JP2008173672A - Method for detecting slag outflow in continuous casting - Google Patents

Method for detecting slag outflow in continuous casting Download PDF

Info

Publication number
JP2008173672A
JP2008173672A JP2007009911A JP2007009911A JP2008173672A JP 2008173672 A JP2008173672 A JP 2008173672A JP 2007009911 A JP2007009911 A JP 2007009911A JP 2007009911 A JP2007009911 A JP 2007009911A JP 2008173672 A JP2008173672 A JP 2008173672A
Authority
JP
Japan
Prior art keywords
slag outflow
radiant energy
continuous casting
slag
seal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009911A
Other languages
Japanese (ja)
Inventor
Yoshiaki Suematsu
芳章 末松
Sotoji Ozasa
外次 大笹
Katsumi Amada
克己 天田
Shigekazu Matsuba
繁和 松葉
Daisuke Miki
大輔 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007009911A priority Critical patent/JP2008173672A/en
Publication of JP2008173672A publication Critical patent/JP2008173672A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting slag outflow in continuous casting capable of rapidly and reliably detecting the slag outflow at the terminating state of filling even when performing the continuous casting of high-grade steel using a seal tube. <P>SOLUTION: A hole 10 for measurement is formed in the upper side wall of the seal tube 6 installed between a ladle 2 and a tundish 1, and the radiation energy of a filling flow 7 is measured via the hole 10 for measurement by a radiation energy measuring instrument 11 installed at a remote position. When the slag starts to flow out, a radiation energy level is raised, and the slag outflow is detected on the basis of the change of the level. Inert gas is blown into the seal tube 6 to prevent any contact of air with a molten metal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鍋からタンディッシュへの溶鋼の注入末期に、スラグが鍋から流出し始めたことを迅速かつ正確に検出することができる連続鋳造におけるスラグ流出検出方法に関するものである。   The present invention relates to a slag outflow detection method in continuous casting that can quickly and accurately detect that slag has started to flow out of a pan at the end of pouring of molten steel from the pan into a tundish.

溶鋼の連続鋳造は鍋から溶鋼をタンディッシュへ注入しながら行われるが、その注入末期においては鍋内の溶鋼表面に浮上しているスラグがタンディッシュに向かって流出し、鋳片の品位を低下させる。このため注入末期にはスラグが鍋から流出し始めたことを迅速に検出し、鍋からタンディッシュへの溶鋼の注入を停止する必要がある。   Continuous casting of molten steel is performed while pouring molten steel from the pan into the tundish, but at the end of the pouring, the slag floating on the molten steel surface in the pan flows out toward the tundish, reducing the quality of the slab. Let For this reason, it is necessary to quickly detect that the slag has started to flow out of the pan at the end of the pouring, and stop pouring the molten steel from the pan into the tundish.

また鍋から注入される溶鋼に空気が巻き込まれると、空気中の酸素量や窒素量が上昇(ピックアップ)して鋳片の品位を低下させる。このため酸素や窒素のピックアップを嫌う高級鋼を製造する場合には、鍋とタンディッシュとの間にシール管を設置して溶鋼を注入している。この場合にはシール管が邪魔になって注入流を外部から観察することができず、スラグ流出を検出することができない。   Moreover, when air is entrained in the molten steel injected from the pan, the amount of oxygen and nitrogen in the air rises (pickup) and the quality of the slab is lowered. For this reason, when manufacturing high-grade steel that dislikes picking up oxygen and nitrogen, a molten pipe is injected by installing a seal pipe between the pan and the tundish. In this case, the seal tube becomes an obstacle and the injection flow cannot be observed from the outside, and the slag outflow cannot be detected.

このため、シール管を用いた連続鋳造においてスラグ流出を検出するには、注入末期に鍋をシール管の上端から少し上昇させ、その隙間から注入流を目視観察する方法が取られていた。しかし、目視観察ではスラグ流出の発見が遅れ、溶鋼汚染源であるスラグが大量に流出して製品品質を低下させ易いという問題があった。また観察する作業者によるバラツキも大きく、検知遅れの場合には鋳片の品位を低下させ、逆に早期の誤検知の場合には溶鋼歩留まりを悪化させることとなっていた。更にシール管の隙間から溶鋼流に巻き込まれる空気も溶鋼汚染源となるので、鋳片品位の低下を避けることができなかった。   For this reason, in order to detect slag outflow in continuous casting using a seal pipe, a method has been adopted in which the pan is slightly raised from the upper end of the seal pipe at the end of injection and the injection flow is visually observed from the gap. However, in visual observation, the discovery of slag outflow was delayed, and there was a problem that a large amount of slag, which is a contamination source of molten steel, flowed out and product quality was easily deteriorated. In addition, the variability by the observing operator is large, and in the case of detection delay, the quality of the slab is lowered, and conversely, in the case of early false detection, the molten steel yield is deteriorated. Furthermore, since air entrained in the molten steel flow from the gap between the seal tubes also becomes a source of molten steel contamination, it has been impossible to avoid a reduction in slab quality.

そこで特許文献1に示されるように、シール管の側壁に測定装置を取り付け、注入流の放射エネルギーの大きさと分布からスラグ流出を検出する方法が開発されている。この方法によれば、スラグ流出の検出遅れや作業者による検出のバラツキをなくすることができる。しかしこの方法は測定装置に熱負荷がかかるうえに、シール管の交換の都度、測定装置を取付け直さねばならない。シール管の交換は頻繁に行われるため、その度に測定装置を取付け直すことは非現実的である。さらに、溶鋼がシール管の内面に付着し凝固することにより測定装置の視野を防ぐことがあり、信頼性に欠けるという問題もある。   Therefore, as disclosed in Patent Document 1, a method has been developed in which a measuring device is attached to the side wall of a seal tube and slag outflow is detected from the magnitude and distribution of the radiant energy of the injected flow. According to this method, it is possible to eliminate the detection delay of the slag outflow and the variation in detection by the operator. However, this method places a heat load on the measuring device, and the measuring device must be reattached each time the seal tube is replaced. Since the seal tube is frequently exchanged, it is impractical to reattach the measuring device each time. Furthermore, the molten steel adheres to the inner surface of the seal tube and solidifies, which may prevent the field of view of the measuring device, resulting in a lack of reliability.

また特許文献2には、転炉から鍋に出鋼される溶鋼流を離れた位置に設置した撮像装置により撮影し、スラグを検出する方法が開示されているが、シール管を用いていないので空気巻き込みの問題があり、高級鋼の製造に適用できる方法ではなかった。
特開平2−251362号公報 特開2003−183720号公報
Further, Patent Document 2 discloses a method for detecting a slag by photographing an molten steel flow discharged from a converter to a pan with an imaging device installed at a distant position, but does not use a seal pipe. There was a problem of air entrainment and it was not a method applicable to the production of high-grade steel.
JP-A-2-251362 JP 2003-183720 A

本発明は上記した従来の問題点を解決し、シール管を用いた高級鋼の連続鋳造を行っている場合にも、注入末期のスラグ流出を迅速かつ確実に検出することができる連続鋳造におけるスラグ流出検出方法を提供することを目的とするものである。   The present invention solves the above-described conventional problems, and slag in continuous casting that can detect slag outflow at the end of pouring quickly and reliably even when high-grade steel is continuously cast using a seal pipe. It aims at providing the outflow detection method.

上記の課題を解決するためになされた本発明は、鍋とタンディッシュ間に設置されるシール管の側壁に測定用孔を設け、遠隔位置に設置した放射エネルギー測定装置により上記測定用孔を介して注入流の放射エネルギーを測定し、その変化に基づいてスラグ流出を検出することを特徴とするものである。   In order to solve the above problems, the present invention provides a measurement hole in a side wall of a seal tube installed between a pan and a tundish, and a radiant energy measurement device installed at a remote position through the measurement hole. Then, the radiant energy of the injected flow is measured, and the slag outflow is detected based on the change.

なお、シール管の内部に不活性ガスを吹き込み、溶湯汚染の原因となる空気のシール管内への侵入を防止しつつ、注入流の放射エネルギーを測定することが好ましく、注入流の特定範囲内の平均放射エネルギーまたは最高放射エネルギーを測定し、閾値を越えたときにスラグ流出と判定することが好ましい。また、測定用孔はシール管の上部の側壁に設けることが好ましい。   It is preferable to measure the radiant energy of the injection flow while blowing an inert gas into the seal tube to prevent the intrusion of air that causes molten metal contamination into the seal tube. Preferably, the average radiant energy or the maximum radiant energy is measured, and it is determined that the slag is discharged when the threshold value is exceeded. The measurement hole is preferably provided in the upper side wall of the seal tube.

請求項1の発明によれば、シール管の側壁に設けた測定用孔を介して、遠隔位置に設置した放射エネルギー測定装置により注入流の放射エネルギーを直接測定するため、測定装置が熱負荷を受けることがないうえ、シール管のみの交換が可能であるため、作業者の負担増加がない。また測定用孔のサイズを適切に設定することにより、測定装置の視野を確保することができるので、放射エネルギーの変化に基づいてスラグ流出を迅速かつ確実に検出することができる。なお、シール管をガラス製とすることは、注入流による曇りの恐れがあるうえ、熱負荷の問題もあるので好ましくない。   According to the first aspect of the present invention, since the radiant energy of the injected flow is directly measured by the radiant energy measuring device installed at a remote position through the measurement hole provided in the side wall of the seal tube, the measuring device reduces the heat load. In addition, since only the seal tube can be replaced, there is no increase in the burden on the operator. Further, by appropriately setting the size of the measurement hole, it is possible to secure the field of view of the measurement device, so that slag outflow can be detected quickly and reliably based on the change in radiant energy. In addition, it is not preferable that the seal tube is made of glass because there is a risk of fogging due to the injection flow and there is a problem of heat load.

請求項2の発明によれば、シール管の内部に不活性ガスを吹き込み、溶湯汚染の原因となる空気のシール管内への侵入を防止できるので、測定用孔を設けても空気巻き込みによる鋳片品位の低下がない。   According to the second aspect of the present invention, an inert gas is blown into the seal tube to prevent the entry of air that causes contamination of the molten metal into the seal tube. There is no decline in quality.

請求項3の発明によれば、注入流の特定範囲内の平均放射エネルギーまたは最高放射エネルギーを測定し、閾値を越えたときにスラグ流出と判定するので、自動的な判断が可能となり、作業者の負担を軽減することができる。   According to the invention of claim 3, since the average radiant energy or the maximum radiant energy within a specific range of the injection flow is measured and it is determined that the slag flows out when the threshold value is exceeded, an automatic determination is possible, and the operator Can be reduced.

請求項4の発明によれば、シール管の上部の側壁に測定用孔を設けたので、シール管内面への溶湯の付着の影響を受けにくく、測定装置の視野を確保することができる。   According to the fourth aspect of the invention, since the measurement hole is provided in the upper side wall of the seal tube, it is difficult to be affected by the adhesion of the molten metal to the inner surface of the seal tube, and the field of view of the measuring device can be secured.

以下に本発明の好ましい実施形態を示す。
図1において、1は連続鋳造用のタンディッシュ、2はこのタンディッシュ1に溶鋼3を運搬する鍋であり、溶鋼の上面にはスラグ4が浮上している。鍋2の底部にはスライディングノズル5が設けられており、溶鋼はスライディングノズル5によって流量制御されながらタンディッシュ1に注入される。
Preferred embodiments of the present invention are shown below.
In FIG. 1, 1 is a tundish for continuous casting, 2 is a pan for transporting the molten steel 3 to the tundish 1, and a slag 4 floats on the upper surface of the molten steel. A sliding nozzle 5 is provided at the bottom of the pan 2, and molten steel is injected into the tundish 1 while the flow rate is controlled by the sliding nozzle 5.

酸素や窒素のピックアップを嫌う高級鋼の場合には、鍋2とタンディッシュ1との間にシール管6を設置し、注入流7への空気巻き込みを防止している。シール管6は、外周に設けた突起8をタンディッシュ1の蓋9に載せることによって保持されている。このシール管6の内部には不活性ガスが吹き込まれており、内部の空気をパージして注入流7と空気との接触を防止している。   In the case of high-grade steel that does not like oxygen or nitrogen pick-up, a seal tube 6 is installed between the pan 2 and the tundish 1 to prevent air entrainment in the injection flow 7. The seal tube 6 is held by placing a protrusion 8 provided on the outer periphery on the lid 9 of the tundish 1. An inert gas is blown into the inside of the seal pipe 6, and the internal air is purged to prevent contact between the injection flow 7 and the air.

図2に示すように、シール管6の上部の側壁を切り欠いて測定用孔10が形成されている。測定用孔10を形成する位置はタンディッシュ1の蓋9よりも上方であればどこでもよいが、図1に示すように溶鋼が飛散してシール管6の下部内面に付着するため、できるだけ上方位置とすることが好ましく、この実施形態では上端面からシール管6の一部を切り欠いて測定用孔10を形成している。そのサイズは外部から注入流7を観察するに十分な大きさとするものとし、空気混入を防止できるサイズ、例えば幅が70〜150mm、高さが50〜75mm程度とすることが好ましい。   As shown in FIG. 2, a measurement hole 10 is formed by cutting out the upper side wall of the seal tube 6. The position for forming the measurement hole 10 may be anywhere as long as it is above the lid 9 of the tundish 1. However, as shown in FIG. 1, the molten steel scatters and adheres to the lower inner surface of the seal tube 6, so that the position is as high as possible. In this embodiment, the measurement hole 10 is formed by cutting out a part of the seal tube 6 from the upper end surface. The size is set to a size sufficient to observe the injection flow 7 from the outside, and is preferably a size capable of preventing air mixing, for example, a width of about 70 to 150 mm and a height of about 50 to 75 mm.

図1に示すように、シール管6から十分離れた位置に放射エネルギー測定装置11を設置し、測定用孔10を介して注入流7を観察し、その表面からの放射エネルギーを測定する。市販の放射エネルギー測定装置11を用いた場合、10メートル程度の遠隔位置から観察可能であり、放射エネルギー測定装置11が熱負荷を受けることは回避することができる。   As shown in FIG. 1, a radiant energy measuring device 11 is installed at a position sufficiently away from the seal tube 6, the injection flow 7 is observed through the measurement hole 10, and the radiant energy from the surface is measured. When the commercially available radiant energy measuring device 11 is used, it can be observed from a remote position of about 10 meters, and the radiant energy measuring device 11 can be prevented from receiving a heat load.

図3に示すように、溶鋼の表面からの放射エネルギーに比較してスラグからの放射エネルギーは大きく、注入流7中にスラグが混入すると放射エネルギーレベルが急速に上昇する。このため、測定用孔10から見える注入流7の特定範囲内の平均放射エネルギーまたは最高放射エネルギーを測定し、閾値を越えたときにスラグ流出と自動判定させることにより、スラグ流出を迅速かつ正確に検出することが可能である。   As shown in FIG. 3, the radiant energy from the slag is larger than the radiant energy from the surface of the molten steel, and the radiant energy level rapidly rises when slag is mixed in the injection flow 7. For this reason, by measuring the average radiant energy or the maximum radiant energy within a specific range of the injection flow 7 that can be seen from the measurement hole 10, and automatically determining the slag outflow when the threshold is exceeded, the slag outflow can be detected quickly and accurately. It is possible to detect.

検出結果は警報等によって作業者に伝達することができる。またスラグ流出を検出すると同時にスライディングノズル5を閉じ、タンディッシュ1へのスラグ流入を自動的に停止することもできる。   The detection result can be transmitted to the worker by an alarm or the like. Further, the sliding nozzle 5 can be closed simultaneously with the detection of the slag outflow, and the slag inflow into the tundish 1 can be automatically stopped.

本発明の効果を確認するため、(1)従来法として説明した鍋をシール管6の上端面よりも吊り上げてその間隙からスラグ流出を目視観察し、スライディングノズル5の操作も手動で行う方法、(2)測定用孔10を形成したシール管6を用いるが、観察は目視で行いスライディングノズル5の操作も手動で行う方法、(3)測定用孔10を形成したシール管6を用い、観察は放射エネルギー測定装置11で行うがスライディングノズル5の操作は手動で行う方法、(4)測定用孔10を形成したシール管6を用い、観察を放射エネルギー測定装置11で行いスライディングノズル5の操作は自動で行う方法の4つの場合について、タンディッシュ内のスラグ厚みと、タンディッシュ内溶鋼中の酸素濃度とを測定した。
その結果を表1に示す。
In order to confirm the effect of the present invention, (1) a method in which the pan described as the conventional method is lifted from the upper end surface of the seal tube 6 and the slag outflow is visually observed from the gap, and the operation of the sliding nozzle 5 is also performed manually. (2) The seal tube 6 in which the measurement hole 10 is formed is used. The observation is performed by visual observation and the sliding nozzle 5 is manually operated. (3) The seal tube 6 in which the measurement hole 10 is formed is observed. Is performed by the radiant energy measuring device 11 but the sliding nozzle 5 is operated manually. (4) The sealing tube 6 having the measurement hole 10 is used to perform the observation by the radiant energy measuring device 11 and the sliding nozzle 5 is operated. In four cases of the automatic method, the slag thickness in the tundish and the oxygen concentration in the molten steel in the tundish were measured.
The results are shown in Table 1.

Figure 2008173672
Figure 2008173672

表1のデータに示されるように、(3)(4)の本発明方法によれば、タンディッシュ内のスラグ厚みを従来法に比較して半減させることができる。また空気の巻き込みを防止できるので、溶鋼中の酸素濃度を従来の1/3〜1/2とすることができる。特にスライディングノズルの操作をも自動化した(4)の場合に、最も好ましい結果を得ることができる。   As shown in the data of Table 1, according to the methods of the present invention of (3) and (4), the slag thickness in the tundish can be halved compared to the conventional method. Moreover, since the entrainment of air can be prevented, the oxygen concentration in the molten steel can be reduced to 1/3 to 1/2 of the conventional one. The most favorable result can be obtained particularly in the case of (4) in which the operation of the sliding nozzle is also automated.

本発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention. シール管の上半部の斜視図である。It is a perspective view of the upper half part of a seal pipe. 放射エネルギーの変化を示すグラフである。It is a graph which shows the change of radiant energy.

符号の説明Explanation of symbols

1 タンディッシュ
2 鍋
3 溶鋼
4 スラグ
5 スライディングノズル
6 シール管
7 注入流
8 突起
9 蓋
10 測定用孔
11 放射エネルギー測定装置
DESCRIPTION OF SYMBOLS 1 Tundish 2 Pan 3 Molten steel 4 Slag 5 Sliding nozzle 6 Seal pipe 7 Injection flow 8 Protrusion 9 Lid 10 Measurement hole 11 Radiation energy measuring device

Claims (4)

鍋とタンディッシュ間に設置されるシール管の側壁に測定用孔を設け、遠隔位置に設置した放射エネルギー測定装置により上記測定用孔を介して注入流の放射エネルギーを測定し、その変化に基づいてスラグ流出を検出することを特徴とする連続鋳造におけるスラグ流出検出方法。   A measurement hole is provided in the side wall of the seal pipe installed between the pan and the tundish, and the radiant energy of the injected flow is measured through the measurement hole by a radiant energy measuring device installed at a remote location, and based on the change. A method for detecting slag outflow in continuous casting, wherein slag outflow is detected. シール管の内部に不活性ガスを吹き込み、溶湯汚染の原因となる空気のシール管内への侵入を防止しつつ、注入流の放射エネルギーを測定することを特徴とする請求項1記載の連続鋳造におけるスラグ流出検出方法。   2. In continuous casting according to claim 1, wherein the radiant energy of the injected flow is measured while injecting an inert gas into the inside of the seal tube to prevent intrusion of air that causes molten metal contamination into the seal tube. Slag outflow detection method. 注入流の特定範囲内の平均放射エネルギーまたは最高放射エネルギーを測定し、閾値を越えたときにスラグ流出と判定することを特徴とする請求項1記載の連続鋳造におけるスラグ流出検出方法。   2. The slag outflow detection method in continuous casting according to claim 1, wherein an average radiant energy or a maximum radiant energy within a specific range of the injected flow is measured, and a slag outflow is determined when a threshold value is exceeded. シール管の上部の側壁に測定用孔を設けることを特徴とする請求項1記載の連続鋳造におけるスラグ流出検出方法。   2. The slag outflow detection method in continuous casting according to claim 1, wherein a measurement hole is provided in an upper side wall of the seal pipe.
JP2007009911A 2007-01-19 2007-01-19 Method for detecting slag outflow in continuous casting Pending JP2008173672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009911A JP2008173672A (en) 2007-01-19 2007-01-19 Method for detecting slag outflow in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009911A JP2008173672A (en) 2007-01-19 2007-01-19 Method for detecting slag outflow in continuous casting

Publications (1)

Publication Number Publication Date
JP2008173672A true JP2008173672A (en) 2008-07-31

Family

ID=39701084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009911A Pending JP2008173672A (en) 2007-01-19 2007-01-19 Method for detecting slag outflow in continuous casting

Country Status (1)

Country Link
JP (1) JP2008173672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187634A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Device and method for detecting slag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994527A (en) * 1973-01-16 1974-09-07
JPS5272309A (en) * 1975-12-12 1977-06-16 Nippon Steel Corp Discriminating between molten metal and slag
JPS61226155A (en) * 1985-03-30 1986-10-08 Sumitomo Metal Ind Ltd Detection of slag outflow
JPS61242746A (en) * 1985-04-19 1986-10-29 Sumitomo Metal Ind Ltd Detection of slag in outflow molten metal
JPS645760U (en) * 1987-06-29 1989-01-13
JPH09182953A (en) * 1995-12-27 1997-07-15 Tokai Carbon Co Ltd Method for detecting slag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994527A (en) * 1973-01-16 1974-09-07
JPS5272309A (en) * 1975-12-12 1977-06-16 Nippon Steel Corp Discriminating between molten metal and slag
JPS61226155A (en) * 1985-03-30 1986-10-08 Sumitomo Metal Ind Ltd Detection of slag outflow
JPS61242746A (en) * 1985-04-19 1986-10-29 Sumitomo Metal Ind Ltd Detection of slag in outflow molten metal
JPS645760U (en) * 1987-06-29 1989-01-13
JPH09182953A (en) * 1995-12-27 1997-07-15 Tokai Carbon Co Ltd Method for detecting slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187634A (en) * 2011-02-24 2012-10-04 Jfe Steel Corp Device and method for detecting slag

Similar Documents

Publication Publication Date Title
JP4567784B2 (en) Apparatus and method for casting mold and molten metal
JP2007002306A (en) Method and instrument for measuring flowing speed of tapped molten iron from blast furnace, and method for measuring tapped molten iron quantity
US9176027B2 (en) Device for measuring parameters or for taking samples in molten iron or steel
CN208313386U (en) A kind of argon station ladle liquid level sensor
JP2008173672A (en) Method for detecting slag outflow in continuous casting
JP5690205B2 (en) Apparatus and method for continuously detecting the level of slag in an electroslag remelting device with a short slidable mold
JP6575355B2 (en) Continuous casting machine
US20050133192A1 (en) Tundish control
WO2018108789A1 (en) Stopper equipped with an integrated slag detection device
JP2009204556A (en) Molten metal temperature measuring method
KR20120045313A (en) Apparatus and method for measuring level of mouldflux
JP2019098394A (en) Method and device for evaluating quality of steel
JPH0688127B2 (en) Slag outflow detection method
JP2004034090A (en) Continuous casting method for steel
KR100470654B1 (en) Method for injecting clogging of submerged entry nozzle
JP4032582B2 (en) Lance management method and management device for smelting furnace
CN115041642B (en) Tapping method of converter
KR20140066856A (en) Zinc hot dip galvanizings plating apparatus for improvement of ash defect in galvanized steel sheet of outer panel and controlling method of exhausting floating particle in snout using the same
CN207832281U (en) A kind of liquid level detection device
KR101277962B1 (en) Apparatus and Method for predicting clogging of submerged nozzle
KR20200045054A (en) Snooth snorkel with easy to measure plating level
CN113252133B (en) Method for measuring molten iron level of molten iron tank
JP4102332B2 (en) Ladle pouring method in continuous casting equipment
JPH01215450A (en) Slag flowout detecting method
JP2003236649A (en) Method for squeezing residual steel quantity in tundish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Effective date: 20111018

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120720