の一方には定圧調整弁10が接続され、他方には圧力計11、減圧弁12及びガス流量計13が順に接続されている。   A three-way valve 8 and a drain valve 9 as switching means are connected to the discharge port on the end face of the first space portion 5, and a constant pressure regulating valve 10 is connected to one of the switching destinations of the three-way valve 8, while the other A pressure gauge 11, a pressure reducing valve 12, and a gas flow meter 13 are connected in sequence.

第2空間部6の端面は、第1弁14を介して生成容器4に接続すると共に、第2弁15を通じて第2空間部6を大気圧にすることができるようになっている。   The end surface of the second space portion 6 is connected to the generation container 4 via the first valve 14, and the second space portion 6 can be brought to atmospheric pressure through the second valve 15.

また、容器1の外面には、保温ジャケット16が取り付けられており、容器1を常にガスハイドレートの生成温度(例えば、天然ガスハイドレートでは5℃)を超える一定温度(例えば、6℃)に保持している。   A heat insulation jacket 16 is attached to the outer surface of the container 1, and the container 1 is always kept at a constant temperature (for example, 6 ° C.) that exceeds the generation temperature of gas hydrate (for example, 5 ° C. for natural gas hydrate). keeping.

このような測定装置を用いたガスハイドレート率の測定方法を、図2〜図8を用いて説明する。なお、図2〜図8においては、関連する部分にのみ符号を付すと共に、弁の開状態を白で、閉状態を黒で、それぞれ表すこととする。   A method for measuring the gas hydrate rate using such a measuring apparatus will be described with reference to FIGS. 2 to 8, reference numerals are given only to the relevant parts, and the open state of the valve is represented by white and the closed state is represented by black.

まず、図2に示すように、ピストン2を後退させて第1空間部5を大きくした状態で、ボール弁3を開いてガスハイドレートの生成条件下(例えば、天然ガスハイドレートでは圧力5.4MPa、温度5℃)にある生成容器4からガスハイドレートと付着水からなる試料17を第1空間部5へ導入する。このとき同時に、未反応の原料ガスの一部も第1空間部5へ導入される。この試料17の導入方法としては、重力を利用するのが望ましいが、スクリューコンベア等の機械的な手段でもよい。   First, as shown in FIG. 2, with the piston 2 retracted to enlarge the first space 5, the ball valve 3 is opened and gas hydrate is generated (for example, a natural gas hydrate has a pressure of 5. A sample 17 made of gas hydrate and adhering water is introduced into the first space portion 5 from the production vessel 4 at 4 MPa, temperature 5 ° C.). At the same time, a part of the unreacted source gas is also introduced into the first space portion 5. As a method for introducing the sample 17, it is desirable to use gravity, but mechanical means such as a screw conveyor may be used.

次に、図3に示すように、ボール弁3を閉じてから三方弁8を定圧調整弁10の方へ開く。このとき、定圧調整弁10の設定圧力を生成容器4よりも0.2MPa程度低くしておくことで、第1空間部5と第2空間部6の間の差圧によりピストン2が前進する。これにより、容器1内の試料17が集められると共に、容器1内の原料ガス18が外部へ排出される。   Next, as shown in FIG. 3, the ball valve 3 is closed and then the three-way valve 8 is opened toward the constant pressure regulating valve 10. At this time, by setting the set pressure of the constant pressure regulating valve 10 to be about 0.2 MPa lower than the generation container 4, the piston 2 moves forward due to the differential pressure between the first space portion 5 and the second space portion 6. Thereby, the sample 17 in the container 1 is collected and the source gas 18 in the container 1 is discharged to the outside.

なお、上記の工程においては、ピストン2が前進し過ぎることにより、試料17が三方弁8側へ流出して三方弁8の開閉動作に影響を与える可能性がある。そのためには、あらかじめ試料17の体積を見積もっておくとともに、ピストン2の位置が分かるようにロッド7に目盛りを付しておき、第1空間部5内の試料17の上方に常に原料ガスからなる空間ができるようにピストン2の位置を制御することが望ましい。   In the above process, when the piston 2 moves forward too much, the sample 17 may flow out to the three-way valve 8 side and affect the opening / closing operation of the three-way valve 8. For this purpose, the volume of the sample 17 is estimated in advance, and the rod 7 is calibrated so that the position of the piston 2 can be known, and is always made of a raw material gas above the sample 17 in the first space 5. It is desirable to control the position of the piston 2 so that a space is created.

また、ロッド7に目盛りを付す代わりに、図4に示すように、容器1と三方弁8の間に試料検知部22とバッファー部23を設けてもよい。この場合には、バッファー部23が原料ガスの空間の役割を有し、試料検知部22において試料17の存在を検知するまでピストン2を前進させることで、ピストン2の位置を適切に制御することができる。試料検知部22としては、赤外線センサーやサイトグラスなどを用いることができる。   Further, instead of providing a scale on the rod 7, as shown in FIG. 4, a sample detection unit 22 and a buffer unit 23 may be provided between the container 1 and the three-way valve 8. In this case, the buffer unit 23 has a role of the source gas space, and the piston 2 is advanced until the sample detection unit 22 detects the presence of the sample 17, thereby appropriately controlling the position of the piston 2. Can do. As the sample detection unit 22, an infrared sensor, a sight glass, or the like can be used.

次に、図5に示すように、三方弁8を他方へ切り替えて、圧力計11を確認しつつ減圧弁12を操作して、第1空間部5を大気圧まで徐々に減圧することにより、試料17中のガスハイドレートを原料ガスと原料水に分解する。分解した原料ガス19は、ガス流量計13を通過する際に体積Vが測定される。 Next, as shown in FIG. 5, by switching the three-way valve 8 to the other, operating the pressure reducing valve 12 while confirming the pressure gauge 11, and gradually reducing the first space 5 to atmospheric pressure, The gas hydrate in the sample 17 is decomposed into raw material gas and raw material water. The decomposed source gas 19 has a volume Vg measured when passing through the gas flow meter 13.

このとき、第1空間部5に未反応の原料ガスが存在していると、ガスハイドレートが分解した原料ガス19と一緒にガス流量計13において計測されてしまい、測定誤差の原因となる。その場合には、図4に示す測定装置を用いて、バッファー部23の容積から未反応の原料ガスの体積を求めておき、体積Vから差し引くことで測定精度を向上することができる。 At this time, if unreacted source gas is present in the first space portion 5, the gas hydrate is measured together with the decomposed source gas 19 in the gas flow meter 13, causing a measurement error. In that case, it is possible by using the measuring apparatus shown in FIG. 4, the volume of the buffer unit 23 to previously obtain the volume of the unreacted source gas, to improve the measurement accuracy by subtracting from the volume V g.

ガスハイドレートが全て分解した後は、図6に示すように、第1空間部5には原料水と付着水からなる残留水20が残るので、三方弁8を閉じて排水弁9を開けてピストン2を前進させることにより、残留水20を容器1外部へ排水21して、その体積Vをメスシリンダ等により測定する。 After the gas hydrate is completely decomposed, as shown in FIG. 6, since the residual water 20 consisting of raw material water and adhering water remains in the first space portion 5, the three-way valve 8 is closed and the drain valve 9 is opened. By moving the piston 2 forward, the residual water 20 is drained 21 to the outside of the container 1 and its volume Vw is measured with a graduated cylinder or the like.

なお、この工程においても、図4に示す測定装置を用いることにより、残留水20が三方弁8側へ流出して測定誤差を生じることを防ぐことができる。   Also in this step, by using the measuring device shown in FIG. 4, it is possible to prevent the residual water 20 from flowing out toward the three-way valve 8 and causing a measurement error.

測定終了後においては、図7に示すように、第2弁15を開放して第2空間部6を大気圧まで減圧することにより、ピストン2を後退させて次回の測定に備える。   After the measurement is completed, as shown in FIG. 7, the second valve 15 is opened to depressurize the second space 6 to the atmospheric pressure, whereby the piston 2 is moved backward to prepare for the next measurement.

このようにして測定した原料ガスの体積Vと残留水の体積Vを、原料ガスの重量Wと残留水の重量Wにそれぞれ変換して、試料17の重量Wを以下のように求める。
=W+W ---(4)
The volume V g of the source gas and the volume V w of the residual water thus measured are converted into the weight W g of the source gas and the weight W w of the residual water, respectively, and the weight W s of the sample 17 is as follows. Ask for.
W s = W g + W w --- (4)

これより、前出の(1)〜(3)式を用いることにより、ガスハイドレート率αを求めることができる。 From this, gas hydrate rate (alpha) h can be calculated | required by using above-mentioned (1)-(3) Formula.

なお、上述したガスハイドレート率の測定方法においては、生成圧力未満への減圧操作のみによりガスハイドレートの分解を行っているが、生成温度超への昇温操作を併用することにより、測定時間の短縮を図ることができる。図8は、更に別の実施形態からなる測定装置であり、第1空間部5の上部に当たる容器1の外面に加熱・冷却ジャケット24を設けることにより、試料17を生成温度を超える温度で加熱すると共に、測定後は次回の測定に備えて容器1を冷却することができるようになっている。なお、図4に示す実施形態と組み合わせてもよいことはもちろんである。   In the above-described method for measuring the gas hydrate rate, the gas hydrate is decomposed only by a depressurization operation below the generation pressure. However, the measurement time can be increased by using the temperature increase operation above the generation temperature. Can be shortened. FIG. 8 shows a measuring apparatus according to another embodiment, and the sample 17 is heated at a temperature exceeding the generation temperature by providing a heating / cooling jacket 24 on the outer surface of the container 1 corresponding to the upper portion of the first space 5. In addition, after the measurement, the container 1 can be cooled in preparation for the next measurement. Of course, it may be combined with the embodiment shown in FIG.

以上のように、本発明に係る測定方法及び測定装置を用いることにより、生成容器へのサンプリング用の円筒容器の取り付け及び取り外しが不要となると共に、加熱や冷却を行うことなくガスハイドレート率を測定できるため、ガスハイドレート率を効率的に測定することができる。   As described above, by using the measurement method and the measurement apparatus according to the present invention, it is not necessary to attach and remove the sampling cylindrical container to the production container, and the gas hydrate rate can be increased without heating or cooling. Since it can measure, a gas hydrate rate can be measured efficiently.

本発明の実施形態からなるガスハイドレート率の測定装置に係る系統図である。It is a systematic diagram which concerns on the measuring apparatus of the gas hydrate rate which consists of embodiment of this invention. 本発明に係るガスハイドレート率の測定方法における最初の工程の系統図である。It is a systematic diagram of the first process in the measuring method of the gas hydrate rate concerning the present invention. 図2の次の工程の系統図である。It is a systematic diagram of the next process of FIG. 本発明の別の実施形態からなるガスハイドレート率の測定装置に係る系統図である。It is a systematic diagram which concerns on the measuring apparatus of the gas hydrate rate which consists of another embodiment of this invention. 図3の次の工程の系統図である。It is a systematic diagram of the next process of FIG. 図5の次の工程の系統図である。It is a systematic diagram of the next process of FIG. 図6の次の工程の系統図である。It is a systematic diagram of the next process of FIG. 本発明の更に別の実施形態からなるガスハイドレート率の測定装置に係る系統図である。It is a systematic diagram which concerns on the measuring apparatus of the gas hydrate rate which consists of another embodiment of this invention. 従来のガスハイドレート率の測定装置である。This is a conventional gas hydrate rate measuring device.

符号の説明Explanation of symbols

1 容器
2 ピストン
3 ボール弁
4 ガスハイドレート生成容器
5 第1空間部
6 第2空間部
7 ロッド
8 三方弁
9 排水弁
10 定圧調整弁
11 圧力計
12 減圧弁
13 ガス流量計
14 第1弁
15 第2弁
16 保温ジャケット
17 試料
18 未反応の原料ガス
19 ガスハイドレートの分解により生じた原料ガス
20 残留水
21 排水
22 試料検知部
23 バッファー部
24 加熱・冷却ジャケット
DESCRIPTION OF SYMBOLS 1 Container 2 Piston 3 Ball valve 4 Gas hydrate production | generation container 5 1st space part 6 2nd space part 7 Rod 8 Three-way valve 9 Drain valve 10 Constant pressure regulating valve 11 Pressure gauge 12 Pressure reducing valve 13 Gas flow meter 14 1st valve 15 Second valve 16 Insulation jacket 17 Sample 18 Unreacted source gas 19 Source gas 20 generated by decomposition of gas hydrate Residual water 21 Drainage 22 Sample detection unit 23 Buffer unit 24 Heating / cooling jacket

Claims (5)

ガスハイドレートと付着水とからなる試料中のガスハイドレート率の測定方法であって、
内容積が拡縮可能に構成された円筒容器内を前記ガスハイドレートの生成圧力及び生成温度に保持した後、前記円筒容器内に前記試料を導入し、次いで前記円筒容器の内容積を縮小して該円筒容器内のガスを放出した後、前記円筒容器内の圧力を前記生成圧力未満に減圧して前記ガスハイドレートを原料ガスと原料水とに分解し、前記原料ガスの体積と、前記原料水と前記付着水との体積と、から前記ガスハイドレート率を求めることを特徴とするガスハイドレート率の測定方法。
A method for measuring a gas hydrate rate in a sample comprising gas hydrate and adhering water,
After holding the inside of the cylindrical container configured to expand and contract at the generation pressure and generation temperature of the gas hydrate, the sample is introduced into the cylindrical container, and then the internal volume of the cylindrical container is reduced. After releasing the gas in the cylindrical container, the pressure in the cylindrical container is reduced to less than the generated pressure to decompose the gas hydrate into raw material gas and raw water, and the volume of the raw material gas and the raw material A method for measuring a gas hydrate rate, wherein the gas hydrate rate is determined from the volume of water and the amount of adhering water.
前記円筒容器内の圧力を前記生成圧力未満に減圧すると同時に、該円筒容器内の温度を前記生成温度超に昇温して、前記ガスハイドレートを原料ガスと原料水とに分解する請求項1に記載のガスハイドレート率の測定方法。   The pressure in the cylindrical container is reduced to less than the generation pressure, and at the same time, the temperature in the cylindrical container is increased to the generation temperature and the gas hydrate is decomposed into raw material gas and raw water. 2. A method for measuring a gas hydrate rate described in 1. 保温ジャケットを備えた円筒容器内にピストンを摺動自在に挿設し、前記円筒容器上部に接続された2方向の切替手段の一方に圧力調整弁を接続し、他方にガス流量計を接続してなるガスハイドレート率の測定装置。   A piston is slidably inserted into a cylindrical container provided with a heat insulation jacket, a pressure regulating valve is connected to one of the two-way switching means connected to the upper part of the cylindrical container, and a gas flow meter is connected to the other. A device for measuring the gas hydrate rate. 前記円筒容器上部と前記切替手段との間に、試料検知部とバッファー部とを順に接続した請求項3に記載のガスハイドレート率の測定装置。   The apparatus for measuring a gas hydrate rate according to claim 3, wherein a sample detection unit and a buffer unit are sequentially connected between the upper portion of the cylindrical container and the switching means. 前記試料検知部が、赤外線式センサー又はサイトグラスである請求項4に記載のガスハイドレート率の測定装置。   The gas hydrate rate measuring device according to claim 4, wherein the sample detection unit is an infrared sensor or a sight glass.
JP2007009540A 2007-01-18 2007-01-18 Method and apparatus for measuring gas hydrate rate Expired - Fee Related JP4758917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009540A JP4758917B2 (en) 2007-01-18 2007-01-18 Method and apparatus for measuring gas hydrate rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009540A JP4758917B2 (en) 2007-01-18 2007-01-18 Method and apparatus for measuring gas hydrate rate

Publications (2)

Publication Number Publication Date
JP2008175695A true JP2008175695A (en) 2008-07-31
JP4758917B2 JP4758917B2 (en) 2011-08-31

Family

ID=39702823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009540A Expired - Fee Related JP4758917B2 (en) 2007-01-18 2007-01-18 Method and apparatus for measuring gas hydrate rate

Country Status (1)

Country Link
JP (1) JP4758917B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042942A (en) * 2010-07-01 2011-05-04 青岛海洋地质研究所 Experimental device for measuring gas storage capacity of natural gas hydrate
KR20160083065A (en) * 2013-12-09 2016-07-11 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Subsampling device and method
RU2625544C1 (en) * 2016-07-05 2017-07-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method of determining thermobaric parameters of hydrates formation in multicomponent mixture
RU2667699C1 (en) * 2017-11-30 2018-09-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method for determination of thermobaric parameters of hydrate formation in a multicomponent mixture
RU2678258C1 (en) * 2017-11-30 2019-01-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method for determination of thermobaric parameters of hydrate formation in a multicomponent mixture
CN109401801A (en) * 2018-11-16 2019-03-01 西南石油大学 Gas hydrates compound experiment circuit system under a kind of pressure oscillation
CN110261259A (en) * 2019-06-28 2019-09-20 中国石油大学(华东) The measuring device and measurement method of hydrate dissolution degree
RU2725047C1 (en) * 2019-09-26 2020-06-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of determining humidity threshold for formation of gas hydrate in samples of natural coal
CN116609227A (en) * 2023-07-10 2023-08-18 广东电网有限责任公司珠海供电局 Device and method for safely collecting carbon emission data of electric power system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105169996B (en) * 2015-10-12 2017-06-30 西南石油大学 Gas hydrates experiment pressure regulating tank
CN105547913B (en) * 2016-03-04 2018-01-16 西南石油大学 Natural gas hydrate gas storage density test device and its method of testing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050221A (en) * 2001-08-06 2003-02-21 Mitsubishi Heavy Ind Ltd Hydrate content measuring method, measuring device and facility equipped with the same
JP2003064385A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd System and method for producing gas hydrate
JP2004315814A (en) * 2003-03-31 2004-11-11 National Institute Of Advanced Industrial & Technology Storing and transporting method of gas
JP2006336435A (en) * 2005-06-06 2006-12-14 National Institute Of Advanced Industrial & Technology Temperature gradient addition type core holder device and component output behavior time variation measuring method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050221A (en) * 2001-08-06 2003-02-21 Mitsubishi Heavy Ind Ltd Hydrate content measuring method, measuring device and facility equipped with the same
JP2003064385A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd System and method for producing gas hydrate
JP2004315814A (en) * 2003-03-31 2004-11-11 National Institute Of Advanced Industrial & Technology Storing and transporting method of gas
JP2006336435A (en) * 2005-06-06 2006-12-14 National Institute Of Advanced Industrial & Technology Temperature gradient addition type core holder device and component output behavior time variation measuring method using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042942A (en) * 2010-07-01 2011-05-04 青岛海洋地质研究所 Experimental device for measuring gas storage capacity of natural gas hydrate
KR20160083065A (en) * 2013-12-09 2016-07-11 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Subsampling device and method
KR101698504B1 (en) 2013-12-09 2017-01-20 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Subsampling device and method
RU2625544C1 (en) * 2016-07-05 2017-07-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method of determining thermobaric parameters of hydrates formation in multicomponent mixture
RU2667699C1 (en) * 2017-11-30 2018-09-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method for determination of thermobaric parameters of hydrate formation in a multicomponent mixture
RU2678258C1 (en) * 2017-11-30 2019-01-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method for determination of thermobaric parameters of hydrate formation in a multicomponent mixture
CN109401801A (en) * 2018-11-16 2019-03-01 西南石油大学 Gas hydrates compound experiment circuit system under a kind of pressure oscillation
CN110261259A (en) * 2019-06-28 2019-09-20 中国石油大学(华东) The measuring device and measurement method of hydrate dissolution degree
CN110261259B (en) * 2019-06-28 2022-03-22 中国石油大学(华东) Measuring device and measuring method for hydrate solubility
RU2725047C1 (en) * 2019-09-26 2020-06-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of determining humidity threshold for formation of gas hydrate in samples of natural coal
CN116609227A (en) * 2023-07-10 2023-08-18 广东电网有限责任公司珠海供电局 Device and method for safely collecting carbon emission data of electric power system
CN116609227B (en) * 2023-07-10 2023-11-28 广东电网有限责任公司珠海供电局 Device and method for safely collecting carbon emission data of electric power system

Also Published As

Publication number Publication date
JP4758917B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4758917B2 (en) Method and apparatus for measuring gas hydrate rate
CN104062153B (en) Purging sampler and purging sampling method for gaseous impurity content analysis
WO2017107639A1 (en) High-pressure cooling-heating table device for in-situ observation of hydrate microscopic reaction kinetics process and use method
CN102453906A (en) Multifunctional gas protection atmosphere case for laser cladding formation
CN203443909U (en) Experimental device for quickly measuring specific heat ratio of air
US11796526B2 (en) Device and method of gas hydrate pressure maintaining replacement for in-situ Raman analysis
CN101963553B (en) Device for extracting dissolved gas from soil water
Cesare et al. Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain
WO2010093626A3 (en) Apparatus and process for wellbore characterization
WO2007070740A3 (en) Method and apparatus for obtaining aliquot from liquid-based cytological sample
CN103698186B (en) Transformation controllable gas displacement reaction device and the application in the gassiness preparation of soil sample thereof
JP4859714B2 (en) Gas hydrate concentration measuring device
CN110487771B (en) Gas hydrate generation/decomposition system and method for in-situ Raman analysis
CN106442897A (en) Decompression gas-liquid balance measuring system
CN108844690A (en) A kind of pressure reducer leak rate test macro and method
US20130008517A1 (en) Gas Hydrate Percentage Measuring Device and the Method of Controlling the Same
CN2901285Y (en) On-line sampling device for vacuum rapid quenching furnace
CN103344521B (en) A kind of lossless free of contamination high-precision measuring method of lithosome density
CN106980001A (en) A kind of experimental rig for being used to determine solubilised state nitrous oxide in water body
CN110441286B (en) Gas hydrate pressure maintaining and replacing device and method for in-situ Raman analysis
CN206291942U (en) A kind of blowing type liquid level meter
CN107663163A (en) One kind is used for13The unstripped gas fill method of C urea synthesizings
CN211348203U (en) High-precision and high-efficiency calibrating device for seawater carbon dioxide sensor
Gong et al. The silicate and carbon-rich models of CoRoT-7b, Kepler-9d and Kepler-10b
CN210513999U (en) Multifunctional adsorption and desorption instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees