JP2008175197A - Plasma type igniter - Google Patents

Plasma type igniter Download PDF

Info

Publication number
JP2008175197A
JP2008175197A JP2007156178A JP2007156178A JP2008175197A JP 2008175197 A JP2008175197 A JP 2008175197A JP 2007156178 A JP2007156178 A JP 2007156178A JP 2007156178 A JP2007156178 A JP 2007156178A JP 2008175197 A JP2008175197 A JP 2008175197A
Authority
JP
Japan
Prior art keywords
plasma
power supply
electromagnetic noise
supply circuit
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007156178A
Other languages
Japanese (ja)
Other versions
JP4967835B2 (en
Inventor
Hideyuki Kato
秀幸 加藤
Toru Yoshinaga
融 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007156178A priority Critical patent/JP4967835B2/en
Priority to US11/896,534 priority patent/US7387115B1/en
Priority to DE102007000754A priority patent/DE102007000754B4/en
Priority to FR0758135A priority patent/FR2910730B1/en
Publication of JP2008175197A publication Critical patent/JP2008175197A/en
Application granted granted Critical
Publication of JP4967835B2 publication Critical patent/JP4967835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma type igniter easy in mounting, and superior in the electromagnetic noise preventive effect. <P>SOLUTION: This plasma type igniter 1 is composed of a discharging power source 3, a plasma generating power source 4, a plasma type spark plug 10, discharging wiring 36 and plasma generating wiring 44. An electromagnetic noise reducing circuit part 20 is composed of a first rectifying element 21 arranged on the discharging wiring 36, a second rectifying element 22 arranged on the plasma generating wiring 44, and an electromagnetic noise preventive capacitor 23 interposed in parallel to the second rectifying element 22, and is arranged nearest to a central electrode 111 of the plasma type spark plug 10. This constitution can prevent transmission to an external part of electromagnetic noise by bypassing only a high frequency noise current generated in discharging without attenuating discharge voltage by the electromagnetic noise preventive capacitor 23. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の点火に用いられるプラズマ式点火装置の電磁ノイズ防止対策に関するものである。   The present invention relates to a measure for preventing electromagnetic noise in a plasma ignition device used for ignition of an internal combustion engine.

自動車エンジン等の内燃機関において、図11(a)に示すような通常のスパークプラグ10zを用いた点火装置は、バッテリ31zとイグニッションスイッチ32zと点火コイル33zと電子制御装置(ECU)35zとイグナイタ(トランジスタ)34zと整流素子21zとスパークプラグ10zとで構成されている。
図11(b)に示すように、イグニッションスイッチ32zが投入され、ECU35zからの点火信号により、バッテリ31zから低電圧の一次電圧が点火コイル33zの一次コイル331zに印加され、次いで、イグナイタ34zのスイッチングによって一次電圧が遮断されると点火コイル33z内の磁界が変化し、点火コイル33zの二次コイル332zに−10〜−30kVの二次電圧が発生し、中心電極110zと接地電極131zとで放電が起こり、高温域が狭い範囲で発生する。この時、二次コイル332zには、2ms程度の放電期間に35mA程度のダイオード21zで整流された電流が流れ、約35mJのエネルギーが放出される。通常のスパークプラグ10zによる点火では、この高温域が点火源となって圧縮混合気の着火爆発が励起される。
In an internal combustion engine such as an automobile engine, an ignition device using a normal spark plug 10z as shown in FIG. 11A includes a battery 31z, an ignition switch 32z, an ignition coil 33z, an electronic control unit (ECU) 35z, an igniter ( Transistor) 34z, rectifying element 21z, and spark plug 10z.
As shown in FIG. 11B, the ignition switch 32z is turned on, and a low voltage primary voltage is applied from the battery 31z to the primary coil 331z of the ignition coil 33z by the ignition signal from the ECU 35z, and then the igniter 34z is switched. When the primary voltage is interrupted by this, the magnetic field in the ignition coil 33z changes, and a secondary voltage of −10 to −30 kV is generated in the secondary coil 332z of the ignition coil 33z, and discharge occurs between the center electrode 110z and the ground electrode 131z. Occurs in a narrow high temperature range. At this time, a current rectified by the diode 21z of about 35 mA flows in the secondary coil 332z during a discharge period of about 2 ms, and energy of about 35 mJ is released. In the normal ignition by the spark plug 10z, this high temperature region serves as an ignition source to excite the ignition explosion of the compressed mixture.

これに対して、図10(a)に示すようなプラズマ式点火装置1xは、第1のバッテリ31xと、イグニッションスイッチ32xと点火コイル33xと電子制御装置(ECU)35xとイグナイタ(トランジスタ)34xと整流素子21xとを含む放電用電源回路3xと、第2のバッテリ41xと、抵抗42xとプラズマ発生用コンデンサ43xと整流素子22xとを含むプラズマ発生用電源回路4xとが接続されたプラズマ式点火プラグ10xとによって構成されている。
図10(b)に示すように、イグニッションスイッチ32xが投入され、ECU35xからの点火信号により、第1のバッテリ31xから低電圧の一次電圧が点火コイル33xの一次コイル331xに印加され、イグナイタ34xのスイッチングによって一次電圧が遮断されると、点火コイル33x内の磁界が変化し、点火コイル33xの二次コイル332xに−10〜−30kVの二次電圧が発生する。
更に、中心電極110xと接地電極131xとの間の放電距離201xに比例する放電電圧に達し、放電が開始する瞬間に、第1のバッテリ31xとは別に設けたプラズマ発生用バッテリ41xからプラズマ発生用コンデンサ43xに蓄えられたエネルギーを中心電極110xと接地電極154xとの間に形成された放電空間140x内に一気に放出し、放電空間140x内の気体を高温高圧のプラズマ状態として噴射する。この時、約100mJの高いエネルギーが放出される。
プラズマ式点火装置1xによる点火では、このような極めて高いエネルギーによって、容積的に大きな範囲の高温域が発生する上に、指向性に富んだ火炎核が着火源となって圧縮混合気の着火爆発が励起される。
そこで、プラズマ式点火装置1xは、直噴エンジンの燃焼において希薄な混合気を燃焼させるため、点火プラグの付近に濃い混合気が集まるようにして、燃焼を容易にする成層燃焼への応用が期待されている。
In contrast, a plasma ignition device 1x as shown in FIG. 10A includes a first battery 31x, an ignition switch 32x, an ignition coil 33x, an electronic control unit (ECU) 35x, and an igniter (transistor) 34x. A plasma ignition plug in which a discharge power supply circuit 3x including a rectifying element 21x, a second battery 41x, a resistor 42x, a plasma generating capacitor 43x, and a plasma generating power supply circuit 4x including a rectifying element 22x are connected. 10x.
As shown in FIG. 10 (b), the ignition switch 32x is turned on, and a low voltage primary voltage is applied from the first battery 31x to the primary coil 331x of the ignition coil 33x by the ignition signal from the ECU 35x. When the primary voltage is cut off by switching, the magnetic field in the ignition coil 33x changes, and a secondary voltage of −10 to −30 kV is generated in the secondary coil 332x of the ignition coil 33x.
Furthermore, when a discharge voltage proportional to the discharge distance 201x between the center electrode 110x and the ground electrode 131x is reached and discharge starts, the plasma generating battery 41x provided separately from the first battery 31x is used for generating plasma. The energy stored in the capacitor 43x is discharged at once into the discharge space 140x formed between the center electrode 110x and the ground electrode 154x, and the gas in the discharge space 140x is injected as a high-temperature and high-pressure plasma state. At this time, high energy of about 100 mJ is released.
In the ignition by the plasma igniter 1x, such extremely high energy generates a high-temperature region in a large volume range, and a flame nucleus having a high directivity serves as an ignition source to ignite the compressed air-fuel mixture. The explosion is excited.
Therefore, the plasma ignition device 1x is expected to be applied to stratified combustion that facilitates combustion by collecting a rich air-fuel mixture in the vicinity of the ignition plug in order to burn a lean air-fuel mixture in the combustion of a direct injection engine. Has been.

しかし、プラズマ式点火装置1xにおいては、プラズマ発生用コンデンサ43x内に蓄えられたエネルギーを瞬時にプラズマ式点火プラグへ供給するので、図10(b)に示すように8μsec程度の放電期間に120A程度の大電流が流れる。これがエンジンの回転に応じて周期的に繰り返されるので、高周波の電磁ノイズが発生する。
この様な電磁ノイズは車両に搭載された電子制御装置の誤動作等を引き起こし、エンジンの失火に至る虞がある。
そこで、かかる電磁ノイズの防止方法として、特許文献1には、プラズマ発生用配線上でプラズマ式点火プラグの可及的近傍にステアリングダイオードを介装し、プラズマ発生用配線をシールド線で構成することにより、放電用電源からの給電電圧の低下を招くことなく、電磁ノイズを遮断する方法が開示されている。
However, in the plasma ignition device 1x, the energy stored in the plasma generating capacitor 43x is instantaneously supplied to the plasma ignition plug, so that the discharge period of about 8 μsec is about 120 A as shown in FIG. 10B. Large current flows. Since this is periodically repeated according to the rotation of the engine, high-frequency electromagnetic noise is generated.
Such electromagnetic noise may cause malfunction or the like of an electronic control device mounted on the vehicle, leading to engine misfire.
Therefore, as a method for preventing such electromagnetic noise, Patent Document 1 discloses that a steering diode is interposed as close as possible to the plasma ignition plug on the plasma generation wiring, and the plasma generation wiring is configured by a shield wire. Thus, a method for shutting off electromagnetic noise without causing a decrease in the power supply voltage from the discharge power supply is disclosed.

実開昭55−156263号公報Japanese Utility Model Publication No. 55-156263

ところが、従来の方法では、電磁ノイズを遮断するためにプラズマ発生用配線に、シールド線を用いる必要があるので、プラズマ発生用配線の可撓性が低下し配線作業が困難となる。
また、シールドの不完全な所があれば電磁ノイズは漏れるので、放電用配線およびプラズマ発生用配線とプラグキャップとの全体をシールドする必要があり、近年の複雑化したエンジンルーム内で使用するには汎用性に欠け、搭載性が劣る。
しかも、シールドが広範囲に渡ると、シールド自身がアンテナとして機能し、電磁ノイズを発信してしまう虞もある。
However, in the conventional method, since it is necessary to use a shield wire for the plasma generation wiring in order to cut off electromagnetic noise, the flexibility of the plasma generation wiring is lowered and the wiring work becomes difficult.
In addition, electromagnetic noise will leak if there is an imperfect shield, so it is necessary to shield the discharge wiring, plasma generation wiring, and the plug cap as a whole, and it can be used in the recently complicated engine room. Lacks versatility and is inferior in mountability.
In addition, when the shield covers a wide area, the shield itself functions as an antenna and may cause electromagnetic noise.

更に、シールドとプラズマ発生用配線との間に形成される浮遊容量は、曲げによって不規則に変化するため、新たな電磁ノイズの発生源となる虞もある。
加えて、上記点火コイルと放電場としてのプラズマ式点火プラグとによって発信回路が形成され、上記点火コイルから二次電圧が加わり放電を開始する時に電磁ノイズが発生し、上記プラズマ発生用配線がアンテナとなって外部に漏れる虞もある。
しかしながら、上述した如く上記プラズマ発生用配線には大電流を流さなければならないので、上記プラズマ発生用配線上に抵抗を介装して放電開始時の電磁ノイズの発生を防止することはできない。
Furthermore, since the stray capacitance formed between the shield and the plasma generation wiring changes irregularly due to bending, it may become a new source of electromagnetic noise.
In addition, a transmission circuit is formed by the ignition coil and a plasma spark plug as a discharge field, and electromagnetic noise is generated when a secondary voltage is applied from the ignition coil to start discharge, and the plasma generation wiring is connected to the antenna. There is also a risk of leaking outside.
However, since a large current must flow through the plasma generation wiring as described above, it is impossible to prevent the generation of electromagnetic noise at the start of discharge by interposing a resistor on the plasma generation wiring.

そこで、本願発明は、かかる実情に鑑み、プラズマ式点火装置において、搭載が容易であると共に、不可避的に発生する電磁ノイズの外部への放出を防止する効果に優れたプラズマ式点火装置の提供を目的とするものである。   Therefore, in view of such circumstances, the present invention provides a plasma ignition device that is easy to mount and excellent in the effect of preventing the unavoidable generation of electromagnetic noise to the outside. It is the purpose.

請求項1の発明では、少なくとも1以上のバッテリと、上記バッテリの一次電圧を高圧の二次電圧に昇圧する点火コイルと、電子制御装置により開閉制御され上記点火コイルの作動を制御するイグナイタとを具備する放電用電源回路と、上記バッテリにより充電されるプラズマ発生用コンデンサを具備するプラズマ発生用電源回路と、内燃機関に装着され、上記放電用電源回路からの高電圧の印加と上記プラズマ発生用電源回路からの電力供給とにより、中心電極と絶縁碍子と接地電極とで形成された筒状の放電空間内の気体を高温高圧のプラズマ状態にして内燃機関の燃焼室内に噴射して点火するプラズマ式点火プラグと、上記放電用電源回路と上記中心電極とをつなぐ放電用配線と、上記プラズマ発生用電源回路と上記中心電極とをつなぐプラズマ発生用配線とによって構成されるプラズマ式点火装置であって、上記放電用配線上に設けられ上記プラズマ発生用電源回路からの電流の上記放電用電源回路への流入を阻止する第1の整流素子と、上記プラズマ発生用配線上に設けられ上記放電用電源回路からの電流の上記プラズマ発生用電源回路への流入を阻止する第2の整流素子と、上記プラズマ発生用電源回路と上記第2の整流素子との間に上記第2の整流素子と並列に介装される電磁ノイズ防止用コンデンサとを含んで電磁ノイズ低減回路部を構成し、上記電磁ノイズ低減回路部を上記中心電極の可及的近傍に設ける。   According to a first aspect of the present invention, there is provided at least one battery, an ignition coil that boosts the primary voltage of the battery to a high secondary voltage, and an igniter that is controlled by an electronic control unit to control the operation of the ignition coil. A discharge power supply circuit provided; a plasma generation power supply circuit including a plasma generation capacitor charged by the battery; and an application of a high voltage from the discharge power supply circuit and the plasma generation mounted on an internal combustion engine. Plasma that is ignited by injecting the gas in the cylindrical discharge space formed by the center electrode, the insulator and the ground electrode into a high-temperature and high-pressure plasma state into the combustion chamber of the internal combustion engine by supplying power from the power supply circuit A spark plug, a discharge wiring connecting the discharge power circuit and the center electrode, and connecting the plasma generating power circuit and the center electrode. A plasma ignition device configured with a plasma generation wiring, wherein the first rectification is provided on the discharge wiring and prevents current from the plasma generation power supply circuit from flowing into the discharge power supply circuit. An element, a second rectifier element provided on the plasma generation wiring and blocking current flowing from the discharge power supply circuit to the plasma generation power supply circuit, the plasma generation power supply circuit, and the second An electromagnetic noise reducing circuit unit including an electromagnetic noise preventing capacitor interposed in parallel with the second rectifying element between the rectifying element and the electromagnetic noise reducing circuit unit. Provide as close as possible.

請求項1の発明によれば、電磁ノイズ防止用コンデンサを第1の整流素子と第2の整流素子との間ではなく、プラズマ発生用電源と第2の整流素子との間で、プラズマ式点火プラグの中心電極の可及的近傍に設けることにより、電磁ノイズ防止用コンデンサによる放電電圧の減衰を伴うことなく、放電時に発生する高周波のノイズ電流のみをバイパスして電磁ノイズの外部への発信を防止できる。
従って、内燃機関においてプラズマ式点火プラグによる希薄混合気の成層燃焼が実現可能となる。
加えて、プラズマ発生用配線にシールド線を使用する必要がなくなるので、配線の作業性も向上する。
更に、複数の気筒によって構成される内燃機関の各気筒に装着されたプラズマ式点火プラグに接続される複数の配送線を一括でシールドし、接地電位を安定化することも可能となる。
According to the first aspect of the present invention, the electromagnetic noise prevention capacitor is not connected between the first rectifying element and the second rectifying element, but between the plasma generating power source and the second rectifying element. By providing it as close as possible to the center electrode of the plug, electromagnetic noise can be transmitted to the outside by bypassing only the high-frequency noise current generated during discharge without attenuation of the discharge voltage by the electromagnetic noise prevention capacitor. Can be prevented.
Accordingly, stratified combustion of a lean air-fuel mixture using a plasma ignition plug can be realized in an internal combustion engine.
In addition, since it is not necessary to use a shield wire for the plasma generating wiring, the workability of the wiring is improved.
Furthermore, it is also possible to stabilize a ground potential by collectively shielding a plurality of delivery lines connected to a plasma spark plug mounted on each cylinder of an internal combustion engine composed of a plurality of cylinders.

請求項2の発明では、少なくとも1以上のバッテリと、上記バッテリの一次電圧を高圧の二次電圧に昇圧する点火コイルと、電子制御装置により開閉制御され上記点火コイルの作動を制御するイグナイタとを具備する放電用電源回路と、上記バッテリにより充電されるプラズマ発生用コンデンサを具備するプラズマ発生用電源回路と、内燃機関に装着され、上記放電用電源回路からの高電圧の印加と上記プラズマ発生用電源回路からの電力供給とにより、中心電極と絶縁碍子と接地電極とで形成された筒状の放電空間内の気体を高温高圧のプラズマ状態にして内燃機関の燃焼室内に噴射して点火するプラズマ式点火プラグと、上記放電用電源回路と上記中心電極とをつなぐ放電用配線と、上記プラズマ発生用電源回路と上記中心電極とをつなぐプラズマ発生用配線とによって構成されるプラズマ式点火装置であって、上記放電用配線上に設けられ上記プラズマ発生用電源回路からの電流の上記放電用電源回路への流入を阻止する第1の整流素子と、上記プラズマ発生用配線上に設けられ上記放電用電源回路からの電流の上記プラズマ発生用電源回路への流入を阻止する第2の整流素子と、上記プラズマ発生用電源回路と上記第2の整流素子との間に上記第2の整流素子と並列に介装される上記プラズマ発生用コンデンサの一部または全部とを含んで電磁ノイズ低減回路部を構成し、上記電磁ノイズ低減回路部を上記中心電極の可及的近傍に設ける。   According to a second aspect of the present invention, there is provided at least one battery, an ignition coil that boosts the primary voltage of the battery to a high secondary voltage, and an igniter that is controlled by an electronic control device to control the operation of the ignition coil. A discharge power supply circuit provided; a plasma generation power supply circuit including a plasma generation capacitor charged by the battery; and an application of a high voltage from the discharge power supply circuit and the plasma generation mounted on an internal combustion engine. Plasma that is ignited by injecting the gas in the cylindrical discharge space formed by the center electrode, the insulator, and the ground electrode into a high-temperature and high-pressure plasma state into the combustion chamber of the internal combustion engine by supplying power from the power supply circuit A spark plug, a discharge wiring connecting the discharge power circuit and the center electrode, and connecting the plasma generating power circuit and the center electrode. A plasma ignition device configured with a plasma generation wiring, wherein the first rectification is provided on the discharge wiring and prevents current from the plasma generation power supply circuit from flowing into the discharge power supply circuit. An element, a second rectifier element provided on the plasma generation wiring and blocking current flowing from the discharge power supply circuit to the plasma generation power supply circuit, the plasma generation power supply circuit, and the second A part or all of the plasma generating capacitor interposed in parallel with the second rectifying element between the rectifying element and the electromagnetic noise reducing circuit part. Provided as close as possible to the center electrode.

請求項2の発明によれば、プラズマ発生用コンデンサをプラズマ発生用電源と第2の整流素子との間で、プラズマ式点火プラグの中心電極の可及的近傍に設けることにより、プラズマ発生用コンデンサが電磁ノイズ低減用コンデンサとして機能し、プラズマ発生用コンデンサによる放電電圧の減衰を伴うことなく、放電時に発生する高周波のノイズ電流のみをバイパスして電磁ノイズの外部への発信を防止できる。
従って、内燃機関においてプラズマ式点火プラグによる希薄混合気の成層燃焼が実現可能となる。
加えて、プラズマ発生用コンデンサを電磁ノイズ低減用コンデンサとして兼用できるので、プラズマ式点火装置の小型化が可能となり搭載性が更に向上する。
According to the invention of claim 2, the plasma generating capacitor is provided as close as possible to the center electrode of the plasma ignition plug between the plasma generating power source and the second rectifying element. Functions as a capacitor for reducing electromagnetic noise, and bypasses only high-frequency noise current generated at the time of discharge without attenuation of the discharge voltage by the plasma generating capacitor, thereby preventing electromagnetic noise from being transmitted to the outside.
Accordingly, stratified combustion of a lean air-fuel mixture using a plasma ignition plug can be realized in an internal combustion engine.
In addition, since the plasma generating capacitor can also be used as an electromagnetic noise reducing capacitor, the plasma ignition device can be miniaturized and the mountability is further improved.

請求項3の発明では、上記電磁ノイズ低減回路部を上記プラズマ式点火プラグの周辺に配設したケース内に載置する。   According to a third aspect of the present invention, the electromagnetic noise reduction circuit section is placed in a case disposed around the plasma ignition plug.

上記電磁ノイズ低減回路部を構成する上記第1の整流素子と、上記第2の整流素子と上記電磁ノイズ低減用コンデンサとをバラバラに載置すると上記プラズマ式点火プラグでの放電より発生した電磁ノイズが第2の整流素子に伝わり、更に第2の整流素子から外部に広がってしまう。
請求項3の発明によれば、上記第1の整流素子と、上記第2の整流素子と上記電磁ノイズ低減用コンデンサとを一つのケースにまとめることで上記電磁ノイズ低減回路部を上記プラズマ式点火プラグの中心電極の可及的近傍に装着することが容易にできる上に、プラズマ式点火プラグの体格をあまり大きくすることなくの電磁ノイズの放出を防止できる。 従って、搭載が容易であると共に電磁ノイズ放出防止効果に優れたプラズマ式点火装置が実現できる。
When the first rectifying element, the second rectifying element, and the electromagnetic noise reducing capacitor constituting the electromagnetic noise reducing circuit unit are placed apart, the electromagnetic noise generated by the discharge of the plasma ignition plug Is transmitted to the second rectifying element and further spreads from the second rectifying element to the outside.
According to a third aspect of the present invention, the electromagnetic noise reduction circuit unit is integrated with the plasma ignition by combining the first rectifying element, the second rectifying element, and the electromagnetic noise reducing capacitor in one case. It can be easily mounted as close as possible to the center electrode of the plug, and emission of electromagnetic noise can be prevented without increasing the size of the plasma ignition plug. Accordingly, it is possible to realize a plasma ignition device that is easy to mount and excellent in the effect of preventing electromagnetic noise emission.

請求項4の発明では、上記ケースは、少なくとも上記第1の整流素子と上記第2の整流素子とを上記内燃機関のエンジンブロックに穿設されたプラグホール内に載置する。   According to a fourth aspect of the present invention, the case places at least the first rectifying element and the second rectifying element in a plug hole formed in an engine block of the internal combustion engine.

請求項4の発明によれば、上記エンジンブロックが電磁シールドとして作用し、発生した電磁ノイズの外部へのリークを遮断できる。
従って、上記放電用電源回路と上記プラズマ発生用電源回路と上記放電用配線と上記プラズマ発生用配線とに渡って上記プラズマ点火式装置全体を完全にシールドせずとも良く、プラズマ式点火装置の搭載性が更に向上する。
According to the invention of claim 4, the engine block acts as an electromagnetic shield, and the leakage of the generated electromagnetic noise to the outside can be blocked.
Therefore, it is not necessary to completely shield the entire plasma ignition device across the discharge power supply circuit, the plasma generation power supply circuit, the discharge wiring, and the plasma generation wiring. The property is further improved.

請求項5の発明では、上記ケースは、樹脂からなる絶縁部材によって、上記電磁ノイズ低減回路部をその内側に保持し、上記電磁ノイズ低減回路部に含まれるコンデンサに接続され該コンデンサを接地状態する電磁シールドによって、上記ケースの表面の全部または一部を覆う。   According to a fifth aspect of the present invention, the case holds the electromagnetic noise reduction circuit section inside by an insulating member made of resin, and is connected to a capacitor included in the electromagnetic noise reduction circuit section to ground the capacitor. All or part of the surface of the case is covered with an electromagnetic shield.

請求項5の発明によれば、上記第2の整流素子に接続されている上記プラズマ発生用配線に大電流が流れたときに電磁ノイズが発生しても、上記電磁シールドによって上記ケースの外部へ漏れるのを防ぐことができる。
また、上記ケースは、樹脂によって上記電磁ノイズ低減回路部を保持するので、形状の自由度が高く、複雑な形状であっても容易に形成できる。
更に、上記ケースを用いることによってシールド容量の個体差を小さくすることができるので、多気筒エンジンに複数のプラズマ式点火プラグを装着した場合でも電磁シールド間に浮遊容量の差による電位差が発生することがなく、新たな電磁ノイズ発生原とならない。
従って、プラズマ式点火装置の更なる電磁ノイズ低減と搭載性の向上を図ることができる。
According to the invention of claim 5, even if electromagnetic noise is generated when a large current flows through the plasma generation wiring connected to the second rectifying element, the electromagnetic shield causes the outside of the case. Leakage can be prevented.
Moreover, since the said case hold | maintains the said electromagnetic noise reduction circuit part with resin, the freedom degree of a shape is high and it can form easily even if it is a complicated shape.
Furthermore, since the individual differences in the shield capacity can be reduced by using the above case, a potential difference due to the difference in stray capacity occurs between the electromagnetic shields even when multiple plasma ignition plugs are mounted on a multi-cylinder engine. There is no new source of electromagnetic noise.
Therefore, it is possible to further reduce electromagnetic noise and improve mountability of the plasma ignition device.

請求項6の発明では、上記電磁シールドは、少なくとも上記ケースの上記プラグホールから露出する範囲を覆うように施す。   According to a sixth aspect of the invention, the electromagnetic shield is provided so as to cover at least a range exposed from the plug hole of the case.

請求項6の発明によれば、上記エンジンブロック自体が電磁シールドとして作用するのに加えて、上記プラグホールから露出する部分に電磁シールドを施すことで電磁ノイズの漏れを更に防止できる。   According to the invention of claim 6, in addition to the engine block itself acting as an electromagnetic shield, leakage of electromagnetic noise can be further prevented by applying an electromagnetic shield to a portion exposed from the plug hole.

請求項7の発明では、上記ケースは、上記プラズマ式点火プラグの頭部を覆うプラグキャップと一体的に形成する。   According to a seventh aspect of the present invention, the case is formed integrally with a plug cap that covers the head of the plasma ignition plug.

請求項7の発明によれば、電磁ノイズ低減回路部のプラズマ式点火プラグへの装着が容易にできる上に、プラズマ式点火プラグの体格をあまり大きくすることなくの電磁ノイズの発生を防止できる。
従って、搭載が容易であると共に電磁ノイズ発生防止効果に優れたプラズマ式点火装置が実現できる。
According to the invention of claim 7, it is possible to easily attach the electromagnetic noise reduction circuit section to the plasma spark plug, and to prevent generation of electromagnetic noise without enlarging the size of the plasma spark plug.
Therefore, it is possible to realize a plasma ignition device that is easy to mount and excellent in electromagnetic noise generation prevention effect.

請求項8の発明では、上記電磁ノイズ低減回路部と上記中心電極との距離を30cm以下、より好ましくは15cm以下に設定する。   In the invention of claim 8, the distance between the electromagnetic noise reduction circuit section and the center electrode is set to 30 cm or less, more preferably 15 cm or less.

電磁ノイズ低減回路部と中心電極との距離が長くなると両者を接続する配線も長くなり、電磁ノイズ低減回路部と中心電極との配線がアンテナとして機能し、点火コイルとプラズマ式点火プラグとこのアンテナとで発信回路を形成してしまう。
このため、電磁ノイズ低減回路と中心電極との距離が長いほど電磁ノイズは大きくなり、電磁ノイズ低減回路部と中心電極との距離を30cmよりも離した場合、電磁ノイズ低減用コンデンサによるノイズ電流の吸収ができなくなる。
請求項8の発明により、電磁ノイズ低減回路と中心電極との距離を上記範囲内に設定すれば、電磁ノイズ低減用コンデンサにより、ノイズ電流が有効に吸収され、プラズマ式点火装置による内燃機関の点火が実現可能となる。
When the distance between the electromagnetic noise reduction circuit section and the center electrode becomes longer, the wiring connecting the both becomes longer, and the wiring between the electromagnetic noise reduction circuit section and the center electrode functions as an antenna. The ignition coil, the plasma ignition plug, and this antenna And form a transmission circuit.
For this reason, the longer the distance between the electromagnetic noise reduction circuit and the center electrode, the larger the electromagnetic noise. When the distance between the electromagnetic noise reduction circuit section and the center electrode is more than 30 cm, the noise current generated by the electromagnetic noise reduction capacitor is reduced. Absorption is impossible.
According to the invention of claim 8, if the distance between the electromagnetic noise reduction circuit and the center electrode is set within the above range, the noise current is effectively absorbed by the electromagnetic noise reduction capacitor, and the internal combustion engine is ignited by the plasma ignition device. Is feasible.

請求項9の発明では、上記放電用配線は、高圧抵抗線によって形成する。   According to a ninth aspect of the present invention, the discharge wiring is formed by a high voltage resistance wire.

請求項9の発明によれば、高圧抵抗線の抵抗と浮遊容量との濾波作用によって放電用配線上における電磁ノイズの発生を防止できる。   According to invention of Claim 9, generation | occurrence | production of the electromagnetic noise on the wiring for discharge can be prevented by the filtering action of the resistance of a high voltage | pressure resistance wire, and a stray capacitance.

請求項10の発明では、上記電磁ノイズ低減回路部は、上記中心電極に接続される第1のターミナルと上記放電用配線に接続される第2のターミナルと上記プラズマ発生用配線に接続される第3のターミナルとを具備し、上記電磁ノイズ低減回路部内において、上記第2のターミナルの取出方向と上記第3のターミナルの取出方向とが略直交する位置に載置する。   In a tenth aspect of the present invention, the electromagnetic noise reduction circuit section includes a first terminal connected to the center electrode, a second terminal connected to the discharge wiring, and a second terminal connected to the plasma generation wiring. 3 and is placed in a position in which the extraction direction of the second terminal and the extraction direction of the third terminal are substantially orthogonal in the electromagnetic noise reduction circuit section.

請求項10の発明によれば、上記第2のターミナルに印加される高電圧の上記電磁ノイズ低減用コンデンサへのリークを防ぐことができる。
従って、プラズマ式点火装置の信頼性が更に向上する。
According to the invention of claim 10, it is possible to prevent leakage of the high voltage applied to the second terminal to the electromagnetic noise reducing capacitor.
Therefore, the reliability of the plasma ignition device is further improved.

以下、本発明の第1の実施形態について、図1、2を参照して説明する。
図1に示すように、本実施形態におけるプラズマ式点火装置1は、プラズマ式点火プラグ10とプラグキャップ2内に設けられた電磁ノイズ低減回路部20と放電用電源3とプラズマ発生用電源4と放電用配線36とプラズマ発生用配線44とで構成されている。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the plasma ignition device 1 according to the present embodiment includes a plasma ignition plug 10, an electromagnetic noise reduction circuit unit 20 provided in a plug cap 2, a discharge power supply 3, and a plasma generation power supply 4. It is composed of a discharge wiring 36 and a plasma generation wiring 44.

プラズマ式点火プラグ10は、エンジンブロック51とシリンダーブロック53とで形成される内燃機関の燃焼室5内に先端が露出するようにエンジンブロック51に設けられたプラグホール52内で装着されている。
プラズマ式点火プラグ10は、導電性の金属材料からなる円柱状の中心電極110と上記中心電極110を絶縁保持する筒形の絶縁碍子120と絶縁碍子120を覆う有底筒状の金属製のハウジング130とによって構成されている。
中心電極110の基端側は中心電極ターミナル部111と導通している。
The plasma ignition plug 10 is mounted in a plug hole 52 provided in the engine block 51 so that the tip is exposed in the combustion chamber 5 of the internal combustion engine formed by the engine block 51 and the cylinder block 53.
The plasma ignition plug 10 includes a cylindrical center electrode 110 made of a conductive metal material, a cylindrical insulator 120 that insulates and holds the center electrode 110, and a bottomed cylindrical metal housing that covers the insulator 120. 130.
The proximal end side of the center electrode 110 is electrically connected to the center electrode terminal portion 111.

ハウジング130の先端部は、内側に向かって屈曲し、環状の接地電極開口部132を有する接地電極131となっている。
中心電極110の先端平面と絶縁碍子120の内側面と接地電極開口部132の内側面とで放電空間140を形成している。
ハウジング130の先端側外周部には、エンジンブロック51に設けられたプラグホール52に固定するとともにハウジング130とエンジンブロック51とを電気的に接地状態とするためのハウジングネジ部132が形成され、基端側外周部にはネジ部132を締め付けるためのハウジング六角部133が形成されている。
The front end portion of the housing 130 is bent toward the inside to form a ground electrode 131 having an annular ground electrode opening 132.
A discharge space 140 is formed by the tip plane of the center electrode 110, the inner side surface of the insulator 120, and the inner side surface of the ground electrode opening 132.
A housing screw portion 132 for fixing the housing 130 and the engine block 51 to an electrically grounded state while being fixed to the plug hole 52 provided in the engine block 51 is formed on the outer peripheral portion on the front end side of the housing 130. A housing hexagonal portion 133 for fastening the screw portion 132 is formed on the outer peripheral portion on the end side.

プラグキャップ2は、本発明の要部である電磁ノイズ低減回路部20と、電磁ノイズ低減回路部20を覆うエポキシ樹脂等からなる絶縁樹脂モールド251と、プラズマ式点火プラグ10の絶縁碍子頭部121に嵌着せしめるべく弾性部材により筒状に形成された絶縁シール部250と、中心電極ターミナル部111に接続される第1のターミナル210と、放電用配線36の放電用配線ターミナル部361に接続される第2のターミナル230と、プラズマ発生用配線44のプラズマ発生用配線ターミナル部441に接続される第3のターミナル240と、によって構成され、全体が電磁シールドを兼ねたケース24によって覆われている。   The plug cap 2 includes an electromagnetic noise reduction circuit unit 20 that is a main part of the present invention, an insulating resin mold 251 made of epoxy resin or the like covering the electromagnetic noise reduction circuit unit 20, and an insulator head 121 of the plasma ignition plug 10. Insulating seal portion 250 formed in a cylindrical shape by an elastic member to be fitted to the first electrode 210, first terminal 210 connected to center electrode terminal portion 111, and discharge wiring terminal portion 361 of discharge wiring 36 The second terminal 230 and the third terminal 240 connected to the plasma generation wiring terminal portion 441 of the plasma generation wiring 44 are entirely covered by a case 24 that also serves as an electromagnetic shield. .

なお、ケース24は、全体を金属で形成しても良いし、樹脂で形成し、表面を金属メッキで覆って形成しても良い。ケース24を金属で形成した場合には、ケース24自身が電磁シールドとして機能し、樹脂で形成した場合には、金属メッキ部分が電磁シールドとして機能する。
加えて、一定形状のケース24を用いることによってシールド容量の個体差を小さくすることができるので、多気筒エンジンに複数のプラズマ式点火プラグ10を装着した場合でもシールド間に浮遊容量の差による電位差が発生することがなく、新たな電磁ノイズ発生原とならない。
The case 24 may be entirely formed of metal, or may be formed of resin, and the surface may be covered with metal plating. When the case 24 is made of metal, the case 24 itself functions as an electromagnetic shield. When the case 24 is formed of resin, the metal plating portion functions as an electromagnetic shield.
In addition, since the individual difference in the shield capacity can be reduced by using the case 24 having a fixed shape, even when a plurality of plasma ignition plugs 10 are mounted on the multi-cylinder engine, the potential difference due to the difference in the floating capacity between the shields. Does not occur and does not become a new source of electromagnetic noise.

電磁ノイズ低減回路部20は、プラズマ発生用電源4からの電流の放電用電源3への流入を阻止する第1の整流素子21と、放電用電源3からの電流のプラズマ発生用電源4への流入を阻止する第2の整流素子22と、電磁ノイズ防止用コンデンサ23とによって構成されている。   The electromagnetic noise reduction circuit unit 20 includes a first rectifier element 21 that prevents the current from the plasma generation power source 4 from flowing into the discharge power source 3, and the current from the discharge power source 3 to the plasma generation power source 4. A second rectifying element 22 for blocking inflow and an electromagnetic noise preventing capacitor 23 are included.

本実施形態においては、ケース24はハウジング六角部133を介してエンジンブロック51に接地されている。
更に、プラグキャップ2は、ゴムパッキング等の弾性部材61を介して、プラグキャップ固定部材60によってプラグホール52内に挟持されている。
In the present embodiment, the case 24 is grounded to the engine block 51 via the housing hexagonal portion 133.
Further, the plug cap 2 is sandwiched in the plug hole 52 by the plug cap fixing member 60 through an elastic member 61 such as rubber packing.

電磁ノイズは、第2のターミナル230と中心電極111との配線長が長いほど大きくなる。従って、この距離は短いほど良く、プラグキャップ2内に電磁ノイズ低減回路部20を載置することで、配線長を極めて短くすることができる。
プラグキャップ固定部材60は金属でできており、エンジンブロック51と電気的に接続している。
第2のターミナル230と中心電極111との配線長を短くし、発生する電磁ノイズの大きさを小さくすることに加えて、プラグホール52内に電磁ノイズ発生源を収納することで、エンジンブロック51がシールドとして機能し、電磁ノイズ発生源がケース24とで二重にシールドされ、確実に電磁ノイズの漏れを防止できる。
The electromagnetic noise increases as the wiring length between the second terminal 230 and the center electrode 111 increases. Therefore, the shorter the distance, the better. By placing the electromagnetic noise reduction circuit unit 20 in the plug cap 2, the wiring length can be made extremely short.
The plug cap fixing member 60 is made of metal and is electrically connected to the engine block 51.
In addition to shortening the wiring length between the second terminal 230 and the center electrode 111 and reducing the magnitude of the generated electromagnetic noise, the electromagnetic noise generating source is accommodated in the plug hole 52, so that the engine block 51 Functions as a shield, and the electromagnetic noise generation source is double-shielded with the case 24, so that leakage of electromagnetic noise can be reliably prevented.

図2を参照して本発明の第1の実施形態における回路構成について詳述する。
放電用電源3は、第1のバッテリ31、イグニッションキー32、点火コイル33、トランジスタからなるイグナイタ34、電子制御装置35によって構成されている。
バッテリ31は、マイナス側が接地されている。イグニッションスイッチ32が投入され、ECU35からの点火信号により、第1のバッテリ31から低電圧の一次電圧が点火コイル33の一次コイル331に印加され、イグナイタ34のスイッチングによって一次電圧が遮断されると、点火コイル33内の磁界が変化し、自己誘導作用により点火コイル33の二次コイル332に−10〜−30kVの負の二次電圧が誘起される。
プラズマ発生用電源4は、第2のバッテリ41、抵抗体42、プラズマ発生用コンデンサ43によって構成されている。第2のバッテリ41は、プラス側が接地されており、第2のバッテリ41によりプラズマ発生用コンデンサ43が充電される。
The circuit configuration in the first embodiment of the present invention will be described in detail with reference to FIG.
The discharge power source 3 includes a first battery 31, an ignition key 32, an ignition coil 33, an igniter 34 including a transistor, and an electronic control unit 35.
The battery 31 is grounded on the negative side. When the ignition switch 32 is turned on, a low voltage primary voltage is applied from the first battery 31 to the primary coil 331 of the ignition coil 33 by an ignition signal from the ECU 35, and when the primary voltage is cut off by switching of the igniter 34, The magnetic field in the ignition coil 33 changes, and a negative secondary voltage of −10 to −30 kV is induced in the secondary coil 332 of the ignition coil 33 by self-induction.
The plasma generating power source 4 includes a second battery 41, a resistor 42, and a plasma generating capacitor 43. The positive side of the second battery 41 is grounded, and the plasma generating capacitor 43 is charged by the second battery 41.

電磁ノイズ低減回路20は、放電用配線36と中心電極110との間で直列に設けられる第1の整流素子22と、プラズマ発生用配線44と上記中心電極110との間で直列に設けられる第2の整流素子23と、プラズマ発生用電源4と第2の整流素子22との間で上記第2の整流素子22と並列に介装される電磁ノイズ防止用コンデンサ23とを含んだ構成とする。
更に、第1の整流素子21と第2の整流素子22と電磁ノイズ防止用コンデンサ23とをケース24で覆い、電磁ノイズ防止用コンデンサ23の接地側とケース24とが接地電極131を介して接地する。
より好適には、放電用配線36には高圧抵抗線が用いられ、第1の整流素子21にはダイオードが用いられ、第2の整流素子22には複数のダイオードを並列に接続した高圧ダイオードが用いられる。
The electromagnetic noise reduction circuit 20 includes a first rectifying element 22 provided in series between the discharge wiring 36 and the center electrode 110, and a first rectifier element 22 provided in series between the plasma generation wiring 44 and the center electrode 110. 2 rectifying elements 23, and an electromagnetic noise preventing capacitor 23 interposed between the plasma generating power source 4 and the second rectifying element 22 in parallel with the second rectifying element 22. .
Further, the first rectifying element 21, the second rectifying element 22 and the electromagnetic noise preventing capacitor 23 are covered with a case 24, and the ground side of the electromagnetic noise preventing capacitor 23 and the case 24 are grounded via the ground electrode 131. To do.
More preferably, a high-voltage resistance wire is used for the discharge wiring 36, a diode is used for the first rectifier element 21, and a high-voltage diode in which a plurality of diodes are connected in parallel is used for the second rectifier element 22. Used.

印加された上記二次電圧が中心電極110と接地電極131との放電電圧を超えると両電極間に放電が開始され、放電空間140内の気体が小領域でプラズマ状態となる。このプラズマ状態の気体は、導電性を有し、プラズマ発生用コンデンサ43の両極間に蓄えられた電荷の放電を引き起こし、放電空間140内の気体の更なるプラズマ状態化を誘発、領域を拡大する。このプラズマ状態の気体は、高温・高圧となり、内燃機関の上記燃焼室5内へ噴射される。   When the applied secondary voltage exceeds the discharge voltage between the center electrode 110 and the ground electrode 131, discharge is started between the two electrodes, and the gas in the discharge space 140 becomes a plasma state in a small region. The gas in the plasma state has conductivity, causes discharge of electric charges stored between both electrodes of the plasma generating capacitor 43, induces further plasma state of the gas in the discharge space 140, and expands the region. . This plasma state gas becomes a high temperature and a high pressure, and is injected into the combustion chamber 5 of the internal combustion engine.

本発明の効果を確認するため比較例として、図3(a)、(b)、(c)に示す位置に電磁ノイズ低減用コンデンサ23を配設した場合について各々検討を行った。
実施例1は、上記第1の実施形態として図1、図2に示した電磁ノイズ防止用コンデンサ23を第2の整流素子22とプラズマ発生用電源4との間で第2の整流阻止22の極近傍に設けた場合のプラズマ式点火装置1についての試験結果を示す。
比較例1は、図3(a)に示すように、第1の整流素子21と第2の整流素子22との間で、プラズマ式点火プラグ10よりも第2の整流素子22側に電磁ノイズ低減用コンデンサ23を配設した電磁ノイズ低減回路部2aを用い、比較例2は、図3(b)に示すように、第1の整流素子21と第2の整流素子22との間で、プラズマ式点火プラグ10よりも第1の整流素子21側に電磁ノイズ低減用コンデンサ23を配設した電磁ノイズ低減回路2bを用い、比較例3は、図3(c)に示すように第1の整流素子21と第2の整流素子22との間で、プラズマ式点火プラグ10と同じ位置に電磁ノイズ低減用コンデンサ23を配設した電磁ノイズ低減回路2cを用いた場合の試験結果を示す。
更に、本発明の第1の実施形態において、図5(a)に示すように電磁ノイズ低減用コンデンサ23をプラズマ式点火プラグ10よりも40cm離して配置した場合の試験結果を比較例4として示し、図5(b)に示すように、電磁ノイズ低減用コンデンサ23とプラズマ式点火プラグ10との距離を30cm以内に配置した場合の試験結果を比較例5として示す。
In order to confirm the effect of the present invention, as a comparative example, the case where the electromagnetic noise reduction capacitor 23 is disposed at the position shown in FIGS. 3A, 3B, and 3C was examined.
In Example 1, as the first embodiment, the electromagnetic noise prevention capacitor 23 shown in FIGS. 1 and 2 is connected between the second rectifying element 22 and the plasma generating power source 4 by the second rectifying prevention 22. The test result about the plasma ignition device 1 when provided in the vicinity of the pole is shown.
In the first comparative example, as shown in FIG. 3A, the electromagnetic noise between the first rectifying element 21 and the second rectifying element 22 is closer to the second rectifying element 22 than the plasma spark plug 10. As shown in FIG. 3B, Comparative Example 2 uses the electromagnetic noise reduction circuit unit 2a in which the reduction capacitor 23 is disposed, and between the first rectifier element 21 and the second rectifier element 22, An electromagnetic noise reduction circuit 2b in which an electromagnetic noise reduction capacitor 23 is disposed closer to the first rectifying element 21 than the plasma spark plug 10 is used. In Comparative Example 3, the first example as shown in FIG. The test result when using the electromagnetic noise reduction circuit 2c in which the electromagnetic noise reduction capacitor 23 is disposed between the rectifying element 21 and the second rectifying element 22 at the same position as the plasma ignition plug 10 is shown.
Furthermore, in the first embodiment of the present invention, the test result when the electromagnetic noise reducing capacitor 23 is arranged 40 cm away from the plasma spark plug 10 as shown in FIG. As shown in FIG. 5B, the test result when the distance between the electromagnetic noise reduction capacitor 23 and the plasma ignition plug 10 is arranged within 30 cm is shown as Comparative Example 5.

表1に示すように、比較例1〜3のいずれの場合も、放電用配線36からの放電電位が低下し、内燃機関の失火が起こった。
比較例1〜3の場合には、電磁ノイズ低減用コンデンサ23により、電磁ノイズの低減のみならず放電電流がバイパスされてしまうものと考えられる。
本発明の第1の実施形態である実施例1の場合は、内燃機関の失火が起こらず、電磁ノイズの発生も見られなかった。
本発明の第1の実施形態においては、電磁ノイズ防止用コンデンサ23による放電電圧の減衰を伴うことなく、点火コイル33から二次電圧が加わり放電を開始する時に発生する高周波のイズ電流のみをバイパスして電磁ノイズの発生を防止できると考えられる。
As shown in Table 1, in any of Comparative Examples 1 to 3, the discharge potential from the discharge wiring 36 was lowered, and misfire of the internal combustion engine occurred.
In the case of Comparative Examples 1 to 3, it is considered that the electromagnetic noise reduction capacitor 23 bypasses the discharge current as well as the electromagnetic noise.
In the case of Example 1 which is the first embodiment of the present invention, the misfire of the internal combustion engine did not occur, and the generation of electromagnetic noise was not observed.
In the first embodiment of the present invention, only the high-frequency noise current generated when the secondary voltage is applied from the ignition coil 33 to start the discharge is bypassed without the attenuation of the discharge voltage by the electromagnetic noise prevention capacitor 23. Thus, it is considered that the generation of electromagnetic noise can be prevented.

ところが、本発明の第1の実施形態と回路的には同一構成であっても、比較例4の場合には、内燃機関の誤動作が起こり、比較例5の場合は、正常な動作であった。
このことから、電磁ノイズ防止用コンデンサ23の載置位置を、プラズマ式点火プラグ10との特定の距離内(比較例5においては30cm以内)に載置することが極めて重要であるとの知見を得た。
However, even though the circuit configuration is the same as that of the first embodiment of the present invention, the malfunction of the internal combustion engine occurs in the case of the comparative example 4, and the normal operation is performed in the case of the comparative example 5. .
From this, it is found that it is extremely important to place the mounting position of the electromagnetic noise prevention capacitor 23 within a specific distance from the plasma ignition plug 10 (within 30 cm in the comparative example 5). Obtained.

図5に本発明の第2の実施形態を示す。なお、本発明の第1の実施形態と共通する部分につては図中に同じ符号を記したので、説明を省略する。(以下に示す他の実施形態においても同様である。)
本実施形態においては、第2のターミナル部230dとプラズマ発生用配線接続ターミナル240dとを互いに直交するような位置に配設してプラグキャップ2dの更なる小型化を図っている。
また、本実施形態においては、プラズマ式点火ノズル10をエンジンブロック51に螺結した後、プラグキャップ2dを差し込むだけで中心電極ターミナル部111が第1のターミナル部210に嵌着され、更に、絶縁碍子頭部121が絶縁部材250によって嵌着され、加えて、ハウジング六角部133とケース24とが接地状態となるので、組み付けが極めて容易である。
FIG. 5 shows a second embodiment of the present invention. In addition, since the same code | symbol was described in the figure about the part which is common in the 1st Embodiment of this invention, description is abbreviate | omitted. (The same applies to other embodiments described below.)
In the present embodiment, the plug terminal 2d is further reduced in size by arranging the second terminal portion 230d and the plasma generation wiring connection terminal 240d at positions orthogonal to each other.
Further, in the present embodiment, after the plasma ignition nozzle 10 is screwed to the engine block 51, the center electrode terminal portion 111 is fitted to the first terminal portion 210 simply by inserting the plug cap 2d, and further the insulation is performed. Since the insulator head part 121 is fitted by the insulating member 250 and the housing hexagonal part 133 and the case 24 are in a grounded state, the assembly is extremely easy.

更に、電磁ノイズ低減回路部20dを例えばアルミナや窒化アルミニウム等の放熱性の良い絶縁基板上に形成することにより、第1の整流素子21、第2の整流素子22、電磁ノイズ低減用コンデンサ23の放熱性を良好にし、信頼性の向上を図ることも可能となる。
また、電磁ノイズ低減用コンデンサ23と第3のターミナル部240の間に電磁ノイズが乗らないように注意する必要がある。
そこで、本実施形態では、電磁ノイズが発生する第1の整流素子21とその配線から、電磁ノイズ低減用コンデンサ23を離し、第2のターミナル部230dと第3のターミナル部240dとを離した構造としてある。
電磁ノイズ低減用コンデンサ23を第3のターミナル240dの近傍に設けることにより、更に電磁ノイズの発生が低減できるとの知見を得た。
加えて、第2のターミナル230dと電磁ノイズ低減用コンデンサ23との距離を離すことにより、第2のターミナル230dに印加される高圧の放電用電圧が電磁ノイズ低減用コンデンサ23にリークするのを防止できる。
Further, by forming the electromagnetic noise reduction circuit portion 20d on an insulating substrate with good heat dissipation, such as alumina or aluminum nitride, the first rectifying element 21, the second rectifying element 22, and the electromagnetic noise reducing capacitor 23 are provided. It is also possible to improve heat dissipation and improve reliability.
In addition, it is necessary to be careful not to get electromagnetic noise between the electromagnetic noise reducing capacitor 23 and the third terminal unit 240.
Therefore, in the present embodiment, a structure in which the electromagnetic noise reducing capacitor 23 is separated from the first rectifying element 21 and the wiring thereof in which electromagnetic noise is generated, and the second terminal portion 230d and the third terminal portion 240d are separated. It is as.
It has been found that the generation of electromagnetic noise can be further reduced by providing the electromagnetic noise reducing capacitor 23 in the vicinity of the third terminal 240d.
In addition, the high-voltage discharge voltage applied to the second terminal 230d is prevented from leaking to the electromagnetic noise reduction capacitor 23 by increasing the distance between the second terminal 230d and the electromagnetic noise reduction capacitor 23. it can.

図6に、本発明の第3の実施形態を示す。
本実施形態においては、基本構造は第2の実施形態と同様であるが、電磁シールドとしてのケース24eをエンジンブロック51の上部に設けた固定部510に弾性部材61を介して固着する構造とした点が相違する。
本実施形態においては、エンジンブロック51が電磁シールドの機能を持ち、プラグホール52内に閉じこめられた部分の電磁シールドを省略することができる。
このような構造にすることによって、プラグホール52から露出下部分のみをケース24eによって覆うだけで電磁ノイズの漏れを防止できる。
FIG. 6 shows a third embodiment of the present invention.
In this embodiment, the basic structure is the same as that of the second embodiment, but the case 24e as an electromagnetic shield is fixed to the fixing portion 510 provided on the upper part of the engine block 51 via the elastic member 61. The point is different.
In the present embodiment, the engine block 51 has a function of electromagnetic shielding, and the electromagnetic shielding of the portion confined in the plug hole 52 can be omitted.
With such a structure, leakage of electromagnetic noise can be prevented only by covering only the lower exposed portion of the plug hole 52 with the case 24e.

図7に、本発明の第4の実施形態を示す。
本実施形態においては、基本構造は第3の実施形態とほぼ同様であるが、第1の整流素子21と第2の整流素子22とをプラグホール52内に位置するよう載置し、電磁ノイズ低減用コンデンサとして、プラズマ発生用電源回路4に含まれるプラズマ発生用コンデンサ43fの一部または全部を第3のターミナル240の近傍に載置した点において相違する。
上述した本発明の第1〜第3の実施例においては、電磁ノイズ低減用コンデンサ23として0.1〜1μFの小さな容量のコンデンサを用いたが、本実施形態において、プラズマ発生用コンデンサ43fとして2μFのコンデンサを載置した。
この様な構造とすることで、プラズマ発生用コンデンサ43fが大電流供給用の電源としての機能と電磁ノイズ低減用コンデンサとしての機能を兼用することができるのでよりプラズマ式点火装置の搭載性が向上する上に、エンジンブロック51による電磁シールド効果が最大限に発揮され、更に電磁ノイズの漏れを防止できるとの知見を得た。
また、ケース24fの形状を簡易な形状にすることができるので、製造が容易で実用性が極めて高い。
FIG. 7 shows a fourth embodiment of the present invention.
In this embodiment, the basic structure is substantially the same as that of the third embodiment, but the first rectifying element 21 and the second rectifying element 22 are placed so as to be positioned in the plug hole 52, and electromagnetic noise The difference is that a part or all of the plasma generating capacitor 43f included in the plasma generating power supply circuit 4 is placed in the vicinity of the third terminal 240 as a reducing capacitor.
In the first to third embodiments of the present invention described above, a capacitor having a small capacitance of 0.1 to 1 μF is used as the electromagnetic noise reducing capacitor 23. In this embodiment, 2 μF is used as the plasma generating capacitor 43f. The capacitor was mounted.
By adopting such a structure, the plasma generating capacitor 43f can function both as a power source for supplying a large current and as a capacitor for reducing electromagnetic noise, so that the mounting capability of the plasma ignition device is improved. In addition, the inventors have obtained knowledge that the electromagnetic shielding effect of the engine block 51 is maximized and leakage of electromagnetic noise can be prevented.
In addition, since the shape of the case 24f can be made simple, it is easy to manufacture and is extremely practical.

図8に、本発明の第5の実施形態を示す。上記実施形態においては、放電用回路3は第1のバッテリ31を電源とし、プラズマ発生用回路4は第2のバッテリ41を電源とする2電源を具備した構成について説明したが、図8に示すように、バッテリ300のプラス側を接地し、マイナス側を放電用電源回路3hとプラズマ用電源回路4とに接続して、一つのバッテリ300を放電用電源回路3とプラズマ用電源回路4とで共有する構成にすることも可能である。この際、点火プラグ33gとイグナイタ34gとの極性に留意しなければならない。本実施形態においても、上記実施形態と同様に電磁ノイズの低減を図ることが可能となる。   FIG. 8 shows a fifth embodiment of the present invention. In the above embodiment, the discharge circuit 3 has the first battery 31 as the power source, and the plasma generation circuit 4 has the two power sources that use the second battery 41 as the power source. Thus, the positive side of the battery 300 is grounded, the negative side is connected to the discharge power supply circuit 3 h and the plasma power supply circuit 4, and one battery 300 is connected to the discharge power supply circuit 3 and the plasma power supply circuit 4. A shared configuration is also possible. At this time, attention must be paid to the polarities of the spark plug 33g and the igniter 34g. Also in this embodiment, it is possible to reduce electromagnetic noise as in the above embodiment.

図9に本発明の第6の実施形態を示す。図9に示すように、多数の燃焼室を有する多気筒エンジンの場合に、複数のプラズマ式点火装置10をディストリビュータ6等によって制御する構成としても、本発明の第1の実施形態と同様の効果が得られる。この場合複数のプラズマ発生用配線を一括してシールドすることにより更に電磁ノイズの低減を図ることも可能となる。   FIG. 9 shows a sixth embodiment of the present invention. As shown in FIG. 9, in the case of a multi-cylinder engine having a large number of combustion chambers, the same effects as those of the first embodiment of the present invention can be obtained even when the plurality of plasma ignition devices 10 are controlled by the distributor 6 or the like. Is obtained. In this case, electromagnetic noise can be further reduced by collectively shielding a plurality of wirings for plasma generation.

当然のことながら、本発明は上記実施形態に限定するものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施形態の説明において上記放電用電源と上記プラズマ発生用電源を離れた状態で配設した場合について説明したが、当然のことながら、上記放電用電源と上記プラズマ発生用電源とを一体的に配設しても良い。
また、Dc-Dcコンバータ等により第1のバッテリ31と第2のバッテリ41との電源電圧を適宜調整することも可能である。
As a matter of course, the present invention is not limited to the above embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the description of the above embodiment, the case where the discharge power source and the plasma generation power source are disposed apart from each other has been described, but it is natural that the discharge power source and the plasma generation power source are integrated. You may arrange | position.
It is also possible to adjust the power supply voltage of the first battery 31 and the second battery 41 as appropriate using a Dc-Dc converter or the like.

本発明の第1の実施形態におけるプラズマ式点火装置の構成を示す要部断面図。The principal part sectional view showing the composition of the plasma type ignition device in a 1st embodiment of the present invention. 本発明の第1の実施形態におけるプラズマ式点火装置の回路図。1 is a circuit diagram of a plasma ignition device in a first embodiment of the present invention. (a)〜(c)は、本発明の比較例1〜3の回路図。(A)-(c) is a circuit diagram of the comparative examples 1-3 of this invention. (a)、(b)は、本発明の比較例4、5の回路図。(A), (b) is a circuit diagram of the comparative examples 4 and 5 of this invention. 本発明の第2の実施形態におけるプラズマ式点火装置の要部断面図。The principal part sectional drawing of the plasma ignition device in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるプラズマ式点火装置の要部断面図。Sectional drawing of the principal part of the plasma ignition device in the 3rd Embodiment of this invention. 本発明の第4の実施形態におけるプラズマ式点火装置の要部断面図。Sectional drawing of the principal part of the plasma ignition device in the 4th Embodiment of this invention. 本発明の第5の実施形態におけるプラズマ式点火装置の構成を示す回路図。The circuit diagram which shows the structure of the plasma ignition device in the 5th Embodiment of this invention. 本発明の第6の実施形態におけるプラズマ式点火装置の構成を示す回路図。The circuit diagram which shows the structure of the plasma ignition device in the 6th Embodiment of this invention. (a)は、従来のプラズマ式点火装置の構成を示す回路図、(b)は、本図における動作波形を示す動作特性図。(A) is a circuit diagram which shows the structure of the conventional plasma ignition device, (b) is an operating characteristic figure which shows the operation | movement waveform in this figure. (a)は、通常のスパークプラグの構成を示す回路図、(b)は、本図における動作波形を示す動作特性図。(A) is a circuit diagram which shows the structure of a normal spark plug, (b) is an operation characteristic figure which shows the operation | movement waveform in this figure.

符号の説明Explanation of symbols

1 プラズマ式点火装置
10 プラズマ式点火プラグ
110 中心電極
120 絶縁碍子
131 接地電極
140 放電空間
2 プラグキャップ
20 電磁ノイズ低減回路部
21 第1の整流素子
22 第2の整流素子
23 電磁ノイズ防止用コンデンサ
24 ケース(電磁シールド)
210 第1のターミナル
230 第2のターミナル
240 第3のターミナル
3 放電用電源回路
31、41 バッテリ
33 点火コイル
34 イグナイタ(トランジスタ)
35 電子制御装置(ECU)
36 放電用配線
4 プラズマ発生用電源回路
44 プラズマ発生用配線
43 プラズマ発生用コンデンサ
DESCRIPTION OF SYMBOLS 1 Plasma type ignition device 10 Plasma type spark plug 110 Center electrode 120 Insulator 131 Ground electrode 140 Discharge space 2 Plug cap 20 Electromagnetic noise reduction circuit part 21 1st rectifier 22 Second rectifier 23 Electromagnetic noise prevention capacitor 24 Case (electromagnetic shield)
210 First terminal 230 Second terminal 240 Third terminal 3 Power supply circuits 31 and 41 for discharge Battery 33 Ignition coil 34 Igniter (transistor)
35 Electronic Control Unit (ECU)
36 Discharge wiring 4 Plasma generating power supply circuit 44 Plasma generating wiring 43 Plasma generating capacitor

Claims (10)

少なくとも1以上のバッテリと、上記バッテリの一次電圧を高圧の二次電圧に昇圧する点火コイルと、電子制御装置により開閉制御され上記点火コイルの作動を制御するイグナイタとを具備する放電用電源回路と、上記バッテリにより充電されるプラズマ発生用コンデンサを具備するプラズマ発生用電源回路と、内燃機関に装着され、上記放電用電源回路からの高電圧の印加と上記プラズマ発生用電源回路からの電力供給とにより、中心電極と絶縁碍子と接地電極とで形成された筒状の放電空間内の気体を高温高圧のプラズマ状態にして内燃機関の燃焼室内に噴射して点火するプラズマ式点火プラグと、上記放電用電源回路と上記中心電極とをつなぐ放電用配線と、上記プラズマ発生用電源回路と上記中心電極とをつなぐプラズマ発生用配線とによって構成されるプラズマ式点火装置であって、
上記放電用配線上に設けられ上記プラズマ発生用電源回路からの電流の上記放電用電源回路への流入を阻止する第1の整流素子と、
上記プラズマ発生用配線上に設けられ上記放電用電源回路からの電流の上記プラズマ発生用電源回路への流入を阻止する第2の整流素子と、
上記プラズマ発生用電源回路と上記第2の整流素子との間に上記第2の整流素子と並列に介装される電磁ノイズ防止用コンデンサとを含んで電磁ノイズ低減回路部を構成し、
上記電磁ノイズ低減回路部を上記中心電極の可及的近傍に設けることを特徴とするプラズマ式点火装置。
A discharge power supply circuit comprising: at least one battery; an ignition coil that boosts the primary voltage of the battery to a high secondary voltage; and an igniter that is controlled by an electronic control unit to control the operation of the ignition coil. A plasma generation power supply circuit comprising a plasma generation capacitor charged by the battery; and application of a high voltage from the discharge power supply circuit and power supply from the plasma generation power supply circuit mounted on the internal combustion engine. A plasma ignition plug for injecting and igniting a gas in a cylindrical discharge space formed by a center electrode, an insulator and a ground electrode into a combustion chamber of an internal combustion engine in a high-temperature and high-pressure plasma state; Discharge wiring that connects the power supply circuit for power supply and the center electrode, and wiring for plasma generation that connects the power supply circuit for plasma generation and the center electrode A constructed plasma ignition system by,
A first rectifying element that is provided on the discharge wiring and prevents the current from the plasma generation power supply circuit from flowing into the discharge power supply circuit;
A second rectifying element that is provided on the plasma generation wiring and prevents the current from the discharge power supply circuit from flowing into the plasma generation power supply circuit;
An electromagnetic noise reduction circuit unit including an electromagnetic noise prevention capacitor interposed in parallel with the second rectifying element between the plasma generating power supply circuit and the second rectifying element;
A plasma ignition device characterized in that the electromagnetic noise reduction circuit section is provided as close as possible to the center electrode.
少なくとも1以上のバッテリと、上記バッテリの一次電圧を高圧の二次電圧に昇圧する点火コイルと、電子制御装置により開閉制御され上記点火コイルの作動を制御するイグナイタとを具備する放電用電源回路と、上記バッテリにより充電されるプラズマ発生用コンデンサを具備するプラズマ発生用電源回路と、内燃機関に装着され、上記放電用電源回路からの高電圧の印加と上記プラズマ発生用電源回路からの電力供給とにより、中心電極と絶縁碍子と接地電極とで形成された筒状の放電空間内の気体を高温高圧のプラズマ状態にして内燃機関の燃焼室内に噴射して点火するプラズマ式点火プラグと、上記放電用電源回路と上記中心電極とをつなぐ放電用配線と、上記プラズマ発生用電源回路と上記中心電極とをつなぐプラズマ発生用配線とによって構成されるプラズマ式点火装置であって、
上記放電用配線上に設けられ上記プラズマ発生用電源回路からの電流の上記放電用電源回路への流入を阻止する第1の整流素子と、
上記プラズマ発生用配線上に設けられ上記放電用電源回路からの電流の上記プラズマ発生用電源回路への流入を阻止する第2の整流素子と、
上記プラズマ発生用電源回路と上記第2の整流素子との間に上記第2の整流素子と並列に介装される上記プラズマ発生用コンデンサの一部または全部とを含んで電磁ノイズ低減回路部を構成し、
上記電磁ノイズ低減回路部を上記中心電極の可及的近傍に設けることを特徴とするプラズマ式点火装置。
A discharge power supply circuit comprising: at least one battery; an ignition coil that boosts the primary voltage of the battery to a high secondary voltage; and an igniter that is controlled by an electronic control unit to control the operation of the ignition coil. A plasma generation power supply circuit comprising a plasma generation capacitor charged by the battery; and application of a high voltage from the discharge power supply circuit and power supply from the plasma generation power supply circuit mounted on the internal combustion engine. A plasma ignition plug for injecting and igniting a gas in a cylindrical discharge space formed by a center electrode, an insulator and a ground electrode into a combustion chamber of an internal combustion engine in a high-temperature and high-pressure plasma state; Discharge wiring that connects the power supply circuit for power supply and the center electrode, and wiring for plasma generation that connects the power supply circuit for plasma generation and the center electrode A constructed plasma ignition system by,
A first rectifying element that is provided on the discharge wiring and prevents the current from the plasma generation power supply circuit from flowing into the discharge power supply circuit;
A second rectifying element that is provided on the plasma generation wiring and prevents the current from the discharge power supply circuit from flowing into the plasma generation power supply circuit;
An electromagnetic noise reduction circuit unit including a part or all of the plasma generating capacitor interposed in parallel with the second rectifying element between the plasma generating power supply circuit and the second rectifying element; Configure
A plasma ignition device characterized in that the electromagnetic noise reduction circuit section is provided as close as possible to the center electrode.
上記電磁ノイズ低減回路部を上記プラズマ式点火プラグの周辺に配設したケース内に載置することを特徴とする請求項1または2に記載のプラズマ式点火装置。   3. The plasma ignition device according to claim 1, wherein the electromagnetic noise reduction circuit unit is placed in a case disposed around the plasma ignition plug. 4. 上記ケースは、少なくとも上記第1の整流素子と上記第2の整流素子とを上記内燃機関のエンジンブロックに穿設されたプラグホール内に載置することを特徴とする請求項3に記載のプラズマ式点火装置。   4. The plasma according to claim 3, wherein the case places at least the first rectifying element and the second rectifying element in a plug hole formed in an engine block of the internal combustion engine. Type ignition device. 上記ケースは、樹脂からなる絶縁部材によって、上記電磁ノイズ低減回路部をその内側に保持し、上記電磁ノイズ低減回路部に含まれるコンデンサに接続され該コンデンサを接地状態する電磁シールドによって、上記ケースの表面の全部または一部を覆うことを特徴とする請求項3または4に記載のプラズマ式点火装置。   The case includes an insulating member made of resin to hold the electromagnetic noise reduction circuit unit inside thereof, and an electromagnetic shield connected to a capacitor included in the electromagnetic noise reduction circuit unit and grounding the capacitor. 5. The plasma ignition device according to claim 3, wherein the plasma ignition device covers all or a part of the surface. 上記電磁シールドは、少なくとも上記ケースの上記プラグホールから露出する範囲を覆うように施すことを特徴とする請求項5に記載のプラズマ式点火装置。   6. The plasma ignition device according to claim 5, wherein the electromagnetic shield is provided so as to cover at least a range exposed from the plug hole of the case. 上記ケースは、上記プラズマ式点火プラグの頭部を覆うプラグキャップと一体的に形成することを特徴とする請求項3ないし6のいずれか1項に記載のプラズマ式点火装置。   7. The plasma ignition device according to claim 3, wherein the case is formed integrally with a plug cap that covers a head of the plasma ignition plug. 上記電磁ノイズ低減回路部と上記中心電極との距離を30cm以下、より好ましくは15cm以下に設定する請求項1ないし7のいずれか1項に記載のプラズマ式点火装置。   The plasma ignition device according to any one of claims 1 to 7, wherein a distance between the electromagnetic noise reduction circuit unit and the center electrode is set to 30 cm or less, more preferably 15 cm or less. 上記放電用配線は、高圧抵抗線によって形成する請求項1ないし8のいずれか1項に記載のプラズマ式点火装置。   The plasma ignition device according to any one of claims 1 to 8, wherein the discharge wiring is formed by a high-voltage resistance wire. 上記電磁ノイズ低減回路部は、上記中心電極に接続される第1のターミナルと上記放電用配線に接続される第2のターミナルと上記プラズマ発生用配線に接続される第3のターミナルとを具備し、上記電磁ノイズ低減回路部内において、上記第2のターミナルの取出方向と上記第3のターミナルの取出方向とが略直交する位置に載置される請求項1ないし9のいずれか1項に記載のプラズマ式点火装置。   The electromagnetic noise reduction circuit unit includes a first terminal connected to the center electrode, a second terminal connected to the discharge wiring, and a third terminal connected to the plasma generation wiring. 10. The electromagnetic noise reduction circuit unit according to claim 1, wherein the second terminal extraction direction and the third terminal extraction direction are placed at a position substantially orthogonal to each other in the electromagnetic noise reduction circuit unit. Plasma ignition device.
JP2007156178A 2006-12-20 2007-06-13 Plasma ignition device Expired - Fee Related JP4967835B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007156178A JP4967835B2 (en) 2006-12-20 2007-06-13 Plasma ignition device
US11/896,534 US7387115B1 (en) 2006-12-20 2007-09-04 Plasma ignition system
DE102007000754A DE102007000754B4 (en) 2006-12-20 2007-09-20 plasma ignition
FR0758135A FR2910730B1 (en) 2006-12-20 2007-10-08 PLASMA IGNITION SYSTEM

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006342390 2006-12-20
JP2006342390 2006-12-20
JP2007156178A JP4967835B2 (en) 2006-12-20 2007-06-13 Plasma ignition device

Publications (2)

Publication Number Publication Date
JP2008175197A true JP2008175197A (en) 2008-07-31
JP4967835B2 JP4967835B2 (en) 2012-07-04

Family

ID=39702380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156178A Expired - Fee Related JP4967835B2 (en) 2006-12-20 2007-06-13 Plasma ignition device

Country Status (1)

Country Link
JP (1) JP4967835B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095694A1 (en) * 2009-02-18 2010-08-26 日本特殊陶業株式会社 Ignition device for plasma jet ignition plug
JP2010216467A (en) * 2009-02-19 2010-09-30 Denso Corp Plasma ignition device
JP2011069272A (en) * 2009-09-25 2011-04-07 Ngk Insulators Ltd Ignition device of internal combustion engine
WO2012005201A1 (en) * 2010-07-07 2012-01-12 イマジニアリング株式会社 Plasma-generating apparatus
WO2012066708A1 (en) * 2010-11-16 2012-05-24 日本特殊陶業株式会社 Plasma ignition device and plasma ignition method
WO2012073564A1 (en) * 2010-11-29 2012-06-07 日本特殊陶業株式会社 Ignition device and structure for mounting same
JP2012159038A (en) * 2011-02-01 2012-08-23 Imagineering Inc Shield structure of electromagnetic wave
JP2018159331A (en) * 2017-03-23 2018-10-11 三菱電機株式会社 High-frequency discharge ignition device
WO2020021105A1 (en) * 2018-07-27 2020-01-30 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Apparatus for igniting a fuel mixture, transmission element for transmitting a high-voltage ignition voltage, ignition device, and circuit device
JP2020204319A (en) * 2020-03-31 2020-12-24 加藤 克己 Power supply

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122816A (en) * 1976-04-01 1978-10-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma igniter for internal combustion engine
JPS55172658U (en) * 1979-05-29 1980-12-11
US4308488A (en) * 1979-04-24 1981-12-29 Nissan Motor Co., Ltd. Plasma jet ignition system
US4327702A (en) * 1979-04-23 1982-05-04 Nissan Motor Co., Ltd. Plasma jet ignition system with noise suppressing arrangement
US4354136A (en) * 1979-03-08 1982-10-12 Nissan Motor Company, Limited Ignition plug for internal combustion engine
JPS57172172U (en) * 1981-04-24 1982-10-29
US4396855A (en) * 1979-06-18 1983-08-02 Nissan Motor Co., Ltd. Plasma jet ignition plug with cavity in insulator discharge end
US4510915A (en) * 1981-10-05 1985-04-16 Nissan Motor Company, Limited Plasma ignition system for an internal combustion engine
JPS6098167A (en) * 1983-11-04 1985-06-01 Mitsubishi Electric Corp Plasma ignition device
WO2006113850A1 (en) * 2005-04-19 2006-10-26 Knite, Inc. Method and apparatus for operating traveling spark igniter at high pressure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122816A (en) * 1976-04-01 1978-10-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma igniter for internal combustion engine
US4354136A (en) * 1979-03-08 1982-10-12 Nissan Motor Company, Limited Ignition plug for internal combustion engine
US4327702A (en) * 1979-04-23 1982-05-04 Nissan Motor Co., Ltd. Plasma jet ignition system with noise suppressing arrangement
US4308488A (en) * 1979-04-24 1981-12-29 Nissan Motor Co., Ltd. Plasma jet ignition system
JPS55172658U (en) * 1979-05-29 1980-12-11
US4396855A (en) * 1979-06-18 1983-08-02 Nissan Motor Co., Ltd. Plasma jet ignition plug with cavity in insulator discharge end
JPS57172172U (en) * 1981-04-24 1982-10-29
US4510915A (en) * 1981-10-05 1985-04-16 Nissan Motor Company, Limited Plasma ignition system for an internal combustion engine
JPS6098167A (en) * 1983-11-04 1985-06-01 Mitsubishi Electric Corp Plasma ignition device
WO2006113850A1 (en) * 2005-04-19 2006-10-26 Knite, Inc. Method and apparatus for operating traveling spark igniter at high pressure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528531B2 (en) 2009-02-18 2013-09-10 Ngk Spark Plug Co., Ltd. Ignition apparatus of plasma jet ignition plug
WO2010095694A1 (en) * 2009-02-18 2010-08-26 日本特殊陶業株式会社 Ignition device for plasma jet ignition plug
JP2010216467A (en) * 2009-02-19 2010-09-30 Denso Corp Plasma ignition device
JP2011069272A (en) * 2009-09-25 2011-04-07 Ngk Insulators Ltd Ignition device of internal combustion engine
WO2012005201A1 (en) * 2010-07-07 2012-01-12 イマジニアリング株式会社 Plasma-generating apparatus
US8873216B2 (en) 2010-07-07 2014-10-28 Imagineering, Inc. Plasma generation device
US9556847B2 (en) 2010-11-16 2017-01-31 Ngk Spark Plug Co., Ltd. Plasma ignition device and plasma ignition method
JP5174251B2 (en) * 2010-11-16 2013-04-03 日本特殊陶業株式会社 Plasma ignition device and plasma ignition method
WO2012066708A1 (en) * 2010-11-16 2012-05-24 日本特殊陶業株式会社 Plasma ignition device and plasma ignition method
JP5250119B2 (en) * 2010-11-29 2013-07-31 日本特殊陶業株式会社 Ignition device and its mounting structure
WO2012073564A1 (en) * 2010-11-29 2012-06-07 日本特殊陶業株式会社 Ignition device and structure for mounting same
US9316199B2 (en) 2010-11-29 2016-04-19 Ngk Spark Plug Co., Ltd. Ignition device and structure for mounting same
JP2012159038A (en) * 2011-02-01 2012-08-23 Imagineering Inc Shield structure of electromagnetic wave
JP2018159331A (en) * 2017-03-23 2018-10-11 三菱電機株式会社 High-frequency discharge ignition device
US10320159B2 (en) 2017-03-23 2019-06-11 Mitsubishi Electric Corporation High frequency discharge ignition device
WO2020021105A1 (en) * 2018-07-27 2020-01-30 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Apparatus for igniting a fuel mixture, transmission element for transmitting a high-voltage ignition voltage, ignition device, and circuit device
US11588303B2 (en) 2018-07-27 2023-02-21 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Apparatus for igniting a fuel mixture, transmission element for transmitting a high-voltage ignition voltage, ignition device, and circuit device
JP2020204319A (en) * 2020-03-31 2020-12-24 加藤 克己 Power supply

Also Published As

Publication number Publication date
JP4967835B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4967835B2 (en) Plasma ignition device
US8033273B2 (en) Plasma ignition system
US7387115B1 (en) Plasma ignition system
JP5158055B2 (en) Plasma ignition device
JP4390008B2 (en) Plasma ignition device
CA2652260C (en) Composite spark plug
CN113054535B (en) Spark plug for high frequency ignition system
JP5469229B1 (en) Ignition coil device for high frequency discharge
US6329743B1 (en) Current peaking sparkplug
EP2400607A1 (en) Ignition device for plasma jet ignition plug
JPS5842620Y2 (en) plasma igniter
US4487192A (en) Plasma jet ignition system
JP4905371B2 (en) Plasma ignition device
JP5161995B2 (en) Plasma jet ignition plug ignition device
EP2239458B1 (en) Plasma-jet spark plug
JP2009085038A (en) Plasma ignition device
JP2009193737A (en) Spark plug
TW201734304A (en) Ignition device for igniting an air-fuel mixture in a combustion chamber
JP2009283380A (en) Ignition device
JP2010001771A (en) Igniter
JP2009041427A (en) Plasma ignition device
CN102486151B (en) Dual-energy source independent ignition
JPS593509Y2 (en) Spark plug for plasma igniter
JPWO2012169291A1 (en) Connection device, ignition device, and ignition system
JP5537494B2 (en) Ignition device and ignition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4967835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees