JP2008171766A - Non-aqueous electrolytic solution, secondary battery using this, and capacitor - Google Patents

Non-aqueous electrolytic solution, secondary battery using this, and capacitor Download PDF

Info

Publication number
JP2008171766A
JP2008171766A JP2007006013A JP2007006013A JP2008171766A JP 2008171766 A JP2008171766 A JP 2008171766A JP 2007006013 A JP2007006013 A JP 2007006013A JP 2007006013 A JP2007006013 A JP 2007006013A JP 2008171766 A JP2008171766 A JP 2008171766A
Authority
JP
Japan
Prior art keywords
group
electrolytic solution
alkyl group
capacitor
acetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007006013A
Other languages
Japanese (ja)
Other versions
JP5029809B2 (en
Inventor
Shu Kashida
周 樫田
Satoru Miyawaki
悟 宮脇
Mikio Aramata
幹夫 荒又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007006013A priority Critical patent/JP5029809B2/en
Publication of JP2008171766A publication Critical patent/JP2008171766A/en
Application granted granted Critical
Publication of JP5029809B2 publication Critical patent/JP5029809B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution which realizes an electrochemical capacitor such as a battery and an electric double layer capacitor, in particular, a non-aqueous electrolytic solution secondary battery, which gives improvement in discharge characteristics at a low-temperature and improvement in discharge characteristics at high output, and a power storage device (battery, capacitor) using the same. <P>SOLUTION: The non-aqueous electrolytic solution has a non-aqueous solvent, an electrolyte salt, and a denatured silane having acetylene group as shown in the formula (1) and/or (2) as the essential component. In the formula, R<SP>1</SP>, R<SP>2</SP>, and R<SP>3</SP>are the same or a different kind of organic group selected from alkyl group having a carbon number 1-30 which may be substituted by halogen atom, aryl group, aralkyl group, amino-substituted alkyl group, carboxyl substituted alkyl group, alkoxy group, and aryloxy group. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アセチレン基を有する変性シランを含む非水電解液に関するものであり、その電解液を用いた各種エネルギーデバイス、特に二次電池、電気化学キャパシタ、とりわけリチウムイオンを正極と負極の間で移動させて充放電を行うリチウムイオン二次電池に使用される非水系電解液として有効なアセチレン基を有する変性シランを含む非水電解液、及びその電解液を用いた二次電池、電気二重層キャパシタ等の電気化学キャパシタに関するものである。本発明の電解液を使用した電池、キャパシタ等のエネルギーデバイスは優れた温度特性及び高出力特性を有する。   The present invention relates to a nonaqueous electrolytic solution containing a modified silane having an acetylene group, and various energy devices using the electrolytic solution, in particular, secondary batteries, electrochemical capacitors, particularly lithium ions between a positive electrode and a negative electrode. Non-aqueous electrolyte containing modified silane having acetylene group effective as non-aqueous electrolyte used for lithium ion secondary battery that is moved and charged, and secondary battery and electric double layer using the electrolyte The present invention relates to an electrochemical capacitor such as a capacitor. Energy devices such as batteries and capacitors using the electrolytic solution of the present invention have excellent temperature characteristics and high output characteristics.

近年、ノートパソコン、携帯電話、デジタルカメラあるいはデジタルビデオカメラの充電可能なポータブル電源として、高エネルギー密度を有するリチウムイオン二次電池の使用が増大している。また、環境に対する配慮から、排気ガスを大気中に放出しない自動車として実用化が進められている電気自動車、ハイブリッド自動車用の補助電源としても非水電解液を使用したリチウムイオン二次電池あるいは電気二重層キャパシタが検討されている。   In recent years, the use of lithium ion secondary batteries having a high energy density as portable power sources that can be charged for notebook computers, mobile phones, digital cameras, or digital video cameras is increasing. In addition, in consideration of the environment, lithium-ion secondary batteries or non-aqueous batteries using non-aqueous electrolytes are also used as auxiliary power sources for electric vehicles and hybrid vehicles that are being put to practical use as vehicles that do not release exhaust gas into the atmosphere. Multilayer capacitors are being considered.

しかしながら、リチウムイオン二次電池は高性能であるものの、厳しい環境下(特に低温環境下)での放電特性及び短時間に大量の電気を必要とする高出力下での放電特性については十分とは言えない。一方、電気二重層キャパシタにおいては、その耐電圧が不十分であり、かつ電気容量が経時で低下する問題があり、更なる電解液の改良が求められている。   However, although lithium-ion secondary batteries have high performance, they are not sufficient for discharge characteristics under harsh environments (especially in low-temperature environments) and discharge characteristics under high output that require a large amount of electricity in a short time. I can not say. On the other hand, the electric double layer capacitor has a problem that its withstand voltage is insufficient and the electric capacity decreases with time, and further improvement of the electrolytic solution is required.

なお、本発明に関連する先行文献としては、下記のものが挙げられる。
特開平11−214032号公報 特開2000−58123号公報 特開2001−110455号公報 特開2003−142157号公報
In addition, the following are mentioned as prior literature relevant to the present invention.
Japanese Patent Laid-Open No. 11-214032 JP 2000-58123 A JP 2001-110455 A JP 2003-142157 A

本発明は、上記事情に鑑みなされたもので、低温下での放電特性の向上、高出力下での放電特性の向上を与える電池、電気二重層キャパシタ等の電気化学キャパシタ、特に非水電解液二次電池を可能にする非水電解液及びこれを用いた蓄電デバイス(電池、キャパシタ)を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an improvement in discharge characteristics at low temperatures, an improvement in discharge characteristics under high output, and an electrochemical capacitor such as an electric double layer capacitor, particularly a non-aqueous electrolyte. It aims at providing the nonaqueous electrolyte which enables a secondary battery, and the electrical storage device (battery, capacitor) using the same.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、蓄電デバイスの非水電解液として、非水溶媒と、電解質塩と、下記式(1)及び/又は(2)で示される分子鎖末端にアセチレン基(即ち、HC≡C−構造)を有するアセチレン変性シランとを必須成分とする非水電解液を用いることにより、低温下での放電特性の向上、高出力下での放電特性の向上を可能にすることを知見し、本発明をなすに至った。
従って、本願発明は、下記非水電解液、この非水電解液を含む二次電池、電気化学キャパシタ、リチウムイオン二次電池を提供する。
[I]非水溶媒と、電解質塩と、下記式(1)及び/又は(2)で示されるアセチレン基を有する変性シランとを必須成分とすることを特徴とする非水電解液。

Figure 2008171766
[式中、R1、R2及びR3は、ハロゲン原子で置換されていてもよい炭素数1〜30のアルキル基、アリール基、アラルキル基、アミノ置換アルキル基、カルボキシル置換アルキル基、アルコキシ基、アリーロキシ基から選択される同一又は異種の有機基である]
[II]前記アセチレン基を有する変性シラン中のR1、R2及びR3が炭素数1〜6のアルキル基、又はフッ素置換アルキル基、又はフェニル基である[I]記載の非水電解液。
[III]前記アセチレン基を有する変性シランの含有量が非水電解液全体の0.001体積%以上であることを特徴とする[I]又は[II]記載の非水電解液。
[IV]前記電解質塩がリチウム塩であることを特徴とする[I]〜[III]のいずれか1項記載の非水電解液。
[V][I]〜[IV]のいずれか1項記載の非水電解液を含むことを特徴とする二次電池。
[VI][I]〜[IV]のいずれか1項記載の非水電解液を含むことを特徴とする電気化学キャパシタ。
[VII][I]〜[IV]のいずれか1項記載の非水電解液を含むことを特徴とするリチウムイオン二次電池。 As a result of intensive studies to achieve the above object, the present inventors have shown a nonaqueous solvent, an electrolyte salt, and the following formula (1) and / or (2) as a nonaqueous electrolytic solution for an electricity storage device. By using a non-aqueous electrolyte containing an acetylene-modified silane having an acetylene group (that is, HC≡C-structure) at the molecular chain end as an essential component, the discharge characteristics at low temperatures can be improved and the output can be increased under high output. It has been found that discharge characteristics can be improved, and the present invention has been made.
Accordingly, the present invention provides the following non-aqueous electrolyte, a secondary battery including the non-aqueous electrolyte, an electrochemical capacitor, and a lithium ion secondary battery.
[I] A nonaqueous electrolytic solution comprising as essential components a nonaqueous solvent, an electrolyte salt, and a modified silane having an acetylene group represented by the following formula (1) and / or (2).
Figure 2008171766
[Wherein R 1 , R 2 and R 3 are each an alkyl group having 1 to 30 carbon atoms which may be substituted with a halogen atom, an aryl group, an aralkyl group, an amino-substituted alkyl group, a carboxyl-substituted alkyl group, or an alkoxy group. Are the same or different organic groups selected from aryloxy groups]
[II] The nonaqueous electrolytic solution according to [I], wherein R 1 , R 2, and R 3 in the modified silane having an acetylene group are an alkyl group having 1 to 6 carbon atoms, a fluorine-substituted alkyl group, or a phenyl group. .
[III] The non-aqueous electrolyte according to [I] or [II], wherein the content of the modified silane having an acetylene group is 0.001% by volume or more of the whole non-aqueous electrolyte.
[IV] The non-aqueous electrolyte according to any one of [I] to [III], wherein the electrolyte salt is a lithium salt.
[V] A secondary battery comprising the nonaqueous electrolytic solution according to any one of [I] to [IV].
[VI] An electrochemical capacitor comprising the nonaqueous electrolytic solution according to any one of [I] to [IV].
[VII] A lithium ion secondary battery comprising the nonaqueous electrolytic solution according to any one of [I] to [IV].

本発明のアセチレン基を有する変性シランを含有する非水電解液を使用した蓄電デバイスは優れた温度特性及び高出力特性を有する。   The electricity storage device using the nonaqueous electrolytic solution containing the modified silane having an acetylene group of the present invention has excellent temperature characteristics and high output characteristics.

本発明の非水電解液に用いるアセチレン基を有する変性シランは、下記式(1)及び/又は(2)で示される分子鎖末端にアセチレン基(即ち、HC≡C−構造)を有するアセチレン変性シラン化合物(以下、単に、アセチレン基を有する変性シラン又は変性シラン等と略記することがある)である。   The modified silane having an acetylene group used in the non-aqueous electrolyte of the present invention is an acetylene modified having an acetylene group (that is, HC≡C-structure) at the molecular chain end represented by the following formula (1) and / or (2). It is a silane compound (hereinafter sometimes simply referred to as a modified silane having an acetylene group or a modified silane).

Figure 2008171766
Figure 2008171766

上記式中、R1、R2及びR3は、同一又は異なってもよく、一部ハロゲン原子で置換されてもよい炭素数1〜30、好ましくは1〜12、より好ましくは1〜6のアルキル基、アリール基、アラルキル基、アミノ置換アルキル基、カルボキシル置換アルキル基、アルコキシ基、アリーロキシ基から選ばれる有機基である。これらの具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、シクロペンチル基、シクロヘキシル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基などを挙げることができる他、3−アミノプロピル基、3−[(2−アミノエチル)アミノ]プロピル基等のアミノ置換アルキル基、3−カルボキシプロピル基等のカルボキシ置換アルキル基などが挙げられる。また、トリフルオロプロピル基やノナフルオロオクチル基等のように一部の水素原子がフッ素原子等のハロゲン原子に置換されたハロゲン化アルキル基も挙げられる。アルコキシ基としてはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基等が挙げられる。アリーロキシ基としては、フェニルオキシ基が挙げられる。これらのうち好ましいのは炭素数1〜6のアルキル基及びフッ素置換アルキル基であって、最も好ましいのはメチル基あるいはエチル基である。特に、R1及びR2の合計、とりわけR1〜R3の合計の80モル%以上(即ち、80〜100モル%)がメチル基あるいはエチル基であることが好ましい。 In the above formulas, R 1, R 2 and R 3 may be the same or different, 1 to 30 carbon atoms which may be partially substituted with a halogen atom, preferably 1 to 12, more preferably 1 to 6 An organic group selected from an alkyl group, an aryl group, an aralkyl group, an amino-substituted alkyl group, a carboxyl-substituted alkyl group, an alkoxy group, and an aryloxy group. Specific examples thereof include methyl group, ethyl group, propyl group, butyl group, pentyl group, cyclopentyl group, cyclohexyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and other alkyl groups, phenyl group, An aryl group such as a tolyl group, an aralkyl group such as a benzyl group and a phenethyl group, and the like, an amino-substituted alkyl group such as a 3-aminopropyl group, a 3-[(2-aminoethyl) amino] propyl group, Examples include carboxy-substituted alkyl groups such as 3-carboxypropyl group. Moreover, the halogenated alkyl group by which some hydrogen atoms were substituted by halogen atoms, such as a fluorine atom, like a trifluoropropyl group, a nonafluorooctyl group, etc. is mentioned. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group. An aryloxy group includes a phenyloxy group. Among these, an alkyl group having 1 to 6 carbon atoms and a fluorine-substituted alkyl group are preferable, and a methyl group or an ethyl group is most preferable. In particular, the total of R 1 and R 2 , particularly 80 mol% or more (that is, 80 to 100 mol%) of the total of R 1 to R 3 is preferably a methyl group or an ethyl group.

本発明のアセチレン基を有する変性シランは、3−メチル−1−ブチン−3−オール、3−メチル−1−ペンチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニル−1−シクロヘキサノール等のアセチレンアルコールとトリメチルクロロシラン、ジメチルジクロロシラン等のシランとの脱塩酸反応により得ることができる。例えば、下記化合物[I]は、3−メチル−1−ブチン−3−オールとトリメチルクロロシランとの反応により、化合物[II]は、3−メチル−1−ブチン−3−オールとジメチルジクロロシランとの反応により得ることができる。   The modified silane having an acetylene group of the present invention includes 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, It can be obtained by dehydrochlorination reaction of acetylene alcohol such as ethynyl-1-cyclohexanol and silane such as trimethylchlorosilane and dimethyldichlorosilane. For example, the following compound [I] is reacted with 3-methyl-1-butyn-3-ol and trimethylchlorosilane, and compound [II] is converted into 3-methyl-1-butyn-3-ol and dimethyldichlorosilane. It can obtain by reaction of.

本発明のアセチレン基を有する変性シランを具体的に示すと、下記に示す化合物を挙げることができる。   Specific examples of the modified silane having an acetylene group of the present invention include the following compounds.

Figure 2008171766
Figure 2008171766

本発明のアセチレン基を有する変性シランは、非水電解液中に0.001体積%以上含有することが必要である。0.001体積%未満では本発明の効果が十分発揮できない場合がある。好ましくは0.1体積%以上含有することである。また含有量の上限については、用いる非水電解液用溶媒によっても異なるが、非水電解液内でのLiイオンの移動が実用レベル以下にならない程度の含有量とする。通常、50体積%以下、好ましくは20体積%以下、より好ましくは10体積%以下である。     The modified silane having an acetylene group of the present invention is required to be contained in a non-aqueous electrolyte solution by 0.001% by volume or more. If it is less than 0.001% by volume, the effects of the present invention may not be sufficiently exerted. Preferably it is 0.1 volume% or more. Further, the upper limit of the content varies depending on the solvent for the non-aqueous electrolyte to be used, but the content is such that the movement of Li ions in the non-aqueous electrolyte does not become a practical level or less. Usually, it is 50 volume% or less, Preferably it is 20 volume% or less, More preferably, it is 10 volume% or less.

本発明の非水電解液は、電解質塩及び非水溶媒を含有する。電解質塩としては、例えば、軽金属塩が挙げられる。軽金属塩にはリチウム塩、ナトリウム塩、あるいはカリウム塩等のアルカリ金属塩、マグネシウム塩あるいはカルシウム塩等のアルカリ土類金属塩、又はアルミニウム塩等があり、目的に応じて1種又は複数種が選択される。例えば、リチウム塩であれば、LiBF4、LiClO4、LiPF6、LiAsF6、CF3SO3Li、(CF3SO22NLi、C49SO3Li、CF3CO2Li、(CF3CO22NLi、C65SO3Li、C817SO3Li、(C25SO22NLi、(C49SO2)(CF3SO2)NLi、(FSO264)(CF3SO2)NLi、((CF32CHOSO22NLi、(CF3SO23CLi、(3,5−(CF32634BLi、LiCF3、LiAlCl4あるいはC4BO8Liが挙げられ、これらのうちのいずれか1種又は2種以上が混合して用いられる。 The nonaqueous electrolytic solution of the present invention contains an electrolyte salt and a nonaqueous solvent. Examples of the electrolyte salt include light metal salts. Light metal salts include alkali metal salts such as lithium salt, sodium salt or potassium salt, alkaline earth metal salts such as magnesium salt or calcium salt, or aluminum salt, and one or more are selected according to the purpose. Is done. For example, in the case of a lithium salt, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, C 4 F 9 SO 3 Li, CF 3 CO 2 Li, ( CF 3 CO 2 ) 2 NLi, C 6 F 5 SO 3 Li, C 8 F 17 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NLi , (FSO 2 C 6 F 4 ) (CF 3 SO 2 ) NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (3,5- (CF 3 ) 2 C 6 F 3 ) 4 BLi, LiCF 3 , LiAlCl 4, or C 4 BO 8 Li may be used, and any one or two of these may be used in combination.

非水電解液の電解質塩の濃度は、電気伝導性の点から、0.5〜2.0mol/Lが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、電解質塩の種類あるいはその濃度により調整される。   The concentration of the electrolyte salt in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L from the viewpoint of electrical conductivity. The conductivity of the electrolyte at 25 ° C. is preferably 0.01 S / m or more, and is adjusted by the type of electrolyte salt or its concentration.

本発明に使用される非水電解液用溶媒としては、非水電解液用として使用し得るものであれば特に制限はない。一般にエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、ジプロピルカーボネート、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、メチルアセテート等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF4 -、PF6 -、(CF3SO22-等が挙げられる。イオン性液体は前述の非水電解液溶媒と混合して使用することが可能である。 The solvent for non-aqueous electrolyte used in the present invention is not particularly limited as long as it can be used for non-aqueous electrolyte. Generally, aprotic high dielectric constant solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, dipropyl carbonate, diethyl ether, tetrahydrofuran, 1,2, -Aprotic low viscosity such as acetate ester or propionate ester such as dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, methyl acetate A solvent is mentioned. It is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents in combination at an appropriate mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the aforementioned non-aqueous electrolyte solvent.

固体電解質やゲル電解質とする場合にはシリコーンゲル、シリコーンポリエーテルゲル、アクリルゲル、アクリロニトリルゲル、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。なお、これらは予め重合していてもよく、注液後重合してもよい。これらは単独もしくは混合物として使用可能である。   In the case of a solid electrolyte or gel electrolyte, it is possible to contain silicone gel, silicone polyether gel, acrylic gel, acrylonitrile gel, poly (vinylidene fluoride) and the like as a polymer material. These may be polymerized in advance or may be polymerized after injection. These can be used alone or as a mixture.

更に、本発明の非水電解液中には必要に応じて各種添加剤を添加してもよい。例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4−ビニルエチレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル、シクロヘキシルベンゼン、t−ブチルベンゼン、ジフェニルエーテル、ベンゾフラン等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。   Furthermore, you may add various additives in the non-aqueous electrolyte of this invention as needed. For example, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4-vinylethylene carbonate and the like for the purpose of improving cycle life, biphenyl, alkylbiphenyl, cyclohexylbenzene, t-butylbenzene, diphenyl ether for the purpose of preventing overcharge, Examples include benzofuran, various carbonate compounds for the purpose of deoxidation and dehydration, various carboxylic acid anhydrides, various nitrogen-containing compounds, and sulfur-containing compounds.

本発明に係る非水電解液は、正極、負極、セパレータ、電解液を備えた二次電池や電気化学キャパシタ等の蓄電デバイスに使用することができる。   The nonaqueous electrolytic solution according to the present invention can be used in a power storage device such as a positive battery, a negative electrode, a separator, a secondary battery including an electrolytic solution, and an electrochemical capacitor.

正極活物質としては、リチウムイオンを吸蔵及び離脱することが可能な酸化物あるいは硫化物等が挙げられ、これらのいずれか1種又は2種以上が用いられる。具体的には、例えば、TiS2、MoS2、NbS2、ZrS2、VS2、あるいはV25、MoO3、Mg(V382等のリチウムを含有しない金属硫化物もしくは酸化物、又はリチウム及びリチウムを含有するリチウム複合酸化物が挙げられ、また、NbSe2等の複合金属も挙げられる。中でも、エネルギー密度を高くするには、LipMetO2を主体とするリチウム複合酸化物が好ましい。なお、この場合のMetは具体的には、コバルト、ニッケル、鉄及びマンガンのうちの少なくとも1種が好ましく、pは、通常、0.05≦p≦1.10の範囲内の値である。このようなリチウム複合酸化物の具体例としては、層構造を持つLiCoO2、LiNiO2、LiFeO2、LiqNirCo1-r2(但し、q及びrの値は電池の充放電状態によって異なり、通常、0<q<1、0.7<r≦1)、スピネル構造のLiMn24及び斜方晶LiMnO2が挙げられる。更に高電圧対応型として置換スピネルマンガン化合物としてLiMetsMn1-s4(0<s<1)も使用されており、この場合のMetはチタン、クロム、鉄、コバルト、ニッケル、銅及び亜鉛等が挙げられる。 Examples of the positive electrode active material include oxides or sulfides capable of inserting and extracting lithium ions, and any one or more of these are used. Specifically, for example, TiS 2 , MoS 2 , NbS 2 , ZrS 2 , VS 2 , V 2 O 5 , MoO 3 , Mg (V 3 O 8 ) 2 or other metal sulfides or oxides that do not contain lithium Or a lithium composite oxide containing lithium and lithium, and a composite metal such as NbSe 2 . Among these, in order to increase the energy density, a lithium composite oxide mainly composed of Li p MetO 2 is preferable. In this case, specifically, Met is preferably at least one of cobalt, nickel, iron and manganese, and p is usually a value in the range of 0.05 ≦ p ≦ 1.10. Specific examples of the lithium composite oxide, LiCoO 2, LiNiO 2, LiFeO 2, Li q Ni r Co 1-r O 2 ( where, the values of q and r is a charge-discharge state of the battery having the layer structure Usually, 0 <q <1, 0.7 <r ≦ 1), spinel-structured LiMn 2 O 4 and orthorhombic LiMnO 2 may be mentioned. Furthermore, LiMet s Mn 1-s O 4 (0 <s <1) is also used as a substituted spinel manganese compound as a high-voltage compatible type, where Met is titanium, chromium, iron, cobalt, nickel, copper and zinc. Etc.

なお、上記のリチウム複合酸化物は、例えば、リチウムの炭酸塩、硝酸塩、酸化物あるいは水酸化物と、遷移金属の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸素雰囲気中において600℃〜1,000℃の範囲内の温度で焼成することにより調製される。   The lithium composite oxide is obtained by, for example, grinding lithium carbonate, nitrate, oxide or hydroxide, and transition metal carbonate, nitrate, oxide or hydroxide according to a desired composition. It is prepared by mixing and baking at a temperature in the range of 600 ° C. to 1,000 ° C. in an oxygen atmosphere.

更に正極活物質としては有機物も使用することができる。例示するとポリアセチレン、ポリピロール、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリアセン、ポリスルフィド化合物等である。   Furthermore, an organic substance can also be used as the positive electrode active material. Illustrative examples include polyacetylene, polypyrrole, polyparaphenylene, polyaniline, polythiophene, polyacene, polysulfide compound and the like.

リチウムイオンを吸蔵及び離脱することが可能な負極材料としては、炭素材料、金属元素あるいは類金属元素、金属複合酸化物あるいはポリアセチレンあるいはポリピロール等の高分子材料などが挙げられる。   Examples of the negative electrode material capable of inserting and extracting lithium ions include carbon materials, metal elements or similar metal elements, metal composite oxides, polymer materials such as polyacetylene and polypyrrole, and the like.

炭素材料としては、炭素化プロセスによりアセチレンブラック、熱分解炭素、天然黒鉛等の気相法により合成される炭素類、人造黒鉛類、石油コークスもしくはピッチコークス等のコークス類を含む液相法により合成される炭素類、高分子、木質原料、フェノール樹脂、炭素フィルムを焼成してなる熱分解炭素、木炭、ガラス状炭素類、炭素繊維等の固相法により合成される炭素類が挙げられる。   The carbon material is synthesized by a liquid phase method including carbons synthesized by a gas phase method such as acetylene black, pyrolytic carbon, natural graphite, etc., artificial graphites, coke such as petroleum coke or pitch coke by a carbonization process. And carbons synthesized by a solid phase method such as pyrolytic carbon obtained by firing a carbon film, polymer, wood raw material, phenol resin, and carbon film, charcoal, glassy carbon, and carbon fiber.

リチウムを吸蔵及び離脱することが可能な負極材料としては、リチウムと合金を形成可能な金属元素あるいは類金属元素の単体、合金又は化合物も挙げられる。その形態には固溶体、共晶、金属間化合物あるいはそれらのうち2種以上が共存するものがある。これらのいずれか1種又は2種以上を混合して用いてもよい。   Examples of the negative electrode material capable of inserting and extracting lithium include a single element, an alloy, or a compound of a metal element or a similar metal element capable of forming an alloy with lithium. The form includes a solid solution, a eutectic, an intermetallic compound, or those in which two or more of them coexist. Any one of these or a mixture of two or more may be used.

このような金属元素あるいは類金属元素としては、例えば、スズ、鉛、アルミニウム、インジウム、ケイ素、亜鉛、銅、コバルト、アンチモン、ビスマス、カドミウム、マグネシウム、ホウ素、ガリウム、ゲルマニウム、ヒ素、セレン、テルル、銀、ハフニウム、ジルコニウム及びイットリウムが挙げられる。中でも、4B族の金属元素あるいは類金属元素の単体、合金又は化合物が好ましく、特に好ましいのはケイ素あるいはスズ、又はこれらの合金あるいは化合物である。これらは結晶質でもアモルファスでもよい。   Examples of such metal elements or similar metal elements include tin, lead, aluminum, indium, silicon, zinc, copper, cobalt, antimony, bismuth, cadmium, magnesium, boron, gallium, germanium, arsenic, selenium, tellurium, Silver, hafnium, zirconium and yttrium are mentioned. Among these, a single element, alloy or compound of Group 4B metal element or similar metal element is preferable, and silicon or tin, or an alloy or compound thereof is particularly preferable. These may be crystalline or amorphous.

このような合金あるいは化合物について具体的に例を挙げれば、LiAl、AlSb、CuMgSb、SiB4、SiB6、Mg2Si、Mg2Sn、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si/SiC複合物、Si34、Si22O、SiOv(0<v≦2)、SiO/C複合物、SnOw(0<w≦2)、SnSiO3、LiSiOあるいはLiSnO等がある。 Specific examples of such alloys or compounds include LiAl, AlSb, CuMgSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2. , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si / SiC composite, Si 3 N 4, Si 2 N 2 O , SiO v (0 <v ≦ 2), SiO / C composite, SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO.

正極、負極の作製方法については特に制限はない。一般的には、溶媒に活物質、結着剤、導電剤等を加えてスラリー状とし、集電体シートに塗布し、乾燥、圧着して作製する。   There is no restriction | limiting in particular about the preparation methods of a positive electrode and a negative electrode. In general, an active material, a binder, a conductive agent or the like is added to a solvent to form a slurry, which is applied to a current collector sheet, dried and pressed.

結着剤としては、一般的にポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、各種ポリイミド樹脂等が挙げられる。
導電剤としては、一般的に黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル等の金属材料が挙げられる。
集電体としては、正極用にはアルミニウム又はその合金、負極用には銅、ステンレス、ニッケル等の金属又はそれらの合金等が挙げられる。
Examples of the binder generally include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, various polyimide resins, and the like.
Examples of the conductive agent generally include carbon-based materials such as graphite and carbon black, and metal materials such as copper and nickel.
Examples of the current collector include aluminum or an alloy thereof for the positive electrode, and a metal such as copper, stainless steel, nickel, or an alloy thereof for the negative electrode.

正極と負極の間に用いられるセパレータは電解液に対して安定であり、保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィン系の多孔質シート又は不織布が挙げられる。また、多孔質ガラス、セラミックス等も使用される。   The separator used between the positive electrode and the negative electrode is not particularly limited as long as it is stable with respect to the electrolytic solution and has excellent liquid retention, but is generally a polyolefin-based porous sheet or nonwoven fabric such as polyethylene and polypropylene. Is mentioned. Moreover, porous glass, ceramics, etc. are also used.

二次電池の形状は任意であり、特に制限はない。一般的にはコイン形状に打ち抜いた電極とセパレータを積層したコインタイプ、電極シートとセパレータをスパイラル状にした円筒型等が挙げられる。   The shape of the secondary battery is arbitrary and is not particularly limited. In general, a coin type in which an electrode punched into a coin shape and a separator are stacked, a cylindrical shape in which an electrode sheet and a separator are spiraled, and the like are listed.

本発明に係る非水電解液は、電極、セパレータ、電解液を備えた電気化学キャパシタ、特に電気二重層キャパシタあるいは疑似電気二重層キャパシタ、非対称キャパシタ、レドックスキャパシタ等に使用することができる。   The nonaqueous electrolytic solution according to the present invention can be used for an electrode, a separator, an electrochemical capacitor provided with an electrolytic solution, particularly an electric double layer capacitor, a pseudo electric double layer capacitor, an asymmetric capacitor, a redox capacitor, or the like.

キャパシタに使用される電極のうち少なくとも一方は炭素質物質を主成分とする分極性電極である。分極性電極は一般に炭素質物質、導電剤、結着剤から構成されるが、かかる分極正電極の製法は上述のリチウム二次電池と全く同様の処方で作成される。例えば主に粉末状あるいは繊維状活性炭とカーボンブラックとアセチレンブラック等の導電剤を混合し、結着剤としてポリテトラフルオロエチレンを加え、この混合物をステンレスやアルミニウム等の集電体に塗布あるいはプレスしたものが用いられる。同様にセパレータや電解液はイオン透過性の高い材料が好ましくリチウム二次電池で使用される材料がほぼ同様に使用される。また形状もコイン型、円筒型、角型等が挙げられる。   At least one of the electrodes used in the capacitor is a polarizable electrode mainly composed of a carbonaceous material. A polarizable electrode is generally composed of a carbonaceous material, a conductive agent, and a binder, and the method for producing such a polarization positive electrode is prepared in exactly the same manner as the above-described lithium secondary battery. For example, mainly powdered or fibrous activated carbon, carbon black, and conductive agent such as acetylene black are mixed, polytetrafluoroethylene is added as a binder, and this mixture is applied or pressed onto a current collector such as stainless steel or aluminum. Things are used. Similarly, a material having high ion permeability is preferably used for the separator and the electrolytic solution, and materials used in lithium secondary batteries are used in substantially the same manner. Moreover, a coin shape, a cylindrical shape, a square shape etc. are mentioned as a shape.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1〜6、比較例]     [Examples 1 to 6, Comparative Example]

(非水電解液の調製)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)にアセチレン基を有する変性シランとして前記した化合物[I]、[II]を表1の割合で溶解した。次に、LiPF6を1mol/Lの濃度で溶解し、非水電解液とした。また、比較例として、非水電解液にアセチレン基を有する変性シランを含有しない場合についても同様の評価を行った。
(Preparation of non-aqueous electrolyte)
The above-mentioned compounds [I] and [II] as modified silanes having an acetylene group were dissolved in ethylene carbonate (EC) and diethyl carbonate (DEC) at a ratio shown in Table 1. Next, LiPF 6 was dissolved at a concentration of 1 mol / L to obtain a non-aqueous electrolyte. Further, as a comparative example, the same evaluation was performed for the case where the non-aqueous electrolyte did not contain a modified silane having an acetylene group.

Figure 2008171766
Figure 2008171766

(電池材料の作製)
正極材料として、LiCoO2を活物質とし、集電体としてアルミニウム箔を用いた単層シート(パイオニクス(株)製、商品名;ピオクセル C−100)を用いた。また、負極材料として、黒鉛を活物質とし、集電体として銅箔を用いた単層シート(パイオニクス(株)製、商品名;ピオクセル A−100)を用いた。
次に、セパレータとして、ガラス繊維濾紙(アドバンテック東洋(株)製、商品名;GC−50)を用いた。
(Production of battery materials)
As the positive electrode material, a single layer sheet (Pionix Co., Ltd., trade name: Pioxel C-100) using LiCoO 2 as an active material and an aluminum foil as a current collector was used. Moreover, the single layer sheet | seat (Pionix Co., Ltd. make, brand name; Pioxel A-100) using graphite as an active material and copper foil as a collector was used as negative electrode material.
Next, a glass fiber filter (manufactured by Advantech Toyo Co., Ltd., trade name: GC-50) was used as a separator.

(電池の組み立て)
アルゴン雰囲気下のドライボックス内で、前記電池材料と正極導電体を兼ねるステンレス製缶体と負極導電体を兼ねるステンレス製封口板と絶縁用ガスケットを用いて2032コイン型電池を組み立てた。
(Battery assembly)
In a dry box under an argon atmosphere, a 2032 coin-type battery was assembled using a stainless steel can serving as the battery material and a positive electrode conductor, a stainless sealing plate serving as a negative electrode conductor, and an insulating gasket.

(電池性能の評価;低温特性)
25℃下で充電(0.6mA一定電流下で4.2Vまで)と放電(0.6mA一定電流下で2.5Vまで)を10サイクル繰り返した後、5℃下で同様に充放電を繰り返した。25℃下で10サイクル目の放電容量を100として、5℃下での放電容量が80に低下した時のサイクル数を求めた。結果を表2に示した。
(Evaluation of battery performance; low temperature characteristics)
10 cycles of charging (up to 4.2 V under a constant current of 0.6 mA) and discharging (up to 2.5 V under a constant current of 0.6 mA) at 25 ° C., and then repeating charging and discharging similarly at 5 ° C. It was. The number of cycles when the discharge capacity at 5 ° C. decreased to 80 was determined by setting the discharge capacity at the 10th cycle at 100 ° C. at 25 ° C. The results are shown in Table 2.

(電池性能の評価;高出力特性)
25℃下で充電(0.6mA一定電流下で4.2Vまで)と放電(0.6mA一定電流下で2.5Vまで)を5サイクル繰り返した後、充電条件はそのままで、放電の電流を5mAにして5サイクル繰り返した。
この2種類の条件の充放電を交互に繰り返した。最初の0.6mA充放電における5サイクル目の放電容量を100として、放電容量が80に低下した時のサイクル数を求めた。
(Evaluation of battery performance; high output characteristics)
After 5 cycles of charging (up to 4.2 V under a constant current of 0.6 mA) and discharging (up to 2.5 V under a constant current of 0.6 mA) at 25 ° C., the current for discharging remains unchanged under the charging conditions. 5 cycles were repeated at 5 mA.
Charging / discharging of these two types of conditions was repeated alternately. The discharge capacity at the fifth cycle in the first 0.6 mA charge / discharge was taken as 100, and the number of cycles when the discharge capacity dropped to 80 was determined.

Figure 2008171766
Figure 2008171766

表2のようにアセチレン基を有する変性シランを添加した場合は、添加しない比較例と比較して優れた温度特性と高出力特性をいずれも示すことがわかる。   As shown in Table 2, it can be seen that when the modified silane having an acetylene group is added, both excellent temperature characteristics and high output characteristics are exhibited as compared with the comparative example without addition.

Claims (7)

非水溶媒と、電解質塩と、下記式(1)及び/又は(2)で示されるアセチレン基を有する変性シランとを必須成分とすることを特徴とする非水電解液。
Figure 2008171766
[式中、R1、R2及びR3は、ハロゲン原子で置換されていてもよい炭素数1〜30のアルキル基、アリール基、アラルキル基、アミノ置換アルキル基、カルボキシル置換アルキル基、アルコキシ基、アリーロキシ基から選択される同一又は異種の有機基である]
A nonaqueous electrolytic solution comprising a nonaqueous solvent, an electrolyte salt, and a modified silane having an acetylene group represented by the following formula (1) and / or (2) as essential components.
Figure 2008171766
[Wherein R 1 , R 2 and R 3 are each an alkyl group having 1 to 30 carbon atoms which may be substituted with a halogen atom, an aryl group, an aralkyl group, an amino-substituted alkyl group, a carboxyl-substituted alkyl group, or an alkoxy group. Are the same or different organic groups selected from aryloxy groups]
前記アセチレン基を有する変性シラン中のR1、R2及びR3が炭素数1〜6のアルキル基、又はフッ素置換アルキル基、又はフェニル基である請求項1記載の非水電解液。 2. The nonaqueous electrolytic solution according to claim 1 , wherein R 1 , R 2, and R 3 in the modified silane having an acetylene group are an alkyl group having 1 to 6 carbon atoms, a fluorine-substituted alkyl group, or a phenyl group. 前記アセチレン基を有する変性シランの含有量が非水電解液全体の0.001体積%以上であることを特徴とする請求項1又は2記載の非水電解液。   3. The non-aqueous electrolyte according to claim 1, wherein the content of the modified silane having an acetylene group is 0.001% by volume or more of the whole non-aqueous electrolyte. 前記電解質塩がリチウム塩であることを特徴とする請求項1〜3のいずれか1項記載の非水電解液。   The nonaqueous electrolytic solution according to claim 1, wherein the electrolyte salt is a lithium salt. 請求項1〜4のいずれか1項記載の非水電解液を含むことを特徴とする二次電池。   A secondary battery comprising the nonaqueous electrolytic solution according to claim 1. 請求項1〜4のいずれか1項記載の非水電解液を含むことを特徴とする電気化学キャパシタ。   An electrochemical capacitor comprising the nonaqueous electrolytic solution according to any one of claims 1 to 4. 請求項1〜4のいずれか1項記載の非水電解液を含むことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the non-aqueous electrolyte according to claim 1.
JP2007006013A 2007-01-15 2007-01-15 Non-aqueous electrolyte and secondary battery using the same Expired - Fee Related JP5029809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006013A JP5029809B2 (en) 2007-01-15 2007-01-15 Non-aqueous electrolyte and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006013A JP5029809B2 (en) 2007-01-15 2007-01-15 Non-aqueous electrolyte and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008171766A true JP2008171766A (en) 2008-07-24
JP5029809B2 JP5029809B2 (en) 2012-09-19

Family

ID=39699647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006013A Expired - Fee Related JP5029809B2 (en) 2007-01-15 2007-01-15 Non-aqueous electrolyte and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5029809B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100984134B1 (en) 2008-09-11 2010-09-28 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2012077326A1 (en) * 2010-12-09 2012-06-14 三洋化成工業株式会社 Additive for electrolytic solution, and electrolytic solution
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
KR20160057814A (en) * 2014-11-14 2016-05-24 삼성에스디아이 주식회사 Electrolyte for lithium battery, and lithium battery including the electrolyte
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
CN113948770A (en) * 2021-10-12 2022-01-18 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN113991178A (en) * 2021-10-26 2022-01-28 远景动力技术(江苏)有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087935A (en) * 2005-08-23 2007-04-05 Shin Etsu Chem Co Ltd Nonaqueous electrolyte, secondary battery, and electrochemical capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087935A (en) * 2005-08-23 2007-04-05 Shin Etsu Chem Co Ltd Nonaqueous electrolyte, secondary battery, and electrochemical capacitor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
KR100984134B1 (en) 2008-09-11 2010-09-28 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
WO2012077326A1 (en) * 2010-12-09 2012-06-14 三洋化成工業株式会社 Additive for electrolytic solution, and electrolytic solution
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
KR20160057814A (en) * 2014-11-14 2016-05-24 삼성에스디아이 주식회사 Electrolyte for lithium battery, and lithium battery including the electrolyte
US10396400B2 (en) 2014-11-14 2019-08-27 Samsung Sdi Co., Ltd. Electrolyte for lithium battery and lithium battery including the electrolyte
KR102380511B1 (en) 2014-11-14 2022-03-31 삼성에스디아이 주식회사 Electrolyte for lithium battery, and lithium battery including the electrolyte
CN113948770A (en) * 2021-10-12 2022-01-18 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN113948770B (en) * 2021-10-12 2024-01-30 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN113991178A (en) * 2021-10-26 2022-01-28 远景动力技术(江苏)有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof

Also Published As

Publication number Publication date
JP5029809B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4650625B2 (en) Cyclic carbonate-modified organosilicon compound, nonaqueous electrolyte containing the same, secondary battery and capacitor
JP5029809B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4716009B2 (en) Non-aqueous electrolyte and secondary battery and capacitor using the same
TWI581481B (en) Electrolyte for non-aqueous electrolyte battery and lithium non-aqueous electrolyte battery
JP6255722B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP6015653B2 (en) Non-aqueous electrolyte and lithium ion battery
WO2014175225A1 (en) Nonaqueous electrolyte solution for batteries, novel compound, polymer electrolyte, and lithium secondary battery
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
KR101265334B1 (en) Non-aqueous electrolytic solution secondary battery and electrochemical capacitor
JP4957888B2 (en) Non-aqueous electrolyte, secondary battery and electrochemical capacitor
JP2008198542A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it
JP2010086722A (en) Nonaqueous electrolyte battery
JP5034537B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2007335170A (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery
JP2009043597A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same
JP2005005118A (en) Battery
JP2022552872A (en) Composition
JP2022550878A (en) Composition
JP2011034698A (en) Nonaqueous electrolyte solution, and lithium secondary battery using nonaqueous electrolyte solution
JP2016192377A (en) Ion conducting polymer electrolyte
JP2015125949A (en) Lithium ion secondary battery
JP2001006731A (en) Nonaqueous electrolyte secondary battery
KR20230121074A (en) composition
TW202234740A (en) Composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5029809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees