JP2008171682A - Manufacturing method of contact material, and manufacturing method of vacuum valve - Google Patents

Manufacturing method of contact material, and manufacturing method of vacuum valve Download PDF

Info

Publication number
JP2008171682A
JP2008171682A JP2007003752A JP2007003752A JP2008171682A JP 2008171682 A JP2008171682 A JP 2008171682A JP 2007003752 A JP2007003752 A JP 2007003752A JP 2007003752 A JP2007003752 A JP 2007003752A JP 2008171682 A JP2008171682 A JP 2008171682A
Authority
JP
Japan
Prior art keywords
heat
weight
porosity
examples
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007003752A
Other languages
Japanese (ja)
Other versions
JP4874814B2 (en
Inventor
Atsushi Yamamoto
敦史 山本
Takashi Kusano
貴史 草野
Kosuke Sasage
浩資 捧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007003752A priority Critical patent/JP4874814B2/en
Publication of JP2008171682A publication Critical patent/JP2008171682A/en
Application granted granted Critical
Publication of JP4874814B2 publication Critical patent/JP4874814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a contact material capable of manufacturing the contact material, having cutting performance, breaking performance, and power transmission characteristics by reducing the loss of a raw material. <P>SOLUTION: The manufacturing method of a contact material includes: a process (S1) for obtaining mixed powder by mixing a conductive constituent made of silver having 30-50 wt.%, an arc-proof constituent made of tungsten carbide having 48.5-68.5 wt.%; and an auxiliary constituent made of at least one of cobalt, iron, and nickel having 0.2-5 wt.%; a process (S2) for obtaining a forming body by forming the mixed powder so that a void ratio becomes 25-35%; a process (S3) for obtaining a heat treatment body by heat-treating the forming body at 1,150-1,250°C in a reducing atmosphere; and a process (S4) for obtaining a pressurized body by pressurizing the heat treatment body so that the void ratio becomes not more than 10%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、接点材料の製造方法及び真空バルブの製造方法に関する。   The present invention relates to a method for manufacturing a contact material and a method for manufacturing a vacuum valve.

低裁断性を有する炭化タングステン(WC)を含んだ真空バルブ用接点材料としては、Ag−WC系接点が優れた特性を有することが知られている。Ag−WC系接点材料の製造方法には、溶浸法と焼結法の2種類が存在する。   As a contact material for a vacuum valve containing tungsten carbide (WC) having low cutting properties, it is known that an Ag-WC contact has excellent characteristics. There are two types of manufacturing methods for Ag-WC-based contact materials: an infiltration method and a sintering method.

溶浸法は、耐弧成分を主成分とする粉体の成形体又は必要によってこれを予備焼結した焼結体の空隙に導電成分を溶浸する製造方法である。特許文献1に記載されているAg−WC接点材料は、この方法により製造されている。溶浸法は耐弧成分のスケルトンの焼結体の空隙に重力と毛細管力とのバランスによって導電成分を溶浸する方法であるため、スケルトンの空隙を丁度満たす量より多い導電成分を溶浸せねばならない。更に、溶浸体の表面付近には空隙が完全に満たされていない部分が存在するため健全性が確保できる表面から一定の深さまで溶浸体表面を切削除去しなければならない。このように、溶浸法では原料の損失量が多いといった問題がある。   The infiltration method is a manufacturing method in which a conductive component is infiltrated into a void of a sintered compact obtained by pre-sintering a powder compact mainly composed of an arc-proof component. The Ag-WC contact material described in Patent Document 1 is manufactured by this method. The infiltration method is a method in which conductive components are infiltrated into the voids of the arc-resistant component skeleton sintered body by the balance between gravity and capillary force, so it is necessary to infiltrate more conductive components than the amount that just fills the skeleton voids. Don't be. Further, since there is a portion where the void is not completely filled in the vicinity of the surface of the infiltrant, the surface of the infiltrant must be cut and removed from the surface that can ensure soundness to a certain depth. As described above, the infiltration method has a problem that the amount of raw material loss is large.

一方、焼結法は、導電成分と耐弧成分と必要によってはこれらに加えて補助成分とからなる混合粉末の成形体を高温にて焼結する製造方法である。特許文献2に記載されているAg−Cu−WC接点材料は、この方法により製造されている。焼結法は成形によって最終形状に近い形状とし易いことから原料の損失を低減することが可能となるが、原料表面の酸化物や吸着酸素の除去に問題があった。これは焼結法では一般に成形時の相対密度を高くする必要があるため、残された空隙は閉鎖空間となり、この内部に閉じ込められた酸化物又は酸素は還元除去不可能となることによるものである。特に低裁断化特性を必要とするAg−WCでは、接点材料の均質化を図るため、原料のWC粉末やAg粉末は微細粒子である必要があり、原料表面の酸化物や吸着酸素は甚だしく多く、焼結法では、水素雰囲気において焼結することにより酸素量低減が図られている。しかしながら焼結法では、閉鎖空間内に水素が侵入することができても酸素と反応して水蒸気となってしまうと閉鎖空間から材料外部に出ることは不可能であり、酸素含有量は高くなる。従って、焼結法で製造した接点材料では溶浸法で製造した接点材料のような高い遮断性能が得られていない。また、低密度の成形体として焼結した場合には、焼結後の密度が不十分であるため、一旦還元された接点材料内部が加圧工程に進むまでの間に再酸化され、再加圧時に酸素が閉鎖空隙内部に閉じ込められてしまい、高い遮断性能は得られない。   On the other hand, the sintering method is a production method in which a compact of a mixed powder composed of a conductive component, an arc-proof component and, if necessary, an auxiliary component is sintered at a high temperature. The Ag—Cu—WC contact material described in Patent Document 2 is manufactured by this method. Since the sintering method can easily reduce the loss of the raw material by forming the shape close to the final shape, there is a problem in removing oxides and adsorbed oxygen on the surface of the raw material. This is because, in the sintering method, it is generally necessary to increase the relative density at the time of molding, so the remaining voids become a closed space, and the oxide or oxygen trapped inside this cannot be reduced and removed. is there. In particular, in Ag-WC that requires low cutting characteristics, the WC powder and Ag powder of the raw material must be fine particles in order to homogenize the contact material, and the oxide and adsorbed oxygen on the surface of the raw material are extremely large. In the sintering method, the amount of oxygen is reduced by sintering in a hydrogen atmosphere. However, in the sintering method, even if hydrogen can penetrate into the enclosed space, if it reacts with oxygen and becomes water vapor, it is impossible to get out of the material from the enclosed space, and the oxygen content becomes high. . Therefore, the contact material manufactured by the sintering method does not provide the high breaking performance as the contact material manufactured by the infiltration method. In addition, when sintered as a low-density molded body, the density after sintering is insufficient, so the inside of the contact material once reduced is re-oxidized before proceeding to the pressurization step, and re-added. Oxygen is confined in the closed space during pressure, and high shut-off performance cannot be obtained.

このように、従来の溶浸法及び焼結法では、原料の損失を低減しつつ、優れた低裁断性能及び遮断性能を兼備した接点材料を製造することは困難であった。
特願平6−3347号公報 特開2006−120373号公報
As described above, in the conventional infiltration method and sintering method, it has been difficult to produce a contact material having excellent low cutting performance and interruption performance while reducing the loss of raw materials.
Japanese Patent Application No. 6-3347 JP 2006-120373 A

本発明は、優れた裁断性能及び遮断性能を兼備した接点材料を原料の損失を低減して製造可能な接点材料の製造方法及び真空バルブの製造方法を提供する。   The present invention provides a method for producing a contact material and a method for producing a vacuum valve, which can produce a contact material having both excellent cutting performance and interruption performance with reduced loss of raw materials.

本願発明の一態様によれば、(イ)30〜50重量%の銀からなる導電成分と、48.5〜68.5重量%の炭化タングステンからなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とを混合して混合粉末を得る工程と、(ロ)混合粉末を空隙率が25〜35%となるように成形して成形体を得る工程と、(ハ)成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得る工程と、(ニ)熱処理体を空隙率が10%以下となるように加圧して加圧体を得る工程とを含む接点材料の製造方法が提供される。   According to one aspect of the present invention, (i) a conductive component composed of 30 to 50% by weight of silver, an arc resistant component composed of 48.5 to 68.5% by weight of tungsten carbide, and 0.2 to 5% by weight. And (b) forming the mixed powder so that the porosity is 25 to 35%, and forming a molded body. (C) a step of obtaining a heat-treated body by heat-treating the molded body at 1150 to 1250 ° C. in a reducing atmosphere, and (d) pressurizing the heat-treated body so that the porosity is 10% or less. A method for producing a contact material including a step of obtaining a pressurizing body is provided.

本願発明の他の態様によれば、(イ)5〜25重量%の銀及び25〜35重量%の銅からなる導電成分と、48.5〜68.5重量%の炭化タングステンからなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とを混合して混合粉末を得る工程と、(ロ)混合粉末を空隙率が25〜35%となるように成形して成形体を得る工程と、(ハ)成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得る工程と、(ニ)熱処理体を空隙率が10%以下となるように加圧する工程とを含む接点材料の製造方法が提供される。   According to another aspect of the present invention, (a) an arc resistance composed of a conductive component composed of 5 to 25% by weight of silver and 25 to 35% by weight of copper, and 48.5 to 68.5% by weight of tungsten carbide. A step of mixing a component and an auxiliary component comprising at least one of 0.2 to 5% by weight of cobalt, iron, and nickel to obtain a mixed powder; and (b) a porosity of 25 to 35% of the mixed powder. (C) a step of obtaining a heat-treated body by heat-treating the formed body at 1150 to 1250 ° C. in a reducing atmosphere, and (d) a porosity of 10 The method of manufacturing a contact material including the step of pressurizing to be equal to or less than% is provided.

本願発明の更に他の態様によれば、(イ)30〜50重量%の銀からなる導電成分と、炭化タングステン以外の10重量%以下の炭化物を含む48.5〜68.5重量%の全炭化物からなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とで構成される原料粉末を混合して混合粉末を得る工程と、(ロ)混合粉末を空隙率が25〜35%となるように成形して成形体を得る工程と、(ハ)成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得る工程と、(ニ)熱処理体を空隙率が10%以下となるように加圧して加圧体を得る工程とを含む接点材料の製造方法が提供される。   According to still another aspect of the present invention, (b) 48.5 to 68.5% by weight of a conductive component comprising 30 to 50% by weight of silver and 10% by weight or less of carbide other than tungsten carbide. Mixing a raw material powder composed of an arc-proofing component made of carbide and an auxiliary component made of at least one of 0.2 to 5% by weight of cobalt, iron, and nickel to obtain a mixed powder; And (c) a step of obtaining a heat-treated body by heat-treating the formed body at 1150 to 1250 ° C. in a reducing atmosphere. And (d) a method of manufacturing a contact material including a step of pressing the heat-treated body so that the porosity is 10% or less to obtain a pressed body.

本願発明の更に他の態様によれば、(イ)30〜50重量%の銀からなる導電成分と、48.5〜68.5重量%の炭化タングステンからなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とを混合して混合粉末を得るステップ、混合粉末を空隙率が25〜35%となるように成形して成形体を得るステップ、成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得るステップと、熱処理体を空隙率が10%以下となるように加圧するステップとにより接点材料を製造する工程と、(ロ)接点材料を800〜950℃で一対の電極にそれぞれ接合する工程とを含む真空バルブの製造方法が提供される。   According to still another aspect of the present invention, (a) a conductive component composed of 30 to 50% by weight of silver, an arc resistant component composed of 48.5 to 68.5% by weight of tungsten carbide, and 0.2 to A step of mixing 5% by weight of an auxiliary component composed of at least one of cobalt, iron, and nickel to obtain a mixed powder, and forming the mixed powder to have a porosity of 25 to 35% to obtain a molded body A step of producing a contact material by a step of heat-treating the molded body in a reducing atmosphere at 1150 to 1250 ° C. to obtain a heat-treated body and a step of pressurizing the heat-treated body so that the porosity is 10% or less; And (b) a step of bonding the contact material to each of the pair of electrodes at 800 to 950 ° C.

本発明によれば、優れた裁断性能及び遮断性能を兼備した接点材料を原料の損失を低減して製造可能な接点材料の製造方法及び真空バルブの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the contact material which can manufacture the contact material which has the outstanding cutting performance and interruption | blocking performance by reducing the loss of a raw material, and the manufacturing method of a vacuum valve can be provided.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, The layout is not specified as follows. The technical idea of the present invention can be variously modified within the scope of the claims.

本発明の実施の形態に係る真空バルブの部分断面図を図1に示す。図1において、遮断室1は、絶縁材料によりほぼ円筒状に形成された絶縁容器2と、絶縁容器2の両端に封止金具3a、3bを介して設けた金属製の蓋体4a、4bとで真空気密に構成されている。遮断室1内には、導電棒5,6の対向する端部に取付けられた一対の電極7,8が配設され、上部の電極7を固定電極、下部の電極8を可動電極としている。電極8の電極棒6にはベローズ9が取付けられ、遮断室1内を真空気密に保持しながら電極8の軸方向の移動を可能にしている。ベローズ9上には金属製のアークシールド10が設けられている。アークシールド10によりベローズ9がアーク蒸気で覆われることを防止している。電極7,8を覆うように、遮断室1内に金属製のアークシールド11が設けられている。アークシールド11により絶縁容器2がアーク蒸気で覆われることを防止している。   FIG. 1 shows a partial cross-sectional view of a vacuum valve according to an embodiment of the present invention. In FIG. 1, the blocking chamber 1 includes an insulating container 2 formed in a substantially cylindrical shape by an insulating material, and metal lids 4a and 4b provided on both ends of the insulating container 2 via sealing fittings 3a and 3b. It is constructed in a vacuum-tight manner. In the blocking chamber 1, a pair of electrodes 7 and 8 attached to opposite ends of the conductive rods 5 and 6 are disposed. The upper electrode 7 is a fixed electrode and the lower electrode 8 is a movable electrode. A bellows 9 is attached to the electrode rod 6 of the electrode 8 so that the electrode 8 can be moved in the axial direction while keeping the inside of the shut-off chamber 1 vacuum-tight. A metal arc shield 10 is provided on the bellows 9. The arc shield 10 prevents the bellows 9 from being covered with arc vapor. A metal arc shield 11 is provided in the blocking chamber 1 so as to cover the electrodes 7 and 8. The arc shield 11 prevents the insulating container 2 from being covered with arc vapor.

電極8は、図2に示すように、導電棒6にろう材12によってろう付けして固定されるか、又はかしめによって圧着接続されている。接点13bは、電極8にろう材14によってろう付けして取付けられる。図1に示した接点13aは、電極7にろう付けにより取付けられる。   As shown in FIG. 2, the electrode 8 is fixed to the conductive rod 6 by brazing with a brazing material 12, or is crimped and connected by caulking. The contact 13 b is attached to the electrode 8 by brazing with a brazing material 14. The contact 13a shown in FIG. 1 is attached to the electrode 7 by brazing.

次に、本発明の実施の形態に係る接点材料の製造方法及びその接点材料を用いた真空バルブの製造方法の一例を、図3のフローチャートを参照しながら説明する。   Next, an example of a method for manufacturing a contact material and a method for manufacturing a vacuum valve using the contact material according to the embodiment of the present invention will be described with reference to the flowchart of FIG.

ステップS1において、30〜50重量%(以下、「wt%」という。)程度のAgからなる導電成分と、48.5〜68.5wt%程度のWCからなる耐弧成分と、0.2〜5wt%程度のコバルト(Co)、鉄(Fe)、及びニッケル(Ni)の少なくともいずれかからなる補助成分とで構成される原料粉末を混合して混合粉末を得る。補助成分としては、Co、Fe及びNiのいずれか2つ以上を組み合わせて混合しても良い。   In step S1, a conductive component composed of about 30 to 50% by weight (hereinafter referred to as “wt%”) of Ag, an arc resistant component composed of about 48.5 to 68.5% by weight WC, and 0.2 to A raw powder composed of an auxiliary component made of at least one of cobalt (Co), iron (Fe), and nickel (Ni) of about 5 wt% is mixed to obtain a mixed powder. As an auxiliary component, any two or more of Co, Fe, and Ni may be combined and mixed.

ステップS2において、混合粉末を空隙率が25〜35%程度となるように成形して成形体を得る。   In step S2, the mixed powder is molded so that the porosity is about 25 to 35% to obtain a molded body.

ステップS3において、成形体を還元性雰囲気中で1150〜1250℃程度で還元熱処理する。ここで、ステップS1において、Co,Fe,Ni等の補助成分を0.2〜5wt%程度で混合しているので、ステップS3の還元熱処理時にCo等の補助成分の成形体表面への拡散に伴う酸素除去作用により成形体表面の酸素量を低減することができる。更に、ステップS2において成形体の空隙率を25〜35%程度の範囲としているので、ステップS3の還元熱処理時に閉鎖空隙の形成を抑制し、還元性ガスが空隙部の表面を含む成形体の表面に接触して酸化物を十分に還元除去することができる。更に、ステップS3において熱処理温度をAgの融点(961℃)以上の1150〜1250℃程度としているので、Ag表面の酸素又は酸化物を除去することができる。更に、Co等の補助成分を添加して熱処理しているので、焼結を急速に進展させ、還元熱処理終了時には、一旦還元された成形体内部の空隙を完全な閉鎖状態とすることができる。したがって、取り出し後、次工程に進むまでの間又は次工程において外気により接点材料内部が再酸化されることを抑制することができる。   In step S3, the compact is subjected to a reduction heat treatment at about 1150 to 1250 ° C. in a reducing atmosphere. Here, in Step S1, auxiliary components such as Co, Fe, and Ni are mixed at about 0.2 to 5 wt%, so that the auxiliary components such as Co are diffused to the surface of the molded body during the reduction heat treatment in Step S3. The accompanying oxygen removal action can reduce the amount of oxygen on the surface of the molded body. Furthermore, since the porosity of the molded body is set to a range of about 25 to 35% in step S2, the formation of closed voids during the reduction heat treatment in step S3 is suppressed, and the surface of the molded body in which the reducing gas includes the surface of the void portion. The oxide can be sufficiently reduced and removed in contact with the substrate. Furthermore, in Step S3, the heat treatment temperature is set to about 1150 to 1250 ° C. which is equal to or higher than the melting point of Ag (961 ° C.), so that oxygen or oxide on the Ag surface can be removed. Furthermore, since the auxiliary component such as Co is added and heat-treated, the sintering can be rapidly advanced, and once the reduction heat treatment is completed, the voids inside the molded body once reduced can be completely closed. Therefore, it is possible to suppress the inside of the contact material from being re-oxidized by the outside air until it proceeds to the next step after taking out or in the next step.

ステップS4において、熱処理体を再加圧して空隙率が10%程度以下となるように高密度化し、加圧体を得る。なお、ステップS3における熱処理後のCo等の補助成分の添加による収縮作用によっても高密度化を更に促進することができる。   In step S4, the heat treatment body is re-pressurized to increase the density so that the porosity is about 10% or less to obtain a pressure body. Note that the densification can be further promoted by the shrinkage effect by adding auxiliary components such as Co after the heat treatment in step S3.

ステップS5において、必要に応じて、加圧体を800〜1250℃程度の温度にて熱処理し、再熱処理体を得る。高い通電性も要求される場合については、ステップS4における再加圧により導電率が低減するが、この再熱処理工程により導電性を十分回復させることができ、遮断性能を向上させることができる。その後、再熱処理体を所定の形状に加工して、真空バルブ用接点材料が完成する。   In step S5, if necessary, the pressure body is heat-treated at a temperature of about 800 to 1250 ° C. to obtain a reheat-treated body. In the case where high electrical conductivity is also required, the electrical conductivity is reduced by repressurization in step S4, but the electrical conductivity can be sufficiently recovered by this reheat treatment step, and the interruption performance can be improved. Thereafter, the reheated body is processed into a predetermined shape to complete a vacuum valve contact material.

この真空バルブ用接点材料を用いて真空バルブを製造するときには、ステップS6において、真空バルブ用接点材料を図1に示した接点13a,13bに採用し、接点13a,13bと電極7,8とをそれぞれロウ付けすることにより接合して、真空バルブを組み立てる。このとき、必要に応じて、加圧体を800〜1250℃程度の温度にて熱処理することで、導電率を回復させることができる。   When a vacuum valve is manufactured using this vacuum valve contact material, in step S6, the vacuum valve contact material is used for the contacts 13a and 13b shown in FIG. 1, and the contacts 13a and 13b and the electrodes 7 and 8 are connected. Each is joined by brazing to assemble a vacuum valve. At this time, if necessary, the electrical conductivity can be recovered by heat-treating the pressure body at a temperature of about 800 to 1250 ° C.

このように、本発明の実施の形態に係る真空バルブ用接点材料及び真空バルブの製造方法によれば、優れた遮断性能、裁断特性を兼備した接点材料及びその接点材料を用いた真空バルブを実現可能となる。   As described above, according to the vacuum valve contact material and the vacuum valve manufacturing method according to the embodiment of the present invention, a contact material having excellent breaking performance and cutting characteristics and a vacuum valve using the contact material are realized. It becomes possible.

本発明の実施の形態に係る接点材料の製造方法を用いて試料(実施例1〜32及び比較例1〜18)を作製して評価を行った。評価を行うために、標準工程を設定する。図3に示したステップS1において、平均粒径2.5μmのWCと、2μmのAg粉末と、5μmのCo粉末を混合する。Ag、WC及びCoの混合割合は、体積%で40:58.5:1.5である。ステップS2において、空隙率が30%となるように混合粉末を成形して、成形体を得る。ステップS3において、成形体を水素雰囲気において、1200℃で2時間熱処理することにより、熱処理体(焼結体)を得る。ステップS4において、空隙率を7%まで減少させるように焼結体を再加圧して加圧体を得る。ステップS5において、加圧体を850℃にて再熱処理することにより、接点材料を製造する。ステップS6において、この接点材料を所定の形状に加工した後、850℃にて電極に接合した。この接点材料の製造工程及び接点材料と電極との接合工程を「標準工程」として、標準工程から特定のパラメータを変更した時の特性について検討した。   Samples (Examples 1 to 32 and Comparative Examples 1 to 18) were prepared and evaluated using the method for manufacturing a contact material according to the embodiment of the present invention. A standard process is set for evaluation. In step S1 shown in FIG. 3, WC having an average particle diameter of 2.5 μm, 2 μm Ag powder, and 5 μm Co powder are mixed. The mixing ratio of Ag, WC and Co is 40: 58.5: 1.5 in volume%. In step S2, the mixed powder is molded so as to have a porosity of 30% to obtain a molded body. In step S3, the molded body is heat-treated at 1200 ° C. for 2 hours in a hydrogen atmosphere to obtain a heat-treated body (sintered body). In step S4, the sintered body is re-pressurized so as to reduce the porosity to 7% to obtain a pressurized body. In step S5, the contact material is manufactured by re-heating the pressure body at 850 ° C. In step S6, the contact material was processed into a predetermined shape and then joined to the electrode at 850 ° C. The manufacturing process of the contact material and the joining process of the contact material and the electrode were regarded as “standard process”, and the characteristics when a specific parameter was changed from the standard process were examined.

次に、試料(実施例1〜32及び比較例1〜18)の評価方法及び評価条件について説明する。評価方法としては、材料特性評価及び電気特性評価を行う。材料特性評価では、空隙率、酸素含有量及び導電率で評価する。「空隙率」は、寸法測定により密度を測定して組成比から真密度を求めて相対密度に換算し、相対密度の値を100%から引いた残りの値とした。「酸素含有量」は、試作材から小片状の分析サンプルを切りだし、赤外線吸収法により求めた。「導電率」は、試作した材料表面を渦電流測定方式により10点測定し、その平均値とした。   Next, the evaluation method and evaluation conditions of the samples (Examples 1 to 32 and Comparative Examples 1 to 18) will be described. As an evaluation method, material property evaluation and electrical property evaluation are performed. In the material property evaluation, evaluation is made by porosity, oxygen content and electrical conductivity. “Porosity” was determined by measuring the density by dimensional measurement, obtaining the true density from the composition ratio, converting it to the relative density, and taking the value of the relative density as the remaining value subtracted from 100%. The “oxygen content” was determined by infrared absorption method after cutting out small pieces of analytical samples from the prototype material. The “conductivity” was obtained by measuring 10 points on the surface of the prototype material by an eddy current measurement method and calculating the average value.

一方、電気特性評価は、遮断特性及び裁断特性を評価する。遮断特性としては、試作した接点材料を真空バルブに搭載し、合成遮断試験により遮断性能を評価し、使用した真空バルブの最大遮断電流値を測定した。評価は、φ40mmの電極を用い、印加電圧は7.2kVで12.5kAの条件にて3回実施し、各回の平均値を求め、標準工程で製造した実施例2との相対値で示し、0.9超過を良好と判定した。裁断特性としては、抵抗負荷回路により70Armsで裁断電流値を500回測定し、平均値を求めた。評価結果は実施例2との相対値で表示し、1.5未満を良好と判定した。   On the other hand, in the electrical property evaluation, the interruption characteristic and the cutting characteristic are evaluated. As the breaking characteristics, the prototype contact material was mounted on a vacuum valve, the breaking performance was evaluated by a synthetic breaking test, and the maximum breaking current value of the vacuum valve used was measured. Evaluation was performed 3 times under the condition of 12.5 kA with an applied voltage of 7.2 kV and an electrode of φ40 mm, the average value of each time was obtained, and shown as a relative value with Example 2 manufactured in the standard process, An excess of 0.9 was determined to be good. As the cutting characteristics, the cutting current value was measured 500 times at 70 Arms with a resistance load circuit, and the average value was obtained. The evaluation result was displayed as a relative value with respect to Example 2, and less than 1.5 was determined to be good.

(実施例1〜3と比較例1及び2)
図4は、原料混合工程におけるAg含有量を25〜55wt%の範囲で変更した実施例1〜3と比較例1及び2の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。実施例1〜3と比較例1及び2のいずれも成形体の空隙率を30%とし、この空隙を利用して粉体表面の酸素を還元し、且つCoを添加して1200℃にて熱処理することにより前述の空隙を閉鎖状態として、取り出し後に外気により再酸化されることを抑制したので100ppm以下の低い酸素含有量とすることができている。更に加圧することによって空隙率を7%として導電率も高めている。ここで、Ag含有量が30〜50wt%の範囲にある実施例1〜3では、Ag及びWC成分量が適切であるので遮断性能、裁断特性ともに良好である。これに対して、Ag含有量が25wt%と実施例1〜3の範囲より少ない比較例1では、導電率が低くなりすぎるために十分な遮断性能が得られていない。他方、Ag含有量が55wt%と実施例1〜3の範囲より多い比較例2では、裁断特性低減作用を有するWCが少なすぎるため裁断特性が不十分となっている。
(Examples 1-3 and Comparative Examples 1 and 2)
FIG. 4 shows the results of trial production of contact materials of Examples 1 to 3 and Comparative Examples 1 and 2 in which the Ag content in the raw material mixing step was changed within a range of 25 to 55 wt%, and the evaluation was carried out by mounting on a vacuum valve. Indicates. In each of Examples 1 to 3 and Comparative Examples 1 and 2, the porosity of the molded body was set to 30%, oxygen was reduced on the powder surface using this void, and Co was added and heat treated at 1200 ° C. By doing so, the above-mentioned voids are closed, and reoxidation by outside air after taking out is suppressed, so that a low oxygen content of 100 ppm or less can be achieved. Further pressurization increases the conductivity by setting the porosity to 7%. Here, in Examples 1 to 3 in which the Ag content is in the range of 30 to 50 wt%, since the Ag and WC component amounts are appropriate, both the blocking performance and the cutting characteristics are good. On the other hand, in Comparative Example 1 where the Ag content is 25 wt%, which is less than the range of Examples 1 to 3, the electrical conductivity is too low, so that a sufficient blocking performance is not obtained. On the other hand, in Comparative Example 2 in which the Ag content is 55 wt%, which is larger than the range of Examples 1 to 3, the cutting characteristics are insufficient because there are too few WCs having an effect of reducing the cutting characteristics.

(実施例4〜6と比較例3及び4)
図5は、原料混合工程における補助成分のCoの含有量を0.1〜5wt%の範囲で変更した実施例4〜6と比較例3及び4の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。Co含有量が0.2〜5wt%の範囲にある実施例4〜6ではCoの作用により熱処理体の密度が高められ、再加圧後の空隙率が10%以下まで低くできるため遮断性能、裁断特性ともに良好である。これに対して、Co含有量が0.1wt%とこの範囲より少ない比較例3では、熱処理体の空隙率が高く、再加圧により十分な密度が得られず導電率が低くなりすぎるために十分な遮断性能が得られていない。また、Co含有量が7wt%と前述の範囲より多い比較例4ではWC表面に形成されたCoを主成分とする相がWCの熱電子放出を阻害するため裁断特性が不十分となっている。
(Examples 4-6 and Comparative Examples 3 and 4)
FIG. 5 is a trial production of contact materials of Examples 4 to 6 and Comparative Examples 3 and 4 in which the content of Co as an auxiliary component in the raw material mixing step is changed within a range of 0.1 to 5 wt%, and is mounted on a vacuum valve. The results of the evaluation are shown. In Examples 4 to 6 in which the Co content is in the range of 0.2 to 5 wt%, the density of the heat treatment body is increased by the action of Co, and the porosity after repressurization can be lowered to 10% or less, so that the blocking performance, Good cutting properties. On the other hand, in Comparative Example 3 where the Co content is less than 0.1 wt%, the porosity of the heat treatment body is high, and a sufficient density cannot be obtained by re-pressurization, resulting in too low conductivity. Sufficient blocking performance is not obtained. Further, in Comparative Example 4 in which the Co content is 7 wt%, which is larger than the above range, the phase mainly composed of Co formed on the WC surface inhibits the thermal electron emission of the WC, so that the cutting characteristics are insufficient. .

(実施例7〜12及び比較例5〜8)
図6は、原料混合工程における補助成分をCoからFe又はNiに変更し、変更したFe又はNiの含有量を0.1〜5wt%の範囲で変更した実施例7〜12及び比較例5〜8の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。Feの含有量が0.2〜5wt%の範囲にある実施例7〜9及びNiの含有量が0.2〜5wt%の範囲にある実施例10〜12では、Coを補助成分とした場合と同様、熱処理体の密度が高められ、再加圧後の空隙率が10%以下まで低くできるため遮断性能、裁断特性ともに優れている。特にNiを添加した場合の遮断性能、裁断特性が良好である。これに対してFe又はNiの含有量が0.1wt%と実施例7〜12の範囲より少ない比較例5及び6では、熱処理体の空隙率が高く、再加圧により十分な密度が得られず導電率が低くなりすぎるために十分な遮断性能が得られていない。他方、Fe又はNiの含有量が7wt%と実施例7〜12の範囲より多い比較例7及び8では、WC表面に形成されたFe又はNiを主成分とする相がWCの熱電子放出を阻害するため裁断特性が不十分となっている。
(Examples 7-12 and Comparative Examples 5-8)
FIG. 6 shows Examples 7 to 12 and Comparative Examples 5 to 5 in which the auxiliary component in the raw material mixing step was changed from Co to Fe or Ni, and the changed content of Fe or Ni was changed in the range of 0.1 to 5 wt%. 8 shows the result of trial manufacture of 8 contact materials and mounting on a vacuum valve. In Examples 7 to 9 in which the Fe content is in the range of 0.2 to 5 wt% and Examples 10 to 12 in which the Ni content is in the range of 0.2 to 5 wt%, Co is used as an auxiliary component Similarly, the density of the heat-treated body is increased, and the porosity after repressurization can be lowered to 10% or less, so that the blocking performance and cutting characteristics are excellent. In particular, the blocking performance and cutting characteristics when Ni is added are good. On the other hand, in Comparative Examples 5 and 6 in which the Fe or Ni content is 0.1 wt%, which is less than the range of Examples 7 to 12, the porosity of the heat treatment body is high, and sufficient density is obtained by repressurization. However, since the electrical conductivity is too low, sufficient blocking performance is not obtained. On the other hand, in Comparative Examples 7 and 8 in which the Fe or Ni content is 7 wt%, which is larger than the range of Examples 7 to 12, the phase mainly composed of Fe or Ni formed on the WC surface causes thermionic emission of WC. Cutting properties are insufficient due to inhibition.

(実施例13〜15と比較例9及び10)
図7は、成形工程における成形体の空隙率を20〜40%の範囲で変更した実施例13〜15と比較例9及び10の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。成形体空隙率が25〜35%の範囲にある実施例13〜15では、空隙を利用した水素による粉末表面の還元が良好に行われ、且つCoを添加して1200℃にて熱処理することにより前述の空隙を閉鎖状態として取り出し後に外気により再酸化されることを抑制したので100ppm以下まで酸素含有量を低くすることができ遮断性能、裁断特性ともに良好である。これに対して、成形体空隙率が20%と実施例13〜15の範囲より低い比較例9では、空隙が部分的に閉鎖されており、水素により十分還元されず酸素量が高い値となっているため、十分な遮断性能が得られていない。他方、成形体空隙率が40%と実施例13〜15の範囲より高い比較例10では、再加圧により十分な密度が得られず導電率が低くなりすぎるために十分な遮断性能が得られていない。
(Examples 13 to 15 and Comparative Examples 9 and 10)
FIG. 7 is a trial production of contact materials of Examples 13 to 15 and Comparative Examples 9 and 10 in which the porosity of the molded body in the molding process was changed in the range of 20 to 40%, and the evaluation was performed by mounting the contact materials on a vacuum valve. Results are shown. In Examples 13 to 15 in which the porosity of the compact is in the range of 25 to 35%, the reduction of the powder surface with hydrogen utilizing the voids is satisfactorily performed, and the heat treatment is performed at 1200 ° C. by adding Co. Since the aforementioned voids are taken out in a closed state and reoxidation by the outside air is suppressed, the oxygen content can be lowered to 100 ppm or less, and both the blocking performance and cutting properties are good. On the other hand, in Comparative Example 9 where the molded body porosity is 20%, which is lower than the range of Examples 13 to 15, the voids are partially closed, and the oxygen content is not sufficiently reduced by hydrogen and becomes a high value of oxygen. Therefore, sufficient shut-off performance is not obtained. On the other hand, in Comparative Example 10 where the molded body porosity is 40%, which is higher than the range of Examples 13 to 15, sufficient density cannot be obtained by re-pressurization, and the conductivity becomes too low, so that sufficient blocking performance is obtained. Not.

(実施例16及び比較例11)
図8は、還元熱処理工程における雰囲気が水素である標準工程で製造した実施例16と、この熱処理時の雰囲気を真空とした比較例11を比較評価した結果を示す。実施例16では、原料粉末の還元が十分であるため酸素含有量を低減することができ、遮断性能、裁断特性ともに良好である。これに対して比較例11では、原料粉末の還元が不十分であるため酸素含有量が非常に高くなり、遮断性能が不十分となっている。
(Example 16 and Comparative Example 11)
FIG. 8 shows the results of comparative evaluation of Example 16 manufactured in the standard process in which the atmosphere in the reduction heat treatment process is hydrogen and Comparative Example 11 in which the atmosphere during the heat treatment is vacuum. In Example 16, since the reduction of the raw material powder is sufficient, the oxygen content can be reduced, and both the blocking performance and the cutting characteristics are good. On the other hand, in the comparative example 11, since the reduction | restoration of raw material powder is inadequate, oxygen content becomes very high and interruption | blocking performance is inadequate.

(実施例17〜19と比較例12及び13)
図9は、還元熱処理工程における熱処理温度を1100〜1300℃の範囲で変更した実施例17〜19と比較例12及び13の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。熱処理温度が1150〜1250℃の範囲にある実施例17〜19では、熱処理することにより前述の空隙を閉鎖状態とすることができ、取り出し後に外気により再酸化されることが抑制されるため120ppm以下まで酸素含有量を低くすることができ遮断性能、裁断特性ともに良好である。これに対して、実施例17〜19より熱処理温度が1100℃と低い比較例12では、熱処理後空隙の一部に閉鎖されていない部分があり、再酸化され、酸素量が高い値となっているため、十分な遮断性能が得られていない。熱処理温度が1300℃と高い比較例13では、熱処理体中のAgが蒸発損耗するため、導電率が低くなりすぎるために十分な遮断性能が得られていない。
(Examples 17 to 19 and Comparative Examples 12 and 13)
FIG. 9 shows the results of trial manufacture of contact materials of Examples 17 to 19 and Comparative Examples 12 and 13 in which the heat treatment temperature in the reduction heat treatment step was changed in the range of 1100 to 1300 ° C., and mounted on a vacuum valve. Show. In Examples 17 to 19 where the heat treatment temperature is in the range of 1150 to 1250 ° C., the above-mentioned voids can be closed by heat treatment, and reoxidation by the outside air after taking out is suppressed, so that it is 120 ppm or less. The oxygen content can be lowered to a high level, and both the blocking performance and cutting properties are good. On the other hand, in Comparative Example 12 where the heat treatment temperature is lower than 1100 ° C. compared with Examples 17 to 19, there is a portion that is not closed in a part of the void after the heat treatment, which is re-oxidized and has a high oxygen content. Therefore, sufficient shut-off performance is not obtained. In Comparative Example 13, where the heat treatment temperature is as high as 1300 ° C., Ag in the heat treated body is evaporated and worn, and the electrical conductivity becomes too low, so that a sufficient blocking performance is not obtained.

(実施例20〜22及び比較例14)
図10は、加圧工程における加圧体の空隙率を3〜12%の範囲で変更した実施例20〜22及び比較例14の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。成形体空隙率が3〜10%の範囲にある実施例20〜22では、空隙が十分低減され、導電率が高められていることから遮断性能、裁断特性ともに良好である。実施例20のように、空隙率は設備能力上3%以下にすることは困難であるが、導電率は空隙率が低いほど高められ、遮断性能も高められることから、空隙率3%未満においても本発明は有効である。これに対して、加圧体の空隙率が12%と高い比較例14では、十分導電率が低くなっていないため、遮断性能が不十分となっている。
(Examples 20 to 22 and Comparative Example 14)
FIG. 10 is a trial production of contact materials of Examples 20 to 22 and Comparative Example 14 in which the porosity of the pressurizing body in the pressurizing step was changed in the range of 3 to 12%, and the evaluation was carried out by mounting on the vacuum valve. Results are shown. In Examples 20 to 22 in which the molded body porosity is in the range of 3 to 10%, the air gap is sufficiently reduced and the electrical conductivity is increased, so that both the blocking performance and the cutting property are good. As in Example 20, it is difficult to reduce the porosity to 3% or less due to the equipment capacity, but the conductivity is increased as the porosity is lower, and the blocking performance is also improved. Therefore, the porosity is less than 3%. The present invention is also effective. On the other hand, in Comparative Example 14 in which the porosity of the pressurized body is as high as 12%, the electrical conductivity is not sufficiently low, so that the blocking performance is insufficient.

(実施例23〜25と比較例15及び16)
図11は、再熱処理工程における再熱処理温度を750〜1300℃の範囲で変更した実施例23〜25と比較例15及び16の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。再熱処理温度が800〜1250℃の範囲にある実施例23〜25では再加圧によって低下した導電率が十分回復しているため遮断性能が十分となっている。これに対して、再熱処理の温度が750℃と低い比較例15では、導電率が十分回復していないため遮断性能が不十分である。一方、1300℃で再熱処理した比較例16では、熱処理体中のAgが蒸発損耗して、導電率が低くなりすぎるために十分な遮断性能が得られていない。
(Examples 23 to 25 and Comparative Examples 15 and 16)
FIG. 11 shows the results of trial manufacture of contact materials of Examples 23 to 25 and Comparative Examples 15 and 16 in which the reheat temperature in the reheat process was changed in the range of 750 to 1300 ° C., and mounting on a vacuum valve. Indicates. In Examples 23 to 25 in which the reheat treatment temperature is in the range of 800 to 1250 ° C., the electrical conductivity lowered by repressurization is sufficiently recovered, so that the interruption performance is sufficient. On the other hand, in Comparative Example 15 where the temperature of the reheat treatment is as low as 750 ° C., the electrical conductivity is not sufficiently recovered, so that the blocking performance is insufficient. On the other hand, in Comparative Example 16 reheated at 1300 ° C., Ag in the heat-treated body is evaporated and worn, and the electrical conductivity becomes too low, so that a sufficient blocking performance is not obtained.

(実施例26〜28と比較例17及び18)
図12は、真空バルブの電極/接点接合工程における接合温度を750〜1000℃の範囲で変更した実施例26〜28と比較例17及び18の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。再熱処理温度が800〜950℃の範囲にある実施例26〜28では再加圧によって低下した導電率が十分回復しているため遮断性能が十分となっている。これに対して、再熱処理の温度が750℃と低い比較例17では、導電率が十分回復していないため遮断性能が不十分である。一方1000℃で接合した比較例18では、熱処理体中のAgが溶融流出して、導電率が低くなりすぎるために十分な遮断性能が得られていない。
(Examples 26 to 28 and Comparative Examples 17 and 18)
FIG. 12 shows prototypes of contact materials of Examples 26 to 28 and Comparative Examples 17 and 18 in which the bonding temperature in the electrode / contact bonding process of the vacuum valve is changed in the range of 750 to 1000 ° C., and mounted on the vacuum valve for evaluation. The result of having carried out is shown. In Examples 26 to 28 in which the reheat treatment temperature is in the range of 800 to 950 ° C., the conductivity lowered by repressurization is sufficiently recovered, so that the interruption performance is sufficient. On the other hand, in Comparative Example 17 where the temperature of the reheat treatment is as low as 750 ° C., the electrical conductivity is not sufficiently recovered, so that the blocking performance is insufficient. On the other hand, in Comparative Example 18 joined at 1000 ° C., Ag in the heat-treated body melts and flows out, and the electrical conductivity becomes too low, so that a sufficient blocking performance is not obtained.

(実施例29〜32)
図13は、原料混合工程において耐弧成分としてのWCの全体量(全炭化物)のうち10wt%以下を炭化チタン(TiC)、炭化バナジウム(VC)、炭化ジルコニウム(ZrC)又は炭化ケイ素(SiC)に置き換えた実施例29〜32の接点材料を試作し、真空バルブに搭載して評価を実施した結果を示す。即ち、実施例29〜32では、30〜50wt%のAgからなる導電成分と、WC以外の10wt%以下の炭化物を含む48.5〜68.5wt%の全炭化物からなる耐弧成分と、0.2〜5wt%のCo、Fe、及びNiの少なくともいずれかからなる補助成分とで構成される原料粉末を混合している。図13において、実施例29〜32のいずれも、良好な遮断性能と裁断特性を示しているのが分かる。なお、実施例29〜32では、TiC、VC、ZrC又はSiCをそれぞれ置換した場合を説明したが、TiC、VC、ZrC及びSiCを組み合わせて採用しても良好な遮断性能と裁断特性を得ることができる。
(Examples 29 to 32)
FIG. 13 shows titanium carbide (TiC), vanadium carbide (VC), zirconium carbide (ZrC), or silicon carbide (SiC) of 10 wt% or less of the total amount of WC (total carbide) as an arc resistant component in the raw material mixing step. The result of having produced the contact material of Examples 29 to 32 replaced with, and mounting it on a vacuum valve and performing the evaluation is shown. That is, in Examples 29 to 32, the conductive component composed of 30 to 50 wt% Ag, the arc resistant component composed of 48.5 to 68.5 wt% of all carbides including 10 wt% or less of carbide other than WC, and 0 A raw material powder composed of auxiliary components composed of at least one of Co, Fe and Ni of 2 to 5 wt% is mixed. In FIG. 13, it can be seen that all of Examples 29 to 32 show good blocking performance and cutting characteristics. In Examples 29 to 32, the case where TiC, VC, ZrC, or SiC was replaced was described. However, even when TiC, VC, ZrC, and SiC are used in combination, good blocking performance and cutting characteristics can be obtained. Can do.

(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、図3のステップS1の原料混合工程において、Agからなる導電成分のうちの25〜35wt%を銅(Cu)に置換しても良い。即ち、5〜25wt%のAg及び25〜35wt%のCuからなる導電成分と、48.5〜68.5wt%のWCからなる耐弧成分と、0.2〜5wt%のCo,Fe,Niの少なくともいずれかからなる補助成分とで構成される原料粉末を混合しても良い。この場合も、導電成分が30〜50wt%のAgのみからなる場合と同様に、遮断性能、裁断特性が良好な接点材料を実現可能である。   For example, in the raw material mixing step of step S1 in FIG. 3, 25 to 35 wt% of the conductive component made of Ag may be replaced with copper (Cu). That is, a conductive component composed of 5 to 25 wt% Ag and 25 to 35 wt% Cu, an arc resistant component composed of 48.5 to 68.5 wt% WC, and 0.2 to 5 wt% Co, Fe, Ni. You may mix the raw material powder comprised with the auxiliary component which consists of at least any one of these. Also in this case, it is possible to realize a contact material having a good breaking performance and cutting characteristics as in the case where the conductive component is made of only 30 to 50 wt% of Ag.

また、図4〜図13に示した実験データは一例であって、実際には更に膨大なデータから本発明の知見を見出しているのは勿論である。   Moreover, the experimental data shown in FIGS. 4 to 13 are merely examples, and it is a matter of course that the knowledge of the present invention has been found from a larger amount of data.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る真空バルブ用接点材料が適用される真空バルブの遮断室を断面表示した部分断面図である。It is the fragmentary sectional view which carried out the cross section display of the interruption | blocking chamber of the vacuum valve to which the contact material for vacuum valves which concerns on embodiment of this invention is applied. 図1に示した電極部分を拡大した部分断面図である。It is the fragmentary sectional view which expanded the electrode part shown in FIG. 本発明の実施の形態に係る真空バルブ用接点材料の製造方法及び真空バルブの製造方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing method of the contact material for vacuum valves which concerns on embodiment of this invention, and the manufacturing method of a vacuum valve. 本発明の実施の形態に係る実施例1〜3、及び比較例1及び2の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 1-3 which concern on embodiment of this invention, and Comparative Examples 1 and 2. FIG. 本発明の実施の形態に係る実施例4〜6、及び比較例3及び4の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 4-6 which concern on embodiment of this invention, and Comparative Examples 3 and 4. FIG. 本発明の実施の形態に係る実施例7〜12及び比較例5〜8の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 7-12 which concern on embodiment of this invention, and Comparative Examples 5-8. 本発明の実施の形態に係る実施例13〜15と比較例9及び10の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 13-15 and Comparative Examples 9 and 10 which concern on embodiment of this invention. 本発明の実施の形態に係る実施例16及び比較例11の評価結果を示す表である。It is a table | surface which shows the evaluation result of Example 16 and Comparative Example 11 which concern on embodiment of this invention. 本発明の実施の形態に係る実施例17〜19と比較例12及び13の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 17-19 and Comparative Examples 12 and 13 which concern on embodiment of this invention. 本発明の実施の形態に係る実施例20〜22及び比較例14の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 20-22 and the comparative example 14 which concern on embodiment of this invention. 本発明の実施の形態に係る実施例23〜25と比較例15及び16の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 23-25 and Comparative Examples 15 and 16 which concern on embodiment of this invention. 本発明の実施の形態に係る実施例26〜28と比較例17及び18の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 26-28 and Comparative Examples 17 and 18 which concern on embodiment of this invention. 本発明の実施の形態に係る実施例29〜32の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 29-32 which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…遮断室
2…絶縁容器
3a…封止金具
4a…蓋体
5,6…導電棒
7,8…電極
9…ベローズ
10,11…アークシールド
12,14…ろう材
13a,13b…接点
DESCRIPTION OF SYMBOLS 1 ... Shut off chamber 2 ... Insulation container 3a ... Sealing metal fitting 4a ... Cover body 5, 6 ... Conductive rod 7, 8 ... Electrode 9 ... Bellows 10, 11 ... Arc shield 12, 14 ... Brazing material 13a, 13b ... Contact

Claims (5)

30〜50重量%の銀からなる導電成分と、48.5〜68.5重量%の炭化タングステンからなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とを混合して混合粉末を得る工程と、
前記混合粉末を空隙率が25〜35%となるように成形して成形体を得る工程と、
前記成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得る工程と、
前記熱処理体を空隙率が10%以下となるように加圧して加圧体を得る工程
とを含む接点材料の製造方法。
At least one of a conductive component composed of 30 to 50% by weight of silver, an arc resistant component composed of 48.5 to 68.5% by weight of tungsten carbide, and 0.2 to 5% by weight of cobalt, iron, and nickel A step of mixing an auxiliary component consisting of to obtain a mixed powder;
Molding the mixed powder so that the porosity is 25 to 35% to obtain a molded body;
Heat-treating the molded body at 1150 to 1250 ° C. in a reducing atmosphere to obtain a heat-treated body;
Pressurizing the heat-treated body so as to have a porosity of 10% or less to obtain a pressurized body.
前記加圧体を得る工程の後に、前記加圧体を800〜1250℃で熱処理する工程を更に含むことを特徴とする請求項1に記載の接点材料の製造方法。   The method for producing a contact material according to claim 1, further comprising a step of heat-treating the pressure body at 800 to 1250 ° C. after the step of obtaining the pressure body. 5〜25重量%の銀及び25〜35重量%の銅からなる導電成分と、48.5〜68.5重量%の炭化タングステンからなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とを混合して混合粉末を得る工程と、
前記混合粉末を空隙率が25〜35%となるように成形して成形体を得る工程と、
前記成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得る工程と、
前記熱処理体を空隙率が10%以下となるように加圧する工程
とを含む接点材料の製造方法。
A conductive component composed of 5 to 25% by weight silver and 25 to 35% by weight copper, an arc resistant component composed of 48.5 to 68.5% by weight tungsten carbide, 0.2 to 5% by weight cobalt, A step of mixing an auxiliary component consisting of at least one of iron and nickel to obtain a mixed powder;
Molding the mixed powder so that the porosity is 25 to 35% to obtain a molded body;
Heat-treating the molded body at 1150 to 1250 ° C. in a reducing atmosphere to obtain a heat-treated body;
Pressurizing the heat-treated body so that the porosity is 10% or less.
30〜50重量%の銀からなる導電成分と、炭化タングステン以外の10重量%以下の炭化物を含む48.5〜68.5重量%の全炭化物からなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とで構成される原料粉末を混合して混合粉末を得る工程と、
前記混合粉末を空隙率が25〜35%となるように成形して成形体を得る工程と、
前記成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得る工程と、
前記熱処理体を空隙率が10%以下となるように加圧して加圧体を得る工程
とを含む接点材料の製造方法。
An arc-resistant component composed of 30 to 50% by weight of silver, 48.5 to 68.5% by weight of all carbides including 10% or less of carbide other than tungsten carbide, and 0.2 to 5% by weight. % Of a raw material powder composed of an auxiliary component composed of at least one of cobalt, iron, and nickel to obtain a mixed powder;
Molding the mixed powder so that the porosity is 25 to 35% to obtain a molded body;
Heat-treating the molded body at 1150 to 1250 ° C. in a reducing atmosphere to obtain a heat-treated body;
Pressurizing the heat-treated body so as to have a porosity of 10% or less to obtain a pressurized body.
30〜50重量%の銀からなる導電成分と、48.5〜68.5重量%の炭化タングステンからなる耐弧成分と、0.2〜5重量%のコバルト、鉄、及びニッケルの少なくともいずれかからなる補助成分とを混合して混合粉末を得るステップ、前記混合粉末を空隙率が25〜35%となるように成形して成形体を得るステップ、前記成形体を還元性雰囲気中で1150〜1250℃で熱処理して熱処理体を得るステップと、前記熱処理体を空隙率が10%以下となるように加圧するステップとにより接点材料を製造する工程と、
前記接点材料を800〜950℃で一対の電極にそれぞれ接合する工程
とを含むことを特徴とする真空バルブの製造方法。
At least one of a conductive component composed of 30 to 50% by weight of silver, an arc resistant component composed of 48.5 to 68.5% by weight of tungsten carbide, and 0.2 to 5% by weight of cobalt, iron, and nickel A step of obtaining a mixed powder by mixing with an auxiliary component comprising: a step of forming the mixed powder so as to have a porosity of 25 to 35% to obtain a molded body; and a step of 1150 in the reducing atmosphere in the reducing body. A step of producing a contact material by heat-treating at 1250 ° C. to obtain a heat-treated body and pressurizing the heat-treated body so that the porosity is 10% or less;
Bonding the contact material to a pair of electrodes at 800 to 950 ° C., respectively.
JP2007003752A 2007-01-11 2007-01-11 Contact material manufacturing method and vacuum valve manufacturing method Expired - Fee Related JP4874814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003752A JP4874814B2 (en) 2007-01-11 2007-01-11 Contact material manufacturing method and vacuum valve manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003752A JP4874814B2 (en) 2007-01-11 2007-01-11 Contact material manufacturing method and vacuum valve manufacturing method

Publications (2)

Publication Number Publication Date
JP2008171682A true JP2008171682A (en) 2008-07-24
JP4874814B2 JP4874814B2 (en) 2012-02-15

Family

ID=39699575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003752A Expired - Fee Related JP4874814B2 (en) 2007-01-11 2007-01-11 Contact material manufacturing method and vacuum valve manufacturing method

Country Status (1)

Country Link
JP (1) JP4874814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835656A (en) * 2014-02-12 2015-08-12 日本钨合金株式会社 Electric contact material, electric contact pair, and circuit breaker

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193018A (en) * 1987-10-01 1989-04-12 Toshiba Corp Contact material for vacuum bulb
JPH07211200A (en) * 1994-01-18 1995-08-11 Toshiba Corp Contact point material for vacuum valve
JPH07320608A (en) * 1994-05-19 1995-12-08 Toshiba Corp Manufacture of contact material
JPH08339742A (en) * 1995-04-12 1996-12-24 Fuji Electric Co Ltd Contact material for vacuum circuit breaker, and manufacture of it
JPH10340654A (en) * 1997-06-09 1998-12-22 Hitachi Ltd Vacuum circuit breaker and vacuum valve used therefor and electric contract and manufacture
JP2002180150A (en) * 2000-12-06 2002-06-26 Korea Inst Of Science & Technology Method for controlling structure of copper-chromium based contact stock for vacuum switch, and contact stock produced by the method
JP2002208335A (en) * 2001-01-05 2002-07-26 Mitsubishi Electric Corp Vacuum bulb contact point and its manufacturing method
JP2006120373A (en) * 2004-10-20 2006-05-11 Hitachi Ltd Vacuum circuit breaker, vacuum bulb and electrode and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193018A (en) * 1987-10-01 1989-04-12 Toshiba Corp Contact material for vacuum bulb
JPH07211200A (en) * 1994-01-18 1995-08-11 Toshiba Corp Contact point material for vacuum valve
JPH07320608A (en) * 1994-05-19 1995-12-08 Toshiba Corp Manufacture of contact material
JPH08339742A (en) * 1995-04-12 1996-12-24 Fuji Electric Co Ltd Contact material for vacuum circuit breaker, and manufacture of it
JPH10340654A (en) * 1997-06-09 1998-12-22 Hitachi Ltd Vacuum circuit breaker and vacuum valve used therefor and electric contract and manufacture
JP2002180150A (en) * 2000-12-06 2002-06-26 Korea Inst Of Science & Technology Method for controlling structure of copper-chromium based contact stock for vacuum switch, and contact stock produced by the method
JP2002208335A (en) * 2001-01-05 2002-07-26 Mitsubishi Electric Corp Vacuum bulb contact point and its manufacturing method
JP2006120373A (en) * 2004-10-20 2006-05-11 Hitachi Ltd Vacuum circuit breaker, vacuum bulb and electrode and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835656A (en) * 2014-02-12 2015-08-12 日本钨合金株式会社 Electric contact material, electric contact pair, and circuit breaker

Also Published As

Publication number Publication date
JP4874814B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5614708B2 (en) Manufacturing method of electrode material for vacuum circuit breaker and electrode material for vacuum circuit breaker
US4689196A (en) Silver-tungsten carbide-graphite electrical contact
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JP2012134014A (en) Contact material for vacuum valve
JP4874814B2 (en) Contact material manufacturing method and vacuum valve manufacturing method
JP2007066753A (en) Contact material for vacuum valve, and manufacturing method therefor
US4450135A (en) Method of making electrical contacts
US3411902A (en) Method of producing infiltrated contact material
JP6145285B2 (en) Electrical contact material, method for producing the same, and electrical contact
JP6048966B2 (en) Contact material for vacuum valve and manufacturing method thereof
US1552184A (en) Metal composition and method of manufacture
JP6669327B1 (en) Electrical contacts, vacuum valves with electrical contacts
JP6015725B2 (en) Method for producing electrode material
JP5920408B2 (en) Method for producing electrode material
JP2003077375A (en) Contact material for vacuum valve and vacuum valve
JP5539265B2 (en) Contact material, manufacturing method thereof and vacuum valve
JP2005150032A (en) Manufacturing method for contact for vacuum bulb
JP2002088437A (en) Contact material for vacuum valve and its production method
JP4619821B2 (en) Contact material and vacuum valve
JP3790055B2 (en) Contact material for vacuum valves
JPH0510782B2 (en)
JP4761932B2 (en) Contact material for vacuum valves
JPS59121724A (en) Electric contact member for vacuum breaker and method of producing same
JP3859393B2 (en) Method for manufacturing vacuum valve contact material
JP7062504B2 (en) Manufacturing method of contact material for vacuum valve and contact material for vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4874814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees