JP2008172717A - Wavelength control circuit and wavelength multiplex optical transmission apparatus - Google Patents

Wavelength control circuit and wavelength multiplex optical transmission apparatus Download PDF

Info

Publication number
JP2008172717A
JP2008172717A JP2007006194A JP2007006194A JP2008172717A JP 2008172717 A JP2008172717 A JP 2008172717A JP 2007006194 A JP2007006194 A JP 2007006194A JP 2007006194 A JP2007006194 A JP 2007006194A JP 2008172717 A JP2008172717 A JP 2008172717A
Authority
JP
Japan
Prior art keywords
wavelength
optical
transmission
control circuit
wavelength control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007006194A
Other languages
Japanese (ja)
Other versions
JP4728971B2 (en
Inventor
Tetsuya Suzuki
徹也 鈴木
Hiroo Suzuki
裕生 鈴木
Masamitsu Fujiwara
正満 藤原
Naoto Yoshimoto
直人 吉本
Katsumi Iwatsuki
岩月  勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007006194A priority Critical patent/JP4728971B2/en
Publication of JP2008172717A publication Critical patent/JP2008172717A/en
Application granted granted Critical
Publication of JP4728971B2 publication Critical patent/JP4728971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength control circuit and a wavelength multiplex optical transmission apparatus which can stabilize a plurality of wavelengths by economical method. <P>SOLUTION: The wavelength multiplex optical transmission apparatus 100 is provided with N sets of optical transmitters 102-1 to 102-N with different transmission wavelengths, a wavelength multiplexer 104 for multiplexing an optical signal from the optical transmitter, an optical coupler 106 for branching a multiplexed optical signal, a photodetector 108 for receiving an optical signal from the optical coupler, and a wavelength control means 110 for controlling wavelength of each optical transmitter based on a signal from the photodetector. The wavelength multiplexer 104 has periodic spectral characteristics. The wavelength control means 110 controls one of N sets of optical transmitters so as to maximize the value of optical power from the photodetector. When N sets of optical transmitters are controlled one by one sequentially, all transmission wavelengths coincide with the peak of periodic spectral characteristics of the wavelength multiplexer. Thereby, all transmission wavelengths of optical transmitters can be stabilized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、波長多重光通信システムにおける波長制御回路および波長多重光送信装置に関するものである。   The present invention relates to a wavelength control circuit and a wavelength division multiplexing optical transmission apparatus in a wavelength division multiplexing optical communication system.

波長多重光通信システムにおいては、単一の光ファイバケーブルにより波長が異なる複数の光信号が伝送される。これらの波長が異なる複数の光信号は、誘電体多層膜フィルタやアレイ導波路回折格子などの合波器および分波器を用いて合分波される。多くの場合、波長合波器の透過中心波長はITU−Tで定められた波長に等間隔に設定される。   In a wavelength division multiplexing optical communication system, a plurality of optical signals having different wavelengths are transmitted by a single optical fiber cable. A plurality of optical signals having different wavelengths are multiplexed / demultiplexed by using a multiplexer / demultiplexer such as a dielectric multilayer filter or an arrayed waveguide diffraction grating. In many cases, the transmission center wavelengths of the wavelength multiplexer are set at equal intervals to the wavelength determined by ITU-T.

この波長多重光通信システムにおいては、ある信号波長が定められた波長からドリフトすると、その信号波長自体の光パワーの減衰のみならず、隣接する波長へのクロストークとなるため、定められた波長へ信号波長を安定化することが、特に高密度波長多重光伝送システムにおいて重要となる。   In this wavelength division multiplexing optical communication system, when a certain signal wavelength drifts from a predetermined wavelength, not only the optical power of the signal wavelength itself is attenuated but also crosstalk to adjacent wavelengths. Stabilizing the signal wavelength is particularly important in a high-density wavelength division multiplexing optical transmission system.

図1に、従来の波長多重光通信システムにおける波長多重光送信装置の一例を示す(非特許文献1参照)。この波長多重光送信装置10は、N個の光送信器12−1〜Nからの波長の異なる光信号を波長合波器14で合波し、単一の光ファイバケーブル(図示せず)を通じて伝送する。光送信器12−1〜Nはそれぞれ、光フィルタ16−1〜Nおよび受光器18−1〜Nを通して波長の安定化を行う。すなわち、光送信器からの光信号を、所定の波長透過特性を有する光フィルタを介して、受光器で光パワーを監視し、その結果に基づいて光送信器の波長を制御することにより、波長の安定化を行うことができる。このように、光フィルタのスペクトル特性を波長基準として使用し、波長の安定化を実現している。   FIG. 1 shows an example of a wavelength division multiplexing optical transmission apparatus in a conventional wavelength division multiplexing optical communication system (see Non-Patent Document 1). The wavelength division multiplexing optical transmission apparatus 10 combines optical signals having different wavelengths from N optical transmitters 12-1 to 12 -N with a wavelength multiplexer 14 and through a single optical fiber cable (not shown). To transmit. The optical transmitters 12-1 to 12 -N perform wavelength stabilization through the optical filters 16-1 to 16 -N and the light receivers 18-1 to 18 -N, respectively. That is, the optical signal from the optical transmitter is monitored by the optical receiver through the optical filter having a predetermined wavelength transmission characteristic, and the wavelength of the optical transmitter is controlled based on the result. Can be stabilized. In this way, the spectral characteristics of the optical filter are used as a wavelength reference, and wavelength stabilization is realized.

光フィルタには、安価なエタロンフィルタなどが用いられる。エタロンフィルタは、平行平板の両端に反射コートを形成したものであり、反射コート間の多重反射により図2のような周期的な入出力特性が得られる。エタロンフィルタのFSRの自然数倍を波長合波器14の透過中心波長間隔と等しくなるように設定することで、波長多重光送信装置10における波長基準として用いることができる。すなわち、光送信器からの送出波長が目標とする波長基準から変化したときに、光フィルタの特性により光フィルタの出力光パワーが変化するため、この変化分を観測することで光送信器の送出波長を目標とする波長基準に制御することができる。   An inexpensive etalon filter or the like is used as the optical filter. The etalon filter has a reflective coat formed on both ends of a parallel plate, and a periodic input / output characteristic as shown in FIG. 2 is obtained by multiple reflection between the reflective coats. By setting the natural number times the FSR of the etalon filter to be equal to the transmission center wavelength interval of the wavelength multiplexer 14, it can be used as a wavelength reference in the wavelength division multiplexing optical transmitter 10. That is, when the transmission wavelength from the optical transmitter changes from the target wavelength reference, the output optical power of the optical filter changes depending on the characteristics of the optical filter. The wavelength can be controlled to the target wavelength reference.

図3に、従来の波長多重光通信システムにおける別の波長多重光送信装置の一例を示す(特許文献1参照)。この波長多重光送信装置20は、N個の光送信器12−1〜Nからの波長の異なる光信号を波長合波器24で合波し、単一の光ファイバケーブルを通じて伝送する。この合波された光信号は、光カプラ26で分岐され、マッハツェンダフィルタ28を介して、波長分波器34で分波され、受光器32−1〜Nで光パワーが監視される。   FIG. 3 shows an example of another wavelength division multiplexing optical transmission apparatus in a conventional wavelength division multiplexing optical communication system (see Patent Document 1). This wavelength division multiplexing optical transmission apparatus 20 combines optical signals having different wavelengths from N optical transmitters 12-1 to 12 -N with a wavelength multiplexer 24 and transmits it through a single optical fiber cable. The combined optical signal is branched by the optical coupler 26, demultiplexed by the wavelength demultiplexer 34 via the Mach-Zehnder filter 28, and the optical power is monitored by the light receivers 32-1 to N.

図4に、マッハツェンダフィルタの透過スペクトル特性を示す。マッハツェンダフィルタ28は、エタロンフィルタと同様にFSRの自然数倍を波長分波器34の透過中心波長間隔と等しくなるように設定することで、波長多重光送信装置20における波長基準として用いることができる。このマッハツェンダフィルタの透過中心波長を、発振器30で摂動し、受光器32−1〜Nからの出力信号を乗算器36−1〜Nで同期検波し、低域通過フィルタ(LPF)38−1〜Nの出力が0になるように、光送信器の送出波長を制御することで、光送信器の送出波長を安定化することができる。   FIG. 4 shows the transmission spectrum characteristics of the Mach-Zehnder filter. The Mach-Zehnder filter 28 can be used as a wavelength reference in the wavelength division multiplexing optical transmitter 20 by setting the natural number multiple of the FSR to be equal to the transmission center wavelength interval of the wavelength demultiplexer 34 as in the etalon filter. . The transmission center wavelength of this Mach-Zehnder filter is perturbed by an oscillator 30, and output signals from the light receivers 32-1 to N are synchronously detected by multipliers 36-1 to 36-N, and a low-pass filter (LPF) 38-1 to 38-1 The transmission wavelength of the optical transmitter can be stabilized by controlling the transmission wavelength of the optical transmitter so that the output of N becomes zero.

特開平9−261181号公報JP-A-9-261181 ”A Highly Stable and Reliable Wavelength Monitor Integrated Laser Module Design,” J. Lightwave Technol., Vol.22, pp1344-1351, May 2004“A Highly Stable and Reliable Wavelength Monitor Integrated Laser Module Design,” J. Lightwave Technol., Vol.22, pp1344-1351, May 2004

しかしながら、図1の波長多重光送信装置では、光送信器それぞれについて別個に波長安定化を行うため、光送信器ごとに光フィルタおよび受光器が必要となり、光送信器の数に比例してコストが高くなるという問題があった。   However, since the wavelength division multiplexing optical transmitter of FIG. 1 performs wavelength stabilization separately for each optical transmitter, an optical filter and a light receiver are required for each optical transmitter, and the cost is proportional to the number of optical transmitters. There was a problem that became high.

また、図3の波長多重光送信装置では、図1の構成と比較して、N個の光フィルタの機能を1つのマッハツェンダフィルタおよび波長分波器で実現できるが、このマッハツェンダフィルタおよび波長分波器は比較的高価なものであり、受光器だけでなく、乗算器やLPFが必要となる。さらに、この構成では、運用中の波長数に関わらず、システムで用いられる最大波長数に対応する波長分波器をあらかじめ用意しておかなければならないため、初期導入コストが高いという問題があった。   Further, in the wavelength division multiplexing optical transmission apparatus of FIG. 3, the functions of N optical filters can be realized by one Mach-Zehnder filter and wavelength demultiplexer, compared with the configuration of FIG. The device is relatively expensive and requires not only a light receiver but also a multiplier and an LPF. Furthermore, this configuration has a problem that the initial introduction cost is high because a wavelength demultiplexer corresponding to the maximum number of wavelengths used in the system must be prepared in advance regardless of the number of wavelengths in operation. .

本発明は、このような問題に鑑みてなされたもので、経済的な形で複数の波長を安定化することができる波長制御回路および波長多重光送信装置を提供することにある。   The present invention has been made in view of such problems, and it is an object of the present invention to provide a wavelength control circuit and a wavelength division multiplexing optical transmission apparatus that can stabilize a plurality of wavelengths in an economical manner.

本発明は、このような目的を達成するために、請求項1に記載の発明は、波長制御回路であって、複数の送出波長のそれぞれが可変可能な光送信手段と、前記複数の送出波長に対して、基準となるスペクトル特性を与える光フィルタ手段と、前記光フィルタ手段を介して、前記複数の送出波長の光を受光する受光手段と、前記光送信手段の複数の送出波長について、前記受光器で得られる光パワーを基準に、各送出波長を逐次的に制御する波長制御手段とを備えたことを特徴とする。   In order to achieve the above object, the present invention provides a wavelength control circuit according to claim 1, comprising: an optical transmission means capable of changing each of a plurality of transmission wavelengths; and the plurality of transmission wavelengths. In contrast, with respect to a plurality of transmission wavelengths of the optical transmission means, an optical filter means for providing a spectral characteristic serving as a reference, a light receiving means for receiving light of the plurality of transmission wavelengths via the optical filter means, Wavelength control means for sequentially controlling each transmission wavelength based on the optical power obtained by the light receiver is provided.

また、請求項2に記載の発明は、請求項1に記載の波長制御回路であって、前記光フィルタ手段は、基準となるスペクトル特性として、各送出波長に対して光パワーの最大ピークを与え、前記波長制御手段は、前記光送信手段の複数の送出波長について、前記受光器で得られる光パワーの最大値を基準として、各送出波長を逐次的に制御することを特徴とする。   The invention according to claim 2 is the wavelength control circuit according to claim 1, wherein the optical filter means gives a maximum peak of optical power to each transmission wavelength as a reference spectral characteristic. The wavelength control unit sequentially controls each transmission wavelength with respect to a plurality of transmission wavelengths of the optical transmission unit on the basis of the maximum value of the optical power obtained by the light receiver.

また、請求項3に記載の発明は、請求項1に記載の波長制御回路であって、前記光フィルタ手段は、基準となるスペクトル特性として、各送出波長に対して光パワーの最小ピークを与え、前記波長制御手段は、前記光送信手段の複数の送出波長について、前記受光器で得られる光パワーの最小値を基準として、各送出波長を逐次的に制御することを特徴とする。   The invention according to claim 3 is the wavelength control circuit according to claim 1, wherein the optical filter means gives a minimum peak of optical power to each transmission wavelength as a reference spectral characteristic. The wavelength control means sequentially controls each transmission wavelength for a plurality of transmission wavelengths of the optical transmission means with reference to a minimum value of optical power obtained by the light receiver.

また、請求項4に記載の発明は、波長制御回路であって、複数の送出波長のそれぞれが可変可能な光送信手段と、前記複数の送出波長に対して、基準となるスペクトル特性を与える光フィルタ手段であって、第1の出力ポートと第2の出力ポートが逆のスペクトル特性を有する光フィルタ手段と、前記第1の出力ポートを介して、前記複数の送出波長の光を受光する第1の受光手段と、前記第2の出力ポートを介して、前記複数の送信波長の光を受光する第2の受光手段と、前記光送信手段の複数の送出波長について、前記第1および第2の受光器で得られる光パワーを基準に、各送出波長を逐次的に制御する波長制御手段とを備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a wavelength control circuit comprising: an optical transmission means capable of changing each of a plurality of transmission wavelengths; and a light that gives a reference spectral characteristic to the plurality of transmission wavelengths. Filter means, wherein the first output port and the second output port have reverse spectral characteristics, and the first output port receives light of the plurality of transmission wavelengths via the first output port. A first light receiving means, a second light receiving means for receiving light of the plurality of transmission wavelengths via the second output port, and a plurality of transmission wavelengths of the light transmission means. And a wavelength control means for sequentially controlling each transmission wavelength on the basis of the optical power obtained by the photoreceiver.

また、請求項5に記載の発明は、請求項4に記載の波長制御回路であって、前記波長制御手段は、前記光送信手段の複数の送出波長について、前記第1の受光器で得られる光パワーと前記第2の受光器で得られる光パワーとの差を基準に、各送出波長を逐次的に制御することを特徴とする。   The invention according to claim 5 is the wavelength control circuit according to claim 4, wherein the wavelength control means is obtained by the first light receiver for a plurality of transmission wavelengths of the optical transmission means. Each transmission wavelength is sequentially controlled on the basis of the difference between the optical power and the optical power obtained by the second light receiver.

また、請求項6に記載の発明は、請求項4に記載の波長制御回路であって、前記光フィルタ手段は、基準となるスペクトル特性として、第1の出力ポートには各送出波長に対して光パワーの最大ピークを与え、第2の出力ポートには各波長に対して光パワーの最小ピークを与え、前記波長制御手段は、前記光送信手段の複数の送出波長の一部について、前記第1の受光器で得られる光パワーの最大値を基準に、各送出波長を逐次的に制御し、前記光送信手段の複数の送出波長の一部について、前記第2の受光器で得られる光パワーの最小値を基準に、各送出波長を逐次的に制御することを特徴とする。   The invention according to claim 6 is the wavelength control circuit according to claim 4, wherein the optical filter means has a first spectral characteristic as a reference spectral characteristic for each transmission wavelength. A maximum peak of optical power is given, and a minimum peak of optical power is given to each wavelength at the second output port. Each transmission wavelength is sequentially controlled on the basis of the maximum value of the optical power obtained by one light receiver, and the light obtained by the second light receiver for a part of the plurality of transmission wavelengths of the optical transmission means. Each transmission wavelength is sequentially controlled based on the minimum power value.

また、請求項7に記載の発明は、請求項6に記載の波長制御回路であって、前記波長制御手段はさらに、前記光送信手段の複数の送出波長の一部について、前記第1の受光器で得られる光パワーと前記第2の受光器で得られる光パワーとの差を基準に、各送出波長を逐次的に制御することを特徴とする。   The invention according to claim 7 is the wavelength control circuit according to claim 6, wherein the wavelength control unit further includes the first light receiving unit for a part of a plurality of transmission wavelengths of the optical transmission unit. Each transmission wavelength is sequentially controlled based on the difference between the optical power obtained by the optical device and the optical power obtained by the second light receiver.

また、請求項8に記載の発明は、請求項1から7のいずれかに記載の波長制御回路であって、前記光フィルタ手段は、各送出波長に対して、波形整形のためのスペクトル特性をさらに与えることを特徴とする。   The invention according to claim 8 is the wavelength control circuit according to any one of claims 1 to 7, wherein the optical filter means has a spectral characteristic for waveform shaping for each transmission wavelength. Furthermore, it is characterized by giving.

また、請求項9に記載の発明は、請求項1から8のいずれかに記載の波長制御回路であって、前記光フィルタ手段は、周期的なスペクトル特性を有する光フィルタ、波長合波器、またはこれらの組合せであることを特徴とする。   The invention according to claim 9 is the wavelength control circuit according to any one of claims 1 to 8, wherein the optical filter means includes an optical filter having a periodic spectral characteristic, a wavelength multiplexer, Or it is the combination of these.

また、請求項10に記載の発明は、請求項1から8のいずれかに記載の波長制御回路であって、前記光フィルタ手段は、エタロンフィルタ、マッハツェンダフィルタ、またはこれらの組合せであることを特徴とする。   The invention according to claim 10 is the wavelength control circuit according to any one of claims 1 to 8, wherein the optical filter means is an etalon filter, a Mach-Zehnder filter, or a combination thereof. And

また、請求項11に記載の発明は、波長多重光送信装置であって、請求項1から10のいずれかに記載の波長制御回路を備えたことを特徴とする。   The invention described in claim 11 is a wavelength division multiplexing optical transmitter, comprising the wavelength control circuit according to any one of claims 1 to 10.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
図5に、本発明の第1の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置100は、送出波長の異なるN個の光送信器102−1〜Nと、光送信器からの光信号を合波する波長合波器104と、合波した光信号を分岐する光カプラ106と、光カプラからの光信号を受光する受光器108と、受光器からの信号に基づいて各光送信器の波長を制御する波長制御手段110とを備えている。この波長制御手段110は、N個の光送信器102−1〜Nの送出波長をそれぞれ個別に制御することができる。
(First embodiment)
FIG. 5 shows an example of a wavelength division multiplexing optical transmission apparatus according to the first embodiment of the present invention. This wavelength division multiplexing optical transmitter 100 includes N optical transmitters 102-1 to N having different transmission wavelengths, a wavelength multiplexer 104 that combines optical signals from the optical transmitters, and the combined optical signal. A branching optical coupler 106, a light receiver 108 for receiving an optical signal from the optical coupler, and a wavelength control means 110 for controlling the wavelength of each optical transmitter based on the signal from the light receiver are provided. The wavelength control unit 110 can individually control the transmission wavelengths of the N optical transmitters 102-1 to 102-N.

波長合波器104としてガウス型の透過特性を持つアレイ導波路回折格子を用いた場合を例として説明する。図6に示すように、波長合波器104は、その透過中心波長において最大の透過率となる。そのため、光送信器102−1〜Nのすべての送出波長がそれぞれ波長合波器104の透過中心波長に一致したときに、受光器108で得られる光パワーが最大となり、光送信器の送出波長が波長合波器の透過中心波長に安定化されたことになる。   The case where an arrayed waveguide grating having a Gaussian transmission characteristic is used as the wavelength multiplexer 104 will be described as an example. As shown in FIG. 6, the wavelength multiplexer 104 has the maximum transmittance at the transmission center wavelength. Therefore, when all the transmission wavelengths of the optical transmitters 102-1 to 102 -N coincide with the transmission center wavelength of the wavelength multiplexer 104, the optical power obtained by the light receiver 108 becomes maximum, and the transmission wavelength of the optical transmitter Is stabilized at the transmission center wavelength of the wavelength multiplexer.

ここで、どのように光送信器の送出波長を決定すれば、光送信器のすべての送出波長がそれぞれ波長合波器の透過中心波長に一致するかが問題となる。図5の構成においては、波長多重光のパワーを単一の受光器108で受光しているため、複数の光送信器の送出波長を同時に変化させると、受光器で得られる光パワーの変化が、どの光送信器の送出波長の変化に対応しているのかを判定することができない。そこで、ある一つの光送信器の送出波長のみを変化させて、受光器で得られる光パワーが最大になるように波長制御を行う。この動作を各光送信器について順次一つずつ行うことで、すべての光送信器の送出波長を安定化させることができる。   Here, how to determine the transmission wavelength of the optical transmitter is a problem as to whether all the transmission wavelengths of the optical transmitter match the transmission center wavelength of the wavelength multiplexer. In the configuration of FIG. 5, since the power of wavelength multiplexed light is received by a single light receiver 108, if the transmission wavelengths of a plurality of optical transmitters are changed at the same time, the change in optical power obtained by the light receivers is changed. Therefore, it cannot be determined which optical transmitter corresponds to the change in the transmission wavelength. Therefore, the wavelength control is performed by changing only the transmission wavelength of one optical transmitter and maximizing the optical power obtained by the light receiver. By performing this operation one by one for each optical transmitter, the transmission wavelengths of all the optical transmitters can be stabilized.

このことを図7を用いて説明する。i番目の光送信器i(i=1,2,...,N)について、送信波長を連続的に変化させ、受光器108で得られる光パワーが最大となる波長を決定し保持する。ここで、送信波長を変化させる範囲は、光送信器iの送信波長が対応する透過中心波長にロックするように波長合波器の透過特性に基づいて決定することができる。例えば、光送信器iに対応する透過中心波長を中心とする両隣の谷から谷までの範囲とすることができる。次に、i+1番目の光送信器i+1についても同様に、受光器108で得られる光パワーが最大となる波長を決定し保持する。このように、受光器108で受光する光パワーの最大値を探索する制御をN個の光送信器について逐次的に行うことで、全光送信器の送出波長をそれぞれ波長合波器104の対応する透過中心波長に安定化することができる。また、この安定化は、随時行ってもよい。この逐次最大値探索制御を行うことにより、光送信器を新たに追加するたびにその光送信器の送出波長について安定化を行えばよく、波長制御に必要な構成部品を全光送信器で共有でき、初期コストを抑えた波長多重光送信装置を構成することができる。   This will be described with reference to FIG. For the i-th optical transmitter i (i = 1, 2,..., N), the transmission wavelength is continuously changed, and the wavelength at which the optical power obtained by the light receiver 108 is maximized is determined and held. Here, the range in which the transmission wavelength is changed can be determined based on the transmission characteristics of the wavelength multiplexer so that the transmission wavelength of the optical transmitter i is locked to the corresponding transmission center wavelength. For example, it is possible to set the range from the adjacent valley to the valley centered on the transmission center wavelength corresponding to the optical transmitter i. Next, for the (i + 1) th optical transmitter i + 1, the wavelength at which the optical power obtained by the light receiver 108 is maximized is determined and held. As described above, the search for the maximum value of the optical power received by the light receiver 108 is sequentially performed for the N optical transmitters, so that the transmission wavelengths of all the optical transmitters can be matched with the wavelength multiplexer 104 respectively. The transmission center wavelength can be stabilized. This stabilization may be performed at any time. By performing this sequential maximum value search control, every time a new optical transmitter is added, it is only necessary to stabilize the transmission wavelength of the optical transmitter, and the components necessary for wavelength control can be shared by all optical transmitters. Thus, it is possible to configure a wavelength division multiplexing optical transmission apparatus with reduced initial cost.

なお、ここでは、最大値探索法として、波長を連続的に変化させ、最大値を探索する方法を説明したが、山登り法や、数点の離散的な測定点からフィッティングにより最大値となる波長を決定する方法など、任意の最大値探索方法を採用することができる。これは、他の実施形態においても同様である。   Here, as the maximum value search method, the method of searching for the maximum value by continuously changing the wavelength has been described, but the wavelength that becomes the maximum value by fitting from the hill-climbing method or several discrete measurement points An arbitrary maximum value search method such as a method for determining the value can be adopted. The same applies to other embodiments.

(第2の実施形態)
図8に、本発明の第2の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置200では、第1の実施形態に係る波長多重光送信装置100の受光器108の前段に光フィルタ202が挿入されている。この光フィルタ202は、そのFSRの自然数倍が波長合波器104の透過中心波長間隔に等しく、波長合波器の透過中心波長において最大の出力パワーが得られる特性を有している。このような光フィルタとしては、図2に示すような透過特性を有するエタロンフィルタや、図4に示すような透過特性を有するマッハツェンダフィルタなどが挙げられる。
(Second Embodiment)
FIG. 8 shows an example of a wavelength division multiplexing optical transmission apparatus according to the second embodiment of the present invention. In this wavelength division multiplexing optical transmission apparatus 200, an optical filter 202 is inserted before the light receiver 108 of the wavelength division multiplexing optical transmission apparatus 100 according to the first embodiment. The optical filter 202 has a characteristic that the natural number multiple of the FSR is equal to the transmission center wavelength interval of the wavelength multiplexer 104, and the maximum output power is obtained at the transmission center wavelength of the wavelength multiplexer. Examples of such an optical filter include an etalon filter having transmission characteristics as shown in FIG. 2 and a Mach-Zehnder filter having transmission characteristics as shown in FIG.

波長合分波器104として、図9に示すようなフラットな透過特性のものを用いた場合、透過率が最大となる波長を一意に決定することができない。このとき、上記のような特性を有する光フィルタ202を用い、光送信器の波長基準とすることで、波長制御手段210により、第1の実施形態の場合と同様に光送信器の送出波長の安定化を行うことができる。   When the wavelength multiplexer / demultiplexer 104 having a flat transmission characteristic as shown in FIG. 9 is used, it is impossible to uniquely determine the wavelength at which the transmittance is maximum. At this time, by using the optical filter 202 having the characteristics as described above and using the wavelength reference of the optical transmitter, the wavelength control unit 210 controls the transmission wavelength of the optical transmitter in the same manner as in the first embodiment. Stabilization can be performed.

また、ガウス型のスペクトル特性を有する波長合波器104を用いた場合には、光フィルタ202の通過帯域を波長合波器の透過帯域よりも狭くなるように設定することで、通信に使用している波長に大きな影響を及ぼすことなく、最大値探索制御を行うことができる。このようなことは、例えばエタロンフィルタについては、その反射コートの反射率を高く設定することによって容易に実現することができる。   In addition, when the wavelength multiplexer 104 having Gaussian spectral characteristics is used, it is used for communication by setting the pass band of the optical filter 202 to be narrower than the transmission band of the wavelength multiplexer. The maximum value search control can be performed without greatly affecting the wavelength. Such a thing can be easily realized by setting the reflectance of the reflective coat to be high for an etalon filter, for example.

(第3の実施形態)
図10に、本発明の第3の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置300では、第2の実施形態に係る波長多重光送信装置200において受光器108の前段に配置されていた光フィルタが波長合波器104の後段に配置されている。この場合、光フィルタ302は、波長安定化に使用されると同時に、通信に使用している信号光の波長スペクトルの整形にも使用される。
(Third embodiment)
FIG. 10 shows an example of a wavelength division multiplexing optical transmission apparatus according to the third embodiment of the present invention. In this wavelength division multiplexing optical transmission apparatus 300, the optical filter arranged in the previous stage of the light receiver 108 in the wavelength division multiplexing optical transmission apparatus 200 according to the second embodiment is arranged in the subsequent stage of the wavelength multiplexer 104. In this case, the optical filter 302 is used for wavelength stabilization and also for shaping the wavelength spectrum of the signal light used for communication.

このことを図11を用いて説明する。光送信器102−1〜Nとして直接変調のレーザダイオード(LD)を用いた場合、そのチャープ特性により送出光スペクトルは、マークおよびスペースレベルにそれぞれ対応する2つのスペクトルピークを持ち、それらのパワー差が消光比に対応する。ここで、ある光送信器の送出波長の光パワーに対して、マークレベルに対応する光パワーが支配的であるため、波長制御手段310において逐次最大値探索制御による波長安定化制御を行うと、マークレベルに対応するスペクトルピーク波長が所定の波長に安定化されることになる。この場合、スペースレベルに対応するスペクトルピークは、光フィルタ308の透過特性を通じてフィルタリングされ損失を受けるので、その結果、消光比が増大することになる。本実施形態においては、単一の光フィルタ308を用いて、N個の光送信器の送出波長の安定化および波形整形を同時に実現することができる。   This will be described with reference to FIG. When directly modulated laser diodes (LD) are used as the optical transmitters 102-1 to 102-N, the transmitted light spectrum has two spectral peaks corresponding to the mark and space levels, respectively, due to its chirp characteristics, and the power difference between them. Corresponds to the extinction ratio. Here, since the optical power corresponding to the mark level is dominant with respect to the optical power of the transmission wavelength of a certain optical transmitter, when performing wavelength stabilization control by sequential maximum value search control in the wavelength control unit 310, The spectral peak wavelength corresponding to the mark level is stabilized at a predetermined wavelength. In this case, the spectral peak corresponding to the space level is filtered through the transmission characteristic of the optical filter 308 and suffers loss, and as a result, the extinction ratio increases. In the present embodiment, the single optical filter 308 can be used to simultaneously stabilize the transmission wavelengths and waveform shaping of the N optical transmitters.

(第4の実施形態)
図12に、本発明の第4の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置400は、第2の実施形態に係る波長多重光送信装置200と同じ構成であるが、ここでは、光フィルタ202とは特性が異なる光フィルタ402が使用されている。この光フィルタ402は、図13に示すように、そのFSRの自然数倍が波長合波器104の透過中心波長間隔に等しく、波長合波器の透過中心波長において最小の出力パワーが得られる入出力特性を有する。
(Fourth embodiment)
FIG. 12 shows an example of a wavelength division multiplexing optical transmission apparatus according to the fourth embodiment of the present invention. The wavelength division multiplexing optical transmission apparatus 400 has the same configuration as the wavelength division multiplexing optical transmission apparatus 200 according to the second embodiment, but here, an optical filter 402 having different characteristics from the optical filter 202 is used. In this optical filter 402, as shown in FIG. 13, the natural number multiple of the FSR is equal to the transmission center wavelength interval of the wavelength multiplexer 104, and the input power at which the minimum output power can be obtained at the transmission center wavelength of the wavelength multiplexer is obtained. Has output characteristics.

このような特性の光フィルタ402は、図14に示すように、エタロンフィルタの反射出力を観測することで得ることができる。反射出力を観測するためには、図14(a)に示すように、エタロンフィルタに対して光を斜めに入射し、その反射光を観測する。あるいは、図14(b)に示すように、エタロンフィルタに対して垂直に光を入射し、サーキュレータ50を用いて反射出力を取り出すなどの方法がある。   The optical filter 402 having such characteristics can be obtained by observing the reflected output of the etalon filter as shown in FIG. In order to observe the reflected output, as shown in FIG. 14A, light is obliquely incident on the etalon filter and the reflected light is observed. Alternatively, as shown in FIG. 14B, there is a method in which light is incident perpendicularly to the etalon filter and the reflected output is extracted using the circulator 50.

また、このような特性の光フィルタ402は、図15に示すように、マッハツェンダフィルタの透過率が最小となる点を波長合波器104の透過中心波長に設定することによっても得られる。   The optical filter 402 having such characteristics can also be obtained by setting the point where the transmittance of the Mach-Zehnder filter is minimum as the transmission center wavelength of the wavelength multiplexer 104, as shown in FIG.

このような入出力特性を有する光フィルタ402を用いて、図16に示すように、各光送信器102−1〜Nについて、受光器108で得られる光パワーが最小になるように、波長制御手段410において順次一つずつ最小値探索制御を行うことで、すべての光送信器の送出波長を目標とする波長合波器104の透過中心波長に安定化させることができる。   Using the optical filter 402 having such input / output characteristics, as shown in FIG. 16, the wavelength control is performed so that the optical power obtained by the light receiver 108 is minimized for each of the optical transmitters 102-1 to 102-N. By performing the minimum value search control one by one in the means 410, the transmission wavelengths of all the optical transmitters can be stabilized at the transmission center wavelength of the wavelength multiplexer 104.

逐次最大値探索制御を行う構成においては、各光送信器について光パワーの最大値を探索することで全送出波長の安定化を行う。しかし、波長が安定化されていない複数個の光送信器の波長安定化を行う際には、先に波長が安定化される光送信器ほど、全受光パワーに対するその光送信器の送出波長変化に伴う受光パワー変化の比が大きく、後に波長が安定化される光送信器ほどその比が小さい。このことは、後に最大値探索制御を行う光送信器ほど安定化する波長以外の偶発的な光パワーの変化による雑音の影響が大きくなり、波長安定化の精度が低下することを意味する。   In a configuration in which sequential maximum value search control is performed, the total transmission wavelength is stabilized by searching for the maximum value of optical power for each optical transmitter. However, when performing wavelength stabilization of a plurality of optical transmitters whose wavelengths are not stabilized, the transmission wavelength change of the optical transmitter with respect to the total light reception power is the more the optical transmitter whose wavelength is stabilized first. The ratio of the change in the received light power is large, and the ratio is smaller as the optical transmitter whose wavelength is stabilized later. This means that the effect of noise due to an accidental change in optical power other than the wavelength to be stabilized increases as the optical transmitter that performs maximum value search control later increases, and the accuracy of wavelength stabilization decreases.

本実施形態においては、第2の実施形態とは逆に、先に波長が安定化される光送信器ほど、全受光パワーに対するその光送信器の送出波長変化に伴う受光パワー変化の比が小さく、後に波長が安定化される光送信器ほどその比が大きい。光送信器を徐々に追加していく場合、追加前から動作している光送信器は既に波長が安定化されているため、本実施形態の逐次最小値探索制御を用いることにより、逐次最大値探索制御を行う構成よりも適用可能な光送信器の最大数を増大することができる。   In the present embodiment, contrary to the second embodiment, the ratio of the received light power change accompanying the change in the transmission wavelength of the optical transmitter with respect to the total received power is smaller for the optical transmitter whose wavelength is stabilized first. The ratio of the optical transmitter whose wavelength is stabilized later is larger. When optical transmitters are added gradually, the wavelength of the optical transmitter that has been operating before the addition has already been stabilized, so that the sequential maximum value is determined by using the sequential minimum value search control of this embodiment. The maximum number of applicable optical transmitters can be increased as compared with the configuration in which search control is performed.

(第5の実施形態)
図17に、本発明の第5の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置500では、第1の実施形態に係る波長多重光送信装置100の光カプラ106に代えて、光フィルタ502が使用されている。この光フィルタ502は、そのFSRの自然数倍が波長合波器104の透過中心波長間隔に等しく、その出力ポート1は、通信用に使用され、出力ポート2は波長安定化用に使用される。出力ポート1については、図2に示すように、波長合波器104の透過中心波長において最大の光パワーが得られ、出力ポート2については、図13に示すように、波長合波器104の透過中心波長において最小の光パワーが得られる入出力特性とする。
(Fifth embodiment)
FIG. 17 shows an example of a wavelength division multiplexing optical transmission apparatus according to the fifth embodiment of the present invention. In this wavelength division multiplexing optical transmission apparatus 500, an optical filter 502 is used instead of the optical coupler 106 of the wavelength division multiplexing optical transmission apparatus 100 according to the first embodiment. In this optical filter 502, a natural number multiple of its FSR is equal to the transmission center wavelength interval of the wavelength multiplexer 104, its output port 1 is used for communication, and its output port 2 is used for wavelength stabilization. . For the output port 1, as shown in FIG. 2, the maximum optical power is obtained at the transmission center wavelength of the wavelength multiplexer 104, and for the output port 2, as shown in FIG. The input / output characteristics are such that the minimum optical power is obtained at the transmission center wavelength.

このような特性を有する光フィルタ502は、図18(a)および(b)に示すように、エタロンフィルタの透過出力をポート1とし、反射出力をポート2として用いることで得られる。また、図18(c)に示すように、マッハツェンダフィルタの透過中心波長を波長合波器104の透過中心波長において最大となるように設定したポートをポート1とし、もう一方のポートをポート2としてもよい。このような構成により、第3の実施形態で説明した波形整形と、第4の実施形態で説明した逐次最小値探索制御による波長安定化を同時に行うことができる。   The optical filter 502 having such characteristics can be obtained by using the transmission output of the etalon filter as port 1 and the reflection output as port 2 as shown in FIGS. Further, as shown in FIG. 18 (c), the port in which the transmission center wavelength of the Mach-Zehnder filter is set to be the maximum at the transmission center wavelength of the wavelength multiplexer 104 is designated as port 1, and the other port is designated as port 2. Also good. With such a configuration, the waveform shaping described in the third embodiment and the wavelength stabilization by the sequential minimum value search control described in the fourth embodiment can be performed simultaneously.

(第6の実施形態)
図19に、本発明の第6の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置600では、第5の実施形態に係る波長多重光送信装置500の光フィルタを光カプラ106の後段に配置している。この場合、波長制御手段610において、受光器604に対して逐次最大値探索制御を行い、受光器606に対して逐次最小値探索制御を行うことで、N個の光送信器102−1〜Nの送出波長を安定化することができる。
(Sixth embodiment)
FIG. 19 shows an example of a wavelength division multiplexing optical transmitter according to the sixth embodiment of the present invention. In the wavelength division multiplexing optical transmission apparatus 600, the optical filter of the wavelength division multiplexing optical transmission apparatus 500 according to the fifth embodiment is arranged at the subsequent stage of the optical coupler 106. In this case, the wavelength control unit 610 sequentially performs maximum value search control on the light receiver 604 and sequentially performs minimum value search control on the light receiver 606, so that N optical transmitters 102-1 to N-1 are obtained. The transmission wavelength can be stabilized.

第4の実施形態において説明したように、逐次最大値探索制御では先に制御される光送信器ほど波長安定化精度が高く、逆に逐次最小値探索制御では後に制御される光送信器ほど波長安定化精度が高い。したがって、本実施形態においては、先に制御される光送信器では逐次最大値探索制御を行い、後に制御される光送信器では逐次最小値探索制御を行うことにより、一方の制御のみを行う構成よりも適用可能な光送信器の最大数を増大することができる。   As explained in the fourth embodiment, the wavelength stabilization accuracy is higher in the optical transmitter controlled earlier in the sequential maximum value search control, and conversely, the wavelength is higher in the optical transmitter controlled later in the sequential minimum value search control. Stabilization accuracy is high. Therefore, in the present embodiment, a configuration in which only one control is performed by performing sequential maximum value search control in an optical transmitter that is controlled first and performing sequential minimum value search control in an optical transmitter that is controlled later. The maximum number of applicable optical transmitters can be increased.

(第7の実施形態)
図20に、本発明の第7の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置700は、第6の実施形態の波長多重光送信装置と同じ構成である。本実施形態では、波長制御手段710において、受光器704で得られる光パワーの値から受光器706で得られる光パワーの値を減じ、その値に対して逐次最大値探索制御を行う。減算は、光受光器の出力を電気的に減算してもよいし、受光器704および受光器706の受光した光パワーを一旦数値化した後に減算してもよい。
(Seventh embodiment)
FIG. 20 shows an example of a wavelength division multiplexing optical transmission apparatus according to the seventh embodiment of the present invention. This wavelength division multiplexing optical transmission apparatus 700 has the same configuration as the wavelength division multiplexing optical transmission apparatus of the sixth embodiment. In the present embodiment, the wavelength control means 710 subtracts the value of the optical power obtained by the light receiver 706 from the value of the optical power obtained by the light receiver 704, and sequentially performs maximum value search control on the value. The subtraction may be performed by electrically subtracting the output of the optical receiver or by subtracting the optical power received by the optical receivers 704 and 706 once numerically.

図21を参照して、本実施形態について説明する。図に示すように、受光器704で得られる光パワーの値から受光器706で得られる光パワーの値を減算することで、光パワーの変化量が一方の受光器のみを用いる場合の2倍となる。そのため、一方の受光器のみを用いる構成よりも適用可能な光送信器の最大数を増大することができる。   This embodiment will be described with reference to FIG. As shown in the figure, by subtracting the optical power value obtained by the optical receiver 706 from the optical power value obtained by the optical receiver 704, the amount of change in optical power is twice that when only one optical receiver is used. It becomes. Therefore, the maximum number of applicable optical transmitters can be increased as compared with the configuration using only one light receiver.

(第8の実施形態)
図22に、本発明の第8の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置800は、第3の実施形態の波長多重光送信装置300を、第5の実施形態の波長多重光送信装置500と組み合わせた構成としている。このような構成により、第3の実施形態で説明した波形整形と、第6の実施形態で説明した波長安定化を同時に行うことができる。具体的には、受光器804に対して逐次最大値探索制御を行い、受光器806に対しては、逐次最小値探索制御を行うことができる。
(Eighth embodiment)
FIG. 22 shows an example of a wavelength division multiplexing optical transmission apparatus according to the eighth embodiment of the present invention. The wavelength division multiplexing optical transmission apparatus 800 is configured by combining the wavelength division multiplexing optical transmission apparatus 300 of the third embodiment with the wavelength division multiplexing optical transmission apparatus 500 of the fifth embodiment. With such a configuration, the waveform shaping described in the third embodiment and the wavelength stabilization described in the sixth embodiment can be performed simultaneously. Specifically, sequential maximum value search control can be performed on the light receiver 804, and sequential minimum value search control can be performed on the light receiver 806.

(第9の実施形態)
図23に、本発明の第9の実施形態による波長多重光送信装置の一例を示す。この波長多重光送信装置900は、第8の実施形態の波長多重光送信装置800と同じ構成である。本実施形態では、第3の実施形態で説明した波長整形と、第7の実施形態で説明した波長安定化を同時に行うことができる。具体的には、受光器904で得られた光パワーの値から受光器906で得られた光パワーの値を減じた値に対して逐次最大値探索制御を行うことができる。
(Ninth embodiment)
FIG. 23 shows an example of a wavelength division multiplexing optical transmitter according to the ninth embodiment of the present invention. This wavelength division multiplexing optical transmission apparatus 900 has the same configuration as the wavelength division multiplexing optical transmission apparatus 800 of the eighth embodiment. In the present embodiment, the wavelength shaping described in the third embodiment and the wavelength stabilization described in the seventh embodiment can be performed simultaneously. Specifically, the maximum value search control can be sequentially performed on a value obtained by subtracting the optical power value obtained by the light receiver 906 from the optical power value obtained by the light receiver 904.

(その他の実施形態)
第6から第9の実施形態においては、第5の実施形態において説明した光フィルタ502の出力ポート1および出力ポート2の光パワーの両方を監視している。この場合、受光器1で得られる光パワーの値に光合波器の出力端から受光器1までの損失分を加算した値と、受光器2で得られる光パワーの値に光合波器の出力端から受光器2までの損失分を加算した値との和算を行い、光カプラ106の分岐比を考慮して波長多重光の全光パワーを推定することができる。このように、新たに受光器を追加することなく、通信に使用している波長多重光の全光パワーを得ることができ、波長多重光通信システムの管理運用に役立てることができる。
(Other embodiments)
In the sixth to ninth embodiments, both the optical powers of the output port 1 and the output port 2 of the optical filter 502 described in the fifth embodiment are monitored. In this case, the value obtained by adding the loss from the output end of the optical multiplexer to the optical receiver 1 to the optical power value obtained by the optical receiver 1 and the optical power output obtained by the optical receiver 2 are output. The total optical power of the wavelength multiplexed light can be estimated in consideration of the branching ratio of the optical coupler 106 by performing addition with a value obtained by adding the loss from the end to the light receiver 2. In this way, the total optical power of the wavelength multiplexed light used for communication can be obtained without adding a new light receiver, which can be used for management operation of the wavelength multiplexed optical communication system.

以上、本発明について、具体的にいくつかの実施形態について説明したが、本発明の原理を適用できる多くの実施可能な形態に鑑みて、ここに記載した実施形態は、単に例示に過ぎず、本発明の範囲を限定するものではない。例えば、基準となるスペクトル特性を与える光フィルタ手段として、アレイ導波路回折格子、エタロンフィルタ、マッハツェンダフィルタを例に説明したが、リング型共振器フィルタ、ファブリペロー干渉系ファイバブラッググレーティングフィルタを使用してもよい。したがって、ここに例示した実施形態は、本発明の趣旨から逸脱することなくその構成と詳細を変更することができる。さらに、説明のための構成要素および手順は、本発明の趣旨から逸脱することなく変更、補足、またはその順序を変えてもよい。   While the present invention has been described with respect to several specific embodiments, the embodiments described herein are merely illustrative in view of the many possible embodiments to which the principles of the present invention can be applied. It is not intended to limit the scope of the invention. For example, an array waveguide diffraction grating, an etalon filter, and a Mach-Zehnder filter have been described as examples of optical filter means for providing a reference spectral characteristic, but a ring resonator filter, a Fabry-Perot interference fiber Bragg grating filter is used. Also good. Therefore, the configuration and details of the embodiment exemplified herein can be changed without departing from the spirit of the present invention. Further, the illustrative components and procedures may be changed, supplemented, or changed in order without departing from the spirit of the invention.

従来の波長多重光通信システムにおける波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmitter in the conventional wavelength division multiplexing optical communication system. 図1の光フィルタのスペクトル特性の一例を示す図である。It is a figure which shows an example of the spectrum characteristic of the optical filter of FIG. 従来の波長多重光通信システムにおける別の波長多重光送信装置の一例を示す図である。It is a figure which shows an example of another wavelength division multiplexing optical transmitter in the conventional wavelength division multiplexing optical communication system. 図3のマッハツェンダフィルタのスペクトル特性の一例を示す図である。It is a figure which shows an example of the spectrum characteristic of the Mach-Zehnder filter of FIG. 本発明の第1の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmission apparatus by the 1st Embodiment of this invention. 図5の波長合波器のスペクトル特性の一例を示す図である。It is a figure which shows an example of the spectrum characteristic of the wavelength multiplexer of FIG. 本発明の波長制御手段における逐次最大値探索制御について説明するための図である。It is a figure for demonstrating the sequential maximum value search control in the wavelength control means of this invention. 本発明の第2の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmission apparatus by the 2nd Embodiment of this invention. 図8の波長合波器のスペクトル特性の一例を示す図である。It is a figure which shows an example of the spectrum characteristic of the wavelength multiplexer of FIG. 本発明の第3の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmission apparatus by the 3rd Embodiment of this invention. 本発明による光送信器の送出波長の安定化および波形整形について説明するための図である。It is a figure for demonstrating stabilization of the transmission wavelength and waveform shaping of the optical transmitter by this invention. 本発明の第4の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmitter by the 4th Embodiment of this invention. 図12の光フィルタのスペクトル特性の一例を示す図である。It is a figure which shows an example of the spectrum characteristic of the optical filter of FIG. 図12の光フィルタの構成例を示す図であり、図14(a)はエタロンフィルタに対して光を斜めに入射する構成であり、図14(b)はエタロンフィルタに対して垂直に光を入射し、サーキュレータ50を用いて反射出力を取り出す構成である。FIG. 14A is a diagram illustrating a configuration example of the optical filter of FIG. 12, FIG. 14A is a configuration in which light is incident obliquely on the etalon filter, and FIG. 14B is a diagram in which light is perpendicular to the etalon filter. The incident light is extracted and the reflected output is extracted using the circulator 50. 図12の光フィルタにマッハツェンダフィルタを用いた場合のスペクトル特性の一例を示す図である。It is a figure which shows an example of the spectrum characteristic at the time of using a Mach-Zehnder filter for the optical filter of FIG. 本発明の波長制御手段における逐次最小値探索制御について説明するための図である。It is a figure for demonstrating the sequential minimum value search control in the wavelength control means of this invention. 本発明の第5の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmission apparatus by the 5th Embodiment of this invention. 図17の光フィルタの構成例を示す図であり、図18(a)はエタロンフィルタを用いた構成であり、図18(b)はエタロンフィルタとサーキュレータを用いた構成であり、図18(c)はマッハツェンダフィルタを用いた構成である。FIG. 18A is a diagram illustrating a configuration example of the optical filter in FIG. 17. FIG. 18A illustrates a configuration using an etalon filter, FIG. 18B illustrates a configuration using an etalon filter and a circulator, and FIG. ) Is a configuration using a Mach-Zehnder filter. 本発明の第6の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmission apparatus by the 6th Embodiment of this invention. 本発明の第7の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmitter by the 7th Embodiment of this invention. 本発明の波長制御手段における、2つの受光器の光パワーの差に対する逐次最大値探索制御について説明するための図である。It is a figure for demonstrating the sequential maximum value search control with respect to the difference of the optical power of two light receivers in the wavelength control means of this invention. 本発明の第8の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmission apparatus by the 8th Embodiment of this invention. 本発明の第9の実施形態による波長多重光送信装置の一例を示す図である。It is a figure which shows an example of the wavelength division multiplexing optical transmitter by the 9th Embodiment of this invention.

符号の説明Explanation of symbols

10,20 波長多重光送信装置
30 発振器
34 波長分波器
36−1〜N 乗算器
50 サーキュレータ
100 第1の実施形態による波長多重光送信装置
200 第2の実施形態による波長多重光送信装置
300 第3の実施形態による波長多重光送信装置
400 第4の実施形態による波長多重光送信装置
500 第5の実施形態による波長多重光送信装置
600 第6の実施形態による波長多重光送信装置
700 第7の実施形態による波長多重光送信装置
800 第8の実施形態による波長多重光送信装置
900 第9の実施形態による波長多重光送信装置
DESCRIPTION OF SYMBOLS 10,20 Wavelength multiplexing optical transmitter 30 Oscillator 34 Wavelength demultiplexer 36-1 to N Multiplier 50 Circulator 100 Wavelength multiplexed optical transmitter 200 according to the first embodiment 200 Wavelength multiplexed optical transmitter 300 according to the second embodiment 300 WDM optical transmitter 400 according to the third embodiment 400 WDM optical transmitter according to the fourth embodiment 500 WDM optical transmitter according to the fifth embodiment 600 WDM optical transmitter 700 according to the sixth embodiment 700 Wavelength division multiplexing optical transmission apparatus 800 according to the embodiment 800 Wavelength division multiplexing optical transmission apparatus according to the eighth embodiment 900 Wavelength division multiplexing optical transmission apparatus according to the ninth embodiment

Claims (11)

複数の送出波長のそれぞれが可変可能な光送信手段と、
前記複数の送出波長に対して、基準となるスペクトル特性を与える光フィルタ手段と、
前記光フィルタ手段を介して、前記複数の送出波長の光を受光する受光手段と、
前記光送信手段の複数の送出波長について、前記受光器で得られる光パワーを基準に、各送出波長を逐次的に制御する波長制御手段と
を備えたことを特徴とする波長制御回路。
An optical transmission means capable of varying each of a plurality of transmission wavelengths;
Optical filter means for providing a reference spectral characteristic for the plurality of transmission wavelengths;
A light receiving means for receiving light of the plurality of transmission wavelengths via the optical filter means;
A wavelength control circuit comprising: wavelength control means for sequentially controlling each transmission wavelength with respect to a plurality of transmission wavelengths of the optical transmission means based on the optical power obtained by the light receiver.
請求項1に記載の波長制御回路であって、
前記光フィルタ手段は、基準となるスペクトル特性として、各送出波長に対して光パワーの最大ピークを与え、
前記波長制御手段は、前記光送信手段の複数の送出波長について、前記受光器で得られる光パワーの最大値を基準として、各送出波長を逐次的に制御することを特徴とする波長制御回路。
The wavelength control circuit according to claim 1,
The optical filter means gives a maximum peak of optical power for each transmission wavelength as a reference spectral characteristic,
The wavelength control circuit, wherein the wavelength control means sequentially controls each transmission wavelength for a plurality of transmission wavelengths of the optical transmission means with reference to a maximum value of optical power obtained by the light receiver.
請求項1に記載の波長制御回路であって、
前記光フィルタ手段は、基準となるスペクトル特性として、各送出波長に対して光パワーの最小ピークを与え、
前記波長制御手段は、前記光送信手段の複数の送出波長について、前記受光器で得られる光パワーの最小値を基準として、各送出波長を逐次的に制御することを特徴とする波長制御回路。
The wavelength control circuit according to claim 1,
The optical filter means gives a minimum peak of optical power for each transmission wavelength as a reference spectral characteristic,
The wavelength control circuit, wherein the wavelength control means sequentially controls each transmission wavelength for a plurality of transmission wavelengths of the optical transmission means with reference to a minimum value of optical power obtained by the light receiver.
複数の送出波長のそれぞれが可変可能な光送信手段と、
前記複数の送出波長に対して、基準となるスペクトル特性を与える光フィルタ手段であって、第1の出力ポートと第2の出力ポートが逆のスペクトル特性を有する光フィルタ手段と、
前記第1の出力ポートを介して、前記複数の送出波長の光を受光する第1の受光手段と、
前記第2の出力ポートを介して、前記複数の送信波長の光を受光する第2の受光手段と、
前記光送信手段の複数の送出波長について、前記第1および第2の受光器で得られる光パワーを基準に、各送出波長を逐次的に制御する波長制御手段と
を備えたことを特徴とする波長制御回路。
An optical transmission means capable of varying each of a plurality of transmission wavelengths;
Optical filter means for providing a reference spectral characteristic for the plurality of transmission wavelengths, wherein the first output port and the second output port have opposite spectral characteristics;
First light receiving means for receiving light of the plurality of transmission wavelengths via the first output port;
Second light receiving means for receiving the light of the plurality of transmission wavelengths via the second output port;
Wavelength control means for sequentially controlling each of the transmission wavelengths with respect to a plurality of transmission wavelengths of the optical transmission means on the basis of optical power obtained by the first and second optical receivers. Wavelength control circuit.
請求項4に記載の波長制御回路であって、
前記波長制御手段は、前記光送信手段の複数の送出波長について、前記第1の受光器で得られる光パワーと前記第2の受光器で得られる光パワーとの差を基準に、各送出波長を逐次的に制御することを特徴とする波長制御回路。
The wavelength control circuit according to claim 4,
The wavelength control means, for a plurality of transmission wavelengths of the optical transmission means, each transmission wavelength based on the difference between the optical power obtained by the first light receiver and the optical power obtained by the second light receiver. A wavelength control circuit characterized by sequentially controlling.
請求項4に記載の波長制御回路であって、
前記光フィルタ手段は、基準となるスペクトル特性として、第1の出力ポートには各送出波長に対して光パワーの最大ピークを与え、第2の出力ポートには各波長に対して光パワーの最小ピークを与え、
前記波長制御手段は、前記光送信手段の複数の送出波長の一部について、前記第1の受光器で得られる光パワーの最大値を基準に、各送出波長を逐次的に制御し、前記光送信手段の複数の送出波長の一部について、前記第2の受光器で得られる光パワーの最小値を基準に、各送出波長を逐次的に制御することを特徴とする波長制御回路。
The wavelength control circuit according to claim 4,
The optical filter means gives a maximum optical power peak for each transmission wavelength to the first output port as a reference spectral characteristic, and a minimum optical power for each wavelength to the second output port. Give a peak,
The wavelength control unit sequentially controls each transmission wavelength with respect to a part of the plurality of transmission wavelengths of the optical transmission unit on the basis of the maximum value of the optical power obtained by the first light receiver. A wavelength control circuit for sequentially controlling each transmission wavelength with respect to a part of a plurality of transmission wavelengths of the transmission means on the basis of a minimum value of optical power obtained by the second light receiver.
請求項6に記載の波長制御回路であって、
前記波長制御手段はさらに、前記光送信手段の複数の送出波長の一部について、前記第1の受光器で得られる光パワーと前記第2の受光器で得られる光パワーとの差を基準に、各送出波長を逐次的に制御することを特徴とする波長制御回路。
The wavelength control circuit according to claim 6,
The wavelength control means is further configured based on a difference between the optical power obtained by the first light receiver and the optical power obtained by the second light receiver for a part of the plurality of transmission wavelengths of the optical transmission means. A wavelength control circuit that sequentially controls each transmission wavelength.
請求項1から7のいずれかに記載の波長制御回路であって、
前記光フィルタ手段は、各送出波長に対して、波形整形のためのスペクトル特性をさらに与えることを特徴とする波長制御回路。
A wavelength control circuit according to any one of claims 1 to 7,
The wavelength control circuit, wherein the optical filter means further gives a spectral characteristic for waveform shaping to each transmission wavelength.
請求項1から8のいずれかに記載の波長制御回路であって、
前記光フィルタ手段は、周期的なスペクトル特性を有する光フィルタ、波長合波器、またはこれらの組合せであることを特徴とする波長制御回路。
A wavelength control circuit according to any one of claims 1 to 8,
The wavelength control circuit, wherein the optical filter means is an optical filter having a periodic spectral characteristic, a wavelength multiplexer, or a combination thereof.
請求項1から8のいずれかに記載の波長制御回路であって、
前記光フィルタ手段は、エタロンフィルタ、マッハツェンダフィルタ、またはこれらの組合せであることを特徴とする波長制御回路。
A wavelength control circuit according to any one of claims 1 to 8,
The wavelength control circuit, wherein the optical filter means is an etalon filter, a Mach-Zehnder filter, or a combination thereof.
請求項1から10のいずれかに記載の波長制御回路を備えたことを特徴とする波長多重光送信装置。   A wavelength division multiplexing optical transmission apparatus comprising the wavelength control circuit according to claim 1.
JP2007006194A 2007-01-15 2007-01-15 Wavelength control circuit and wavelength division multiplexing optical transmitter Active JP4728971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006194A JP4728971B2 (en) 2007-01-15 2007-01-15 Wavelength control circuit and wavelength division multiplexing optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006194A JP4728971B2 (en) 2007-01-15 2007-01-15 Wavelength control circuit and wavelength division multiplexing optical transmitter

Publications (2)

Publication Number Publication Date
JP2008172717A true JP2008172717A (en) 2008-07-24
JP4728971B2 JP4728971B2 (en) 2011-07-20

Family

ID=39700353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006194A Active JP4728971B2 (en) 2007-01-15 2007-01-15 Wavelength control circuit and wavelength division multiplexing optical transmitter

Country Status (1)

Country Link
JP (1) JP4728971B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145387A (en) * 2008-12-17 2010-07-01 Ind Technol Res Inst Apparatus for monitoring extinction ratio (er) of optical signal
JP2012510758A (en) * 2008-12-01 2012-05-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for wavelength alignment in WDM-PON
US9654210B2 (en) 2009-08-19 2017-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261181A (en) * 1996-03-27 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Multichannel optical frequency stabilizer
JP2000209155A (en) * 1999-01-14 2000-07-28 Nec Corp Optical wavelength monitor controller, optical wavelength multiplex optical transmitter, optical wavelength monitor control method and optical wavelength multiplex optical transmission method
JP2000323784A (en) * 1999-05-06 2000-11-24 Fujitsu Ltd Multi-wavelength stabilizer, multi-constant-wavelength light source device, light source device for wavelength division multiplexing system, and wavelength discriminating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261181A (en) * 1996-03-27 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Multichannel optical frequency stabilizer
JP2000209155A (en) * 1999-01-14 2000-07-28 Nec Corp Optical wavelength monitor controller, optical wavelength multiplex optical transmitter, optical wavelength monitor control method and optical wavelength multiplex optical transmission method
JP2000323784A (en) * 1999-05-06 2000-11-24 Fujitsu Ltd Multi-wavelength stabilizer, multi-constant-wavelength light source device, light source device for wavelength division multiplexing system, and wavelength discriminating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510758A (en) * 2008-12-01 2012-05-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for wavelength alignment in WDM-PON
US8649681B2 (en) 2008-12-01 2014-02-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for wavelength alignment in WDM-PON
JP2010145387A (en) * 2008-12-17 2010-07-01 Ind Technol Res Inst Apparatus for monitoring extinction ratio (er) of optical signal
US9654210B2 (en) 2009-08-19 2017-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical networks

Also Published As

Publication number Publication date
JP4728971B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP2573961B1 (en) An optical frequency locking method and device for optical data transmission
US7203212B2 (en) System and method for wavelength error measurement
US20040208428A1 (en) Wavelength-multiplexed narrow-bandwidth optical transmitter and wavelength-multiplexed vestigial-side-band optical transmitter
US20020154372A1 (en) Power and optical frequency monitoring system and transmission system of frequency-modulated optical signal
CN101765948A (en) The system and method that is used for wavelength monitoring and control
JP5825162B2 (en) Front-end device
US20110064411A1 (en) Method for controlling the center wavelength of at least one narrow band optical channel wdm transmitting device in a wdm network and corresponding wdm transmitting device
JP4728971B2 (en) Wavelength control circuit and wavelength division multiplexing optical transmitter
US9166691B2 (en) Method for coupling an emitting device to a frequency splitter in an optical passive network
US20100135653A1 (en) Optical network monitoring system and method thereof
EP3321720B1 (en) Optical interference filter device, especially for an optical wavelength locking device
KR100944865B1 (en) Optical Wavelength Locking for the Optical Line Terminal of Wavelength Division Multiplexing Passive Optical Network
US7050719B2 (en) Wavelength division multiplexing receiver for wavelength tracking
JP4150193B2 (en) Wavelength control apparatus and wavelength control method
US8582930B2 (en) Fiber sensing systems and fiber sensing methods
JP2008017002A (en) Optical transmission system
JP5030205B2 (en) Wavelength stabilization apparatus and wavelength stabilization method
JP2009080189A (en) Optical modulation device
JP2005192138A (en) Optical branch line monitoring system
US11973535B2 (en) Wavelength monitoring circuit
KR101021408B1 (en) Method for Monitoring Optical Fiber Line of WDM-PON Access Network
JP2009284333A (en) Wavelength multiplexing optical transmission device
JP4598615B2 (en) Optical wavelength division multiplexing signal transmitter / receiver
JP5336624B2 (en) Wavelength error detector and wavelength error detection method
WO2015154269A1 (en) Demultiplexer, optical module and optical line terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350