JP2008173251A - Ascending and descending motion detecting apparatus and activity meter using it - Google Patents

Ascending and descending motion detecting apparatus and activity meter using it Download PDF

Info

Publication number
JP2008173251A
JP2008173251A JP2007008510A JP2007008510A JP2008173251A JP 2008173251 A JP2008173251 A JP 2008173251A JP 2007008510 A JP2007008510 A JP 2007008510A JP 2007008510 A JP2007008510 A JP 2007008510A JP 2008173251 A JP2008173251 A JP 2008173251A
Authority
JP
Japan
Prior art keywords
walking
acceleration
norm
determination value
human body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007008510A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsumura
吉浩 松村
Masaharu Kitado
正晴 北堂
Kazunori Kidera
和憲 木寺
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007008510A priority Critical patent/JP2008173251A/en
Publication of JP2008173251A publication Critical patent/JP2008173251A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ascending and descending motion detecting apparatus which improves a degree of accuracy of detecting ascending and descending motions of a human body and an activity meter using it. <P>SOLUTION: The activity meter is equipped with: the ascending and descending motion detecting apparatus 10 including an acceleration detecting means 1 attached to the human body for detecting each speed of acceleration in the front-back direction, the width direction, and the height direction of the human body; a first arithmetic means 2 for calculating a walking pitch of the human body based on a norm which takes each speed of acceleration obtained by the acceleration detecting means 1 as a vector component; a second arithmetic means 3 for calculating a determination value comprising a ratio of the speed of acceleration in the height direction to the speed of acceleration in the front-back direction; a storage means 4 in which a data table showing a relationship between a range of the determination values included during the ascending walking, the descending walking, and the flatland walking respectively and the walking pitch; and an ascending and descending determining means 5 for determining the ascending and descending motions of the human body by comparing the determination value obtained by applying the walking pitch calculated by the first arithmetic means to the data table and the determination value calculated by the second arithmetic means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、人が階段などを昇降する際の動作を検出する昇降動作検出装置およびそれを用いた活動量計に関するものである。   The present invention relates to an ascending / descending motion detecting device for detecting an operation when a person ascends / descends a stairs and the like, and an activity meter using the same.

従来から、人の行動によって消費された運動エネルギからなる活動量を算出する活動量計が提供されている。   2. Description of the Related Art Conventionally, an activity meter that calculates an activity amount composed of kinetic energy consumed by human actions has been provided.

この種の活動量計としては、人体に装着された加速度センサを備え、加速度センサにより検出した人体の加速度を元にして活動量の算出を行うものが数多く提案されている。加速度センサを用いた活動量計では、例えば、加速度センサにより検出した加速度と活動量の相関関係を利用して活動量の算出を行っており、この相関関係では、加速度が大きくなれば、活動量も大きくなる。   As this type of activity meter, many devices that include an acceleration sensor mounted on the human body and calculate the activity amount based on the acceleration of the human body detected by the acceleration sensor have been proposed. In an activity meter using an acceleration sensor, for example, the activity amount is calculated using the correlation between the acceleration detected by the acceleration sensor and the activity amount. In this correlation, if the acceleration increases, the activity amount Also grows.

ところで、上述したような活動量計において活動量を算出するにあたっては、人が平地を歩行している場合であれば特に問題はないが、人が階段や坂などを昇降した際には、正確な活動量が得られなくなるおそれがある。   By the way, when calculating the amount of activity in the activity meter as described above, there is no particular problem if a person is walking on a flat ground, but when a person goes up and down stairs or slopes, it is accurate. There is a risk that the amount of active activity cannot be obtained.

この点は、昇り歩行時と降り歩行時とでは、足が着地する際の衝撃や、重力の影響などによって加速度の大きさが平地とは異なることに起因する。すなわち、昇り歩行時には平地に比べて加速度が小さくなり、降り歩行時には平地に比べて加速度が大きくなるという傾向があるため、単に加速度のみから活動量を算出した場合には、活動量の大きさは、降り歩行時>平地歩行時>昇り歩行時となるが、実際の活動量は、昇り歩行時>平地歩行時>降り歩行時となるからである。   This is due to the fact that the magnitude of acceleration differs from that on flat ground due to the impact of the landing of the foot, the influence of gravity, and the like when climbing and descending. In other words, when going uphill, the acceleration tends to be small compared to the flat ground, and when going down, the acceleration tends to be large compared to the flat ground. This is because when walking down> walking during flat ground> walking during climbing, the actual amount of activity is during walking ascending> walking during flat ground> walking during descending.

そのため、上述したような活動量計において正確な活動量を算出するためには、人が階段や坂を昇降したか否か(人体が昇降動作を行ったか否か)を検出することが望ましい。   Therefore, in order to calculate an accurate activity amount in the activity meter as described above, it is desirable to detect whether or not a person has moved up and down stairs or hills (whether or not a human body has moved up and down).

そこで、活動量を算出するための加速度センサに加えて、昇降移動に応じた気圧の変化を検出して人(被測定者)の人体の昇降動作判定するためのセンサとして気圧センサを備えた消費カロリ演算装置が提案されている(例えば、特許文献1参照)。
特開平11−347021号公報
Therefore, in addition to the acceleration sensor for calculating the amount of activity, consumption including an atmospheric pressure sensor as a sensor for detecting a change in atmospheric pressure in accordance with the up-and-down movement and determining the human body's body movement A calorie calculation device has been proposed (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-347021

特許文献1のような気圧センサを利用して人体の昇降動作を検出するものでは、気圧センサの出力を元にして標高を予測し、歩行時の気圧の変化状態によって活動量の補正を行う。   In an apparatus that detects the lifting and lowering movement of a human body using an atmospheric pressure sensor as in Patent Document 1, the altitude is predicted based on the output of the atmospheric pressure sensor, and the amount of activity is corrected according to the change in atmospheric pressure during walking.

しかしながら、気圧の変化は、屋内の空調や気圧のコントロールの影響を受け易く、また、1階〜2階(1フロアや2フロア)程度の高低差における人体の昇降動作を検出することは難しく、良好な検出精度が得られなかった。   However, the change in atmospheric pressure is easily affected by indoor air conditioning and atmospheric pressure control, and it is difficult to detect the raising and lowering movement of the human body at a height difference of about 1st floor to 2nd floor (1 floor or 2 floors) Good detection accuracy could not be obtained.

本発明は上述の点に鑑みて為されたもので、その目的は、人体の昇降動作の検出精度の向上が図れる昇降動作検出装置およびそれを用いた活動量計を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide an ascending / descending motion detecting device capable of improving the detecting accuracy of the ascending / descending motion of a human body and an activity meter using the same.

上述の問題を解決するために、請求項1の発明では、人体に装着され人体の前後方向、幅方向、および身長方向の各加速度を検出する加速度検出手段と、加速度検出手段により得られた各加速度をベクトル成分とするノルムを算出するとともに算出したノルムを元にしてノルムの特徴量を算出する第1演算手段と、加速度検出手段により得られた前記身長方向の加速度と前記前後方向の加速度との比率からなる判定値を算出する第2演算手段と、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値の範囲とノルムの特徴量との関係を示すデータテーブルが記憶された記憶手段と、第1演算手段で算出されたノルムの特徴量をデータテーブルに当て嵌めて得られる判定値と第2演算手段で算出された判定値とを比較することにより人体の昇降動作の判定を行う昇降判定手段とを備えていることを特徴とする。   In order to solve the above-described problem, in the invention of claim 1, acceleration detection means that is mounted on the human body and detects each acceleration in the front-rear direction, the width direction, and the height direction of the human body, and each obtained by the acceleration detection means A first calculation means for calculating a norm having acceleration as a vector component and calculating a feature quantity of the norm based on the calculated norm; and the acceleration in the height direction and the acceleration in the front-rear direction obtained by the acceleration detection means; And a data table indicating the relationship between the range of the determination value included in each of the ascending walking, the descending walking, and the flat ground walking, and the norm feature amount. And comparing the determination value obtained by fitting the feature quantity of the norm calculated by the first calculation means with the data table and the determination value calculated by the second calculation means Characterized in that it comprises a lifting determination means to perform more determination of the human body of the lifting operation.

請求項1の発明によれば、人が階段や坂などを昇る昇り歩行時には、人体の身長方向の加速度および前後方向の加速度が平地歩行時に比べて小さくなる一方で、人が階段や坂などを降る降り歩行時には、人体の身長方向の加速度が平地歩行時に比べて大きくなるとともに人体の前後方向の加速度が平地歩行時に比べて小さくなることに着目し、人体における身長方向の加速度と前後方向の加速度との比率を人体の昇降動作の判定値として用いるから、人体の昇降動作の検出精度の向上が図れる。また、人体の昇降動作の判定を行うにあたっては、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値の範囲と第1演算手段で算出したノルムの特徴量との関係を示すデータテーブルを用いるので、ノルムの特徴量の変化に伴う前記判定値の範囲の変化に起因する誤判定を防止できるから、人体の昇降動作の検出精度のさらなる向上が図れる。   According to the first aspect of the present invention, when a person walks up ascending a staircase or a hill, the acceleration in the height direction of the human body and the acceleration in the front-rear direction are smaller than those during walking on a flat ground, while the person walks down the stairs or hill. Focusing on the fact that when walking down, the acceleration in the height direction of the human body increases compared to walking on a flat ground and the acceleration in the front-rear direction of the human body decreases compared with walking on a flat ground. Therefore, the detection accuracy of the lifting motion of the human body can be improved. Further, in determining whether the human body moves up and down, the relationship between the range of determination values included in each of ascending walking, descending walking, and flat ground walking and the norm feature amount calculated by the first computing means is shown. Since the data table is used, it is possible to prevent erroneous determination due to the change in the range of the determination value accompanying the change in the feature quantity of the norm, so that it is possible to further improve the detection accuracy of the human body lifting operation.

請求項2の発明では、人体に装着され人体の前後方向、幅方向、および身長方向の各加速度を検出する加速度検出手段と、加速度検出手段により得られた各加速度をベクトル成分とするノルムを算出するとともに算出したノルムを元にしてノルムの特徴量を算出する第1演算手段と、加速度検出手段により得られた前記身長方向の加速度と前記前後方向の加速度との比率からなる判定値を算出する第2演算手段と、昇り歩行時、降り歩行時、および平地歩行時それぞれにおける判定値とノルムの特徴量との相関を示す演算式が記憶された記憶手段と、第1演算手段で算出されたノルムの特徴量を演算式に当て嵌めて得られる判定値と第2演算手段で算出された判定値とを比較することにより人体の昇降動作の判定を行う昇降判定手段とを備えていることを特徴とする。   According to the second aspect of the present invention, acceleration detection means for detecting accelerations in the front-rear direction, width direction, and height direction of the human body that are worn on the human body, and a norm that calculates each acceleration obtained by the acceleration detection means as a vector component are calculated. In addition, a first calculation means for calculating a norm feature amount based on the calculated norm, and a determination value comprising a ratio between the acceleration in the height direction and the acceleration in the front-rear direction obtained by the acceleration detection means is calculated. Calculated by the second calculation means, the storage means for storing the correlation between the determination value and the norm feature amount in each of the ascending walking, the descending walking, and the flat ground walking, and the first calculating means Elevation determination means for determining a human body elevating motion by comparing a determination value obtained by fitting a norm feature amount to an arithmetic expression and a determination value calculated by the second calculation means. And said that you are.

請求項2の発明によれば、人が階段や坂などを昇る昇り歩行時には、人体の身長方向の加速度および前後方向の加速度が平地歩行時に比べて小さくなる一方で、人が階段や坂などを降る降り歩行時には、人体の身長方向の加速度が平地歩行時に比べて大きくなるとともに人体の前後方向の加速度が平地歩行時に比べて小さくなることに着目し、人体における身長方向の加速度と人体の前後方向の加速度との比率を人体の昇降動作の判定値として用いるから、人体の昇降動作の検出精度の向上が図れる。また、人体の昇降動作の判定を行うにあたっては、昇り歩行時、降り歩行時、および平地歩行時それぞれにおける判定値と第1演算手段で算出したノルムの特徴量との相関を示す演算式を用いるので、ノルムの特徴量の変化に伴う前記判定値の変化に起因する誤判定を防止できるから、人体の昇降動作の検出精度のさらなる向上が図れる。   According to the invention of claim 2, when a person walks up a stairs or a hill, the acceleration in the height direction of the human body and the acceleration in the front-rear direction are smaller than those on a flat ground, while the person walks down the stairs or hill. Paying attention to the fact that the acceleration in the height direction of the human body is larger than that in walking on flat ground and the acceleration in the front and rear direction of the human body is smaller than in walking on flat ground when walking down, and the acceleration in the height direction of the human body and the longitudinal direction of the human body Since the ratio to the acceleration of the human body is used as the determination value for the lifting / lowering motion of the human body, the detection accuracy of the lifting / lowering motion of the human body can be improved. Further, in determining whether the human body moves up and down, an arithmetic expression is used that indicates the correlation between the determination value in each of the ascending walking, the descending walking, and the flat ground walking and the norm feature amount calculated by the first computing means. Therefore, it is possible to prevent erroneous determination due to the change in the determination value accompanying the change in the feature quantity of the norm, so that it is possible to further improve the detection accuracy of the lifting operation of the human body.

請求項3の発明では、請求項1の発明において、第2演算手段は、判定値として、前記前後方向の加速度に対する前記上下方向の加速度の比率を用いるように構成され、昇降判定手段は、前記ノルムの特徴量をデータテーブルに当て嵌めて得られる判定値における昇り歩行時と平地歩行時の境界値よりも第2演算手段で算出された判定値が小さければ昇り歩行時であると判定し、前記ノルムの特徴量をデータテーブルに当て嵌めて得られる判定値における降り歩行時と平地歩行時の境界値よりも第2演算手段で算出された判定値が大きければ降り歩行時であると判定するように構成されていることを特徴とする。   According to a third aspect of the invention, in the first aspect of the invention, the second calculation means is configured to use a ratio of the vertical acceleration to the longitudinal acceleration as a determination value, and the up / down determination means If the determination value calculated by the second calculating means is smaller than the boundary value at the time of ascending walking and walking on the flat ground in the determination value obtained by applying the feature quantity of the norm to the data table, it is determined that it is at the time of ascending walking, If the determination value calculated by the second calculating means is larger than the boundary value between the walking at the time of descending walking and the walking at the flat ground in the determination value obtained by fitting the feature quantity of the norm to the data table, it is determined that the vehicle is at the time of descending walking. It is comprised as follows.

請求項3の発明によれば、人が階段や坂などを昇る昇り歩行時には、人体の身長方向の加速度および前後方向の加速度が平地歩行時に比べて小さくなる一方で、人が階段や坂などを降る降り歩行時には、人体の身長方向の加速度が平地歩行時に比べて大きくなるとともに人体の前後方向の加速度が平地歩行時に比べて小さくなることに着目し、人体の前後方向の加速度に対する人体の前後方向の加速度の比率を人体の昇降動作の判定値として用いるから、人体の昇降動作の検出精度の向上が図れる。また、人体の昇降動作の判定を行うにあたっては、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値の範囲とノルムの特徴量との関係を示すデータテーブルを用いるので、ノルムの特徴量の変化に伴う前記判定値の範囲の変化に起因する誤判定を防止できるから、人体の昇降動作の検出精度のさらなる向上が図れる。   According to the invention of claim 3, when the person walks up the stairs or hill, the acceleration in the height direction of the human body and the acceleration in the front-rear direction are smaller than those during walking on the flat ground, while the person goes down the stairs or hill. Focusing on the fact that when walking down, the acceleration in the height direction of the human body increases compared to walking on flat ground and the acceleration in the front-rear direction of the human body decreases compared to walking on flat ground. Since the acceleration ratio is used as the determination value for the human body lifting operation, the detection accuracy of the human body lifting operation can be improved. In addition, in determining whether the human body is moving up or down, the norm is used because a data table indicating the relationship between the range of determination values included in each of ascending walking, descending walking, and flat ground walking and the norm feature amount is used. Therefore, it is possible to prevent erroneous determination due to a change in the range of the determination value associated with a change in the feature amount of the human body, thereby further improving the detection accuracy of the raising / lowering operation of the human body.

請求項4の発明によれば、請求項1〜3のうちいずれか1項記載の昇降動作検出装置と、第1演算手段により算出されたノルムの特徴量および昇降判定手段の判定結果に基づいて運動強度を算出する運動強度演算手段とを備えていることを特徴とする。   According to invention of Claim 4, based on the raising / lowering motion detection apparatus of any one of Claims 1-3, the norm feature-value calculated by the 1st calculating means, and the determination result of the raising / lowering determination means. An exercise intensity calculating means for calculating exercise intensity is provided.

請求項4の発明によれば、人体の昇降動作を精度良く検出できるから、運動強度の正確な評価を行うことができ、結果として、正確な活動量を算出することが可能となる。   According to the fourth aspect of the present invention, since the raising / lowering motion of the human body can be detected with high accuracy, the exercise intensity can be accurately evaluated, and as a result, an accurate amount of activity can be calculated.

請求項1,2の発明は、人体の昇降動作を精度良く検出できるという効果を奏する。   The inventions of claims 1 and 2 have the effect that the lifting and lowering motion of the human body can be accurately detected.

請求項4の発明は、運動強度の正確な評価を行うことができ、結果として、正確な活動量を算出することが可能となるという効果を奏する。   The invention according to claim 4 has an effect that it is possible to accurately evaluate the exercise intensity, and as a result, it is possible to calculate an accurate amount of activity.

(実施形態1)
本実施形態の活動量計は、図1(a)に示すように、人体に装着され人体の前後方向、幅方向、および身長方向の各加速度を検出する加速度検出手段1と、加速度検出手段1により得られた各加速度をベクトル成分とするノルムを算出するとともに算出したノルムを元にしてノルムの特徴量を算出する第1演算手段2と、加速度検出手段1により得られた人体の前後方向の加速度と人体の身長方向の加速度との比率からなる判定値Rを算出する第2演算手段3と、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値Rの範囲とノルムの特徴量との関係を示すデータテーブル(下記表1参照)が記憶された記憶手段4と、第1演算手段で算出されたノルムの特徴量をデータテーブルに当て嵌めて得られる判定値Rと第2演算手段で算出された判定値Rとを比較することにより人体の昇降動作の判定を行う昇降判定手段5とを備える昇降動作検出装置10を備えている。
(Embodiment 1)
As shown in FIG. 1 (a), the activity meter of the present embodiment includes an acceleration detection means 1 that is attached to a human body and detects accelerations in the front-rear direction, the width direction, and the height direction of the human body, and the acceleration detection means 1 A first computing means 2 for calculating a norm having the respective accelerations obtained by the above as vector components and calculating a feature quantity of the norm based on the calculated norm; and a longitudinal direction of the human body obtained by the acceleration detecting means 1 A second calculation means 3 for calculating a determination value R comprising a ratio of the acceleration and the acceleration in the height direction of the human body, and a range and norm of the determination value R included in each of ascending walking, descending walking, and flat ground walking A storage unit 4 in which a data table (see Table 1 below) indicating the relationship with the feature amount is stored, a determination value R obtained by fitting the feature amount of the norm calculated by the first calculation unit to the data table, and the first value 2 operations And a lifting operation detector 10 and a lifting determination unit 5 for determining the human body elevating operation by comparing the judgment value R calculated in step.

また、活動量計は、上記昇降動作検出装置10に加えて、第1演算手段2により算出されたノルムの特徴量および昇降判定手段5の判定結果に基づいて運動強度Iを演算する運動強度演算手段6と、運動強度算出手段6の演算結果を表示する表示手段7と、活動量計のオンオフ操作などを行うための操作手段(図示せず)と、これらを収納する筐体(図示せず)とを備えている。   The activity meter calculates exercise intensity I based on the norm feature value calculated by the first calculation means 2 and the determination result of the lift determination means 5 in addition to the lifting motion detection device 10 described above. Means 6, display means 7 for displaying the calculation result of exercise intensity calculation means 6, operation means (not shown) for performing on / off operation of the activity meter, and a housing (not shown) for storing them ).

上記筐体は、例えば、樹脂成形品などからなり、人が携行可能な大きさに形成されている。なお、第1演算手段2、第2演算手段3、昇降判定手段5、および運動強度演算手段6は、例えば、前記筐体に収納されたマイクロコンピュータなどのハードウェア資源と、ハードウェア資源に情報の演算、加工などを行わせるソフトウェアとにより実現されている。   The casing is made of, for example, a resin molded product and is formed in a size that can be carried by a person. The first calculation means 2, the second calculation means 3, the elevation determination means 5, and the exercise intensity calculation means 6 are, for example, hardware resources such as a microcomputer housed in the housing and information on the hardware resources. It is realized by software that performs the calculation, processing, etc.

加速度検出手段1は、例えば、互いに垂直な3軸の各加速度をアナログ形式で出力する3軸の加速度センサ(図示せず)と、当該3軸の加速度センサの出力を所定周期でサンプリングしデジタル形式に変換して出力する加速度検出回路(図示せず)とを備えている。ここで、上記3軸の加速度センサは、図1(b)に示すように、人体Pの前後(進行)方向(図1(b)において矢印xで示す方向であり、以下、「x軸方向」と称する)と、人体Pの幅(横)方向(図1(b)において矢印yで示す方向であり、以下、「y軸方向」と称する)と、人体Pの身長(上下)方向(図1(b)において矢印zで示す方向であり、以下、「z軸方向」と称する)との加速度を検出可能なように人体Pに装着される。なお、加速度検出回路には、3軸の加速度センサの各軸と、x軸方向、y軸方向、z軸方向それぞれの方向とのずれを補正する機能を設けるようにしてもよい。   The acceleration detecting means 1 is, for example, a three-axis acceleration sensor (not shown) that outputs each of three-axis accelerations perpendicular to each other in an analog format, and samples the output of the three-axis acceleration sensor at a predetermined period in a digital format. And an acceleration detection circuit (not shown) for converting into an output. Here, as shown in FIG. 1B, the three-axis acceleration sensor is a front-rear (traveling) direction of the human body P (a direction indicated by an arrow x in FIG. 1B). And the height (vertical) direction of the human body P (the direction indicated by the arrow y in FIG. 1B, hereinafter referred to as “y-axis direction”). 1B is attached to the human body P so as to be able to detect acceleration in the direction indicated by the arrow z and hereinafter referred to as “z-axis direction”. Note that the acceleration detection circuit may be provided with a function of correcting a deviation between each axis of the three-axis acceleration sensor and each of the x-axis direction, the y-axis direction, and the z-axis direction.

上記3軸の加速度センサとしては、例えば、小型で低消費電力なMEMS(MicroElectro Mechanical Systems)を利用した加速度センサを用いている。なお、加速度センサとしては、ピエゾ抵抗型の加速度センサや、静電容量型の加速度センサなどを採用することができる。また、3軸の加速度センサとしては、2軸の加速度センサと1軸の加速度センサとを組み合わせて3軸の加速度値を出力可能としたものを用いてもよいし、1軸の加速度センサを3つ用いて3軸の加速度値を出力可能としたものを用いてもよい。   As the three-axis acceleration sensor, for example, an acceleration sensor using a microelectromechanical system (MEMS) having a small size and low power consumption is used. As the acceleration sensor, a piezoresistive acceleration sensor, a capacitance acceleration sensor, or the like can be used. As the triaxial acceleration sensor, a sensor that can output a triaxial acceleration value by combining a biaxial acceleration sensor and a monoaxial acceleration sensor may be used. It is also possible to use one that can output a three-axis acceleration value.

加速度検出手段1から出力された各軸の加速度値は、図1(a)に示すように、第1演算手段2と、第2演算手段3とにそれぞれ出力される。   The acceleration value of each axis output from the acceleration detection means 1 is output to the first calculation means 2 and the second calculation means 3, respectively, as shown in FIG.

第1演算手段2は、ノルムの特徴量として人体Pの歩行ピッチp[歩数/min]を算出して昇降判定手段5に出力するように構成されている。歩行ピッチpの算出を行うにあたっては、まず、入力された各軸の加速度に対して、各軸の加速度をベクトル成分とするノルムの算出が行われる。ここで、x軸方向の加速度をAx、y軸方向の加速度をAy、z軸方向の加速度をAzとすれば、ノルムは、(Ax +Ay +Az 1/2で表される(但し、iは各加速度のサンプリング番号を示す整数)。歩行ピッチpは、上述したように算出したノルムのピーク位置を少なくとも2つ検出することにより行われる。ここで、検出した2つのピーク位置間の時間間隔をt、前記2つのピーク位置間に存在する山または谷の数をnとすれば、歩行ピッチpは、次式(1)で表される。 The first calculation means 2 is configured to calculate the walking pitch p [number of steps / min] of the human body P as the norm feature value and output it to the elevation determination means 5. In calculating the walking pitch p, first, for the input acceleration of each axis, a norm with the acceleration of each axis as a vector component is calculated. Here, if the acceleration in the x-axis direction is Ax i , the acceleration in the y-axis direction is Ay i , and the acceleration in the z-axis direction is Az i , the norm is (Ax i 2 + Ay i 2 + Az i 2 ) 1/2 (Where i is an integer indicating the sampling number of each acceleration). The walking pitch p is performed by detecting at least two peak positions of the norm calculated as described above. Here, if the time interval between the two detected peak positions is t p and the number of peaks or valleys existing between the two peak positions is n p , the walking pitch p is expressed by the following equation (1). Is done.

Figure 2008173251
Figure 2008173251

また、第1演算手段2は、ノルムの特徴量としてノルムの変動平均Saを算出して昇降判定手段5に出力するように構成されている。ここで、ノルムの変動平均Saは、x軸方向の加速度Axの変動平均Sxと、y軸方向の加速度Ayの変動平均Syと、z軸方向の加速度Azの変動平均Szとを用いれば、Sa=(Sx +Sy +Sz 1/2で表され、変動平均Sxは、x軸方向の加速度Axの標準偏差として求めることができる。つまり、変動平均Sxは次式(2)で表すことができる。なお、標準偏差を算出するにあたっては、標本分散ではなく不偏分散を用いている。また、nは、一定時間における各加速度のサンプリング数を示す整数である。 The first calculation means 2 is configured to calculate the norm fluctuation average Sa as the norm feature quantity and output it to the elevation determination means 5. Here, the fluctuation average Sa of the norm uses the fluctuation average Sx of the acceleration Ax i in the x-axis direction, the fluctuation average Sy of the acceleration Ay i in the y-axis direction, and the fluctuation average Sz of the acceleration Az i in the z-axis direction. For example, Sa = (Sx i 2 + Sy i 2 + Sz i 2 ) 1/2 , and the fluctuation average Sx can be obtained as a standard deviation of the acceleration Ax i in the x-axis direction. That is, the fluctuation average Sx can be expressed by the following equation (2). In calculating the standard deviation, unbiased variance is used instead of sample variance. N is an integer indicating the number of times each acceleration is sampled in a certain time.

Figure 2008173251
Figure 2008173251

同様にして、変動平均Sy,Szは、それぞれ次式(3),(4)で表すことができる。   Similarly, the fluctuation averages Sy and Sz can be expressed by the following equations (3) and (4), respectively.

Figure 2008173251
Figure 2008173251

したがって、ノルムの変動平均Saは、次式(5)で表される。   Therefore, the fluctuation average Sa of the norm is expressed by the following equation (5).

Figure 2008173251
Figure 2008173251

第2演算手段3は、加速度検出手段1により得られたz軸方向の加速度Azとx軸方向の加速度Axとの比率からなる判定値Rを算出し、算出した判定値Rを昇降判定手段5に出力するように構成されている。本実施形態では、判定値Rとして、x軸方向の加速度Axに対するz軸方向の加速度Azの比率を用いており、このような判定値Rは、x軸方向の加速度Axの変動平均Sxと、z軸方向の加速度Azの変動平均Szとを用いて次式(6)で表される。 The second calculation means 3 calculates a determination value R that is a ratio of the acceleration Az i in the z-axis direction and the acceleration Ax i in the x-axis direction obtained by the acceleration detection means 1, and determines whether the calculated determination value R is raised or lowered It is comprised so that it may output to the means 5. In this embodiment, a ratio of the acceleration Az i in the z-axis direction to the acceleration Ax i in the x-axis direction is used as the determination value R. Such a determination value R is a variation average of the acceleration Ax i in the x-axis direction. It is expressed by the following equation (6) using Sx and the fluctuation average Sz of the acceleration Az i in the z-axis direction.

Figure 2008173251
Figure 2008173251

昇降判定手段5は、第1演算手段2で算出された歩行ピッチpと、第2演算手段3で算出された判定値Rと、記憶手段4に記憶されたデータテーブルとに基づいて人体の昇降動作の判定を行い、判定結果を変動平均Saとともに運動強度算出手段6に出力するように構成されている。   The raising / lowering determining means 5 is based on the walking pitch p calculated by the first calculating means 2, the determination value R calculated by the second calculating means 3, and the data table stored in the storage means 4. The movement is determined, and the determination result is output to the exercise intensity calculating means 6 together with the variation average Sa.

ここで、記憶手段4に記憶されているデータテーブルは、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値Rの範囲と歩行ピッチpとの関係を示すものであり、本実施形態では、下記の表1に示すようなデータテーブルを用いている。但し、このデータテーブルでは、歩行ピッチpが100を越えた場合には、歩行ピッチpは100とみなして計算を行う。なお、データテーブル上段の歩行ピッチpの範囲は歩行時の歩行ピッチpの範囲を示し、データテーブル中段の歩行ピッチpの範囲は競歩時の歩行ピッチpの範囲を示し、データテーブル下段の歩行ピッチpの範囲は走行時の歩行ピッチpの範囲を示している。   Here, the data table stored in the storage means 4 shows the relationship between the range of the judgment value R included in each of the walking during ascending walking, descending walking, and walking on flat ground and the walking pitch p. In the embodiment, a data table as shown in Table 1 below is used. However, in this data table, when the walking pitch p exceeds 100, the walking pitch p is regarded as 100 and the calculation is performed. The range of the walking pitch p at the top of the data table indicates the range of the walking pitch p at the time of walking, the range of the walking pitch p at the middle of the data table indicates the range of the walking pitch p at the time of racing, and the walking pitch at the bottom of the data table. The range of p indicates the range of the walking pitch p when traveling.

Figure 2008173251
Figure 2008173251

第1演算手段2で算出された歩行ピッチpを表1に示すデータテーブルに当て嵌めれば、判定値Rにおける降り歩行時と平地歩行時の境界値(以下、「降り境界値」と称する)B1と、判定値Rにおける昇り歩行時と平地歩行時の境界値(以下、「昇り境界値」と称する)B2とが得られる。表1に示すデータテーブルを参照すれば、降り境界値B1の値は−0.0066*p+1.25となり、昇り境界値B2の値はp<80であれば0.6、p≧80であれば0.5となる。   If the walking pitch p calculated by the first computing means 2 is applied to the data table shown in Table 1, the boundary value at the time of descending walking and walking on the flat ground in the determination value R (hereinafter referred to as “descending boundary value”). B1 and a boundary value (hereinafter, referred to as “rising boundary value”) B2 at the time of ascending walking and walking on a flat ground at the determination value R are obtained. Referring to the data table shown in Table 1, the value of the falling boundary value B1 is −0.0066 * p + 1.25, and the rising boundary value B2 is 0.6 if p <80, and p ≧ 80. 0.5.

したがって、昇降判定手段5は、第2演算手段3で算出された判定値Rが、降り境界値B1よりも大きければ降り歩行時であると判定し、昇り境界値B2よりも小さければ昇り歩行時であると判定し、昇り境界値B2以上降り境界値B1以下であれば平地歩行時であると判定する。例えば、第1演算手段2で算出された歩行ピッチpが70、第2演算手段3で算出された判定値Rが0.8であった際には、降り境界値B1=0.788、昇り境界値B2=0.6となるから、昇降判定手段5は降り歩行時と判定する。また、歩行ピッチpが90、第2演算手段3で算出された判定値Rが0.45であった際には、降り境界値B1=0.656、昇り境界値B2=0.5となるから、昇降判定手段5は昇り歩行時と判定する。   Therefore, when the determination value R calculated by the second calculation means 3 is larger than the descending boundary value B1, the ascending / descending determining means 5 determines that it is during descending walking, and when it is smaller than the ascending boundary value B2, it is during ascending walking. If the rising boundary value B2 or more and the falling boundary value B1 or less, it is determined that the vehicle is walking on a flat ground. For example, when the walking pitch p calculated by the first calculation means 2 is 70 and the determination value R calculated by the second calculation means 3 is 0.8, the descending boundary value B1 = 0.788, the ascent Since the boundary value B2 = 0.6, the raising / lowering determining means 5 determines that the person is descending and walking. Further, when the walking pitch p is 90 and the determination value R calculated by the second calculation means 3 is 0.45, the descending boundary value B1 = 0.656 and the rising boundary value B2 = 0.5. Therefore, the ascending / descending determining means 5 determines that the ascending walking.

運動強度演算手段6は、例えば、アメリカスポーツ医学会で用いられている、運動時の消費エネルギが安静時の消費エネルギの何倍になっているか示す値である「METs」値からなる運動強度Iの演算を行うように構成されている。本実施形態における運動強度演算手段6では、運動強度Iの演算を行うにあたっては、昇り歩行時、降り歩行時、平地歩行時それぞれにおける運動強度Iと変動平均Saとの相関関係を表す演算式を用いている。これらの演算式は、図2に示すように、昇り歩行時、降り歩行時、平地歩行時それぞれの運動強度Iの実測値と、そのときの変動平均Saの実測値とを元にして最小二乗法などを行って近似式を求めることによって得ることができる。なお、図2に示すグラフにおいてAで示す直線は昇り歩行時の運動強度Iと変動平均Saとに基づく近似直線を示し、その式は、I=10.0*Sa+1.0(回帰係数=10.0、定数=1.0)である。また、図2にBで示す直線は降り歩行時の運動強度Iと変動平均Saとに基づく近似直線を示し、その式は、I=4.1*Sa+1.0(回帰係数=4.1、定数=1.0)である。また、図2にCで示す直線は平地歩行時の運動強度Iと変動平均Saとに基づく近似直線を示し、その式は、I=6.1*Sa+1.0(回帰係数=6.1、定数=1.0)である。   The exercise intensity calculation means 6 is an exercise intensity I consisting of a “METs” value, which is used in the American Sports Medicine Association, for example, indicating how many times the energy consumption during exercise is greater than the energy consumption during rest. It is comprised so that calculation of these may be performed. In the exercise intensity calculation means 6 in the present embodiment, when calculating the exercise intensity I, an arithmetic expression representing the correlation between the exercise intensity I and the fluctuation average Sa during ascending walking, descending walking, and flat ground walking is used. Used. As shown in FIG. 2, these arithmetic expressions are based on the measured values of the exercise intensity I during ascending walking, descending walking and walking on a flat ground, and the measured values of the fluctuation average Sa at that time. It can be obtained by performing multiplication or the like to obtain an approximate expression. In the graph shown in FIG. 2, the straight line indicated by A is an approximate straight line based on the exercise intensity I and the fluctuation average Sa during ascending walking, and the equation is I = 10.0 * Sa + 1.0 (regression coefficient = 10 0.0, constant = 1.0). In addition, the straight line indicated by B in FIG. 2 is an approximate straight line based on the exercise intensity I and the fluctuation average Sa when walking down, and the equation is I = 4.1 * Sa + 1.0 (regression coefficient = 4.1, Constant = 1.0). In addition, the straight line indicated by C in FIG. 2 is an approximate straight line based on the exercise intensity I and the fluctuation average Sa when walking on a flat ground, and the equation is I = 6.1 * Sa + 1.0 (regression coefficient = 6.1, Constant = 1.0).

このような運動強度演算手段6では、昇降判定手段5の判定結果に応じて、上記3つの演算式のなかから使用する演算式が選択され、選択された演算式に変動平均Saを代入することによって運動強度Iが算出される。また、運動強度演算手段6では、算出した運動強度Iを用いて人体のエネルギ消費量を示す活動量を算出するように構成されている。なお、運動強度Iを用いての活動量の算出方法としては従来周知の方法を採用できるから詳細な説明は省略する。   In such exercise intensity calculating means 6, an arithmetic expression to be used is selected from the above three arithmetic expressions according to the determination result of the elevation determining means 5, and the variation average Sa is substituted into the selected arithmetic expression. Is used to calculate the exercise intensity I. The exercise intensity calculating means 6 is configured to calculate an activity amount indicating the energy consumption amount of the human body using the calculated exercise intensity I. In addition, since the conventionally well-known method can be employ | adopted as a calculation method of the active mass using the exercise intensity I, detailed description is abbreviate | omitted.

表示手段7は、液晶ディスプレイ(LCD)などの画像表示装置(図示せず)などを備え、昇降判定手段5の判定結果と、運動強度演算手段6で演算された運動強度Iおよび活動量とを画像表示装置に表示するように構成されている。また、表示手段7は、昇降判定手段5の判定結果と、運動強度演算手段6で演算された運動強度Iおよび活動量とを上記記憶手段4に記憶することで、運動状態の履歴を残すように構成されている。   The display means 7 includes an image display device (not shown) such as a liquid crystal display (LCD) and the like, and the determination result of the elevation determination means 5, the exercise intensity I and the amount of activity calculated by the exercise intensity calculation means 6. It is comprised so that it may display on an image display apparatus. Further, the display means 7 stores the determination result of the elevation determination means 5 and the exercise intensity I and the amount of activity calculated by the exercise intensity calculation means 6 in the storage means 4 so as to leave a history of the exercise state. It is configured.

操作手段は、活動量計のオンオフ操作用のスイッチや、活動量の演算を開始させるスイッチ、活動量の表示をリセットするスイッチ、記憶手段4に記憶された運動状態の履歴を表示するためのスイッチなどを備えているものである。   The operation means includes a switch for on / off operation of the activity meter, a switch for starting calculation of the activity amount, a switch for resetting the display of the activity amount, and a switch for displaying the history of the exercise state stored in the storage means 4 Etc.

以上述べた昇降動作検出装置10によれば、人が階段や坂などを昇る昇り歩行時には、z軸方向の加速度Azおよびx軸方向の加速度Axが平地歩行時に比べて小さくなる一方で、人が階段や坂などを降る降り歩行時には、z軸方向の加速度Azが平地歩行時に比べて大きくなるとともにx軸方向の加速度Axが平地歩行時に比べて小さくなることに着目し、x軸方向の加速度Axに対するz軸方向の加速度Azとの比率を人体の昇降動作の判定値Rとして用いるから、人体の昇降動作の検出精度の向上が図れる。 According to the ascending / descending motion detection apparatus 10 described above, the z-axis direction acceleration Az i and the x-axis direction acceleration Ax i are smaller than those when walking on a flat ground when a person walks up a stairs or a hill. Focusing on the fact that when a person walks down a stairs or a hill, the acceleration Az i in the z-axis direction is larger than that when walking on a flat ground, and the acceleration Ax i in the x-axis direction is smaller than that when walking on a flat ground. Since the ratio of the acceleration Az i in the z-axis direction to the acceleration Ax i in the direction is used as the determination value R for the lifting / lowering movement of the human body, the detection accuracy of the lifting / lowering movement of the human body can be improved.

ところで、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値Rの範囲は歩行ピッチpの変化に伴って変化することが実際の測定により確かめられている。そのため、前記判定値Rの範囲を常に一定としたのでは、判定値Rの値が同じであっても歩行ピッチpの値によって判定結果が異なり、これが誤判定の原因となってしまう。例えば、歩行ピッチpが50のときは、R>0.92で降り歩行時、R<0.6で昇り歩行時、0.6≦R≦0.92で平地歩行時と判定されるが、歩行ピッチpが90のときは、R>0.656で降り歩行時、R<0.5で昇り歩行時、0.5≦R≦0.656で平地歩行時と判定される。したがって、Rが0.656<R≦0.92である場合、歩行ピッチpが50であれば、平地歩行時と判定されるものの、歩行ピッチpが90であれば、降り歩行時であると判定される。   By the way, it has been confirmed by actual measurement that the range of the judgment value R included in each of the ascending walk, the descending walk, and the flat ground walking changes with the change of the walking pitch p. For this reason, if the range of the determination value R is always constant, even if the determination value R is the same, the determination result varies depending on the value of the walking pitch p, and this causes erroneous determination. For example, when the walking pitch p is 50, it is determined that R> 0.92 when walking down, R <0.6 when climbing, and 0.6 ≦ R ≦ 0.92, when walking on flat ground. When the walking pitch p is 90, it is determined that R> 0.656 when walking down, R <0.5 when climbing, and 0.5 ≦ R ≦ 0.656 when walking on flat ground. Therefore, when R is 0.656 <R ≦ 0.92, if the walking pitch p is 50, it is determined that the vehicle is walking on a flat ground, but if the walking pitch p is 90, the vehicle is descending and walking. Determined.

これに対して本実施形態における昇降動作検出装置10では、人体の昇降動作の判定を行うにあたっては、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値Rの範囲と歩行ピッチpとの関係を示すデータテーブル(上記表1参照)を用いるので、歩行ピッチpの変化に伴う前記判定値Rの範囲の変化に起因する誤判定を防止できるから、人体の昇降動作の検出精度のさらなる向上が図れる。   On the other hand, in the lifting motion detection apparatus 10 according to the present embodiment, when determining the lifting motion of the human body, the range of the determination value R and the walking pitch included in each of the ascending walking, the descending walking, and the flat ground walking. Since a data table (see Table 1 above) showing the relationship with p is used, it is possible to prevent erroneous determination due to a change in the range of the determination value R accompanying a change in the walking pitch p. Can be further improved.

また、上記昇降動作検出装置10を備える本実施形態の活動量計によれば、人体の昇降動作を精度良く検出できるから、運動強度の正確な評価を行うことができ、結果として、正確な活動量を算出することが可能となる。   Moreover, according to the activity meter of this embodiment provided with the said raising / lowering motion detection apparatus 10, since the raising / lowering motion of a human body can be detected with a sufficient precision, exercise intensity can be evaluated correctly and, as a result, accurate activity The amount can be calculated.

なお、本実施形態における昇降判定手段5では、第1演算手段2で算出された歩行ピッチpをデータテーブルに当て嵌めて得られる降り境界値B1よりも第2演算手段3で算出された判定値Rが大きければ降り歩行時であると判定しているが、降り境界値B1の値は、第2演算手段3で算出された判定値Rが降り境界値B1以上であれば降り歩行時であると判定するような値としてもよい。同様に、昇り境界値B2は、第2演算手段3で算出された判定値Rが昇り境界値B2以下であれば昇り歩行時であると判定するような値としてもよい。   In the elevation determination means 5 in this embodiment, the determination value calculated by the second calculation means 3 than the descending boundary value B1 obtained by fitting the walking pitch p calculated by the first calculation means 2 to the data table. If R is large, it is determined that the vehicle is descending and walking, but the value of the descending boundary value B1 is when the descending walking is performed if the determination value R calculated by the second calculating means 3 is equal to or greater than the descending boundary value B1. It is good also as a value which judges with. Similarly, the ascending boundary value B2 may be a value that determines that it is during ascending walking if the determination value R calculated by the second computing means 3 is equal to or less than the ascending boundary value B2.

ところで、本実施形態における第1演算手段2では、ノルムの特徴量として、人体Pの歩行ピッチpや、変動平均Saを算出するようにしているが、ノルムの特徴量はこれらに限られるものではなく、判定値Rと相関関係にある値であればよい。   By the way, in the 1st calculating means 2 in this embodiment, although the walking pitch p of the human body P and the fluctuation | variation average Sa are calculated as a feature-value of norm, the feature-value of norm is not restricted to these. However, any value that has a correlation with the determination value R may be used.

本実施形態における第2演算手段3では、判定値Rとしてx軸方向の加速度Axに対するz軸方向の加速度Azの比率としてSz/Sxを用いているが、判定値Rとしては、z軸方向の加速度Azに対するx軸方向の加速度Axの比率、すなわち、Sx/Szを用いてもよい。この場合、判定値Rが、降り境界値B1の逆数である1/B1よりも小さければ降り歩行時と判定し、昇り境界値B2の逆数である1/B2よりも大きければ昇り歩行時と判定し、1/B1以上1/B2以下であれば平地歩行時と判定するようにすればよい。 In the second calculation means 3 in the present embodiment, the determination value R uses Sz / Sx as the ratio of the acceleration Az i in the z-axis direction to the acceleration Ax i in the x-axis direction. The ratio of the acceleration Ax i in the x-axis direction to the acceleration Az i in the direction, that is, Sx / Sz may be used. In this case, if the determination value R is smaller than 1 / B1 which is the reciprocal of the descending boundary value B1, it is determined that the person is descending walking, and if it is larger than 1 / B2 which is the inverse of the ascending boundary value B2, it is determined that the ascending walking is performed. If it is 1 / B1 or more and 1 / B2 or less, it may be determined that the vehicle is walking on a flat ground.

また、本実施形態における記憶手段4に記憶されているデータテーブルは、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値Rの範囲と歩行ピッチpとの関係を示すものであるが、データテーブルとしては、昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値Rの範囲とノルムの変動平均Saとの関係を示すものを用いてもよい。この場合、歩行ピッチpの算出を行う必要がなくなるので、第1演算手段2によける演算量を減じることができるから、処理時間の短縮化が図れる。   In addition, the data table stored in the storage unit 4 in the present embodiment shows the relationship between the range of the determination value R included in each of the ascending walking, the descending walking, and the flat ground walking and the walking pitch p. However, as the data table, a table indicating the relationship between the range of the determination value R included in each of the ascending walking, the descending walking, and the flat ground walking and the norm variation average Sa may be used. In this case, since it is not necessary to calculate the walking pitch p, the amount of calculation by the first calculation means 2 can be reduced, so that the processing time can be shortened.

(実施形態2)
本実施形態の活動量計は、昇降動作検出装置10において、上記表1に示すようなデータテーブルの代わりに演算式を用いて昇降判定を行う点で上記実施形態1と異なっている。なお、同様の構成については説明を省略する。
(Embodiment 2)
The activity meter of the present embodiment is different from the first embodiment in that the lifting / lowering motion detection device 10 performs the lifting / lowering determination using an arithmetic expression instead of the data table as shown in Table 1 above. Note that a description of the same configuration is omitted.

本実施形態における記憶手段4には、昇り歩行時、降り歩行時、平地歩行時それぞれの判定値Rと、歩行ピッチpとの実測値を元にして最小二乗法などを行うことによって算出した近似式からなる演算式が記憶されている。なお、本実施形態では、判定値Rとして、x軸方向の加速度Axに対するz軸方向の加速度Azの比率、すなわちSz/Sxを用いている。また、以下の説明では、説明の簡略化のために、昇り歩行時の判定値RをR1、平地歩行時の判定値RをR2、降り歩行時の判定値RをR3でそれぞれ示す。また、判定値R1と歩行ピッチpとの相関関係を示す演算式は次式(7)で、判定値R2と歩行ピッチpとの相関関係を示す演算式は次式(8)で、判定値R3と歩行ピッチpとの相関関係を示す演算式は次式(9)でそれぞれ表される。 In the storage means 4 in the present embodiment, the approximation calculated by performing the least square method or the like based on the actually measured values of the determination value R and the walking pitch p during ascending walking, descending walking, and walking on a flat ground. An arithmetic expression consisting of an expression is stored. In the present embodiment, as the determination value R, the ratio of the acceleration Az i in the z-axis direction to the acceleration Ax i in the x-axis direction, that is, Sz / Sx is used. In the following description, for simplification of description, the determination value R at the time of ascending walking is indicated by R1, the determination value R at the time of walking on a flat ground is indicated by R2, and the determination value R at the time of walking down is indicated by R3. An arithmetic expression indicating the correlation between the determination value R1 and the walking pitch p is the following expression (7), and an arithmetic expression indicating the correlation between the determination value R2 and the walking pitch p is the following expression (8). The arithmetic expressions indicating the correlation between R3 and the walking pitch p are respectively expressed by the following expressions (9).

Figure 2008173251
Figure 2008173251

本実施形態における昇降判定手段5では、第1演算手段2で算出された歩行ピッチpを上式(7)〜(9)に代入することで各判定値R1〜R3を求めて、第2演算手段3で算出された判定値Rと各判定値R1〜R3との残差dk=|Rk−R|(但し、kは1,2,3)を求め、残差d1〜d3のなかで値が最も小さいものに対応する状態を、判定結果として出力する。例えば、第1演算手段2で算出された歩行ピッチpが70、第2演算手段3で算出された判定値Rが0.8であった際には、判定値R1=0.4822、判定値R2=0.7527、判定値R3=0.8272となり、残差d1=0.3187、残差d2=0.0473、残差d3=0.0272となるから、昇降判定手段5によれば、値が最も小さい残差d3に対応する状態、すなわち降り歩行時であると判定される。また、歩行ピッチpが90、第2演算手段3で算出された判定値Rが0.45であった際には、判定値R1=0.4682、判定値R2=0.6707、判定値R3=0.6952となり、残差d1=0.0182、残差d2=0.2207、残差d3=0.2452となるから、昇降判定手段5によれば、値が最も小さい残差d1に対応する状態、すなわち昇り歩行時であると判定される。   In the up / down determination means 5 in the present embodiment, the determination values R1 to R3 are obtained by substituting the walking pitch p calculated by the first calculation means 2 into the above formulas (7) to (9), and the second calculation is performed. A residual dk = | Rk−R | (where k is 1, 2, 3) between the determination value R calculated by the means 3 and each of the determination values R1 to R3 is obtained, and the value is among the residuals d1 to d3. The state corresponding to the smallest is output as the determination result. For example, when the walking pitch p calculated by the first calculation means 2 is 70 and the determination value R calculated by the second calculation means 3 is 0.8, the determination value R1 = 0.4822, the determination value R2 = 0.7527, determination value R3 = 0.8272, residual d1 = 0.3187, residual d2 = 0.0473, and residual d3 = 0.0272. It is determined that the state corresponds to the smallest residual d3, that is, when walking down. When the walking pitch p is 90 and the determination value R calculated by the second calculation means 3 is 0.45, the determination value R1 = 0.4682, the determination value R2 = 0.6707, and the determination value R3. = 0.6952 and the residual d1 = 0.182, the residual d2 = 0.2207, and the residual d3 = 0.4552. According to the ascending / descending determination unit 5, the residual d1 having the smallest value is supported. It is determined that the vehicle is in a state of walking, that is, during ascending walking.

以上述べた昇降動作検出装置10によれば、実施形態1と同様に、z軸方向の加速度Azの変動平均Szとx軸方向の加速度Axの変動平均Sxとの比率を人体の昇降動作の判定値Rとして用いるから、人体の昇降動作の検出精度の向上が図れる。 According to the lifting motion detection apparatus 10 described above, as in the first embodiment, the ratio of the variation average Sz of the acceleration Az i in the z-axis direction to the variation average Sx of the acceleration Ax i in the x-axis direction is determined as the lifting motion of the human body. Since it is used as the determination value R, it is possible to improve the detection accuracy of the raising / lowering operation of the human body.

ところで、昇り歩行時、降り歩行時、および平地歩行時それぞれにおける判定値Rの値は歩行ピッチpの変化に伴って変化することが実際の測定により確かめられている。そのため、昇り歩行時、降り歩行時、および平地歩行時それぞれの判定値Rの値を常に一定としたのでは、判定値Rの値が同じであっても歩行ピッチpの値によって判定結果が異なり、これが誤判定の原因となってしまう。   By the way, it has been confirmed by actual measurement that the determination value R during ascending walking, descending walking, and flat ground walking varies with a change in walking pitch p. Therefore, if the value of the determination value R during ascending walking, walking down and walking on a flat ground is always constant, the determination result varies depending on the value of the walking pitch p even if the determination value R is the same. This will cause misjudgment.

これに対して本実施形態における昇降動作検出装置10では、人体の昇降動作の判定を行うにあたっては、昇り歩行時、降り歩行時、および平地歩行時それぞれにおける判定値Rと歩行ピッチpとの相関を示す演算式を用いるので、歩行ピッチpの変化に伴う判定値Rの変化に起因する誤判定を防止できるから、実施形態1と同様に、人体の昇降動作の検出精度のさらなる向上が図れる。   On the other hand, in the lifting / lowering motion detection device 10 according to the present embodiment, when determining the lifting / lowering motion of the human body, the correlation between the determination value R and the walking pitch p during ascending walking, descending walking, and flat ground walking. Is used, the erroneous determination caused by the change in the determination value R accompanying the change in the walking pitch p can be prevented. Therefore, as in the first embodiment, the detection accuracy of the raising / lowering motion of the human body can be further improved.

また、上記昇降動作検出装置10を備える本実施形態の活動量計によれば、人体の昇降動作を精度良く検出できるから、運動強度の正確な評価を行うことができ、結果として、正確な活動量を算出することが可能となる。   Moreover, according to the activity meter of this embodiment provided with the said raising / lowering motion detection apparatus 10, since the raising / lowering motion of a human body can be detected with a sufficient precision, exercise intensity can be evaluated correctly and, as a result, accurate activity The amount can be calculated.

ところで、本実施形態では、昇り歩行時、降り歩行時、平地歩行時それぞれの場合において、判定値R(R1〜R3)と歩行ピッチpとの相関関係を示す演算式(上記式(7)〜(9))を用いているが、平地歩行時の判定値R2と歩行ピッチpとの相関関係を示す演算式(上記式(8))のみを用いるようにしてもよい。この場合、演算式(8)に第1演算手段2で算出した歩行ピッチpを代入して得られた判定値R2と、第2演算手段3で算出した判定値Rとの値を比較し、その結果がR<0.9*R2であれば昇り歩行時、R>1.1*R2であれば降り歩行時、0.9*R2≦R≦1.1*R2であれば平地歩行時と判定するようにしてもよい。このようにすれば、必要な演算式の数を減らすことができるとともに、昇降判定手段5における演算量を減じることができるから、処理時間の短縮化が図れる。   By the way, in the present embodiment, in each case of ascending walking, descending walking, and flat ground walking, an arithmetic expression (corresponding to the above formula (7) to 7) that indicates the correlation between the determination value R (R1 to R3) and the walking pitch p. (9)) is used, but only an arithmetic expression (the above expression (8)) indicating the correlation between the determination value R2 during walking on a flat ground and the walking pitch p may be used. In this case, the determination value R2 obtained by substituting the walking pitch p calculated by the first calculation means 2 into the calculation formula (8) is compared with the determination value R calculated by the second calculation means 3, If the result is R <0.9 * R2, when walking up, R> 1.1 * R2, if walking down, and if 0.9 * R2 ≦ R ≦ 1.1 * R2, walking on flat ground. May be determined. In this way, the number of necessary arithmetic expressions can be reduced, and the amount of calculation in the elevation determination means 5 can be reduced, so that the processing time can be shortened.

また、本実施形態における記憶手段4に記憶されている演算式は、判定値Rと歩行ピッチpとの関係を示すものであるが、判定値Rと変動平均Saとの関係を示すものを用いるようにしてもよい。この場合、歩行ピッチpの算出を行う必要がなくなるので、第1演算手段2によける演算量を減じることができるから、処理時間の短縮化が図れる。   Moreover, although the arithmetic expression memorize | stored in the memory | storage means 4 in this embodiment shows the relationship between the determination value R and the walking pitch p, what shows the relationship between the determination value R and the fluctuation | variation average Sa is used. You may do it. In this case, since it is not necessary to calculate the walking pitch p, the amount of calculation by the first calculation means 2 can be reduced, so that the processing time can be shortened.

(a)は実施形態1の活動量計のブロック図、(b)は加速度の検出方向の説明図である。(A) is a block diagram of the active mass meter of Embodiment 1, (b) is explanatory drawing of the detection direction of an acceleration. ノルムの変動平均と運動強度との相関関係を示すグラフである。It is a graph which shows the correlation with the fluctuation | variation average of norm, and exercise intensity.

符号の説明Explanation of symbols

1 加速度検出手段
2 第1演算手段
3 第2演算手段
4 記憶手段
5 昇降判定手段
6 運動強度演算手段
10 昇降動作検出装置
DESCRIPTION OF SYMBOLS 1 Acceleration detection means 2 1st calculation means 3 2nd calculation means 4 Memory | storage means 5 Elevation determination means 6 Exercise intensity calculation means 10 Elevation motion detection apparatus

Claims (4)

人体に装着され人体の前後方向、幅方向、および身長方向の各加速度を検出する加速度検出手段と、
加速度検出手段により得られた各加速度をベクトル成分とするノルムを算出するとともに算出したノルムを元にしてノルムの特徴量を算出する第1演算手段と、
加速度検出手段により得られた前記身長方向の加速度と前記前後方向の加速度との比率からなる判定値を算出する第2演算手段と、
昇り歩行時、降り歩行時、および平地歩行時それぞれに含まれる判定値の範囲とノルムの特徴量との関係を示すデータテーブルが記憶された記憶手段と、
第1演算手段で算出されたノルムの特徴量をデータテーブルに当て嵌めて得られる判定値と第2演算手段で算出された判定値とを比較することにより人体の昇降動作の判定を行う昇降判定手段とを備えていることを特徴とする昇降動作検出装置。
Acceleration detecting means for detecting each acceleration in the front-rear direction, the width direction, and the height direction of the human body attached to the human body;
A first computing means for calculating a norm having each acceleration obtained by the acceleration detecting means as a vector component and calculating a feature quantity of the norm based on the calculated norm;
Second calculation means for calculating a determination value comprising a ratio of the acceleration in the height direction and the acceleration in the front-rear direction obtained by the acceleration detection means;
A storage means storing a data table indicating a relationship between a range of determination values and a norm feature amount included in each of ascending walking, descending walking, and flat ground walking;
Ascent / descent determination for determining the lifting / lowering motion of the human body by comparing the determination value obtained by fitting the feature quantity of the norm calculated by the first calculating means to the data table and the determination value calculated by the second calculating means And a lifting operation detecting device.
人体に装着され人体の前後方向、幅方向、および身長方向の各加速度を検出する加速度検出手段と、
加速度検出手段により得られた各加速度をベクトル成分とするノルムを算出するとともに算出したノルムを元にしてノルムの特徴量を算出する第1演算手段と、
加速度検出手段により得られた前記身長方向の加速度と前記前後方向の加速度との比率からなる判定値を算出する第2演算手段と、
昇り歩行時、降り歩行時、および平地歩行時それぞれにおける判定値とノルムの特徴量との相関を示す演算式が記憶された記憶手段と、
第1演算手段で算出されたノルムの特徴量を演算式に当て嵌めて得られる判定値と第2演算手段で算出された判定値とを比較することにより人体の昇降動作の判定を行う昇降判定手段とを備えていることを特徴とする昇降動作検出装置。
Acceleration detecting means for detecting each acceleration in the front-rear direction, the width direction, and the height direction of the human body attached to the human body;
A first computing means for calculating a norm having each acceleration obtained by the acceleration detecting means as a vector component and calculating a feature quantity of the norm based on the calculated norm;
Second calculation means for calculating a determination value comprising a ratio of the acceleration in the height direction and the acceleration in the front-rear direction obtained by the acceleration detection means;
A storage means for storing an arithmetic expression indicating a correlation between a determination value and a feature amount of the norm at the time of ascending walking, when walking down, and when walking on a flat ground;
Ascent / descent determination for determining the lifting / lowering motion of the human body by comparing the determination value obtained by fitting the feature quantity of the norm calculated by the first calculating means with the determination value and the determination value calculated by the second calculating means And a lifting operation detecting device.
第2演算手段は、判定値として、前記前後方向の加速度に対する前記上下方向の加速度の比率を用いるように構成され、
昇降判定手段は、前記ノルムの特徴量をデータテーブルに当て嵌めて得られる判定値における昇り歩行時と平地歩行時の境界値よりも第2演算手段で算出された判定値が小さければ昇り歩行時であると判定し、前記ノルムの特徴量をデータテーブルに当て嵌めて得られる判定値における降り歩行時と平地歩行時の境界値よりも第2演算手段で算出された判定値が大きければ降り歩行時であると判定するように構成されていることを特徴とする請求項1記載の昇降動作検出装置。
The second calculating means is configured to use a ratio of the vertical acceleration to the longitudinal acceleration as a determination value,
The ascending / descending determining means is when ascending walking if the determination value calculated by the second calculating means is smaller than the boundary value at the time of ascending walking and walking on the flat ground in the determining value obtained by fitting the feature quantity of the norm to the data table. If the judgment value calculated by the second computing means is larger than the boundary value between the walking and the flat ground walking in the judgment value obtained by fitting the feature quantity of the norm to the data table, the walking is going down The lifting / lowering motion detection device according to claim 1, wherein the device is configured to determine that it is time.
請求項1〜3のうちいずれか1項記載の昇降動作検出装置と、第1演算手段により算出されたノルムの特徴量および昇降判定手段の判定結果に基づいて運動強度を算出する運動強度演算手段とを備えていることを特徴とする活動量計。   The exercise intensity calculating means for calculating exercise intensity based on the feature quantity of the norm calculated by the first calculating means and the determination result of the raising / lowering determining means according to any one of claims 1 to 3. An activity meter characterized by comprising.
JP2007008510A 2007-01-17 2007-01-17 Ascending and descending motion detecting apparatus and activity meter using it Withdrawn JP2008173251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008510A JP2008173251A (en) 2007-01-17 2007-01-17 Ascending and descending motion detecting apparatus and activity meter using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008510A JP2008173251A (en) 2007-01-17 2007-01-17 Ascending and descending motion detecting apparatus and activity meter using it

Publications (1)

Publication Number Publication Date
JP2008173251A true JP2008173251A (en) 2008-07-31

Family

ID=39700755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008510A Withdrawn JP2008173251A (en) 2007-01-17 2007-01-17 Ascending and descending motion detecting apparatus and activity meter using it

Country Status (1)

Country Link
JP (1) JP2008173251A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147536A (en) * 2010-01-20 2011-08-04 Omron Healthcare Co Ltd Body motion detector
JP2011147534A (en) * 2010-01-20 2011-08-04 Omron Healthcare Co Ltd Body motion detector
JP2011206274A (en) * 2010-03-30 2011-10-20 Nec Corp Action determination device, action determination system, terminal device, action determination method, and program
JP2012104089A (en) * 2010-11-11 2012-05-31 Industrial Technology Research Inst Method and system for human movement recognition
WO2013008562A1 (en) * 2011-07-11 2013-01-17 オムロンヘルスケア株式会社 Body movement-detecting device and control method for body movement-detecting device
JP5578292B1 (en) * 2014-03-20 2014-08-27 横浜ゴム株式会社 Speed measurement device for moving objects
WO2015196716A1 (en) * 2014-06-25 2015-12-30 京东方科技集团股份有限公司 Energy consumption measuring method and energy consumption measuring system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147536A (en) * 2010-01-20 2011-08-04 Omron Healthcare Co Ltd Body motion detector
JP2011147534A (en) * 2010-01-20 2011-08-04 Omron Healthcare Co Ltd Body motion detector
JP2011206274A (en) * 2010-03-30 2011-10-20 Nec Corp Action determination device, action determination system, terminal device, action determination method, and program
JP2012104089A (en) * 2010-11-11 2012-05-31 Industrial Technology Research Inst Method and system for human movement recognition
WO2013008562A1 (en) * 2011-07-11 2013-01-17 オムロンヘルスケア株式会社 Body movement-detecting device and control method for body movement-detecting device
JP2013017615A (en) * 2011-07-11 2013-01-31 Omron Healthcare Co Ltd Body motion detection device and method of controlling the same
CN103648380A (en) * 2011-07-11 2014-03-19 欧姆龙健康医疗事业株式会社 Body movement-detecting device and control method for body movement-detecting device
JP5578292B1 (en) * 2014-03-20 2014-08-27 横浜ゴム株式会社 Speed measurement device for moving objects
JP2015181498A (en) * 2014-03-20 2015-10-22 横浜ゴム株式会社 Movable body speed measurement device
KR101584119B1 (en) 2014-03-20 2016-01-12 요코하마 고무 가부시키가이샤 Velocity measuring device for moving bodies
WO2015196716A1 (en) * 2014-06-25 2015-12-30 京东方科技集团股份有限公司 Energy consumption measuring method and energy consumption measuring system
US10330492B2 (en) 2014-06-25 2019-06-25 Boe Technology Group Co., Ltd. Human activity energy consumption measuring method and energy consumption measuring system

Similar Documents

Publication Publication Date Title
US9339214B2 (en) Body movement detection device
EP1852156B1 (en) User-specific performance monitor and method
KR101252634B1 (en) system for analyzing walking motion
RU2550934C2 (en) Fall prevention
EP2850392B1 (en) Method for step detection and gait direction estimation
JP2008173251A (en) Ascending and descending motion detecting apparatus and activity meter using it
JP5937758B2 (en) A device that identifies changes in the vertical direction using barometric pressure measurements.
JP2008262522A (en) Pedometer
JP2008220517A (en) Calorie consumption calculation method and portable calorie consumption measuring instrument
JPH11347021A (en) Consumed calorie calculating device
EP2997898B1 (en) Electronic device, control program, control method, and system
JP2008173248A (en) System for sensing ascent and descent movements of human body and physical activity meter
TW201443834A (en) Device and method for monitoring postural and movement balance for fall prevention
RU2601684C2 (en) Device for real movement detection and control method for device for real movement detection
CN102440781B (en) Method and device for measuring exercise amount
KR101920306B1 (en) Apparatus and method of measuring amount of exercise using mobile device
CN111024126A (en) Self-adaptive zero-speed correction method in pedestrian navigation positioning
JP5330143B2 (en) Moving form discriminating method, moving form discriminating apparatus, and calorie consumption calculating method
JP2006293861A (en) Pedometer
JP2008173249A (en) Activity monitor
CN105769209A (en) Method for calculating heat consumption and electronic device
JP2006293860A (en) Pedometer
JP2008154878A (en) Stairway up-and-down discrimination apparatus and active mass meter
JP5176047B2 (en) Pedometer
JP2008246165A (en) Physical activity meter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406