JP2008172964A - Actual load direction testing device for grounding directional relay - Google Patents

Actual load direction testing device for grounding directional relay Download PDF

Info

Publication number
JP2008172964A
JP2008172964A JP2007005365A JP2007005365A JP2008172964A JP 2008172964 A JP2008172964 A JP 2008172964A JP 2007005365 A JP2007005365 A JP 2007005365A JP 2007005365 A JP2007005365 A JP 2007005365A JP 2008172964 A JP2008172964 A JP 2008172964A
Authority
JP
Japan
Prior art keywords
terminal
ground fault
secondary winding
handle
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007005365A
Other languages
Japanese (ja)
Other versions
JP4526541B2 (en
Inventor
Hirohiko Shinoda
博彦 篠田
Seiji Mikami
成二 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Chugoku Electrical Instruments Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Chugoku Electrical Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Chugoku Electrical Instruments Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2007005365A priority Critical patent/JP4526541B2/en
Publication of JP2008172964A publication Critical patent/JP2008172964A/en
Application granted granted Critical
Publication of JP4526541B2 publication Critical patent/JP4526541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an actual load direction testing device for a grounding directional relay capable of facilitating a measurement and achieving weight reduction in the device. <P>SOLUTION: This actual load direction testing device for a grounding directional relay conducts a test on the grounding directional relay 110 to determine failure and failure direction due to a ground fault using a tertiary circuit 102 connecting the tertiary windings 102A to 102C of a current transformer through the use of the secondary windings 101A to 101C of the current transformer. It includes a switching handle 13 for switching a directional test for determining between a transmitting side failure and a receiving side failure depending upon the position of the handle and a switching section 14 for short-circuiting the secondary windings 101A to 101C of the current transformer and selecting the secondary windings 101A to 101C of the current transformer in response to the position of the switching handle 13 to connect them with a resistor 130. When the switching handle 13 is operated, the switching section 14 selects the secondary windings 101A to 101C of the current transformer to connect with the resistor 130, thereafter releasing the short-circuit of the selected secondary windings. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、地絡方向継電器の機能を確認する際に用いられる地絡方向継電器用実負荷方向試験装置に関する。   The present invention relates to an actual load direction test apparatus for a ground fault direction relay used when confirming the function of a ground fault direction relay.

地絡方向継電器は例えば変電所に設置され、送電線などの地絡事故の検出に用いられる。送電線に地絡事故が発生すると零相電流および零相電圧が生じる。地絡方向継電器は、零相電流と零相電圧とにより送電線の地絡事故を検出し、遮断器に遮断信号を送り、事故範囲の拡大などを防ぐ。こうした地絡方向継電器の機能を確認する際には、送電線の実潮流による確認作業、つまり実際に送電した状態で確認作業が行われる。地絡方向継電器は変流器と共に用いられ、零相電流と零相電圧との検出には、変流器の3次巻線を利用した3次回路を用いる場合と、3つの変流器を用いた残留回路を用いる場合とがある。   The ground fault direction relay is installed in a substation, for example, and is used to detect a ground fault such as a transmission line. When a ground fault occurs in a transmission line, zero phase current and zero phase voltage are generated. The ground fault direction relay detects a ground fault in the transmission line based on the zero phase current and the zero phase voltage, and sends a cutoff signal to the circuit breaker to prevent the extension of the fault range. When confirming the function of such a ground fault direction relay, the confirmation work by the actual power flow of the transmission line, that is, the confirmation work is performed in a state where power is actually transmitted. The ground fault direction relay is used together with a current transformer. For detection of the zero-phase current and the zero-phase voltage, there are a case where a tertiary circuit using a tertiary winding of the current transformer is used and a case where three current transformers are used. The residual circuit used may be used.

地絡方向継電器の機能として、需要家側つまり送電側に発生した故障と発電所側つまり受電側に発生した事故とを判定する機能があるが、この機能を調べるための方向試験をする際には、3次回路を用いる場合や残留回路を用いる場合のいずれでも、作業者が変流器に対する結線を変更する必要がある。つまり、変流器の3次回路を利用して零相電流と零相電圧とを検出する場合には、変流器の2次回路について3相交流の1相または2相を欠相し、残留回路を利用する場合には、残留回路について3相交流の1相または2相を欠相するための結線変更が必要である。こうした結線変更をする場合に、誤結線を防いで地絡方向継電器の試験する試験器がある(例えば、特許文献1参照。)。
特開平7−35806号公報
As a function of the ground fault direction relay, there is a function to judge a failure that occurred on the customer side, that is, the power transmission side, and an accident that occurred on the power station side, that is, the power receiving side, but when conducting a direction test to investigate this function The operator needs to change the connection to the current transformer regardless of whether a tertiary circuit or a residual circuit is used. In other words, when detecting the zero-phase current and the zero-phase voltage using the tertiary circuit of the current transformer, one phase or two phases of the three-phase alternating current is lost in the secondary circuit of the current transformer, When the residual circuit is used, it is necessary to change the connection in order to open one phase or two phases of the three-phase AC in the residual circuit. In such a connection change, there is a tester for testing a ground fault direction relay while preventing erroneous connection (see, for example, Patent Document 1).
JP-A-7-35806

ところで、先に述べた地絡方向継電器の試験器には、次のような課題がある。この試験器を用いる場合、3相交流の1相または2相を欠相するための欠相用の3つのプラグの抜き差しにより、変流器に対する結線変更を行う。このように、従来の試験器には3つの欠相プラグが必要であるので、装置が大型になり、かつ、装置が重くなるという課題がある。また、欠相プラグが3つあるので、プラグを間違って抜き差しする可能性がある。さらに、零相電流と零相電圧との検出の際に、変流器の3次回路を用いる場合には、2次回路と3次回路の2つがあるので、結線変更のために変流器の接続状態を示す図面が不可欠である。   By the way, the ground fault direction relay tester described above has the following problems. When this tester is used, the connection to the current transformer is changed by inserting / removing three plugs for phase loss for phase loss of one or two phases of the three-phase alternating current. Thus, since the conventional tester requires three open phase plugs, there is a problem that the apparatus becomes large and the apparatus becomes heavy. Moreover, since there are three open phase plugs, there is a possibility that the plugs may be inserted and removed by mistake. Further, when using the tertiary circuit of the current transformer when detecting the zero-phase current and the zero-phase voltage, since there are two secondary circuits and a tertiary circuit, the current transformer is used to change the connection. Drawings showing the connection state of the are indispensable.

この発明の目的は、前記の課題を解決し、測定を簡単に行うことを可能にし、また、装置の軽量化を可能にする地絡方向継電器用実負荷方向試験装置を提供することにある。   An object of the present invention is to provide an actual load direction test device for a ground fault direction relay that solves the above-mentioned problems, makes it possible to easily perform measurement, and enables the weight of the device to be reduced.

前記の課題を解決するために、請求項1の発明は、変流器の3次巻線を結線した3次回路を用いて地絡による故障発生と故障発生方向とを判定する地絡方向継電器の試験を、前記変流器の2次巻線を用いて行う地絡方向継電器用実負荷方向試験装置であって、送電側故障と受電側故障との判別をするための方向試験を、ハンドルの位置により切り換える操作部と、前記変流器の各2次巻線を短絡状態にし、前記操作部のハンドルの位置に応じて、前記変流器の各2次巻線を選択して抵抗器に接続する切換え部とを備え、前記切換え部は、前記操作部のハンドルが操作されると、前記変流器の各2次巻線を選択して前記抵抗器に接続した後で選択した2次巻線の短絡状態を解除することを特徴とする地絡方向継電器用実負荷方向試験装置である。   In order to solve the above-mentioned problem, the invention of claim 1 is a ground fault direction relay that determines a fault occurrence due to a ground fault and a fault occurrence direction using a tertiary circuit in which a tertiary winding of a current transformer is connected. Is an actual load direction test device for a ground fault direction relay using the secondary winding of the current transformer, and a direction test for discriminating between a power transmission side failure and a power reception side failure The operation section to be switched depending on the position of the current transformer and each secondary winding of the current transformer are short-circuited, and each secondary winding of the current transformer is selected according to the position of the handle of the operation section to select a resistor. The switching unit connected to the resistor, and when the handle of the operation unit is operated, the switching unit is selected after selecting each secondary winding of the current transformer and connecting to the resistor. It is an actual load direction test device for ground fault direction relay, characterized by canceling the short-circuit state of the next winding

請求項1の発明では、地絡方向継電器は、変流器の3次巻線を結線した3次回路を用いて地絡による故障発生と故障発生方向とを判定する。こうした状態のときに、地絡方向継電器の方向試験を行うために、作業者が操作部のハンドルを操作して、送電側の試験と受電側の試験と切り換える。一方、切換え部は、変流器の各2次巻線を短絡状態にしているが、操作部のハンドルが操作されると、ハンドルの位置に応じて変流器の各2次巻線を選択して抵抗器に接続する。つまり、2次巻線による2次回路の1相または2相を欠相にする。このとき、切換え部は、変流器の各2次巻線を選択して抵抗器に接続した後で、選択した2次巻線の短絡状態を解除する。   In the first aspect of the invention, the ground fault direction relay determines a fault occurrence due to a ground fault and a fault occurrence direction using a tertiary circuit in which the tertiary winding of the current transformer is connected. In such a state, in order to perform the direction test of the ground fault direction relay, the operator operates the handle of the operation unit to switch between the power transmission side test and the power reception side test. On the other hand, the switching unit short-circuits each secondary winding of the current transformer, but when the handle of the operation unit is operated, each secondary winding of the current transformer is selected according to the position of the handle. And connect to the resistor. That is, one phase or two phases of the secondary circuit by the secondary winding are made open. At this time, the switching unit selects each secondary winding of the current transformer and connects it to the resistor, and then cancels the short-circuit state of the selected secondary winding.

請求項2の発明は、請求項1に記載の地絡方向継電器用実負荷方向試験装置において、前記操作部のハンドルの位置に応じて前記3次回路に発生する零相電流を測る測定装置を前記地絡方向継電器に接続したことを特徴とする。   According to a second aspect of the present invention, there is provided a measuring device for measuring a zero-phase current generated in the tertiary circuit in accordance with a position of a handle of the operation unit in the actual load direction test device for a ground fault direction relay according to the first aspect. It is connected to the ground fault direction relay.

請求項3の発明は、地絡による故障発生と故障発生方向とを判定する地絡方向継電器の試験を、3つの変流器の2次巻線を用いて行う地絡方向継電器用実負荷方向試験装置であって、送電側故障と受電側故障との判別をするための方向試験を、ハンドルの位置により切り換える操作部と、前記各変流器の2次巻線を短絡状態にし、前記操作部のハンドルの位置に応じて、前記各変流器の2次巻線を選択して前記地絡方向継電器に接続する切換え部とを備え、前記切換え部は、前記操作部のハンドルが操作されると、前記各変流器の2次巻線を選択して前記地絡方向継電器に接続した後で選択した2次巻線の短絡状態を解除することを特徴とする地絡方向継電器用実負荷方向試験装置である。   The invention according to claim 3 is the actual load direction for the ground fault direction relay for performing the test of the ground fault direction relay for determining the occurrence of the fault due to the ground fault and the direction of the fault occurrence using the secondary windings of the three current transformers. A test device for switching a direction test for discriminating between a power transmission-side failure and a power-receiving-side failure according to a position of a handle; and a secondary winding of each of the current transformers in a short-circuit state; A switching unit that selects a secondary winding of each of the current transformers and connects to the ground fault direction relay according to the position of the handle of the unit, and the switching unit is operated by the handle of the operation unit. Then, after selecting the secondary winding of each current transformer and connecting it to the ground fault direction relay, the short circuit state of the selected secondary winding is released. It is a load direction test device.

請求項3の発明では、地絡方向継電器は、地絡による故障発生と故障発生方向とを判定する地絡方向継電器の試験を、3つの変流器の2次巻線を用いて行う。つまり、地絡方向継電器の試験を行うために、作業者が操作部のハンドルを操作して、送電側の試験と受電側の試験と切り換える。一方、切換え部は、変流器の各2次巻線を短絡状態にしているが、操作部のハンドルが操作されると、操作部のハンドルの位置に応じて、各変流器の2次巻線を選択して地絡方向継電器に接続する。つまり、3つの変流器の2次巻線と切換え部とにより形成される残留回路の1相または2相を欠相にする。このとき、切換え部は、各変流器の2次巻線を選択して地絡方向継電器に接続した後で選択した2次巻線の短絡状態を解除する。   According to the invention of claim 3, the ground fault direction relay performs a test of the ground fault direction relay for determining the occurrence of the fault due to the ground fault and the fault occurrence direction using the secondary windings of the three current transformers. That is, in order to perform the test of the ground fault direction relay, the operator operates the handle of the operation unit to switch between the power transmission side test and the power reception side test. On the other hand, the switching unit short-circuits each secondary winding of the current transformer, but when the handle of the operation unit is operated, the secondary of each current transformer depends on the position of the handle of the operation unit. Select the winding and connect it to the ground fault relay. That is, one or two phases of the residual circuit formed by the secondary windings and the switching unit of the three current transformers are made open. At this time, the switching unit releases the short-circuit state of the selected secondary winding after selecting the secondary winding of each current transformer and connecting it to the ground fault direction relay.

請求項4の発明は、請求項3に記載の地絡方向継電器用実負荷方向試験装置において、前記切換え部は、前記操作部のハンドルの位置に応じて前記3次回路に発生する零相電流を測る測定装置を、選択した2次巻線に接続することを特徴とする。   According to a fourth aspect of the present invention, in the actual load direction test device for a ground fault direction relay according to the third aspect, the switching unit is a zero-phase current generated in the tertiary circuit in accordance with the position of the handle of the operation unit. A measuring device for measuring the current is connected to the selected secondary winding.

請求項5の発明は、請求項1〜4のいずれか1項に記載の地絡方向継電器用実負荷方向試験装置において、前記切換え部は、前記各変流器の2次巻線を選択して前記地絡方向継電器に接続した後で選択した2次巻線の短絡状態を解除するために、接続状態と解除状態が重なる重なり接点を用いたことを特徴とする。   According to a fifth aspect of the present invention, in the actual load direction testing device for a ground fault direction relay according to any one of the first to fourth aspects, the switching unit selects a secondary winding of each of the current transformers. In order to cancel the short-circuit state of the secondary winding selected after being connected to the ground fault direction relay, an overlapping contact where the connection state and the release state overlap is used.

請求項1の発明によれば、送電側と受電側の方向試験を切り換えて行う場合、操作部のハンドルの位置に応じて変流器の2次巻線を選択して抵抗器を接続するので、変流器の3次回路には零相電流が発生し、地絡方向継電器を試験することができる。このとき、切換え部により変流器の各2次巻線を選択して抵抗器に接続した後で、選択した2次巻線の短絡状態を解除するので、欠相状態を変更する際に、つまり零相電流の位相を変える際に各2次巻線が開放されることを防ぐことができる。また、操作部のハンドル操作により、位相を変えることができるので、地絡方向継電器の試験を容易に、かつ、短時間で行うことを可能にする。   According to the first aspect of the present invention, when switching the direction test between the power transmission side and the power reception side, the resistor is connected by selecting the secondary winding of the current transformer according to the position of the handle of the operation unit. A zero-phase current is generated in the tertiary circuit of the current transformer, and the ground fault direction relay can be tested. At this time, after selecting each secondary winding of the current transformer by the switching unit and connecting it to the resistor, the short circuit state of the selected secondary winding is released, so when changing the phase loss state, That is, it is possible to prevent the secondary windings from being opened when changing the phase of the zero-phase current. In addition, since the phase can be changed by operating the handle of the operation unit, the ground fault direction relay can be easily tested in a short time.

請求項2および請求項4の発明によれば、地絡方向継電器に与えられる零相電流の状態を測定することができる。   According to invention of Claim 2 and Claim 4, the state of the zero phase current given to a ground fault direction relay can be measured.

請求項3の発明によれば、送電側と受電側の方向試験を切り換えて行う場合、操作部のハンドルの位置に応じて各変流器の2次巻線を選択して地絡方向継電器に接続するので、変流器の残留回路により地絡方向継電器を試験することができる。このとき、切換え部により変流器の各2次巻線を選択して地絡方向継電器に接続した後で選択した2次巻線の短絡状態を解除するので、零相電流の位相を変える際に各2次巻線が開放されることを防ぐことができる。また、操作部のハンドル操作により、位相を変えることができるので、地絡方向継電器の試験を容易に、かつ、短時間で行うことを可能にする。   According to the invention of claim 3, when switching the direction test between the power transmission side and the power reception side, the secondary winding of each current transformer is selected according to the position of the handle of the operation unit, and the ground fault direction relay is selected. Because of the connection, the ground fault direction relay can be tested by the residual circuit of the current transformer. At this time, since the switching unit selects each secondary winding of the current transformer and connects it to the ground fault direction relay, the selected secondary winding is released from the short-circuit state. It is possible to prevent the secondary windings from being opened. In addition, since the phase can be changed by operating the handle of the operation unit, the ground fault direction relay can be easily tested in a short time.

請求項5の発明によれば、切換え部に重なり接点を用いるので、切換え部の構成を簡単にし、3つの欠相プラグを用いる従来に比べて、装置の軽量化を可能にする。   According to the invention of claim 5, since the overlapping contact is used for the switching portion, the configuration of the switching portion is simplified, and the weight of the device can be reduced as compared with the conventional case using three open phase plugs.

次に、この発明の実施の形態について、図面を用いて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
この実施の形態では、変流器の3次巻線を接続して形成される3次回路に地絡方向継電器が接続されている。そして、変流器の2次巻線を選択して抵抗器に接続することにより、送電側または受電側の故障時に生じる零相電流を3次回路に発生させて、地絡方向継電器の方向試験を行う。この実施の形態による地絡方向継電器用実負荷方向試験装置(以下、「実負荷方向試験装置」という)を図1に示す。図1の実負荷方向試験装置1は、箱状の収納ケース11を備え、収納ケース11の操作パネル11Aに「R」と示された端子12A(以下、「R端子12A」という)、「S」と示された端子12B(以下、「S端子12B」という)、「T」と示された端子12C(以下、「T端子12C」という)、「N」と示された端子12D(以下、「N端子12D」という)と、「RE」と示された2つの端子12E、12F(以下、「RE端子12E」、「RE端子12F」という)とを備え、さらに、操作パネル11Aに切換えハンドル13を備えている。
(Embodiment 1)
In this embodiment, the ground fault direction relay is connected to the tertiary circuit formed by connecting the tertiary winding of the current transformer. Then, by selecting the secondary winding of the current transformer and connecting it to the resistor, a zero-phase current generated at the time of failure on the power transmission side or the power reception side is generated in the tertiary circuit, and the direction test of the ground fault direction relay I do. FIG. 1 shows an actual load direction test device for a ground fault direction relay according to this embodiment (hereinafter referred to as “actual load direction test device”). 1 includes a box-shaped storage case 11, and a terminal 12A (hereinafter referred to as “R terminal 12A”), “S” indicated on the operation panel 11A of the storage case 11, and “S”. Terminal 12B (hereinafter referred to as “S terminal 12B”), terminal 12C indicated as “T” (hereinafter referred to as “T terminal 12C”), terminal 12D indicated as “N” (hereinafter referred to as “T”). "N terminal 12D") and two terminals 12E and 12F indicated as "RE" (hereinafter referred to as "RE terminal 12E" and "RE terminal 12F"), and a switching handle on the operation panel 11A. 13 is provided.

操作パネル11AのR端子12A〜N端子12Dには接続具2が接続される。接続具2は、R端子12A、S端子12B、T端子12CおよびN端子12Dに一端が接続されるケーブル21と、ケーブル21の他端に接続されているCTTプラグ(電流試験用端子)22とを備えている。CTTプラグ22は、図2に示すように、例えば変電所の母線のR相、S相、T相に設置された変流器の2次回路101に接続される。変流器の2次回路101は、3相交流のR相側に設けられた変流器の2次巻線101Aと、S相側に設けられた変流器の2次巻線101Bと、T相側に設けられた変流器の2次巻線101Cとの接続により、R相用のR端子、S相用のS端子、T相用のT端子および中性相用のN端子を備えている。そして、接続具2は、実負荷方向試験装置1の赤相用のR端子12A、白相用のS端子12B、青相用のT端子12Cおよび中性相用のN端子12Dを、2次回路101のR端子、S端子、T端子、およびN端子に接続する。   The connector 2 is connected to the R terminals 12A to 12D of the operation panel 11A. The connector 2 includes a cable 21 having one end connected to the R terminal 12A, S terminal 12B, T terminal 12C, and N terminal 12D, and a CTT plug (current test terminal) 22 connected to the other end of the cable 21. It has. As shown in FIG. 2, the CTT plug 22 is connected to a secondary circuit 101 of a current transformer installed in, for example, the R phase, S phase, and T phase of the bus of the substation. The secondary circuit 101 of the current transformer includes a secondary winding 101A of the current transformer provided on the R-phase side of the three-phase AC, a secondary winding 101B of the current transformer provided on the S-phase side, R terminal for R phase, S terminal for S phase, T terminal for T phase, and N terminal for neutral phase by connecting with secondary winding 101C of current transformer provided on T phase side I have. Then, the connecting device 2 includes the R terminal 12A for the red phase, the S terminal 12B for the white phase, the T terminal 12C for the blue phase, and the N terminal 12D for the neutral phase of the actual load direction test apparatus 1 as a secondary circuit. 101 is connected to the R terminal, S terminal, T terminal, and N terminal.

なお、変流器の3次回路102は、3次巻線102A〜102Cの接続により形成され、零相電流と零相電圧とを検出するために用いられる。そして、3次回路102には、零相電圧と零相電流とを用いて地絡発生および地絡発生方向を検出する地絡方向継電器110と、零相電流およびその位相を検出する計測装置120とが接続されている。   The tertiary circuit 102 of the current transformer is formed by connecting the tertiary windings 102A to 102C, and is used for detecting the zero-phase current and the zero-phase voltage. The tertiary circuit 102 includes a ground fault direction relay 110 that detects a ground fault and a ground fault generation direction using a zero phase voltage and a zero phase current, and a measuring device 120 that detects a zero phase current and its phase. And are connected.

操作パネル11AのRE端子12E、RE端子12Fには、地絡方向継電器110の動作確認に際して電流を調整する抵抗器130が接続される(図2)。   A resistor 130 for adjusting the current when confirming the operation of the ground fault direction relay 110 is connected to the RE terminal 12E and the RE terminal 12F of the operation panel 11A (FIG. 2).

切換えハンドル13は、地絡方向継電器110の機能を確認する作業を行う作業者によって操作されるものであり、軸13Aを中心に回り、かつ、「送電」と示された位置、「切」と示された位置、「受電」と示された位置で止まる。また、切換えハンドル13は「切」の位置で、操作パネル11Aに設けられた取付孔からの抜き差しが可能である。つまり、切換えハンドル13は、地絡方向継電器110の機能確認作業を行わないときに、操作パネル11Aから抜き取ることができる。こうした切換えハンドル13は切換え部14(図2)に連結される。   The switching handle 13 is operated by an operator who confirms the function of the ground fault direction relay 110, rotates around the shaft 13A, and is at a position indicated as “power transmission”, “off” and It stops at the indicated position, the position indicated as “power reception”. Further, the switching handle 13 can be inserted / removed from a mounting hole provided in the operation panel 11 </ b> A at the “OFF” position. That is, the switching handle 13 can be removed from the operation panel 11A when the function confirmation work of the ground fault direction relay 110 is not performed. Such a switching handle 13 is connected to a switching portion 14 (FIG. 2).

切換え部14は収納ケース11に収納され、切換えスイッチ14Aを備えている。切換えスイッチ14Aは切換えハンドル13の操作により回転する。また、切換えスイッチ14Aは、「送電」、「切」および「受電」の位置でオーバーラップ接点P1〜P9を備え、切換えスイッチ14Aの端子S11と端子S12との間、…、端子S53と端子S54との間の開閉を制御する制御用のカムスイッチである。オーバーラップ接点P1〜P9は重なり接触を可能とする接点(重なり接触接点)であり、例えば図3(a)に示すように、切換えハンドル13が「切」の位置であると、オーバーラップ接点P1はオンになって端子S11と端子S12との間を電気的に接続する。同じように、切換えハンドル13が「切」の位置であると、オーバーラップ接点P4がオンになって端子S21と端子S22との間を電気的に接続し、オーバーラップ接点P6がオンになって端子S31と端子S32との間を電気的に接続する。このとき、オーバーラップ接点P2はオンであり、オーバーラップ接点P3、P5もオフである。また、オーバーラップ接点P7はオフであり、端子S41と端子S42との間を電気的に接続しない。同様に、オーバーラップ接点P8、P9もオフである。   The switching unit 14 is stored in the storage case 11 and includes a switching switch 14A. The changeover switch 14 </ b> A is rotated by operating the changeover handle 13. Further, the changeover switch 14A includes overlap contacts P1 to P9 at the positions of “power transmission”, “off” and “power reception”, between the terminals S11 and S12 of the changeover switch 14A,..., Terminals S53 and S54. Is a control cam switch for controlling the opening and closing of the switch. The overlap contacts P1 to P9 are contacts (overlap contact) that enable overlapping contact. For example, as shown in FIG. 3A, when the switching handle 13 is in the “OFF” position, the overlap contact P1. Is turned on to electrically connect the terminal S11 and the terminal S12. Similarly, when the switching handle 13 is in the “OFF” position, the overlap contact P4 is turned on to electrically connect the terminals S21 and S22, and the overlap contact P6 is turned on. The terminals S31 and S32 are electrically connected. At this time, the overlap contact P2 is on, and the overlap contacts P3 and P5 are also off. The overlap contact P7 is off and does not electrically connect between the terminal S41 and the terminal S42. Similarly, the overlap contacts P8 and P9 are also off.

この状態で、切換えハンドル13を「切」の位置から「送電」の位置にすると、図3(b)に示すように、オーバーラップ接点P7がオンになった後でオーバーラップ接点P1がオフになる。つまり、オーバーラップ接点P7は切換えハンドル13が「送電」の位置のみでオンであるが、オーバーラップ接点P1とオーバーラップ接点P7との接触が重なり合った状態で、端子S11と端子S12との間および端子S41と端子S42との間の接続を制御する。また、オーバーラップ接点P3、P4およびオーバーラップ接点P5、P6は切換えハンドル13が「切」の位置と「送電」の位置でオンである。   In this state, when the switching handle 13 is changed from the “OFF” position to the “power transmission” position, the overlap contact P1 is turned OFF after the overlap contact P7 is turned ON, as shown in FIG. Become. That is, the overlap contact P7 is on only when the switching handle 13 is in the “power transmission” position, but the contact between the overlap contact P1 and the overlap contact P7 is overlapped between the terminals S11 and S12 and The connection between the terminal S41 and the terminal S42 is controlled. The overlap contacts P3 and P4 and the overlap contacts P5 and P6 are ON when the switching handle 13 is in the “OFF” position and the “power transmission” position.

切換えスイッチ14Aを「切」の位置から「受電」の位置にすると、オーバーラップ接点P8、P9がオンになった後でオーバーラップ接点P4、P6がオフになる。つまり、オーバーラップ接点P8、P9は切換えハンドル13が「受電」の位置でそれぞれオンとなるが、オーバーラップ接点P4、P6とオーバーラップ接点P8、P9の接触が重なり合った状態で、端子S21と端子S22との間の接続、端子S31と端子S32との間の接続、端子S51と端子S52との間の接続および端子S53と端子S54との間の接続を制御する。また、オーバーラップ接点P1、P2は切換えハンドル13が「切」の位置と「受電」の位置でオンである。   When the changeover switch 14A is moved from the “OFF” position to the “power receiving” position, the overlap contacts P4 and P6 are turned OFF after the overlap contacts P8 and P9 are turned ON. That is, the overlap contacts P8 and P9 are turned on when the switching handle 13 is in the "power receiving" position, but the terminals S21 and the terminal S21 are in contact with the overlap contacts P4 and P6 and the overlap contacts P8 and P9. The connection between S22, the connection between terminals S31 and S32, the connection between terminals S51 and S52, and the connection between terminals S53 and S54 are controlled. The overlap contacts P1 and P2 are ON when the switching handle 13 is in the “OFF” position and the “Power receiving” position.

こうした切換えスイッチ14Aと端子12A〜12Fとは図2に示すように接続されている。R端子12Aは、切換えスイッチ14Aの端子S11と端子S41とに接続されている。S端子12Bは、切換えスイッチ14Aの端子S21と端子S51とに接続されている。T端子12Cは、切換えスイッチ14Aの端子S31と端子S53とに接続されている。N端子12Dは、抵抗器130の接続用端子であるRE端子12Fと端子S12と端子S22と端子S32とに接続されている。抵抗器130の接続用端子であるRE端子12Eは切換えスイッチ14Aの端子S42と端子S52と端子S54とに接続されている。   The changeover switch 14A and the terminals 12A to 12F are connected as shown in FIG. The R terminal 12A is connected to the terminals S11 and S41 of the changeover switch 14A. The S terminal 12B is connected to the terminals S21 and S51 of the changeover switch 14A. The T terminal 12C is connected to the terminals S31 and S53 of the changeover switch 14A. The N terminal 12D is connected to the RE terminal 12F, the terminal S12, the terminal S22, and the terminal S32 which are connection terminals of the resistor 130. The RE terminal 12E, which is a connection terminal of the resistor 130, is connected to the terminal S42, the terminal S52, and the terminal S54 of the changeover switch 14A.

次に、この実施の形態の動作について説明する。作業者が地絡方向継電器110の機能確認として方向試験をするために、接続具2を用いて実負荷方向試験装置1を変流器の2次回路101に接続し、実負荷方向試験装置1に抵抗器130を接続する。この後、作業者は切換えハンドル13を収納ケース11に差し込む。このとき、切換えハンドル13は「切」の位置にあり、図4に示すように、2次回路101の2次巻線101AはルートR1により短絡された状態になる。ルートR1は、R端子12A、端子S11、オーバーラップ接点P1、P2、端子S12、端子S22、端子S32、N端子12Dを経ることにより形成される。また、図5に示すように、2次回路101の2次巻線101BはルートR2により短絡された状態になる。ルートR2は、S端子12B、端子S21、オーバーラップ接点P3、P4、端子S22、端子S32、N端子12Dを経ることにより形成される。同じように、図6に示すように、2次回路101の2次巻線101CはルートR3により短絡された状態になる。ルートR3は、T端子12C、端子S31、オーバーラップ接点P5、P6、端子S32、N端子12Dにより形成される。   Next, the operation of this embodiment will be described. In order for an operator to perform a direction test as a function check of the ground fault direction relay 110, the actual load direction test device 1 is connected to the secondary circuit 101 of the current transformer using the connector 2, and the actual load direction test device 1. The resistor 130 is connected to. Thereafter, the operator inserts the switching handle 13 into the storage case 11. At this time, the switching handle 13 is in the “OFF” position, and as shown in FIG. 4, the secondary winding 101A of the secondary circuit 101 is short-circuited by the route R1. The route R1 is formed by passing through an R terminal 12A, a terminal S11, overlap contacts P1, P2, a terminal S12, a terminal S22, a terminal S32, and an N terminal 12D. Further, as shown in FIG. 5, the secondary winding 101B of the secondary circuit 101 is short-circuited by the route R2. The route R2 is formed through the S terminal 12B, the terminal S21, the overlap contacts P3 and P4, the terminal S22, the terminal S32, and the N terminal 12D. Similarly, as shown in FIG. 6, the secondary winding 101C of the secondary circuit 101 is short-circuited by the route R3. The route R3 is formed by a T terminal 12C, a terminal S31, overlap contacts P5 and P6, a terminal S32, and an N terminal 12D.

このように、切換えハンドル13が切の位置にあると、2次回路101の2次巻線101A〜101Cがすべて短絡された状態になり、3次回路102には零相電流が発生しない。   Thus, when the switching handle 13 is in the off position, the secondary windings 101A to 101C of the secondary circuit 101 are all short-circuited, and no zero-phase current is generated in the tertiary circuit 102.

作業者が例えば送電側つまり需要家側に故障が発生した際の地絡方向継電器110の方向試験を行うために、切換えハンドル13を「切」の位置から「送電」の位置に回す。これにより、図7に示すように、オーバーラップ接点P7がオンになった後でオーバーラップ接点P1がオフになる。オーバーラップ接点P7がオンになると、2次回路101の2次巻線101AはルートR11により抵抗器130が接続された状態になる。ルートR11は、R端子12A、端子S11、端子S41、オーバーラップ接点P7、端子S42、一方のRE端子12E、抵抗器130、他方のRE端子12F、N端子12Dを経ることにより形成される。また、切換えハンドル13が「切」の位置から「送電」の位置になると、図8に示すように、オーバーラップ接点P3、P4がオンになる。オーバーラップ接点P3、P4がオンになると、2次回路101の2次巻線101BはルートR12により短絡された状態になる。ルートR12は、S端子12B、端子S21、オーバーラップ接点P3、P4、端子S22、端子S32、N端子12Dを経ることにより形成される。さらに、切換えハンドル13が「切」の位置から「送電」の位置になると、図9に示すように、オーバーラップ接点P5、P6がオンになる。オーバーラップ接点P5、P6がオンになると、2次回路101の2次巻線101CはルートR13により短絡された状態になる。ルートR13は、T端子12C、端子S31、オーバーラップ接点P5、P6、端子S32、N端子12Dを経ることにより形成される。   For example, in order to perform a direction test of the ground fault direction relay 110 when a failure occurs on the power transmission side, that is, the customer side, the operator turns the switching handle 13 from the “OFF” position to the “Power transmission” position. Thereby, as shown in FIG. 7, after the overlap contact P7 is turned on, the overlap contact P1 is turned off. When the overlap contact P7 is turned on, the secondary winding 101A of the secondary circuit 101 is in a state where the resistor 130 is connected by the route R11. The route R11 is formed by passing through an R terminal 12A, a terminal S11, a terminal S41, an overlap contact P7, a terminal S42, one RE terminal 12E, a resistor 130, the other RE terminal 12F, and an N terminal 12D. When the switching handle 13 is changed from the “OFF” position to the “power transmission” position, the overlap contacts P3 and P4 are turned on as shown in FIG. When the overlap contacts P3 and P4 are turned on, the secondary winding 101B of the secondary circuit 101 is short-circuited by the route R12. The route R12 is formed through the S terminal 12B, the terminal S21, the overlap contacts P3 and P4, the terminal S22, the terminal S32, and the N terminal 12D. Further, when the switching handle 13 is changed from the “OFF” position to the “power transmission” position, the overlap contacts P5 and P6 are turned on as shown in FIG. When the overlap contacts P5 and P6 are turned on, the secondary winding 101C of the secondary circuit 101 is short-circuited by the route R13. The route R13 is formed through the T terminal 12C, the terminal S31, the overlap contacts P5 and P6, the terminal S32, and the N terminal 12D.

この結果、作業者が切換えハンドル13を「切」の位置から「送電」の位置に回しても、2次回路101の2次巻線101A〜101Cが開放されることなく、2次回路101のR相用の2次巻線101Aには抵抗器130が接続され、2次回路101のS相用の2次巻線101BおよびT相用の2次巻線101Cは短絡状態を保つ。つまり、2次回路101の1相が欠相の状態になるので、3次回路102には2次回路101のR相を基にした零相電流が発生する。そして、零相電流が地絡方向継電器110に加えられるので、送電側に故障が発生した際の地絡方向継電器110の方向試験を可能にする。この後、作業者が切換えハンドル13を「送電」の位置から「切」の位置に戻しても、オーバーラップ接点P1、P3〜P7によって、2次回路101の2次巻線101A〜101Cは開放されることなく短絡状態になる。   As a result, even if the operator turns the switching handle 13 from the “OFF” position to the “power transmission” position, the secondary windings 101A to 101C of the secondary circuit 101 are not opened and the secondary circuit 101 A resistor 130 is connected to the secondary winding 101A for the R phase, and the secondary winding 101B for the S phase and the secondary winding 101C for the T phase of the secondary circuit 101 are kept short-circuited. That is, since one phase of the secondary circuit 101 is in an open phase state, a zero-phase current based on the R phase of the secondary circuit 101 is generated in the tertiary circuit 102. Since the zero-phase current is applied to the ground fault direction relay 110, the direction test of the ground fault direction relay 110 when a failure occurs on the power transmission side is enabled. Thereafter, even if the operator returns the switching handle 13 from the “power transmission” position to the “off” position, the secondary windings 101A to 101C of the secondary circuit 101 are opened by the overlap contacts P1, P3 to P7. It becomes a short circuit state without being done.

作業者が受電側つまり発電所側に故障が発生した際の地絡方向継電器110の方向試験を行うために、切換えハンドル13を「切」の位置から「受電」の位置に回すと、図10に示すように、オーバーラップ接点P2、P1がオンになる。オーバーラップ接点P2、P1がオンになると、2次回路101の2次巻線101AはルートR21により短絡された状態になる。ルートR21は、R端子12A、端子S11、オーバーラップ接点P2、P1、端子S12、端子S22、端子S32、N端子12Dを経ることにより形成される。また、切換えハンドル13が「切」の位置から「受電」の位置になると、図11に示すように、オーバーラップ接点P8がオンになった後でオーバーラップ接点P4がオフになる。オーバーラップ接点P8がオンになると、2次回路101の2次巻線101BはルートR22により抵抗器130が接続された状態になる。ルートR22は、S端子12B、端子S21、端子S51、オーバーラップ接点P8、端子S52、端子S42、一方のRE端子12E、抵抗器130、他方のRE端子12F、N端子12Dを経ることにより形成される。同じように、切換えハンドル13が「切」の位置から「受電」の位置になると、図12に示すように、オーバーラップ接点P9がオンになった後でオーバーラップ接点P6がオフになる。オーバーラップ接点P9がオンになると、2次回路101の2次巻線101CはルートR23により抵抗器130が接続された状態になる。ルートR23は、T端子12C、端子S31、端子S53、オーバーラップ接点P9、端子S54、端子S52、端子S42、一方のRE端子12E、抵抗器130、他方のRE端子12F、N端子12Dを経ることにより形成される。   When the operator turns the switching handle 13 from the “off” position to the “power receiving” position in order to perform the direction test of the ground fault direction relay 110 when a failure occurs on the power receiving side, that is, the power plant side, FIG. As shown, the overlap contacts P2, P1 are turned on. When the overlap contacts P2 and P1 are turned on, the secondary winding 101A of the secondary circuit 101 is short-circuited by the route R21. The route R21 is formed through the R terminal 12A, the terminal S11, the overlap contacts P2, P1, the terminal S12, the terminal S22, the terminal S32, and the N terminal 12D. Further, when the switching handle 13 is changed from the “OFF” position to the “power reception” position, as shown in FIG. 11, the overlap contact P4 is turned OFF after the overlap contact P8 is turned ON. When the overlap contact P8 is turned on, the secondary winding 101B of the secondary circuit 101 is connected to the resistor 130 through the route R22. The route R22 is formed by passing through the S terminal 12B, the terminal S21, the terminal S51, the overlap contact P8, the terminal S52, the terminal S42, one RE terminal 12E, the resistor 130, the other RE terminal 12F, and the N terminal 12D. The Similarly, when the switching handle 13 is moved from the “OFF” position to the “power receiving” position, the overlap contact P6 is turned off after the overlap contact P9 is turned on, as shown in FIG. When the overlap contact P9 is turned on, the secondary winding 101C of the secondary circuit 101 is in a state where the resistor 130 is connected by the route R23. Route R23 passes through T terminal 12C, terminal S31, terminal S53, overlap contact P9, terminal S54, terminal S52, terminal S42, one RE terminal 12E, resistor 130, the other RE terminal 12F, and N terminal 12D. It is formed by.

この結果、作業者が切換えハンドル13を「切」の位置から「受電」の位置に回しても、2次回路101の2次巻線101A〜101Cが開放されることなく、2次回路101のR相用の2次巻線101Aは短絡状態を保ち、S相用の2次巻線101BおよびT相用の2次巻線101Cには抵抗器130が接続された状態になる。つまり、2次回路101の2相が欠相の状態になるので、3次回路102には2次回路101のS相とT相とを基にした零相電流が発生する。そして、零相電流が地絡方向継電器110に加えられる。一般的に地絡方向継電器110は、切換えハンドル13の「受電」および「送電」のどちらか一方の位置でのみ動作となる。したがって、動作側の試験を行なった後は、地絡方向継電器110の不動作を確認するための試験となる。つまり、切換えハンドル13の「送電」側で動作を確認すると(正動作という)、切換えハンドル13の「受電」側では不動作確認となる(動作すれば誤動作という)。このように、地絡方向継電器110の方向試験を可能にする。この後、作業者が切換えハンドル13を「受電」の位置から「切」の位置に戻しても、オーバーラップ接点P1、P2、P4、P6、P8、P9によって、2次回路101の2次巻線101A〜101Cは開放されることなく短絡状態になる。   As a result, even if the operator turns the switching handle 13 from the “OFF” position to the “power receiving” position, the secondary windings 101A to 101C of the secondary circuit 101 are not opened and the secondary circuit 101 The R-phase secondary winding 101A is kept short-circuited, and the resistor 130 is connected to the S-phase secondary winding 101B and the T-phase secondary winding 101C. That is, since the two phases of the secondary circuit 101 are in an open phase state, a zero phase current based on the S phase and the T phase of the secondary circuit 101 is generated in the tertiary circuit 102. A zero-phase current is then applied to the ground fault relay 110. Generally, the ground fault direction relay 110 operates only at one of the “power reception” and “power transmission” positions of the switching handle 13. Therefore, after the operation side test is performed, the test is performed to confirm the non-operation of the ground fault direction relay 110. That is, when the operation is confirmed on the “power transmission” side of the switching handle 13 (referred to as a normal operation), the non-operation confirmation is performed on the “power receiving” side of the switching handle 13 (referred to as a malfunction if operated). In this way, the direction test of the ground fault direction relay 110 is made possible. Thereafter, even if the operator returns the switching handle 13 from the “power receiving” position to the “off” position, the secondary winding of the secondary circuit 101 is caused by the overlap contacts P1, P2, P4, P6, P8, and P9. Lines 101A-101C are short-circuited without being opened.

こうして、切換えハンドル13の操作により、2次回路101に対する抵抗器130の接続を切り換えて2次回路101の1相または2相を欠相にするので、3次回路102に発生する零相電流の位相を切り換えることができる。また、切換え部14の切換えスイッチ14Aに重なり接触接点を用いているので、切換えハンドル13を操作して位相を切り換える際に、2次回路101の2次巻線101A〜101Cを開放することを防ぐことができる。また、従来のように3つの欠相プラグを不要にして、切換えスイッチ14Aで抵抗器130と2次回路101との間の接続を切り換えるので、装置の軽量化を可能にし、しかも、切換えハンドル13の簡単な操作で方向試験を可能にし、地絡方向継電器110の試験作業の効率化を可能にする。   Thus, by operating the switching handle 13, the connection of the resistor 130 to the secondary circuit 101 is switched to make one phase or two phases of the secondary circuit 101 open, so that the zero-phase current generated in the tertiary circuit 102 is reduced. The phase can be switched. Further, since the overlapping contact is used for the changeover switch 14A of the changeover unit 14, the secondary windings 101A to 101C of the secondary circuit 101 are prevented from being opened when the phase is changed by operating the changeover handle 13. be able to. In addition, since the connection between the resistor 130 and the secondary circuit 101 is switched by the changeover switch 14A without using three open-phase plugs as in the prior art, the weight of the device can be reduced, and the changeover handle 13 can be reduced. Thus, the direction test can be performed with a simple operation, and the test operation of the ground fault direction relay 110 can be made more efficient.

(実施の形態2)
この実施の形態では、3つの変流器の2次巻線を選択して地絡方向継電器に接続することにより、送電側または受電側の故障時に生じる零相電流を地絡方向継電器に与え、残留回路を用いた地絡方向継電器の試験を行う。この実施の形態による実負荷方向試験装置を図13に示す。なお、この実施の形態では、先に説明した実施の形態1と同一もしくは同一と見なされる構成要素には、それと同じ参照符号を付けて、その説明を省略する。図13の実負荷方向試験装置5は、箱状の収納ケース51を備え、収納ケース51の操作パネル51Aに、「±」と示されたR相用の端子52A(以下、「±端子52A」という)および「R」と示された端子52B(以下、「R端子52B」という)と、「±」と示されたS相用の端子52C(以下、「±端子52C」という)および「S」と示された端子52D(以下、「S端子52D」という)と、「±」と示されたT相用の端子52E(以下、「±端子52E」という)および「T」と示された端子52F(以下、「T端子52F」という)と、「±」と示されたN相用の端子52G(以下、「±端子52G」という)および「N」と示された端子52H(以下、「N端子52H」という)とを備え、計測装置120を接続するための「M」と示された端子52J(以下、「M端子52J」という)および「±」と示された端子52K(以下、「±端子52K」という)を備えている。さらに、操作パネル51Aに切換えハンドル53を備えている。
(Embodiment 2)
In this embodiment, by selecting the secondary windings of the three current transformers and connecting them to the ground fault direction relay, a zero phase current generated at the time of failure on the power transmission side or the power receiving side is given to the ground fault direction relay, Test the ground fault direction relay using the residual circuit. An actual load direction test apparatus according to this embodiment is shown in FIG. In this embodiment, components that are the same as or the same as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted. The actual load direction test apparatus 5 of FIG. 13 includes a box-shaped storage case 51, and an R-phase terminal 52A (hereinafter referred to as “± terminal 52A”) indicated by “±” on the operation panel 51A of the storage case 51. Terminal 52B (hereinafter referred to as “R terminal 52B”), an S phase terminal 52C (hereinafter referred to as “± terminal 52C”) and “S” indicated as “±”. Terminal 52D (hereinafter referred to as “S terminal 52D”), T phase terminal 52E (hereinafter referred to as “± terminal 52E”) and “T” indicated as “±”. A terminal 52F (hereinafter referred to as “T terminal 52F”), an N-phase terminal 52G indicated as “±” (hereinafter referred to as “± terminal 52G”), and a terminal 52H indicated as “N” (hereinafter referred to as “±”). "N terminal 52H") and "M for connecting the measuring device 120" ] Terminal 52J (hereinafter referred to as “M terminal 52J”) and terminal 52K (hereinafter referred to as “± terminal 52K”) indicated as “±”. Further, a switching handle 53 is provided on the operation panel 51A.

操作パネル51Aの端子52A〜52Hには接続具6が接続される。接続具6は、R相用の±端子52AおよびR端子52Bと、S相用の±端子52CおよびS端子52Dと、T相用の±端子52EおよびT端子52Fと、N相用の±端子52GおよびN端子52Hとに一端が接続されるケーブル61と、ケーブル61の他端に接続されるCTTプラグ62とを備えている。CTTプラグ62は、図14に示すように、例えば変電所の母線のR相、S相、T相に設置された3つの変流器の2次回路105に接続される。2次回路105は、変流器の2次巻線106〜108を接続して形成されたものであり、R相用のR端子、S相用のS端子、T相用のT端子、および中性相用のN端子を備えている。そして、接続具6は、実負荷方向試験装置5の±端子52A、±端子52C、±端子52E、±端子52Gを、2次回路105のR端子、S端子、T端子およびN端子に接続する。かつ、接続具6は、実負荷方向試験装置5の赤相用のR端子52B、白相用のS端子52Dおよび青相用のT端子52Fを、地絡方向継電器110の一方の検出用端子に接続し、実負荷方向試験装置5の黒相用のN端子52Hを地絡方向継電器110の他方の検出用端子に接続する。   The connection tool 6 is connected to the terminals 52A to 52H of the operation panel 51A. The connector 6 includes an R-phase ± terminal 52A and an R-terminal 52B, an S-phase ± terminal 52C and an S-terminal 52D, a T-phase ± terminal 52E and a T-terminal 52F, and an N-phase ± terminal. A cable 61 having one end connected to the 52G and the N terminal 52H and a CTT plug 62 connected to the other end of the cable 61 are provided. As shown in FIG. 14, the CTT plug 62 is connected to the secondary circuit 105 of three current transformers installed in, for example, the R phase, S phase, and T phase of the bus of the substation. The secondary circuit 105 is formed by connecting the secondary windings 106 to 108 of the current transformer, and includes an R terminal for the R phase, an S terminal for the S phase, a T terminal for the T phase, and It has an N terminal for neutral phase. The connection tool 6 connects the ± terminal 52A, ± terminal 52C, ± terminal 52E, and ± terminal 52G of the actual load direction test apparatus 5 to the R terminal, S terminal, T terminal, and N terminal of the secondary circuit 105. . And the connection tool 6 uses the R terminal 52B for the red phase, the S terminal 52D for the white phase, and the T terminal 52F for the blue phase of the actual load direction test apparatus 5 as one detection terminal of the ground fault direction relay 110. Connect the black-phase N terminal 52H of the actual load direction test apparatus 5 to the other detection terminal of the ground fault direction relay 110.

切換えハンドル53は、地絡方向継電器110の機能を確認する作業を行う作業者によって操作されるものであり、軸53Aを中心に回り、「送電」、「切」、「受電」の位置で止まる。切換えハンドル53は、実施の形態1の切換えハンドル13と同じであるので、その説明を省略する。   The switching handle 53 is operated by an operator who confirms the function of the ground fault direction relay 110, rotates around the shaft 53A, and stops at the positions of “power transmission”, “off”, and “power reception”. . Since the switching handle 53 is the same as the switching handle 13 of the first embodiment, the description thereof is omitted.

切換え部54は収納ケース51に収納され、切換えスイッチ54Aを備えている。切換えスイッチ54Aは切換えハンドル53の操作により回転する。また、切換えスイッチ54Aは、切換えハンドル53の「送電」、「切」および「受電」の位置でオーバーラップ接点P21〜P32を備え、端子S11と端子S12との間、…、端子S71と端子S72との間の開閉を制御する制御用のカムスイッチである。オーバーラップ接点P21〜P32は重なり接触を可能とする重なり接触接点あり、図3と同じであるので、それらの説明を省略する。   The switching unit 54 is stored in the storage case 51 and includes a switching switch 54A. The changeover switch 54A is rotated by operating the changeover handle 53. Further, the changeover switch 54A includes overlap contacts P21 to P32 at the positions of “transmission”, “off”, and “reception” of the changeover handle 53, between the terminals S11 and S12,..., Terminals S71 and S72. Is a control cam switch for controlling the opening and closing of the switch. The overlapping contacts P21 to P32 are overlapping contact contacts that enable overlapping contact and are the same as those in FIG.

こうした切換えスイッチ54Aと端子52A〜52H、52J、52Kとは次のように接続されている。±端子52Aは、切換えスイッチ54Aの端子S11と端子S51とに接続され、R端子52Bは、切換えスイッチ54Aの端子S52に接続されている。±端子52Cは、切換えスイッチ54Aの端子S21と端子S61とに接続され、S端子52Dは、切換えスイッチ54Aの端子S62に接続されている。±端子52Eは、切換えスイッチ54Aの端子S31と端子S63とに接続され、T端子52Fは、切換えスイッチ54Aの端子S64に接続されている。±端子52Gは、切換えスイッチ54Aの端子S41と端子S53と端子S71とに接続されている。また、N端子52Hは、切換え部54の±端子52Kに接続されている。切換え部54のM端子52Jは、切換えスイッチ54Aの端子S12、端子S22、端子S32、端子S42、端子S54、端子S72に接続されている。   The changeover switch 54A and the terminals 52A to 52H, 52J, and 52K are connected as follows. The ± terminal 52A is connected to the terminals S11 and S51 of the changeover switch 54A, and the R terminal 52B is connected to the terminal S52 of the changeover switch 54A. The ± terminal 52C is connected to the terminals S21 and S61 of the changeover switch 54A, and the S terminal 52D is connected to the terminal S62 of the changeover switch 54A. The ± terminal 52E is connected to the terminals S31 and S63 of the changeover switch 54A, and the T terminal 52F is connected to the terminal S64 of the changeover switch 54A. The ± terminal 52G is connected to the terminal S41, the terminal S53, and the terminal S71 of the changeover switch 54A. The N terminal 52H is connected to the ± terminal 52K of the switching unit 54. The M terminal 52J of the switching unit 54 is connected to the terminal S12, the terminal S22, the terminal S32, the terminal S42, the terminal S54, and the terminal S72 of the changeover switch 54A.

次に、この実施の形態の動作について説明する。作業者が地絡方向継電器110の機能確認として方向試験をするために、接続具6を用いて実負荷方向試験装置5を変流器の2次回路105に接続し、実負荷方向試験装置5のM端子52Jと±端子52Kとに計測装置120を接続する。この後、作業者は切換えハンドル53を収納ケース51に差し込む。このとき、切換えハンドル53は「切」の位置にあり、図15に示すように、2次回路105の2次巻線106はルートR51により短絡された状態になる。ルートR51は、±端子52A、端子S11、オーバーラップ接点P21、P22、端子S12、端子S22、端子S32、端子S42、オーバーラップ接点P27、端子S41、±端子52Gを経ることにより形成される。また、切換えハンドル53が「切」の位置にあると、2次回路105の2次巻線107は、図16に示すように、ルートR52により短絡された状態になる。ルートR52は、±端子52C、端子S21、オーバーラップ接点P23、P24、端子S22、端子S32、端子S42、オーバーラップ接点P27、端子S41、±端子52Gを経ることにより形成される。さらに、切換えハンドル53が「切」の位置にあると、2次回路105の2次巻線108は、図17に示すように、ルートR53により短絡された状態になる。ルートR53は、±端子52E、端子S31、オーバーラップ接点P25、P26、端子S32、端子S42、オーバーラップ接点P27、端子S41、±端子52Gを経ることにより形成される。   Next, the operation of this embodiment will be described. In order for an operator to perform a direction test as a function check of the ground fault direction relay 110, the actual load direction test device 5 is connected to the secondary circuit 105 of the current transformer by using the connector 6, and the actual load direction test device 5 is used. The measuring device 120 is connected to the M terminal 52J and the ± terminal 52K. Thereafter, the operator inserts the switching handle 53 into the storage case 51. At this time, the switching handle 53 is in the “OFF” position, and as shown in FIG. 15, the secondary winding 106 of the secondary circuit 105 is short-circuited by the route R51. Route R51 is formed by passing through ± terminal 52A, terminal S11, overlap contacts P21 and P22, terminal S12, terminal S22, terminal S32, terminal S42, overlap contact P27, terminal S41, and ± terminal 52G. When the switching handle 53 is in the “OFF” position, the secondary winding 107 of the secondary circuit 105 is short-circuited by the route R52 as shown in FIG. The route R52 is formed by passing through ± terminal 52C, terminal S21, overlap contacts P23 and P24, terminal S22, terminal S32, terminal S42, overlap contact P27, terminal S41, and ± terminal 52G. Further, when the switching handle 53 is in the “OFF” position, the secondary winding 108 of the secondary circuit 105 is short-circuited by the route R53 as shown in FIG. The route R53 is formed through the ± terminal 52E, the terminal S31, the overlap contacts P25 and P26, the terminal S32, the terminal S42, the overlap contact P27, the terminal S41, and the ± terminal 52G.

この結果、切換えハンドル53が「切」の位置にあると、2次回路105の2次巻線106〜108がすべて短絡された状態になり、2次巻線106〜108と切換え部54とにより形成される残留回路には零相電流は発生しない。   As a result, when the switching handle 53 is in the “OFF” position, the secondary windings 106 to 108 of the secondary circuit 105 are all short-circuited, and the secondary windings 106 to 108 and the switching unit 54 No zero-phase current is generated in the formed residual circuit.

作業者が例えば送電側つまり需要家側に故障が発生した際の地絡方向継電器110の方向試験を行うために、切換えハンドル53を「切」の位置から「送電」の位置に回す。これにより、図18に示すように、オーバーラップ接点P28、P29がオンになった後でオーバーラップ接点P21、P27がオフになる。オーバーラップ接点P28、P29がオンになると、2次回路105の2次巻線106には、ルートR61により地絡方向継電器110と計測装置120とが接続された状態になる。ルートR61は、±端子52A、端子S11、端子S51、オーバーラップ接点P28、端子S52、R端子52B、地絡方向継電器110、N端子52H、±端子52K、計測装置120、M端子52J、端子S72、端子S54、オーバーラップ接点P29、端子S53、端子S41、±端子52Gを経ることにより形成される。また、切換えハンドル53が「切」の位置から「送電」の位置になると、図19に示すように、オーバーラップ接点P29がオンになった後でオーバーラップ接点P27がオフになる。オーバーラップ接点P23、P24、P29がオンになると、2次回路105の2次巻線107はルートR62により短絡された状態になる。ルートR62は、±端子52C、端子S21、オーバーラップ接点P23、P24、端子S22、端子S32、端子S42、端子S54、オーバーラップ接点P29、端子S53、端子S41、±端子52Gを経ることにより形成される。さらに、切換えハンドル53が「切」の位置から「送電」の位置になると、図20に示すように、オーバーラップ接点P29がオンになった後でオーバーラップ接点P27がオフになる。オーバーラップ接点P25、P26、P29がオンになると、2次回路105の2次巻線108はルートR63により短絡された状態になる。ルートR63は、±端子52E、端子S31、オーバーラップ接点P25、P26、端子S32、端子S42、端子S54、オーバーラップ接点P29、端子S53、端子S41、±端子52Gを経ることにより形成される。   For example, the operator turns the switching handle 53 from the “OFF” position to the “POWER TRANSFER” position in order to perform a direction test of the ground fault direction relay 110 when a failure occurs on the power transmission side, that is, the customer side. Thereby, as shown in FIG. 18, after the overlap contacts P28 and P29 are turned on, the overlap contacts P21 and P27 are turned off. When the overlap contacts P28 and P29 are turned on, the ground fault direction relay 110 and the measuring device 120 are connected to the secondary winding 106 of the secondary circuit 105 by the route R61. Route R61 includes ± terminal 52A, terminal S11, terminal S51, overlap contact P28, terminal S52, R terminal 52B, ground fault direction relay 110, N terminal 52H, ± terminal 52K, measuring device 120, M terminal 52J, and terminal S72. , Terminal S54, overlap contact P29, terminal S53, terminal S41, and ± terminal 52G. Further, when the switching handle 53 is moved from the “OFF” position to the “power transmission” position, as shown in FIG. 19, the overlap contact P27 is turned OFF after the overlap contact P29 is turned ON. When the overlap contacts P23, P24, P29 are turned on, the secondary winding 107 of the secondary circuit 105 is short-circuited by the route R62. Route R62 is formed by passing through ± terminal 52C, terminal S21, overlap contacts P23 and P24, terminal S22, terminal S32, terminal S42, terminal S54, overlap contact P29, terminal S53, terminal S41, and ± terminal 52G. The Further, when the switching handle 53 is changed from the “OFF” position to the “power transmission” position, the overlap contact P27 is turned OFF after the overlap contact P29 is turned ON, as shown in FIG. When the overlap contacts P25, P26, and P29 are turned on, the secondary winding 108 of the secondary circuit 105 is short-circuited by the route R63. Route R63 is formed by passing through ± terminal 52E, terminal S31, overlap contacts P25 and P26, terminal S32, terminal S42, terminal S54, overlap contact P29, terminal S53, terminal S41, and ± terminal 52G.

この結果、切換えハンドル53が「切」の位置から「送電」の位置になると、2次回路105の2次巻線106〜108が開放されることなく、2次回路105の2次巻線106が地絡方向継電器110と計測装置120とに接続され、かつ、2次回路105の2次巻線107、108が短絡された状態になる。つまり、2次回路105と切換え部54とにより2次回路105の1相(赤相電流)を地絡方向継電器110に印加することで、地絡方向継電器110には2次巻線106を基にした零相電流が与えられる。これにより、送電側に故障が発生した際の地絡方向継電器110の方向試験を可能にする。この後、作業者が切換えハンドル53を「送電」の位置から「切」の位置に戻しても、オーバーラップ接点P21、P23〜P29によって、2次回路105の2次巻線106〜108は開放されることなく短絡状態になる。   As a result, when the switching handle 53 is changed from the “OFF” position to the “power transmission” position, the secondary windings 106 to 108 of the secondary circuit 105 are not opened, and the secondary winding 106 of the secondary circuit 105 is opened. Is connected to the ground fault direction relay 110 and the measuring device 120, and the secondary windings 107 and 108 of the secondary circuit 105 are short-circuited. That is, the secondary circuit 105 and the switching unit 54 apply one phase (red phase current) of the secondary circuit 105 to the ground fault direction relay 110, so that the ground fault direction relay 110 includes the secondary winding 106. The zero phase current is given. This enables a direction test of the ground fault direction relay 110 when a failure occurs on the power transmission side. Thereafter, even if the operator returns the switching handle 53 from the “power transmission” position to the “off” position, the secondary windings 106 to 108 of the secondary circuit 105 are opened by the overlap contacts P21 and P23 to P29. It becomes a short circuit state without being done.

作業者が受電側つまり発変電所側に故障が発生した際の地絡方向継電器110の方向試験を行うために、切換えハンドル53を「切」の位置から「受電」の位置に回す。これにより、図21に示すように、オーバーラップ接点P32がオンになった後でオーバーラップ接点P27がオフになる。オーバーラップ接点P22、P32がオンになると、2次回路105の2次巻線106はルートR71により短絡された状態になる。ルートR71は、±端子52A、端子S11、オーバーラップ接点P21、P22、端子S12、端子S22、端子S32、端子S42、端子S54、端子S72、オーバーラップ接点P32、端子S71、端子S53、端子S41、±端子52Gを経ることにより形成される。また、切換えハンドル53が「切」の位置から「受電」の位置になると、図22に示すように、オーバーラップ接点P30、P32がオンになった後でオーバーラップ接点P24、P27がオフになる。オーバーラップ接点P30、P32がオンになると、2次回路105の2次巻線107には、ルートR72により地絡方向継電器110と計測装置120とが接続された状態になる。ルートR72は、±端子52C、端子S21、端子S61、オーバーラップ接点P30、端子S62、S端子52D、地絡方向継電器110、N端子52H、±端子52K、計測装置120、M端子52J、端子S72、オーバーラップ接点P32、端子S71、端子S53、端子S41、±端子52Gを経ることにより形成される。さらに、切換えハンドル53が「切」の位置から「受電」の位置になると、図23に示すように、オーバーラップ接点P31、P32がオンになった後でオーバーラップ接点P26、P27がオフになる。オーバーラップ接点P31、P32がオンになると、2次回路105の2次巻線108には、ルートR73により地絡方向継電器110と計測装置120とが接続された状態になる。ルートR73は、±端子52E、端子S31、端子S63、オーバーラップ接点P31、端子S64、T端子52F、地絡方向継電器110、N端子52H、±端子52K、計測装置120、M端子52J、端子S72、オーバーラップ接点P32、端子S71、端子S53、端子S41、±端子52Gを経ることにより形成される。   The operator turns the switching handle 53 from the “OFF” position to the “Power receiving” position in order to perform a direction test of the ground fault direction relay 110 when a failure occurs on the power receiving side, that is, the substation side. As a result, as shown in FIG. 21, the overlap contact P27 is turned off after the overlap contact P32 is turned on. When the overlap contacts P22 and P32 are turned on, the secondary winding 106 of the secondary circuit 105 is short-circuited by the route R71. Route R71 includes ± terminal 52A, terminal S11, overlap contacts P21, P22, terminal S12, terminal S22, terminal S32, terminal S42, terminal S54, terminal S72, overlap contact P32, terminal S71, terminal S53, terminal S41, Formed by passing through ± terminal 52G. Further, when the switching handle 53 is changed from the “OFF” position to the “power reception” position, as shown in FIG. 22, the overlap contacts P24 and P27 are turned OFF after the overlap contacts P30 and P32 are turned ON. . When the overlap contacts P30 and P32 are turned on, the ground fault direction relay 110 and the measuring device 120 are connected to the secondary winding 107 of the secondary circuit 105 by the route R72. Route R72 includes ± terminal 52C, terminal S21, terminal S61, overlap contact P30, terminal S62, S terminal 52D, ground fault direction relay 110, N terminal 52H, ± terminal 52K, measuring device 120, M terminal 52J, and terminal S72. , Overlap contact P32, terminal S71, terminal S53, terminal S41, and ± terminal 52G. Further, when the switching handle 53 is changed from the “OFF” position to the “power reception” position, as shown in FIG. 23, the overlap contacts P26 and P27 are turned OFF after the overlap contacts P31 and P32 are turned ON. . When the overlapping contacts P31 and P32 are turned on, the ground fault direction relay 110 and the measuring device 120 are connected to the secondary winding 108 of the secondary circuit 105 by the route R73. Route R73 includes ± terminal 52E, terminal S31, terminal S63, overlap contact P31, terminal S64, T terminal 52F, ground fault direction relay 110, N terminal 52H, ± terminal 52K, measuring device 120, M terminal 52J, and terminal S72. , Overlap contact P32, terminal S71, terminal S53, terminal S41, and ± terminal 52G.

この結果、作業者が切換えハンドル53を「切」の位置から「受電」の位置に回しても、2次回路105の2次巻線106〜108が開放されることなく、2次回路105の2次巻線107と2次巻線108とが地絡方向継電器110と計測装置120とに接続され、かつ、2次回路105の2次巻線106が短絡された状態になる。つまり、2次回路105の2相(白相電流および青相電流)を地絡方向継電器110に印加することで、地絡方向継電器110には2次巻線107と2次巻線108とを基にした零相電流が与えられる。これにより、地絡方向継電器110の方向試験を可能にする。この後、作業者が切換えハンドル53を「受電」の位置から「切」の位置に戻しても、オーバーラップ接点P21、P22、P24、P26、P27、P30〜P32によって、2次回路105の2次巻線106〜108は開放されることなく短絡状態になる。   As a result, even if the operator turns the switching handle 53 from the “OFF” position to the “power receiving” position, the secondary windings 106 to 108 of the secondary circuit 105 are not opened and the secondary circuit 105 The secondary winding 107 and the secondary winding 108 are connected to the ground fault direction relay 110 and the measuring device 120, and the secondary winding 106 of the secondary circuit 105 is short-circuited. That is, by applying the two phases (white phase current and blue phase current) of the secondary circuit 105 to the ground fault direction relay 110, the ground fault direction relay 110 is based on the secondary winding 107 and the secondary winding 108. The zero phase current is given. Thereby, the direction test of the ground fault direction relay 110 is enabled. After this, even if the operator returns the switching handle 53 from the “power receiving” position to the “off” position, the overlap contacts P21, P22, P24, P26, P27, and P30 to P32 cause the secondary circuit 105 The next windings 106 to 108 are short-circuited without being opened.

こうして、切換えハンドル53の操作により、2次回路105の2次巻線106〜108の地絡方向継電器110に対する接続を切り換えて、地絡方向継電器回路110に1相または2相の2次電流を流し、地絡方向継電器110の動作方向を切り換えることができる。また、切換え部54の切換えスイッチ54Aに重なり接触接点を用いているので、切換えハンドル53を操作して位相を切り換える際に、2次回路105の2次巻線106〜108を開放することを防ぐことができる。また、従来のように3つの欠相プラグを不要にして切換えスイッチ54Aで地絡方向継電器110と2次回路105との間の接続を切り換えるので、装置の軽量化を可能にし、しかも、切換えハンドル53の簡単な操作で方向試験を可能にし、地絡方向継電器110の試験作業の効率化を可能にする。   Thus, by operating the switching handle 53, the connection of the secondary windings 106 to 108 of the secondary circuit 105 to the ground fault direction relay 110 is switched, and a one-phase or two-phase secondary current is supplied to the ground fault direction relay circuit 110. The operation direction of the ground fault direction relay 110 can be switched. Further, since the overlapping contact is used for the changeover switch 54A of the changeover unit 54, the secondary windings 106 to 108 of the secondary circuit 105 are prevented from being opened when the changeover handle 53 is operated to switch the phase. be able to. Further, since the connection between the ground fault direction relay 110 and the secondary circuit 105 is switched by the changeover switch 54A without using three open-phase plugs as in the prior art, the weight of the device can be reduced, and the changeover handle can be reduced. The direction test can be performed by 53 simple operations, and the test work of the ground fault direction relay 110 can be made efficient.

(実施の形態3)
この実施の形態による実負荷方向試験装置を図24に示す。図24の実負荷方向試験装置8は、実施の形態1の実負荷方向試験装置1と実施の形態2の実負荷方向試験装置5とを1つにして収納ケース81に収めたものである。収納ケース81の操作パネル81Aには、実負荷方向試験装置1の操作パネル11Aと実負荷方向試験装置5の操作パネル51Aとが並べて配置されている。そして、収納ケース81には、R端子12A〜RE端子12Fと接続され、かつ、切換えスイッチ14Aを備えている切換え部14と、±端子52A〜N端子52H、M端子52J、±端子52Kと接続され、かつ切換えスイッチ54Aを備えている切換え部54とが収納されている。
(Embodiment 3)
FIG. 24 shows an actual load direction test apparatus according to this embodiment. The actual load direction test apparatus 8 shown in FIG. 24 is one in which the actual load direction test apparatus 1 according to the first embodiment and the actual load direction test apparatus 5 according to the second embodiment are stored in a storage case 81. On the operation panel 81A of the storage case 81, the operation panel 11A of the actual load direction test apparatus 1 and the operation panel 51A of the actual load direction test apparatus 5 are arranged side by side. The storage case 81 is connected to the R terminal 12A to RE terminal 12F and connected to the switching unit 14 including the changeover switch 14A, and the ± terminals 52A to N terminals 52H, the M terminal 52J, and the ± terminals 52K. And a switching unit 54 including a changeover switch 54A.

操作パネル11Aの切換えハンドル13は操作パネル51Aの切換えハンドルとしても使用される。つまり、切換えハンドル13は、切換えスイッチ14Aの操作のために、操作パネル11Aの取付孔13Bに取り付けられ、また、切換えスイッチ54Aの操作のために、操作パネル51Aの取付孔53Bに取り付けられる。   The switching handle 13 of the operation panel 11A is also used as a switching handle of the operation panel 51A. That is, the changeover handle 13 is attached to the attachment hole 13B of the operation panel 11A for the operation of the changeover switch 14A, and is attached to the attachment hole 53B of the operation panel 51A for the operation of the changeover switch 54A.

こうして、この実施の形態により、1つの装置で2種類の試験を可能にする。また、実負荷方向試験装置8に対して1つの切換えハンドル13を作業者が使用するので、切換え部14と切換え部54とは1つの切換えハンドル13で操作され、誤操作を防ぐことができる。   Thus, according to this embodiment, two types of tests can be performed with one apparatus. Further, since the operator uses one switching handle 13 for the actual load direction test apparatus 8, the switching unit 14 and the switching unit 54 are operated by the single switching handle 13, and erroneous operation can be prevented.

この発明の実施の形態1による実負荷方向試験装置の外観を示す図であり、図1(a)は正面図、図1(b)は平面図である。It is a figure which shows the external appearance of the actual load direction test apparatus by Embodiment 1 of this invention, Fig.1 (a) is a front view, FIG.1 (b) is a top view. 図1の構造を示す図である。It is a figure which shows the structure of FIG. 切換えスイッチを説明する図であり、図3(a)は切換えハンドルが「切」の位置にある場合を示す図であり、図3(b)は切換えハンドルが「送電」の位置にある場合を示す図である。FIG. 3A is a diagram illustrating a case where the switching handle is in the “OFF” position, and FIG. 3B is a diagram illustrating a case where the switching handle is in the “power transmission” position. FIG. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. この発明の実施の形態2による実負荷方向試験装置の外観を示す図であり、図13(a)は正面図、図13(b)は平面図である。It is a figure which shows the external appearance of the actual load direction test apparatus by Embodiment 2 of this invention, Fig.13 (a) is a front view, FIG.13 (b) is a top view. 図13の構造を示す図である。It is a figure which shows the structure of FIG. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. 切換えスイッチにより形成されるルートを示す図である。It is a figure which shows the route | root formed with a changeover switch. この発明の実施の形態3による実負荷方向試験装置を示す平面図である。It is a top view which shows the actual load direction test apparatus by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1、5 実負荷方向試験装置
11、51 収納ケース
11A、51A 操作パネル(操作部)
13、53 切換えハンドル(操作部)
13A、53A 軸(操作部)
13B、53B 取付孔
14、54 切換え部
14A、54A 切換えスイッチ
P1〜P9、P21〜P32 オーバーラップ接点
2 接続具
21 ケーブル
22 CTTプラグ
6 接続具
61 ケーブル
62 CTTプラグ
8 実負荷方向試験装置
81 収納ケース
81A 操作パネル
101 2次回路
101A〜101C 2次巻線
102 3次回路
102A〜102C 3次巻線
105 2次回路
106〜108 2次巻線
110 地絡方向継電器
120 計測装置
130 抵抗器
1, 5 Actual load direction test device 11, 51 Storage case 11A, 51A Operation panel (operation unit)
13, 53 Switching handle (operation unit)
13A, 53A shaft (operation unit)
13B, 53B Mounting hole 14, 54 Switching portion 14A, 54A Changeover switch P1-P9, P21-P32 Overlap contact 2 Connector 21 Cable 22 CTT plug 6 Connector 61 Cable 62 CTT plug 8 Actual load direction test device 81 Storage case 81A Operation panel 101 Secondary circuit 101A to 101C Secondary winding 102 Tertiary circuit 102A to 102C Tertiary winding 105 Secondary circuit 106 to 108 Secondary winding 110 Ground fault direction relay 120 Measuring device 130 Resistor

Claims (5)

変流器の3次巻線を結線した3次回路を用いて地絡による故障発生と故障発生方向とを判定する地絡方向継電器の試験を、前記変流器の2次巻線を用いて行う地絡方向継電器用実負荷方向試験装置であって、
送電側故障と受電側故障との判別をするための方向試験を、ハンドルの位置により切り換える操作部と、
前記変流器の各2次巻線を短絡状態にし、前記操作部のハンドルの位置に応じて、前記変流器の各2次巻線を選択して抵抗器に接続する切換え部とを備え、
前記切換え部は、前記操作部のハンドルが操作されると、前記変流器の各2次巻線を選択して前記抵抗器に接続した後で選択した2次巻線の短絡状態を解除することを特徴とする地絡方向継電器用実負荷方向試験装置。
A test of a ground fault direction relay that determines the occurrence of a fault due to a ground fault and the direction of the fault occurrence using a tertiary circuit in which the tertiary winding of the current transformer is connected is performed using the secondary winding of the current transformer. An actual load direction test device for a ground fault direction relay,
An operation unit that switches a direction test for discriminating between a power transmission side failure and a power reception side failure according to the position of the handle;
A switching unit that short-circuits each secondary winding of the current transformer and selects and connects each secondary winding of the current transformer to a resistor according to the position of the handle of the operation unit; ,
When the handle of the operation unit is operated, the switching unit selects each secondary winding of the current transformer and releases the short-circuit state of the selected secondary winding after connecting to the resistor. An actual load direction test device for a ground fault direction relay, characterized in that.
前記操作部のハンドルの位置に応じて前記3次回路に発生する零相電流を測る測定装置を前記地絡方向継電器に接続したことを特徴とする請求項1に記載の地絡方向継電器用実負荷方向試験装置。   2. The ground fault direction relay according to claim 1, wherein a measuring device for measuring a zero-phase current generated in the tertiary circuit according to a position of a handle of the operation unit is connected to the ground fault direction relay. Load direction test equipment. 地絡による故障発生と故障発生方向とを判定する地絡方向継電器の試験を、3つの変流器の2次巻線を用いて行う地絡方向継電器用実負荷方向試験装置であって、
送電側故障と受電側故障との判別をするための方向試験を、ハンドルの位置により切り換える操作部と、
前記各変流器の2次巻線を短絡状態にし、前記操作部のハンドルの位置に応じて、前記各変流器の2次巻線を選択して前記地絡方向継電器に接続する切換え部とを備え、
前記切換え部は、前記操作部のハンドルが操作されると、前記各変流器の2次巻線を選択して前記地絡方向継電器に接続した後で選択した2次巻線の短絡状態を解除することを特徴とする地絡方向継電器用実負荷方向試験装置。
An actual load direction test device for a ground fault direction relay, which performs a test of a ground fault direction relay using a secondary winding of three current transformers to determine a fault occurrence and a fault occurrence direction due to a ground fault,
An operation unit that switches a direction test for discriminating between a power transmission side failure and a power reception side failure according to the position of the handle;
A switching unit that short-circuits the secondary windings of each of the current transformers and selects the secondary winding of each of the current transformers according to the position of the handle of the operation unit and connects to the ground fault direction relay. And
When the handle of the operation unit is operated, the switching unit selects a secondary winding of each of the current transformers and connects a short circuit state of the selected secondary winding after connecting to the ground fault direction relay. An actual load direction testing device for a ground fault direction relay, which is released.
前記切換え部は、前記操作部のハンドルの位置に応じて前記3次回路に発生する零相電流を測る測定装置を、選択した2次巻線に接続することを特徴とする請求項3に記載の地絡方向継電器用実負荷方向試験装置。   The said switching part connects the measuring apparatus which measures the zero phase electric current which generate | occur | produces in the said tertiary circuit according to the position of the handle | steering-wheel of the said operation part to the selected secondary winding. Load direction test device for ground fault direction relays. 前記切換え部は、前記各変流器の2次巻線を選択して前記地絡方向継電器に接続した後で選択した2次巻線の短絡状態を解除するために、接続状態と解除状態が重なる重なり接点を用いたことを特徴とする請求項1〜4のいずれか1項に記載の地絡方向継電器用実負荷方向試験装置。   The switching unit selects a secondary winding of each current transformer and connects it to the ground fault direction relay, and then cancels the short-circuit state of the selected secondary winding. The actual load direction testing device for a ground fault direction relay according to any one of claims 1 to 4, wherein overlapping overlapping contacts are used.
JP2007005365A 2007-01-15 2007-01-15 Actual load direction test equipment for ground fault direction relay Expired - Fee Related JP4526541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005365A JP4526541B2 (en) 2007-01-15 2007-01-15 Actual load direction test equipment for ground fault direction relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007005365A JP4526541B2 (en) 2007-01-15 2007-01-15 Actual load direction test equipment for ground fault direction relay

Publications (2)

Publication Number Publication Date
JP2008172964A true JP2008172964A (en) 2008-07-24
JP4526541B2 JP4526541B2 (en) 2010-08-18

Family

ID=39700503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005365A Expired - Fee Related JP4526541B2 (en) 2007-01-15 2007-01-15 Actual load direction test equipment for ground fault direction relay

Country Status (1)

Country Link
JP (1) JP4526541B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220834A (en) * 2014-05-16 2015-12-07 中国電力株式会社 Actual-load direction test apparatus for ground directional relay
WO2020012625A1 (en) * 2018-07-13 2020-01-16 三菱電機株式会社 Electronic circuit breaker, and breaker tester
CN113092926A (en) * 2021-05-13 2021-07-09 国网河南省电力公司电力科学研究院 10kV true test load configuration platform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329702A (en) * 2005-05-24 2006-12-07 Shibakei:Kk Auxiliary test device for electrical installation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329702A (en) * 2005-05-24 2006-12-07 Shibakei:Kk Auxiliary test device for electrical installation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220834A (en) * 2014-05-16 2015-12-07 中国電力株式会社 Actual-load direction test apparatus for ground directional relay
WO2020012625A1 (en) * 2018-07-13 2020-01-16 三菱電機株式会社 Electronic circuit breaker, and breaker tester
CN113092926A (en) * 2021-05-13 2021-07-09 国网河南省电力公司电力科学研究院 10kV true test load configuration platform

Also Published As

Publication number Publication date
JP4526541B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US7123459B2 (en) Protective relay capable of protection applications without protection settings
JPS5889028A (en) Method and device for detecting 1-wire ground fault accident of 3-phase power system
CN105280446A (en) Neutral pole current transformer module for circuit breaker and neutral pole current detecting apparatus for circuit breaker
JP2013104712A (en) Operation test apparatus for high-voltage system protection device and operation test method therefor
JP4526541B2 (en) Actual load direction test equipment for ground fault direction relay
JP3929767B2 (en) Power system cross current compensation control system
US4110808A (en) Ground fault protection system for multiple source distribution networks
JPS5893422A (en) Protecting device for high voltage transmission line
JP6211989B2 (en) Actual load direction test equipment for ground fault direction relay
JP2008259327A (en) Reclosing method
JP2004125688A (en) Field test method for differential relay using excitation inrush current
JP6278560B2 (en) Actual load direction test equipment for ground fault direction relay
KR20160122356A (en) Circuit breaker having safety switching portion
JP6729483B2 (en) Ratio differential relay
JPH0735806A (en) Actual load direction tester for ground fault protection relay
KR102569977B1 (en) 4-pole circuit breaker including neutral wire and method for cutting off power by detecting phase loss on power supply side and neutral wire erroneous connection
JP7378725B2 (en) Measurement terminal, measurement terminal setting method, ground fault location system
KR100358197B1 (en) Tester For Relay
JP3663624B2 (en) V-connection spot network power receiving equipment
JP2007232554A (en) Phase switch
Tsimtsios et al. PLUG-AND-PLAY PROTECTION: A SOLUTION AGAINST PROTECTION SCHEME DESIGN COMPLEXITY IN MODERN ACTIVE DISTRIBUTION SYSTEMS
JP4018497B2 (en) Accident line selection relay device
JP2705198B2 (en) Ground fault detector
JPH0548139Y2 (en)
JP2002236139A (en) Fault locator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091027

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees