JP2008174488A - Method for producing phenyl glucoside derivative from raw sugar - Google Patents

Method for producing phenyl glucoside derivative from raw sugar Download PDF

Info

Publication number
JP2008174488A
JP2008174488A JP2007009362A JP2007009362A JP2008174488A JP 2008174488 A JP2008174488 A JP 2008174488A JP 2007009362 A JP2007009362 A JP 2007009362A JP 2007009362 A JP2007009362 A JP 2007009362A JP 2008174488 A JP2008174488 A JP 2008174488A
Authority
JP
Japan
Prior art keywords
exchange resin
water
ion exchange
fraction
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009362A
Other languages
Japanese (ja)
Inventor
Teruaki Hayashi
輝明 林
Tomoo Tamaki
智生 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENT HERB KK
Original Assignee
ORIENT HERB KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENT HERB KK filed Critical ORIENT HERB KK
Priority to JP2007009362A priority Critical patent/JP2008174488A/en
Publication of JP2008174488A publication Critical patent/JP2008174488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrial method for refining and producing a fraction comprising phenyl glucoside derivative contained in raw sugar using water alone without using an organic solvent. <P>SOLUTION: The method for isolating a fraction comprising a phenyl glucoside derivative is characterized by subjecting an aqueous solution of raw sugar to column chromatography wherein a strong acid type ion exchange resin is used as a support and water is used as an eluent to isolate a fraction having a maximum absorption at an ultraviolet wavelength of 272 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、粗糖に含まれるフェニルグルコシド誘導体の分離方法に関するものである。
より詳細には、粗糖に含まれ、波長272nmの紫外線に対して極大吸収を示すフェニルグルコシド誘導体含有画分の、強酸性イオン交換樹脂と水を用いる工業的分離方法に関するものである。
The present invention relates to a method for separating a phenylglucoside derivative contained in crude sugar.
More specifically, the present invention relates to an industrial separation method using a strongly acidic ion exchange resin and water of a fraction containing a phenylglucoside derivative which is contained in crude sugar and exhibits maximum absorption with respect to ultraviolet rays having a wavelength of 272 nm.

黒砂糖中の非蔗糖分画に含まれる黒色物質(以下、色素成分ともいう)が血清中の中性脂肪およびインスリンの増加抑制作用を有することは既に明らかとなっている(例えば、非特許文献1)。また、その有効成分が3,4-ジメトキシフェニル-β-D-グルコシドまたは2,4-ジメトキシフェニル-β-D-グルコシドであると考えられることについても報告されている(例えば、非特許文献2)。   It has already been clarified that the black substance (hereinafter also referred to as a pigment component) contained in the non-sucrose fraction in brown sugar has an inhibitory action on the increase of neutral fat and insulin in serum (for example, non-patent literature) 1). It has also been reported that the active ingredient is considered to be 3,4-dimethoxyphenyl-β-D-glucoside or 2,4-dimethoxyphenyl-β-D-glucoside (for example, Non-Patent Document 2). ).

さらに、上記黒色物質が抗アレルギー作用を有し、動脈硬化の予防改善ができ(例えば、特許文献1)、また皮膚賦活・美白作用などの効果を有することが明らかとなっている(例えば、特許文献2)。   Furthermore, it has been clarified that the black substance has an antiallergic action, can prevent and improve arteriosclerosis (for example, Patent Document 1), and has effects such as skin activation / whitening action (for example, patents). Reference 2).

そして、上記の効用をもつ無蔗糖の色素成分エキスの上記文献における製造はいずれの場合も、粗糖を水に溶かして、カラムに充填した活性炭(非特許文献2)またはポリスチレン系樹脂であるアンバーライトXAD−2などのような非極性吸着剤(特許文献1および2)に吸着させ、甘味が全く無くなる迄水で溶出し、次いで20〜30%のアルコールで溶出し、色素成分を溶離させ、溶出液の着色がほとんどなくなった時点で95〜99%の高濃度のアルコールで溶出して色素成分を完全に溶離させ、これらのアルコール含有溶出液を合して、蒸発乾固すると粗糖から約0.5%の収量で蔗糖を含有しない色素成分精製エキス末が得られる非極性吸着剤を用いるカラムクロマトグラフィー法が用いられてきた。   And in any case, the manufacture of the sucrose-free pigment component extract having the above-mentioned effects in the above-mentioned literature is activated carbon (Non-patent Literature 2) or amber resin which is a polystyrene resin in which the crude sugar is dissolved in water. Adsorbed to a non-polar adsorbent such as XAD-2 (Patent Documents 1 and 2), eluted with water until no sweetness is found, then eluted with 20-30% alcohol to elute the dye component and elute When the color of the liquid almost disappeared, it was eluted with 95-99% high-concentration alcohol to completely elute the dye components, and these alcohol-containing eluates were combined and evaporated to dryness to give about 0. A column chromatography method using a non-polar adsorbent has been used that yields a pigment component purified extract powder that does not contain sucrose in a yield of 5%.

上記の方法で用いられるアルコールは、精製エキス末が医薬、化粧品に用いられることからエタノールが使用され、例えば75kgの粗糖から375gの色素成分精製エキス末を得るためには、20%エタノール約200L、95%エタノール約100Lを必要としていた。
そして、上記のエタノールの蒸留回収には手間と費用を要し、さらに引火の危険性を伴うものであった。
As the alcohol used in the above method, ethanol is used because the purified extract powder is used for pharmaceuticals and cosmetics. For example, to obtain 375 g of pigment component purified extract powder from 75 kg of crude sugar, about 200 L of 20% ethanol, Approximately 100 L of 95% ethanol was required.
And, the above-mentioned ethanol distillation recovery requires labor and expense, and further involves the risk of ignition.

木村ら、薬学雑誌、102(7)、1982、666〜669頁Kimura et al., Pharmaceutical Journal, 102 (7), 1982, 666-669. 木村ら、和漢医学雑誌、Vol1、第1号、1984、178〜179Kimura et al., Japanese and Chinese Journal of Medicine, Vol1, No. 1, 1984, 178-179 特開昭57−88107JP-A-57-88107 特許昭59−48809Patent 59-48809

そこで、上記のようなエタノールなどの有機溶媒を用いず、水のみを用いて粗糖が含有するフェニルグルコシド誘導体である3,4-ジメトキシフェニル-β-D-グルコシドの含有画分を精製する工業的な精製方法および製造方法の開発が待望されていた。   Therefore, industrial use for purifying a fraction containing 3,4-dimethoxyphenyl-β-D-glucoside, which is a phenylglucoside derivative contained in crude sugar, using only water without using an organic solvent such as ethanol as described above. Development of a simple purification method and manufacturing method has been awaited.

本発明者らは、鋭意研究を重ねた結果、前記の非極性吸着剤の替わりに強酸性型イオン交換樹脂を担持体として用いることにより、溶離剤として水のみを使用して粗糖に含まれる3,4-ジメトキシフェニル-β-D-グルコシド含有画分の色素成分を工業的に精製する方法を見出し、本研究を完成した。   As a result of extensive research, the present inventors have used a strongly acidic ion exchange resin as a support instead of the non-polar adsorbent described above, so that only the water is used as an eluent. , 4-dimethoxyphenyl-β-D-glucoside-containing fractions were found industrially purified, and this study was completed.

かくして、本発明によれば、粗糖水溶液を、強酸性型イオン交換樹脂を担持体とし水を溶離剤とするカラムクロマトグラフィーに付し、波長272nmの紫外線に対し極大吸収を示す画分を分取することを特徴とするフェニルグルコシド誘導体含有画分の分離方法が提供される。   Thus, according to the present invention, a crude sugar aqueous solution is subjected to column chromatography using a strongly acidic ion exchange resin as a carrier and water as an eluent, and a fraction exhibiting maximum absorption with respect to ultraviolet rays having a wavelength of 272 nm is fractionated. A method for separating a fraction containing a phenylglucoside derivative is provided.

本発明によれば、強酸性型イオン交換樹脂と水のみによるフェニルグルコシド誘導体含有画分、とりわけ3,4-ジメトキシフェニル-β-D-グルコシド含有画分の、安価でかつ安全な工業的精製および製造方法が提供される。   According to the present invention, an inexpensive and safe industrial purification of a fraction containing a phenylglucoside derivative, particularly a fraction containing 3,4-dimethoxyphenyl-β-D-glucoside, with only a strongly acidic ion exchange resin and water. A manufacturing method is provided.

本発明において用いられる用語「粗糖」とは、サトウキビまたは砂糖大根から得られる粗製蔗糖、粗製蔗糖エキスまたはその乾固物のいずれをも意味する。
また、本発明において用いられる強酸性型イオン交換樹脂を担持体とし水を溶離剤とするカラムクロマトグラフィーとは、通常のガラス製カラムを用いるクロマトグラフィーのみならず、より大型で、水に分散させた上記イオン交換樹脂を充填した金属製精製塔を用いるクロマトグラフィー法をも意味する。
The term “crude sugar” used in the present invention means any of crude sucrose, crude sucrose extract or dried product thereof obtained from sugarcane or sugar radish.
In addition, column chromatography using a strongly acidic ion exchange resin as a carrier and water as an eluent used in the present invention is not only a chromatography using a normal glass column, but also a larger, dispersed in water. It also means a chromatography method using a metal purification tower packed with the above ion exchange resin.

上記の強酸性型イオン交換樹脂はナトリム型またはカリウム型イオン交換樹脂のいずれでもよく、ゲル型またはポーラス型のいずれのイオン交換樹脂でも使用できるが、溶出速度および使用した樹脂の再生の容易性の観点からゲル型が好ましい。   The strong acid type ion exchange resin may be either a sodium type or a potassium type ion exchange resin, and any gel type or porous type ion exchange resin can be used. However, the elution rate and the ease of regeneration of the used resin can be improved. A gel type is preferable from the viewpoint.

本発明で用いることができるゲル型のナトリウム型またはカリウム型強酸性イオン交換樹脂としては、例えば市販されているダイヤイオン(商標)シリーズとしてSK1B、SK104、SK110、SK112、SK116、PK208、PHK212、PK216、PK220、PK228、HPK25、UBK530、UBK535、UBK550およびUBK555(以上、三菱化学株式会社製)、アンバーライト(商標)シリーズとしてIR120B、IR120BN、IR124、XT1006CP、IR118、IIR120B、IIR120BN、アンバーリスト(商標)31、クロマトグラフ用アンバーライトCG120、CG6000(以上、オルガノ株式会社製)、ダウエックス(商標)シリーズとして、50WX8−200、50WX4−400、50WX2−100、50WX4−200、50WX2−200、50WX2−400、50WX8−400、50WX8−100、HCR−W2、HCR−S(以上、ダウ・ケミカル日本株式会社製)等が挙げられる。   Examples of the gel-type sodium-type or potassium-type strongly acidic ion exchange resin that can be used in the present invention include SK1B, SK104, SK110, SK112, SK116, PK208, PK212, PK216 as commercially available Diaion (trademark) series. , PK220, PK228, HPK25, UBK530, UBK535, UBK550 and UBK555 (above, manufactured by Mitsubishi Chemical Corporation), IR120B, IR120BN, IR124, XT1006CP, IR118, IIR120B, IIR120BN, Amberlist (trademark) 31, Amberlite CG120 for chromatograph, CG6000 (above, manufactured by Organo Corporation), Dowex (trademark) series, 50WX8 200, 50WX4-400, 50WX2-100, 50WX4-200, 50WX2-200, 50WX2-400, 50WX8-400, 50WX8-100, HCR-W2, HCR-S (above, manufactured by Dow Chemical Japan Co., Ltd.) Can be mentioned.

上記の中でも、入手の容易性および価格および分離能などの観点からクロマト分離用ダイヤイオン(商標)UBKシリーズが好ましく、さらにUBK530が好ましい。   Among the above, Diaion (trademark) UBK series for chromatographic separation is preferable, and UBK530 is more preferable from the viewpoint of availability, price, and resolution.

本発明において用いられる用語「水」とは、脱イオン水、蒸留水または脱イオン蒸留水を意味するが、本発明の用途においては、脱イオン水で十分である。   The term “water” used in the present invention means deionized water, distilled water or deionized distilled water, but deionized water is sufficient for the use of the present invention.

また、本発明におけるナトリウム型またはカリウム型強酸性イオン交換樹脂は、上記の市販品を購入し、脱イオン水で洗浄しただけで、そのまま用いることができるのも本願発明の特徴の一つである。   In addition, one of the features of the present invention is that the sodium-type or potassium-type strongly acidic ion exchange resin in the present invention can be used as it is simply by purchasing the above-mentioned commercial product and washing it with deionized water. .

なお、本発明における上記イオン交換樹脂の使用量は、粗糖末1kgに対して10〜20倍量(容量比)が好ましく、さらに15〜18倍量(容量比)が好ましい。   In addition, the amount of the ion exchange resin used in the present invention is preferably 10 to 20 times (volume ratio), more preferably 15 to 18 times (volume ratio) with respect to 1 kg of the crude sugar powder.

本発明による粗糖からフェニルグルコシド誘導体の工業的製造方法は、粗糖水溶液を、強酸性型イオン交換樹脂を担持体とし水を溶離剤とするカラムクロマトグラフィーに付し、波長272nmの紫外線に対し極大吸収を示す画分を分取することにより行なわれる。   In the industrial production method of a phenylglucoside derivative from a crude sugar according to the present invention, a crude sugar aqueous solution is subjected to column chromatography using a strongly acidic ion exchange resin as a carrier and water as an eluent, and has a maximum absorption with respect to ultraviolet rays having a wavelength of 272 nm. This is done by fractionating the fractions indicating.

より詳細には、例えば、粗糖を2.5倍量(容量比)の水に溶かし、不溶物をろ別して粗糖水溶液を調製する。次いで、該粗糖水溶液を、常法に従って、水を溶離剤とし、強酸性陽イオン交換樹脂を充填したカラムの上部から充填剤上部に注ぎ、カラムから溶離液を滴下して粗糖を充填剤に吸着させる。   More specifically, for example, a crude sugar aqueous solution is prepared by dissolving crude sugar in 2.5 times (volume ratio) of water and filtering off insoluble matter. Then, according to a conventional method, the crude sugar aqueous solution is poured from the top of the column packed with a strongly acidic cation exchange resin onto the top of the packing with water as an eluent, and the eluent is dropped from the column to adsorb the crude sugar onto the packing. Let

次いで、室温にて粗糖の70倍〜90倍量(容量比)の水を用いて、流速6〜8L/時の速度でカラムから溶出させ蔗糖を溶離させ、蔗糖の溶離後に溶出液が僅かに着色し始めた時点から、溶出液を3〜5Lずつ分画することにより、全く甘味がなく糖度計の糖分ブリックスにより値0を示し、波長272nmの紫外線吸収スペクトルで吸光度1.0以上を示す淡黄色の溶出画分得ることができる。このようにして得られた溶出画分を合わせて、60℃以下の温度で減圧濃縮してフェニルグルコシド誘導体含有画分を得、さらに減圧下に濃縮乾固して濃縮乾固末を得る。   Next, the sucrose is eluted by elution from the column at a flow rate of 6 to 8 L / hour using 70 to 90 times the volume (volume ratio) of the crude sugar at room temperature. When the eluate is fractionated from 3 to 5 L from the start of coloration, it has no sweetness, shows a value of 0 by the sugar content Brix of the saccharimeter, and shows a light absorbance of 1.0 or more in the ultraviolet absorption spectrum at a wavelength of 272 nm. A yellow elution fraction can be obtained. The elution fractions thus obtained are combined and concentrated under reduced pressure at a temperature of 60 ° C. or lower to obtain a phenylglucoside derivative-containing fraction, and further concentrated to dryness under reduced pressure to obtain a concentrated dry powder.

したがって、本発明において用いられる用語「フェニルグルコシド誘導体含有画分」とは、フェニルグルコシド誘導体含有溶出液、該溶出液の減圧濃縮物および濃縮乾固末のいずれをも意味する。
なお、本発明で用いる強酸性イオン交換樹脂は、使用後に再生して繰り返し用いることができる。
Therefore, the term “phenylglucoside derivative-containing fraction” used in the present invention means any of a phenylglucoside derivative-containing eluate, a vacuum concentrate of the eluate, and a concentrated dry powder.
The strongly acidic ion exchange resin used in the present invention can be regenerated and used repeatedly after use.

本発明による製造方法で得られるフェニルグルコシド誘導体含有精製濃縮乾固末の性状は非特許文献2に記載の従来の吸着剤法で得られた性状と全く同一であり、以下の性状を示す。
(1) 上記濃縮乾固末は黄褐色のやや吸湿性の粉末で、水、アルコールに可溶、ヘキサン石油エーテル、エーテルに不溶である。
(2) 上記濃縮乾固末の1%水溶液はpH約7.5を示す。
The properties of the phenylglucoside derivative-containing purified concentrated dry powder obtained by the production method according to the present invention are exactly the same as those obtained by the conventional adsorbent method described in Non-Patent Document 2, and show the following properties.
(1) The concentrated dry powder is a tan brown slightly hygroscopic powder, soluble in water and alcohol, and insoluble in hexane petroleum ether and ether.
(2) A 1% aqueous solution of the concentrated dry powder has a pH of about 7.5.

(3) 赤外線吸収スペクトルνmax(ヌジョール;cm-1):3300、1590、1020および720。
(4) 紫外線吸収スペクトルλmax(nm)(水):272、320。
(5) 上記の濃縮乾固末の5%水溶液2〜3滴を沸騰フェーリング試液5mLに加えると赤色沈殿を生じる。また、本品の5%水溶液に塩化第二鉄試液を加えても陰性である。さらに、5%水溶液にゼラチン試液を加えても沈殿を生じない。
(6) 薄層クロマトグラフィー
(3) Infrared absorption spectrum ν max (Nujol; cm −1 ): 3300, 1590, 1020 and 720.
(4) UV absorption spectrum λ max (nm) (water): 272, 320.
(5) When 2 to 3 drops of 5% aqueous solution of the above-concentrated dry powder is added to 5 mL boiling boiling reagent solution, a red precipitate is formed. Moreover, it is negative even if ferric chloride test solution is added to 5% aqueous solution of this product. Furthermore, precipitation does not occur even when a gelatin test solution is added to a 5% aqueous solution.
(6) Thin layer chromatography

上記の濃縮乾固末10mgを水1mLに溶解し、以下に記載の条件下、日本薬局法一般試験法薄層クロマトグラフ法により試験するときRf約0.6〜0.85の間に単一の顕著な紅色スポットを発現する。
担体:シリカゲル60F254(メルク社、厚さ0.25mm)
試料添付量:10μL
展開溶媒:クロロホルム:メタノール:水(65:35:10)の下層
展開距離:10cm
検出:p-アニスアルデヒド試液を噴霧後105℃で5分間加熱
When 10 mg of the above concentrated dry powder is dissolved in 1 mL of water and tested by the Japanese Pharmacopoeia General Test Method Thin-layer Chromatography under the conditions described below, a single Rf between about 0.6 and 0.85 is used. A marked red spot.
Carrier: Silica gel 60F 254 (Merck, thickness 0.25mm)
Sample attachment amount: 10 μL
Developing solvent: Chloroform: Methanol: Water (65:35:10) lower layer Developing distance: 10 cm
Detection: Heated at 105 ° C for 5 minutes after spraying with p-anisaldehyde reagent solution

(7) 濃縮乾固末からの3,4-ジメトキシフェニル-β-D-グルコシドの結晶化
上記の濃縮乾固末をイソプロビルアルコールから再結晶すると、融点154〜156℃の白色結晶性粉末が得られる。
(7) Crystallization of 3,4-dimethoxyphenyl-β-D-glucoside from concentrated dry powder When the above concentrated dry powder is recrystallized from isopropyl alcohol, a white crystalline powder having a melting point of 154-156 ° C is obtained. can get.

上記結晶性粉末を上記(6)に記載の条件下に薄層クロマトグラフィーに付すと、Rf0.8に赤色の顕著なスポットを発現した。   When the crystalline powder was subjected to thin layer chromatography under the conditions described in (6) above, a remarkable red spot appeared in Rf0.8.

上記結晶性粉末の元素分析、質量分析および1H-NMRスペクトル(400MHz、CD3OD)を測定したところ、3,4-ジメトキシフェニル-β-D-グルコシドのデータと完全に一致し、上記結晶性粉末が3,4-ジメトキシフェニル-β-D-グルコシドであることを確認した。 Elemental analysis, mass spectrometry and 1 H-NMR spectrum (400 MHz, CD 3 OD) of the above crystalline powder were measured and found to be completely consistent with the data of 3,4-dimethoxyphenyl-β-D-glucoside. Powder was confirmed to be 3,4-dimethoxyphenyl-β-D-glucoside.

また、上記結晶性粉末のHPLC分析(カラム:Phenomenex Synergi 4u Fusion-RP 80A (250 mm×4.6 mm)、移動相:0.1%リン酸水溶液;アセトニトリル=95%;5%、検出波長:282 nm)を行ったところ、純度96%以上であることが判明した。   In addition, HPLC analysis of the above crystalline powder (column: Phenomenex Synergi 4u Fusion-RP 80A (250 mm × 4.6 mm), mobile phase: 0.1% phosphoric acid aqueous solution; acetonitrile = 95%; 5%, detection wavelength: 282 nm) As a result, it was found that the purity was 96% or more.

したがって、本発明において用いられる用語「フェニルグルコシド誘導体含有画分」とは、3,4-ジメトキシフェニル-β-D-グルコシドを主成分として含有する画分を意味する。   Therefore, the term “phenylglucoside derivative-containing fraction” used in the present invention means a fraction containing 3,4-dimethoxyphenyl-β-D-glucoside as a main component.

比較例1
従来の吸着剤法
沖縄産黒砂糖5kgを水25Lに溶かし、ポリスチレン系吸着樹脂であるアンバーライトXAD-2 500gを水1.5Lに分散させて充填した内径8cmのカラムに注入し、溶離剤として水を用い、20mL/分の速度で流下させ、色素を吸着させた、次に甘味がなくなるまでカラムを水で溶出し、砂糖分を完全に溶離した。
Comparative Example 1
Conventional adsorbent method 5 kg of Okinawa brown sugar is dissolved in 25 L of water, and 500 g of Amberlite XAD-2, which is a polystyrene-based adsorbent resin, is dispersed in 1.5 L of water and injected into a column with an inner diameter of 8 cm as an eluent. The water was allowed to flow down at a rate of 20 mL / min to adsorb the dye, then the column was eluted with water until the sweetness disappeared, and the sugar was completely eluted.

次いで、溶離剤を20%タノールに変更し、10mL/分の速度で溶出させ、吸着剤から黒砂糖中の黒色物質を溶離させた。溶出液に着色がなくなるまで同溶離剤で溶出し続けた。
溶出液が透明になった後、溶離剤を95%エタノールに変更し、溶出を継続し、溶出液に着色がなくなるまで同様の操作を行なった。95%エタノールによって得られたフラクションを60℃以下で減圧濃縮乾固して黒褐色残留物6gを得た。これを2Lのエタノールに加温溶解し、冷後ろ過し、再び60℃以下の温度で減圧濃縮し、さらに減圧下に濃縮乾固し、甘味の全く無い褐色粉末5.2gを得た。
The eluent was then changed to 20% ethanol and eluted at a rate of 10 mL / min to elute the black material in brown sugar from the adsorbent. Elution was continued with the same eluent until the eluate disappeared.
After the eluate became transparent, the eluent was changed to 95% ethanol, elution was continued, and the same operation was performed until the eluate disappeared. The fraction obtained with 95% ethanol was concentrated to dryness under reduced pressure at 60 ° C. or lower to obtain 6 g of a black brown residue. This was dissolved in 2 L of ethanol by heating, filtered after cooling, concentrated again under reduced pressure at a temperature of 60 ° C. or lower, and further concentrated to dryness under reduced pressure to obtain 5.2 g of brown powder having no sweetness.

実施例1
イオン交換樹脂法のよる製造
粗糖末1kgを脱イオン水2.5Lに溶解し、不溶物をろ別した粗糖の水溶液を得た。この水溶液を、常法に従って、脱イオン水に17Lのナトリウム型陽イオン交換樹脂(三菱化学製UBK530)分散し充填したカラムの上部に注入し、上記樹脂に吸着させた。
次いで、室温で、85Lのイオン交換水を用い、流速8L/時の速度で上記のカラムから溶出させ蔗糖を溶離した。
Example 1
Production by Ion Exchange Resin Method 1 kg of crude sugar powder was dissolved in 2.5 L of deionized water, and an aqueous solution of crude sugar obtained by filtering insolubles was obtained. This aqueous solution was injected into the upper part of a column in which 17 L of a sodium cation exchange resin (Mitsubishi Chemical UBK530) was dispersed and packed in deionized water according to a conventional method, and adsorbed on the resin.
Next, at room temperature, 85 L of ion exchange water was used to elute sucrose by elution from the above column at a flow rate of 8 L / hour.

蔗糖の溶離後に、カラムからの溶出液が着色し始めた時点で、4Lずつ分画し、フラクション1〜20を得た。各フラクションを糖度計(アタゴ社製MASTE)で計測し、糖度プリックスが値0で、かつ甘味を呈さず、最大紫外線吸収波長272nmで吸光度1.0以上を示したフラクション8〜16を合せ、この溶出液を60℃で減圧濃縮し、さらに残留物を60℃で真空下に濃縮乾固し、乾燥して3,4-ジメトキシフェニル-β-D-グルコシドを主成分とするフェニルグルコシド誘導体含有画分の乾燥末5gを0.5%収率で得た。
なお、3,4-ジメトキシフェニル-β-D-グルコシドを主成分とするフェニルグルコシド誘導体含有画分の紫外および可視部の吸収スペクトルを図1に示す。
After elution of sucrose, when the eluate from the column started to color, it was fractionated by 4 L to obtain fractions 1-20. Each fraction was measured with a sugar content meter (MASTE, manufactured by Atago Co., Ltd.). Fractions 8 to 16 having a sugar content Prix of 0, no sweetness, and a maximum ultraviolet absorption wavelength of 272 nm and an absorbance of 1.0 or more were combined. The eluate was concentrated under reduced pressure at 60 ° C., and the residue was further concentrated to dryness under vacuum at 60 ° C. and dried to contain a phenylglucoside derivative containing 3,4-dimethoxyphenyl-β-D-glucoside as a main component. 5 g of dried powder was obtained in 0.5% yield.
In addition, the absorption spectrum of the ultraviolet part and visible part of the fraction containing a phenyl glucoside derivative containing 3,4-dimethoxyphenyl-β-D-glucoside as a main component is shown in FIG.

実施例2
3,4−ジメトオキシフェニル-β-D-グルコシドの製造
実施例1に記載の方法で得られたフェニルグルコシド誘導体含有画分の乾燥末1kgを脱イオン水60Lに溶解し、不溶物をろ別した粗糖の水溶液を得た。この水溶液を、常法に従って、50L容量のナトリウム型陽イオン交換樹脂(三菱化学製UBK 530)を脱イオン水に懸濁し充填した樹脂塔(カラム)上部に注入し、樹脂に吸着させた。
Example 2
Production of 3,4-dimethoxyphenyl-β-D-glucoside 1 kg of the dry fraction of the phenylglucoside derivative-containing fraction obtained by the method described in Example 1 was dissolved in 60 L of deionized water, and the insoluble matter was filtered off. A separate aqueous solution of crude sugar was obtained. This aqueous solution was injected into the upper part of a resin tower (column) filled with 50 L of a sodium cation exchange resin (UBK 530 manufactured by Mitsubishi Chemical) suspended in deionized water and adsorbed on the resin.

次いで、室温で、脱イオン水250Lを用い、25L/時の速度で上記カラムから溶出させ、蔗糖を溶離した。
蔗糖の溶離後に、カラムからの溶出液が着色し始めた時点で、12.5Lずつ分画し、フラクション1〜20を得た。前記の薄層クロマトグラフィーでRf約0.8に紅色スポットが確認され、最大紫外線吸収波長272nmを有するフラクション7〜13を合わせ、60℃で減圧濃縮し、さらに真空下で濃縮乾固して残留物65gを得た。
Next, at room temperature, 250 L of deionized water was used and eluted from the column at a rate of 25 L / hour to elute sucrose.
After elution of sucrose, when the eluate from the column started to color, it was fractionated by 12.5 L to obtain fractions 1-20. In the thin layer chromatography, a red spot was confirmed at an Rf of about 0.8, and fractions 7 to 13 having a maximum ultraviolet absorption wavelength of 272 nm were combined, concentrated under reduced pressure at 60 ° C., and further concentrated to dryness under vacuum to remain. 65 g of product was obtained.

この残留物をイソプロピルアルコール3.5Lに加熱溶解し再結晶して、粗3,4−ジメトキシフェニル-β-D-グルコシドの結晶性粉末8.4gを得た。
この粗結晶末を8Lの脱イオン水に溶解し、再度ナトリウム型強酸性イオン交換樹脂(三菱化学製UBK 530)6.5Lを充填した樹脂塔上部より注入して樹脂に吸着させた。
The residue was dissolved by heating in 3.5 L of isopropyl alcohol and recrystallized to obtain 8.4 g of a crystalline powder of crude 3,4-dimethoxyphenyl-β-D-glucoside.
This crude crystal powder was dissolved in 8 L of deionized water, and again injected from the upper part of the resin tower packed with 6.5 L of sodium-type strongly acidic ion exchange resin (UBK 530, manufactured by Mitsubishi Chemical Corporation) and adsorbed on the resin.

脱イオン水30Lを用い、4L/時の流速でカラムから溶出させ、流下液が僅かに着色してから、1.5Lずつ分画し、フラクション1〜20まで分取した。
フラクション1〜20において、前記の薄層クロマトグラフィーによりRf0.8に単一の紅色のスポットが確認できるフラクション9〜14の画分を合わせ、60℃で減圧濃縮し、さらに真空下に濃縮乾固して4.2gの残留物を得た。
Using 30 L of deionized water, the column was eluted from the column at a flow rate of 4 L / hour. After the flow-down solution was slightly colored, the solution was fractionated by 1.5 L and fractions 1 to 20 were collected.
In fractions 1 to 20, the fractions 9 to 14 in which a single red spot can be confirmed by Rf0.8 by the thin layer chromatography described above were combined, concentrated under reduced pressure at 60 ° C., and further concentrated to dryness under vacuum. 4.2 g of residue was obtained.

この残留物を200mLの熱時イソプロピルアルコールに溶解して、再結晶し、乾燥して融点155〜156℃の白色結晶性粉末である3,4−ジメトキシフェニル-β-D-グルコシド0.8gを得た。   This residue was dissolved in 200 mL of hot isopropyl alcohol, recrystallized and dried to obtain 0.8 g of 3,4-dimethoxyphenyl-β-D-glucoside, a white crystalline powder having a melting point of 155 to 156 ° C. Obtained.

得られた白色結晶性粉末は、質量分析、HPLC分析および1H−NMRスペクトルにおいて、3,4−ジメトキシフェニル-β-D-グルコシドの標品と完全に一致した。 The resulting white crystalline powder was completely consistent with the 3,4-dimethoxyphenyl-β-D-glucoside preparation in mass spectrometry, HPLC analysis and 1 H-NMR spectrum.

本発明によれば、有機溶媒を用いることなく、強酸性型イオン交換樹脂と水のみによるフェニルグルコシド誘導体含有画分、とりわけ3,4-ジメトキシフェニル-β-D-グルコシド含有画分の、安価でかつ安全な工業的製造方法が提供される。   According to the present invention, without using an organic solvent, a fraction containing a phenylglucoside derivative, particularly a fraction containing 3,4-dimethoxyphenyl-β-D-glucoside, which contains only a strongly acidic ion exchange resin and water, is inexpensive. And a safe industrial production method is provided.

3,4-ジメトキシフェニル-β-D-グルコシドを主成分とするフェニルグルコシド誘導体含有画分の紫外および可視部における吸収スペクトルである。It is an absorption spectrum in the ultraviolet and visible part of a fraction containing a phenylglucoside derivative mainly composed of 3,4-dimethoxyphenyl-β-D-glucoside.

Claims (4)

粗糖水溶液を、強酸性型イオン交換樹脂を担持体とし水を溶離剤とするカラムクロマトグラフィーに付し、波長272nmの紫外線に対し極大吸収を示す画分を分取することを特徴とするフェニルグルコシド誘導体含有画分の分離方法。   Phenylglucoside characterized by subjecting a crude sugar aqueous solution to column chromatography using a strongly acidic ion exchange resin as a carrier and water as an eluent, and fractionating a fraction exhibiting maximum absorption with respect to ultraviolet rays having a wavelength of 272 nm A method for separating a derivative-containing fraction. 前記フェニルグルコシド誘導体が3,4-ジメトキシフェニル-β-D-グルコシドである請求項1に記載の分離方法。   The separation method according to claim 1, wherein the phenylglucoside derivative is 3,4-dimethoxyphenyl-β-D-glucoside. 前記強酸性イオン交換樹脂がナトリウムまたはカリウム型イオン交換樹脂である請求項1に記載の分離方法。   The separation method according to claim 1, wherein the strongly acidic ion exchange resin is a sodium or potassium ion exchange resin. 前記粗糖がサトウキビまたは砂糖大根から得られる粗製蔗糖である請求項1に記載の分離方法。   The separation method according to claim 1, wherein the crude sugar is crude sucrose obtained from sugarcane or sugar radish.
JP2007009362A 2007-01-18 2007-01-18 Method for producing phenyl glucoside derivative from raw sugar Pending JP2008174488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009362A JP2008174488A (en) 2007-01-18 2007-01-18 Method for producing phenyl glucoside derivative from raw sugar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009362A JP2008174488A (en) 2007-01-18 2007-01-18 Method for producing phenyl glucoside derivative from raw sugar

Publications (1)

Publication Number Publication Date
JP2008174488A true JP2008174488A (en) 2008-07-31

Family

ID=39701780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009362A Pending JP2008174488A (en) 2007-01-18 2007-01-18 Method for producing phenyl glucoside derivative from raw sugar

Country Status (1)

Country Link
JP (1) JP2008174488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11019006B2 (en) 2017-11-30 2021-05-25 Kakao Corp. Method and apparatus for sharing booking information and ticket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11019006B2 (en) 2017-11-30 2021-05-25 Kakao Corp. Method and apparatus for sharing booking information and ticket

Similar Documents

Publication Publication Date Title
Singleton et al. The phenolic cinnamates of white grapes and wine
Heinonen et al. Extraction and purification of anthocyanins from purple-fleshed potato
CN102295668B (en) Method for preparing high-purity steviosides from stevia
Hrazdina Column chromatographic isolation of the anthocyanidin-3, 5-diglucosides from grapes
Raffauf et al. Funebrine, a structurally novel pyrrole alkaloid, and other. gamma.-hydroxyisoleucine-related metabolites of Quararibea funebris (Llave) Vischer (Bombacaceae)
JP2005515238A (en) Method for preparing Δ-9-tetrahydrocannabinol
Lindberg Studies on the chemistry of lichens
JP5603505B2 (en) New compounds in Manuka honey and their use
JP2009120494A (en) Method for producing brown algae extract highly containing fucoxanthin
JP7305870B2 (en) Method for producing tetragalloyl glucose
WO2006058299A2 (en) Manufacture of limonoid compounds
Dang et al. Large-scale preparative isolation of bergenin standard substance from Saxifraga atrata using polyamide coupled with MCI GEL® CHP20P as stationary phases in medium pressure chromatography
CN108530500A (en) A kind of preparation method and applications of cortex albiziae lignan glycosides monomer
Choi et al. Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale
CN106226426B (en) A kind of method that high performance liquid chromatography splits canagliflozin five-membered ring impurity enantiomer
JP2008174488A (en) Method for producing phenyl glucoside derivative from raw sugar
CN102260286A (en) Method for separating and purifying crude product L-alpha-glycerophosphocholine
JP3992497B2 (en) High purity acarbose manufacturing method
Hou et al. Preparative purification of corilagin from Phyllanthus by combining ionic liquid extraction, prep-HPLC, and precipitation
JPS5910520A (en) Production of soybean saponin
Wang et al. Isolation of mono‐caffeoylquinic acids from tobacco waste using continuous resin‐based pre‐separation and preparative HPLC
KR102110966B1 (en) Process for Producing Deoxypodophilotoxin in Quantity
JPS6040822B2 (en) Sweets manufacturing method
KR101505311B1 (en) Method to separate and purify vegetable ascorbic acid-2-glucoside from lycium chinense mill extract by utilizing the characteristics of sugar-binding protein
RU2349331C1 (en) Method of obtaining dihydroquercetin

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090310

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090408

A131 Notification of reasons for refusal

Effective date: 20090422

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090616

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090714

Free format text: JAPANESE INTERMEDIATE CODE: A02