JP2008171622A - Contact material for vacuum valve - Google Patents
Contact material for vacuum valve Download PDFInfo
- Publication number
- JP2008171622A JP2008171622A JP2007002342A JP2007002342A JP2008171622A JP 2008171622 A JP2008171622 A JP 2008171622A JP 2007002342 A JP2007002342 A JP 2007002342A JP 2007002342 A JP2007002342 A JP 2007002342A JP 2008171622 A JP2008171622 A JP 2008171622A
- Authority
- JP
- Japan
- Prior art keywords
- component
- arc
- content
- contact material
- vacuum valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Contacts (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、真空遮断器などに使用される真空バルブの接点材料に要求される特性のうち、耐電圧特性と遮断特性を向上し得る真空バルブ用接点材料に関する。 The present invention relates to a contact material for a vacuum valve that can improve a withstand voltage characteristic and a cutoff characteristic among characteristics required for a contact material of a vacuum valve used for a vacuum circuit breaker or the like.
真空バルブ用接点材料に要求される特性としては、耐電圧特性、遮断特性、耐溶着特性などがあるが、単一の金属材料によって全ての特性を満足させることは困難である。そこで、導電成分と耐弧成分とを組合わせるなど二種類以上の金属材料からなる接点材料が開発されてきた。この一例として、導電成分のCu中に、粒径が数〜十数μmの微細な耐弧成分を存在させ、耐電圧特性と遮断特性とを向上させるものが知られている(例えば、特許文献1参照)。
上記の従来の接点材料においては、次のような問題がある。
微細な耐弧成分を導電成分中に存在させることにより、耐電圧特性と遮断特性とを向上させることができるものの、微細な耐弧成分だけを使用すると、耐弧成分の総表面積が極端に増大し、接点製造後にガス含有量が増大し、遮断特性を低下させてしまうことがある。耐弧成分には、原料粉末を使用することが多く、ガス含有量が増加する傾向にある。
The above-described conventional contact materials have the following problems.
The presence of a fine arc-proof component in the conductive component can improve the withstand voltage characteristics and the cut-off characteristics. However, if only the fine arc-proof component is used, the total surface area of the arc-proof component is extremely increased. However, the gas content may increase after the contact is manufactured, and the interruption characteristics may be deteriorated. For the arc-resistant component, raw material powder is often used, and the gas content tends to increase.
そこで、微細な耐弧成分を存在させるだけでなく、その耐弧成分に導電成分を固溶させ、ガス含有量を低減させることが好ましい。しかしながら、耐弧成分に導電成分を固溶させると、接点製造後の耐弧成分の測定において、耐弧成分の含有率が各測定方法によって必ずしも一致しないことが起きる。 Therefore, it is preferable that not only the fine arc-proof component is present but also the conductive component is dissolved in the arc-proof component to reduce the gas content. However, when the conductive component is dissolved in the arc-proof component, the arc-proof component content in the measurement of the arc-proof component after manufacturing the contact does not always match with each measurement method.
ここでは、耐弧成分の測定方法として、湿式化学分析法とその後の誘導結合型プラズマ発光分光分析の組合わせによる耐弧成分の含有率をベースに、光学顕微鏡での観測による耐弧成分の含有率の比、および電子顕微鏡での簡易分析による耐弧成分の含有率の比を求め、導電成分が固溶した耐弧成分を測定方法の違いから検討した。即ち、耐弧成分に導電成分が固溶すると、光学顕微鏡や電子顕微鏡では、耐弧成分を多く含有しているように測定されることがある。光学顕微鏡では、可視光線の波長までの測定ができ、また、電子顕微鏡では、電子線が持つ波長までの分解能があり、これらが影響しているものと考えられる。このため、測定方法の違いから導電成分が固溶した耐弧成分を把握できることが望まれていた。 Here, the arc resistance component is measured based on the content of the arc resistance component obtained by a combination of wet chemical analysis and subsequent inductively coupled plasma optical emission spectrometry. The ratio of the arc resistance component and the ratio of the arc resistance component content by simple analysis with an electron microscope were determined, and the arc resistance component in which the conductive component was dissolved was examined from the difference in measurement method. That is, when the conductive component is dissolved in the arc resistant component, the optical microscope and the electron microscope may be measured so as to contain a large amount of the arc resistant component. The optical microscope can measure up to the wavelength of visible light, and the electron microscope has a resolution up to the wavelength of the electron beam, which is considered to have an influence. For this reason, it has been desired that the arc-resistant component in which the conductive component is dissolved can be grasped from the difference in measurement method.
本発明は上記問題を解決するためになされたもので、測定方法の違いから導電成分が固溶した耐弧成分を把握し、耐電圧特性や遮断特性を向上させた真空バルブ用接点材料を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a contact material for a vacuum valve having improved withstand voltage characteristics and interruption characteristics by grasping an arc resistance component in which a conductive component is dissolved from a difference in measurement method. The purpose is to do.
上記目的を達成するために、本発明の真空バルブ用接点材料は、導電成分と耐弧成分と必要により補助成分とで構成される真空バルブ用接点材料において、湿式化学分析法により求めた耐弧成分の含有率をAとし、光学顕微鏡の組織写真から求めた耐弧成分の含有率をBとしたとき、これらの間には、B≧1.1×Aの関係があり前記耐弧成分に前記導電成分が固溶していることを特徴とする。 In order to achieve the above object, the vacuum valve contact material of the present invention is a vacuum valve contact material composed of a conductive component, an arc resistant component and, if necessary, an auxiliary component. When the content rate of the component is A and the content rate of the arc resistant component obtained from the structure photograph of the optical microscope is B, there is a relationship of B ≧ 1.1 × A between them, and the arc resistant component The conductive component is in solid solution.
本発明によれば、耐電圧特性と遮断特性を向上させた真空バルブ用接点材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the contact material for vacuum valves which improved the withstand voltage characteristic and interruption | blocking characteristic can be provided.
以下、図面を参照して本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明の実施例を説明するが、はじめに、本発明の接点材料が適用される真空バルブの構成を図1および図2を参照して説明する。図1は、本発明の実施例に係る接点材料が適用される真空バルブの構成を示す断面図、図2は、本発明の実施例に係る接点材料が適用される接離自在の一対の接点の一方の構成を示す断面図である。 Examples of the present invention will be described. First, the configuration of a vacuum valve to which the contact material of the present invention is applied will be described with reference to FIG. 1 and FIG. FIG. 1 is a cross-sectional view showing a configuration of a vacuum valve to which a contact material according to an embodiment of the present invention is applied, and FIG. 2 is a pair of contactable and separable contacts to which a contact material according to an embodiment of the present invention is applied. It is sectional drawing which shows one structure of these.
図1に示すように、1は遮断室を示し、この遮断室1は、絶縁材料により筒状に形成された絶縁容器2と、この両端に封着金具3a、3bを介して設けた金属製の蓋体4a、4bとで真空気密に構成されている。そして、遮断室1内には、導電棒5、6の対向する端部に取り付けられた一対の電極7、8が配設され、図示上部の電極7を固定電極、下部を可動電極としている。また、電極8の導電棒6には、伸縮自在のベローズ9が取り付けられ、遮断室1内を真空気密に維持しながら電極8の軸方向の移動を可能にしている。ベローズ9の図示上部には、金属製のアークカバー10が取り付けられ、ベローズ9がアーク蒸気で覆われることを防止している。11は、電極7、8を覆うようにして遮断室1内に設けられた金属製のアークシールドであり、絶縁容器2がアーク蒸気で覆われることを防止している。さらに、電極8は、図2に示すように、導電棒6端にロウ付け部12によって固定されるか、または、かしめによって圧着接続されている。接点13aは、電極8にロウ付け部14で固定されている。なお、図1における13bは固定側の接点であり、接点13aと接離自在となる。
As shown in FIG. 1,
次に、表1を参照して、本発明に係る真空バルブ用接点材料の実施例、比較例を説明する。
(比較例1、実施例1)
比較例1では、焼結溶浸法でCu−50%Cr接点を製造した。平均粒径100μmのCr粉末を相対密度50%になるようにφ60mmの金型で加圧成形し、この圧粉体を非酸化性雰囲気中である真空雰囲気中で、1000℃×1時間の条件で仮焼結した。そして、Crスケルトンに溶浸材であるであるCuブロックを載せ、1150℃×1時間の条件で溶浸させ、円柱状のCu−50%Cr合金を複数枚得た。
(Comparative Example 1, Example 1)
In Comparative Example 1, a Cu-50% Cr contact was manufactured by a sintering infiltration method. Cr powder with an average particle size of 100 μm is pressed with a φ60 mm mold so that the relative density is 50%, and this green compact is in a non-oxidizing atmosphere in a vacuum atmosphere at 1000 ° C. for 1 hour. Was pre-sintered. Then, a Cu block as an infiltrant was placed on the Cr skeleton and infiltrated under the conditions of 1150 ° C. × 1 hour to obtain a plurality of cylindrical Cu-50% Cr alloys.
このようにして得られたCu−50%Cr合金を底部に垂直な面で切断し、湿式化学分析法とその後の誘導結合型プラズマ発光分光分析と、光学顕微鏡の組織写真とにより、Cr含有率(重量比)を求めた。湿式化学分析法では、例えば1gの所定量のCu−Cr合金を、硝酸によりCuのみを溶解させることによりCu相とCr粒子とを分離させ、中和滴定でおおまかなCu含有率を求めた。その後、Cu相中とCr粒子中の微量成分を誘導結合型プラズマ発光分光分析装置で求めた。微量成分には、Fe、Ni、Al、Cu相中のCr、Cr相中のCuなどがある。その結果、Cr含有率Aは、100%からCr以外の成分の含有率、即ち、Cu含有率(湿式分析で求めたおおまかなCu含有率と誘導結合プラズマ発光分光分析で求めたCr粒子中のCu含有率の和)や微量成分の含有率の総和を差し引いて、A=49.5wt%であった。 The Cu-50% Cr alloy thus obtained was cut in a plane perpendicular to the bottom, and the Cr content was determined by wet chemical analysis, subsequent inductively coupled plasma emission spectroscopy, and a structure photograph of an optical microscope. (Weight ratio) was determined. In the wet chemical analysis method, for example, 1 g of a predetermined amount of Cu—Cr alloy was dissolved only in Cu with nitric acid to separate the Cu phase and Cr particles, and the approximate Cu content was determined by neutralization titration. Thereafter, trace components in the Cu phase and Cr particles were determined by an inductively coupled plasma emission spectrometer. The trace components include Fe, Ni, Al, Cr in the Cu phase, Cu in the Cr phase, and the like. As a result, the Cr content A is from 100% to the content of components other than Cr, that is, the Cu content (the approximate Cu content obtained by wet analysis and the Cr particles obtained by inductively coupled plasma emission spectrometry). The sum of the Cu content ratios) and the total content of the trace components was subtracted, and A = 49.5 wt%.
また、光学顕微鏡では、数百倍に拡大した断面組織写真の全体から、画像処理装置によりCrの面積比、即ち体積比を求めた。その結果、CuとCrの密度から、Cr含有率Bは、B=53.2wt%であった。 Moreover, in the optical microscope, the area ratio of Cr, that is, the volume ratio was obtained from the entire cross-sectional structure photograph magnified several hundred times by an image processing apparatus. As a result, from the density of Cu and Cr, the Cr content B was B = 53.2 wt%.
なお、これらは、複数回測定し、平均値を求めた。そして、誘導結合型プラズマ発光分光分析と光学顕微鏡とで求めたCr含有率の比を求めると、B/A=1.07であった。なお、湿式化学分析法、光学顕微鏡の測定は、以降、同様である。 In addition, these were measured several times and the average value was calculated | required. The ratio of the Cr content obtained by inductively coupled plasma emission spectroscopy and the optical microscope was found to be B / A = 1.07. The wet chemical analysis method and the optical microscope measurement are the same thereafter.
また、残りのCu−50%Cr合金を、φ50mm、厚さ5mmの接点形状に加工し、真空バルブに組み込んで遮断試験と耐電圧試験を実施した。遮断試験は、5kAから徐々に電流を上げていく方法で最大遮断電流値を測定した。耐電圧試験は、接点間距離を例えば5mmの一定として絶縁破壊電圧を数十回測定し、その平均値を求めた。比較例1での最大遮断電流値と破壊電圧値は、例えば上述した特許文献1に示されているような接点材料での値であり、これを基準の1.0とし、これから以降で説明する測定結果は相対値で示した。
Further, the remaining Cu-50% Cr alloy was processed into a contact shape having a diameter of 50 mm and a thickness of 5 mm, and incorporated in a vacuum valve to perform a breaking test and a withstand voltage test. In the interruption test, the maximum interruption current value was measured by gradually increasing the current from 5 kA. In the withstand voltage test, the dielectric breakdown voltage was measured several tens of times with the distance between the contacts being constant, for example, 5 mm, and the average value was obtained. The maximum cut-off current value and breakdown voltage value in Comparative Example 1 are, for example, values for contact materials as disclosed in
実施例1では、比較例1より微細粒径を有する平均粒径50μmの原料Cr粉末を使用して、比較例1と同一工程でCu−50%Cr合金を製造した。このCu−50%Cr合金のCr含有率は、湿式化学分析法(その後の誘導結合プラズマ発光分光分析法を含む)ではA=49.7wt%、光学顕微鏡ではB=57.7wt%であり、これらの比は、B/A=1.17であった。電気試験結果では、遮断特性が1.0倍、耐電圧特性が1.1倍であった。 In Example 1, a Cu-50% Cr alloy was manufactured in the same process as Comparative Example 1 using raw material Cr powder having an average particle diameter of 50 μm and a finer particle diameter than Comparative Example 1. The Cr content of this Cu-50% Cr alloy is A = 49.7 wt% in the wet chemical analysis method (including the subsequent inductively coupled plasma emission spectroscopy), and B = 57.7 wt% in the optical microscope. These ratios were B / A = 1.17. As a result of the electrical test, the interruption characteristics were 1.0 times and the withstand voltage characteristics were 1.1 times.
このように焼結溶浸法で製造したCu−50%Cr合金のCr含有率を測定方法で比較したところ、B/Aが1.1倍以上の1.17倍のとき、遮断特性と耐電圧特性が比較例1と同等以上に向上することが分かった。なお、測定方法でCr含有率が異なるのは、光学顕微鏡では、耐弧成分を多く含有しているように測定されると考えられる。また、Cuマトリックスに接しているCr粒子の表面積の総量が大きいほど、即ちCr粒子が微細なほどCuマトリックスとCr粒子の反応が促進されるので、Cr粒子に固溶するCuの固溶量が増大したものと考えられる。このように、測定方法によってCr含有率が異なるのは、Cr50%を基準に製造するものの、Cr粒子に固溶するCuの固溶量が増大し、材料組織が異なってくるためと考えられる。 Thus, when the Cr content of the Cu-50% Cr alloy produced by the sintering infiltration method was compared by a measuring method, when B / A was 1.1 times or more, 1.1 times or more, the breaking characteristics and anti-resistance It was found that the voltage characteristics were improved to be equal to or higher than that of Comparative Example 1. In addition, it is thought that it is measured that an optical microscope contains many arc-proof components that the Cr content differs depending on the measurement method. In addition, the larger the total surface area of the Cr particles in contact with the Cu matrix, that is, the finer the Cr particles, the more the reaction between the Cu matrix and the Cr particles is promoted. This is thought to have increased. As described above, the reason why the Cr content varies depending on the measurement method is that, although manufactured based on Cr 50%, the amount of Cu dissolved in Cr particles increases and the material structure differs.
(比較例2、実施例2)
比較例2では、固相焼結法でCu−50%Cr接点を製造した。Cu粉末とCr粉末とを重量比1:1とし、φ60mmの金型で7t/cm2で成形した圧粉体を、非酸化性雰囲気中である水素雰囲気中にて1000℃×5時間の条件で固相焼結し、円柱状のCu−50%Cr合金を複数枚得た。
(Comparative Example 2, Example 2)
In Comparative Example 2, a Cu-50% Cr contact was produced by solid phase sintering. A compact of Cu powder and Cr powder in a weight ratio of 1: 1 and molded at 7 t / cm 2 with a φ60 mm mold at 1000 ° C. for 5 hours in a hydrogen atmosphere in a non-oxidizing atmosphere Were subjected to solid phase sintering to obtain a plurality of cylindrical Cu-50% Cr alloys.
このようにして得られたCu−50%Cr合金を、比較例1と同様に、底部に垂直な面で切断し、湿式化学分析法(その後の誘導結合プラズマ発光分光分析法を含む)と、電子顕微鏡とにより、Cr含有率(重量比)を求めた。湿式化学分析法では、Cr含有率Aが、A=50.4wt%であった。 The Cu-50% Cr alloy thus obtained was cut in a plane perpendicular to the bottom as in Comparative Example 1, and wet chemical analysis (including subsequent inductively coupled plasma emission spectroscopy), The Cr content (weight ratio) was determined using an electron microscope. In the wet chemical analysis method, the Cr content A was A = 50.4 wt%.
また、Cu−Cr50%合金の電子顕微鏡での測定では、付属のエネルギー分散型X線分析法(EDX)の組成分析によりCr含有率を求めた。その結果、Cr含有率Cは、C=54.9wt%であった。湿式化学分析法と電子顕微鏡とのCr含有率の比を求めると、C/A=1.09であった。なお、電子顕微鏡での測定は、以降、同様である。また、残りのCu−50%Cr合金を、真空バルブに組み込んで遮断試験と耐電圧試験を実施した。この結果、遮断特性1.0倍、耐電圧特性0.9倍であった。 Moreover, in the measurement with the electron microscope of a Cu-Cr50% alloy, Cr content rate was calculated | required by the compositional analysis of the attached energy dispersive X-ray-analysis method (EDX). As a result, the Cr content C was C = 54.9 wt%. When the ratio of the Cr content in the wet chemical analysis method and the electron microscope was determined, it was C / A = 1.09. The measurement with an electron microscope is the same thereafter. Further, the remaining Cu-50% Cr alloy was incorporated into a vacuum valve, and a cutoff test and a withstand voltage test were performed. As a result, the breaking characteristics were 1.0 times and the withstand voltage characteristics were 0.9 times.
実施例2では、比較例2と同様の固相焼結でCu−50%Cr合金を製造したが、その製造工程は、加圧工程と焼結工程とをそれぞれ二回繰り返して実施した。このCu−50%Cr合金のCr含有率は、湿式化学分析法ではCr含有率A=50.1であり、電子顕微鏡ではCr含有率C=58.4wt%であった。そして、C/A=1.17であった。残りのCu−50%Cr合金を、真空バルブに組み込んで遮断試験と耐電圧試験を実施した結果、遮断特性1.0倍、耐電圧特性1.1倍と、比較例2よりも向上した。 In Example 2, a Cu-50% Cr alloy was manufactured by solid-phase sintering similar to Comparative Example 2, but the manufacturing process was performed by repeating the pressing process and the sintering process twice. The Cr content of this Cu-50% Cr alloy was Cr content A = 50.1 in the wet chemical analysis method, and Cr content C = 58.4 wt% in the electron microscope. And C / A = 1.17. The remaining Cu-50% Cr alloy was incorporated in a vacuum valve and subjected to a breaking test and a withstand voltage test. As a result, the breaking characteristic was improved by 1.0 times and the withstand voltage characteristic by 1.1 times compared to Comparative Example 2.
このように固相焼結法で製造したCu−50%Cr合金のCr含有率を測定方法で比較したところ、C/Aが1.1倍以上の1.17倍のとき、遮断特性と耐電圧特性が比較例2と同等以上に向上することが分かった。なお、測定方法でCr含有率が異なるのは、加圧と焼結を二回繰り返すことにより、固溶量が増大したものと考えられる。測定方法によってCr含有率が異なるのは、Cr粒子に固溶するCuの固溶量が増大し、材料組織が異なってくるためと考えられる。 Thus, when the Cr content of the Cu-50% Cr alloy manufactured by the solid-phase sintering method was compared by a measuring method, when C / A was 1.17 times, 1.1 times or more, the breaking characteristics and resistance It was found that the voltage characteristics were improved to be equal to or higher than that of Comparative Example 2. In addition, it is thought that it is that the amount of solid solution increased by repeating a pressurization and sintering twice that Cr content rate changes with a measuring method. The reason why the Cr content varies depending on the measurement method is considered to be that the amount of Cu dissolved in Cr particles increases and the material structure differs.
(比較例3、実施例3〜5)
比較例1、2、実施例1、2では、焼結温度1000℃と1150℃の二通り、即ち、導電成分Cuの融点(1083℃)を基準にして±90℃以内の温度で焼結をしたが、本発明の主旨はこれに限るものではない。
(Comparative Example 3, Examples 3-5)
In Comparative Examples 1 and 2 and Examples 1 and 2, sintering was performed at two temperatures of 1000 ° C. and 1150 ° C., that is, at a temperature within ± 90 ° C. based on the melting point of the conductive component Cu (1083 ° C.). However, the gist of the present invention is not limited to this.
比較例3、実施例3、4では、焼結温度をそれぞれ850℃、900℃、1250℃とし、Cu−25%Cr接点を製造した。三種類のCu−25%Cr合金のCr含有率を湿式化学分析法と光学顕微鏡で求めたところ、それぞれのCr含有率の比は、B/A=1.10、1.15、1.30であった。 In Comparative Example 3 and Examples 3 and 4, the sintering temperatures were 850 ° C., 900 ° C., and 1250 ° C., respectively, and Cu-25% Cr contacts were manufactured. When the Cr content of the three types of Cu-25% Cr alloys was determined by a wet chemical analysis method and an optical microscope, the ratio of each Cr content was B / A = 1.10, 1.15, 1.30. Met.
遮断特性と耐電圧特性では、比較例3が両特性とも1.0倍であった。これは、焼結温度が低いために焼結が進まず、相対密度が85%と低くなったためである。実施例3では、両特性とも1.1倍、実施例4では、両特性とも1.2倍であった。このため、焼結温度は、Cuの融点(1083℃)の−183℃以上から良好となる。なお、実施例4では、B/A=1.30となり、測定方法の違いによる最大値を示し、遮断特性、耐電圧特性とも安定して向上させることができる。実施例5では、1800℃の真空溶解法で製造したものであり、Cr含有率の比はC/A=1.25であった。遮断特性と耐電圧特性は、それぞれ1.2倍であった。 In the cut-off characteristics and the withstand voltage characteristics, Comparative Example 3 was 1.0 times in both characteristics. This is because sintering did not proceed because the sintering temperature was low, and the relative density was as low as 85%. In Example 3, both characteristics were 1.1 times, and in Example 4, both characteristics were 1.2 times. For this reason, sintering temperature becomes favorable from -183 degreeC or more of melting | fusing point (1083 degreeC) of Cu. In Example 4, B / A = 1.30, which indicates the maximum value due to the difference in measurement method, and both the cutoff characteristics and the withstand voltage characteristics can be stably improved. In Example 5, it manufactured by the vacuum melting method of 1800 degreeC, and ratio of Cr content rate was C / A = 1.25. The breaking characteristics and withstand voltage characteristics were each 1.2 times.
(実施例6〜10)
実施例6〜10では、Cu−20%Cr接点を真空雰囲気中で、950℃の固相焼結法で製造した。実施例2と同様に、二回の加圧と焼結を行った後、真空雰囲気中で30分の熱処理を行った。
(Examples 6 to 10)
In Examples 6 to 10, Cu-20% Cr contacts were produced by a solid phase sintering method at 950 ° C. in a vacuum atmosphere. Similarly to Example 2, after pressing and sintering twice, heat treatment was performed for 30 minutes in a vacuum atmosphere.
実施例6では、焼結後の熱処理が1070℃であり、Cr含有率の比がB/A=1.23であった。遮断特性は1.2倍、耐電圧特性は1.1倍であった。実施例7では、焼結後の熱処理が1050℃であり、Cr含有率の比がB/A=1.22であった。遮断特性は1.3倍、耐電圧特性は1.2倍であった。実施例8では、焼結後の熱処理が850℃であり、Cr含有率の比がB/A=1.24であった。遮断特性は1.3倍、耐電圧特性は1.2倍であった。実施例9では、焼結後の熱処理が700℃であり、Cr含有率の比がB/A=1.23であった。遮断特性は1.2倍、耐電圧特性は1.1倍であった。実施例10では、焼結後の熱処理が650℃であり、Cr含有率の比がB/A=1.24であった。遮断特性は1.1倍、耐電圧特性は1.1倍であった。 In Example 6, the heat treatment after sintering was 1070 ° C., and the Cr content ratio was B / A = 1.23. The breaking characteristics were 1.2 times and the withstand voltage characteristics were 1.1 times. In Example 7, the heat treatment after sintering was 1050 ° C., and the Cr content ratio was B / A = 1.22. The breaking characteristics were 1.3 times and the withstand voltage characteristics were 1.2 times. In Example 8, the heat treatment after sintering was 850 ° C., and the Cr content ratio was B / A = 1.24. The breaking characteristics were 1.3 times and the withstand voltage characteristics were 1.2 times. In Example 9, the heat treatment after sintering was 700 ° C., and the Cr content ratio was B / A = 1.23. The breaking characteristics were 1.2 times and the withstand voltage characteristics were 1.1 times. In Example 10, the heat treatment after sintering was 650 ° C., and the Cr content ratio was B / A = 1.24. The interruption characteristic was 1.1 times and the withstand voltage characteristic was 1.1 times.
これらの結果より、固相焼結後に熱処理を行うと、Cr含有率の比がB/A=1.2以上に大きくなり、特に遮断特性が向上する傾向にあった。熱処理温度は、導電成分Cuの融点(1083℃)を基準にして、−20℃以下〜−400℃以上のときに遮断特性の向上が顕著となる。 From these results, when heat treatment was performed after solid-phase sintering, the Cr content ratio was increased to B / A = 1.2 or more, and in particular, there was a tendency to improve the breaking characteristics. When the heat treatment temperature is −20 ° C. or lower to −400 ° C. or higher on the basis of the melting point (1083 ° C.) of the conductive component Cu, the improvement of the blocking characteristic becomes remarkable.
(実施例11〜16)
比較例1〜3、実施例1〜10では、導電成分がCu、耐弧成分がCrについて説明したが、本発明の主旨はこれに限るものではない。
(Examples 11 to 16)
In Comparative Examples 1 to 3 and Examples 1 to 10, the conductive component is Cu and the arc-proof component is Cr, but the gist of the present invention is not limited to this.
実施例11では、導電成分をAg、耐弧成分をWCとし、液相焼結法でAg−60%WC接点を製造した。その結果、Cr含有率の比はB/A=1.23であり、遮断特性、耐電圧特性は1.1倍以上であった。実施例12では、導電成分をAgとCuとし、耐弧成分をWCとし、液相焼結法でAg/Cu−60%WC接点を製造した。その結果、Cr含有率の比はB/A=1.28であり、遮断特性、耐電圧特性は1.1倍以上であった。実施例13〜16では、導電成分をCuとし、耐弧成分をそれぞれ70%W、40%Nb、50%Mo、26%Cr+4%Wとして、液相焼結法で製造した。その結果、いずれもCr含有率の比はB/A=1.2以上であり、遮断特性、耐電圧特性は1.2倍であった。 In Example 11, Ag-60% WC contact was manufactured by liquid phase sintering using Ag as the conductive component and WC as the arc resistant component. As a result, the Cr content ratio was B / A = 1.23, and the breaking characteristics and withstand voltage characteristics were 1.1 times or more. In Example 12, Ag / Cu-60% WC contacts were manufactured by liquid phase sintering using Ag and Cu as the conductive components, WC as the arc resistant component, and liquid phase sintering. As a result, the ratio of Cr content was B / A = 1.28, and the breaking characteristics and withstand voltage characteristics were 1.1 times or more. In Examples 13 to 16, the conductive component was Cu and the arc-proof component was 70% W, 40% Nb, 50% Mo, and 26% Cr + 4% W, respectively, and manufactured by a liquid phase sintering method. As a result, the ratio of Cr content was B / A = 1.2 or more in all cases, and the breaking characteristics and withstand voltage characteristics were 1.2 times.
(実施例17〜19)
比較例1〜3、実施例1〜16では、導電成分と耐弧成分で構成される接点について説明したが、本願発明の要旨はこれに限るものではない。
(Examples 17 to 19)
In Comparative Examples 1 to 3 and Examples 1 to 16, the contact point constituted by the conductive component and the arc resistant component has been described, but the gist of the present invention is not limited to this.
実施例17〜19では、導電成分Cu、耐弧成分Crのほかに、補助成分としてそれぞれBi、Te、Te+Sbを用い、焼結溶浸法でそれぞれ接点を製造した。Crの密度は50%とした。その結果、いずれもCr含有率の比はB/A=1.2以上であり、遮断特性、耐電圧特性は1.1倍以上であった。なお、この補助成分は、5wt%以下の微量添加した場合に溶着特性が改善される。一般に5wt%以上添加すると、導電率が低下するとともに、脆化が顕著となるので、上述の補助成分の添加量は5wt%以下とした。 In Examples 17-19, in addition to the conductive component Cu and the arc-proof component Cr, Bi, Te, and Te + Sb were used as auxiliary components, respectively, and contacts were manufactured by a sintering infiltration method. The density of Cr was 50%. As a result, the ratio of Cr content was B / A = 1.2 or more in all cases, and the breaking characteristics and withstand voltage characteristics were 1.1 times or more. In addition, when this auxiliary component is added in a trace amount of 5 wt% or less, the welding characteristics are improved. In general, when 5 wt% or more is added, the conductivity is lowered and embrittlement becomes remarkable. Therefore, the amount of the auxiliary component added is set to 5 wt% or less.
なお、実施例1〜19において、導電成分をCu、Ag、Cu+Agで説明したが、CuとAgとを主成分とする導電成分なら同様の効果を得ることができる。また、耐弧成分は、Cr、W、Nb、Ta、Ti、Moおよびこれらの炭化物のうちの少なくとも一つを使用しても同様の効果を得ることができる。さらに、補助成分も、Bi、Te、Sbのうちの少なくとも一つを使用しても同様の効果を得ることができる。 In Examples 1 to 19, although the conductive component is described as Cu, Ag, and Cu + Ag, the same effect can be obtained if the conductive component is mainly composed of Cu and Ag. Moreover, the same effect can be acquired even if an arc-resistant component uses Cr, W, Nb, Ta, Ti, Mo, and at least one of these carbides. Furthermore, the same effect can be obtained even when the auxiliary component uses at least one of Bi, Te, and Sb.
上記実施例1の真空バルブ用接点材料によれば、Crなどの耐弧成分を湿式化学分析法と光学顕微鏡または電子顕微鏡とで測定し、これらの測定から耐弧成分の含有率の比を求めることにより、導電成分が固溶した耐弧成分を把握することができ、耐電圧特性や遮断特性を向上させることができる。 According to the vacuum valve contact material of Example 1 above, arc-resistant components such as Cr are measured by a wet chemical analysis method and an optical microscope or an electron microscope, and the ratio of the content ratio of the arc-resistant components is obtained from these measurements. As a result, it is possible to grasp the arc-proof component in which the conductive component is dissolved, and it is possible to improve the withstand voltage characteristic and the cutoff characteristic.
1 遮断室
2 絶縁容器
3a、3b 封着金具
4a、4b 蓋体
5、6 導電棒
7、8 電極
9 ベローズ
10 アークカバー
11 アークシールド
12、14 ロウ付け部
13a、13b 接点
DESCRIPTION OF
Claims (7)
湿式化学分析法により求めた耐弧成分の含有率をAとし、
光学顕微鏡の組織写真から求めた耐弧成分の含有率をBとしたとき、
これらの間には、B≧1.1×Aの関係があり前記耐弧成分に前記導電成分が固溶していることを特徴とする真空バルブ用接点材料。 In a contact material for a vacuum valve composed of a conductive component, an arc-proof component and, if necessary, an auxiliary component,
Let A be the content of arc-proof components obtained by wet chemical analysis,
When the content rate of the arc resistant component obtained from the structure photograph of the optical microscope is B,
There is a relationship of B ≧ 1.1 × A between them, and the conductive component is dissolved in the arc-proof component.
湿式化学分析法により求めた耐弧成分の含有率をAとし、
電子顕微鏡による組成分析から求めた耐弧成分の含有率をCとしたとき、
これらの間には、C≧1.1×Aの関係があり前記耐弧成分に前記導電成分が固溶していることを特徴とする真空バルブ用接点材料。 In a contact material for a vacuum valve composed of a conductive component, an arc-proof component and, if necessary, an auxiliary component,
Let A be the content of arc-proof components obtained by wet chemical analysis,
When the content rate of the arc resistant component obtained from the composition analysis by the electron microscope is C,
There is a relationship of C ≧ 1.1 × A between them, and the conductive component is dissolved in the arc-proof component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007002342A JP2008171622A (en) | 2007-01-10 | 2007-01-10 | Contact material for vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007002342A JP2008171622A (en) | 2007-01-10 | 2007-01-10 | Contact material for vacuum valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008171622A true JP2008171622A (en) | 2008-07-24 |
Family
ID=39699524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007002342A Pending JP2008171622A (en) | 2007-01-10 | 2007-01-10 | Contact material for vacuum valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008171622A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111910112A (en) * | 2020-07-01 | 2020-11-10 | 昆山家锐电子科技有限公司 | Tungsten-copper alloy material and preparation method and application thereof |
-
2007
- 2007-01-10 JP JP2007002342A patent/JP2008171622A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111910112A (en) * | 2020-07-01 | 2020-11-10 | 昆山家锐电子科技有限公司 | Tungsten-copper alloy material and preparation method and application thereof |
CN111910112B (en) * | 2020-07-01 | 2022-02-11 | 昆山家锐电子科技有限公司 | Tungsten-copper alloy material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5862695B2 (en) | Method for producing electrode material | |
EP0488083B1 (en) | Contact material for a vacuum interrupter | |
WO2011162398A1 (en) | Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker | |
JP6075423B1 (en) | Vacuum circuit breaker | |
EP3062327A1 (en) | Electrical contact for vacuum valve and process for producing same | |
WO2018142709A1 (en) | Method for manufacturing electrode material, and electrode material | |
JP6311325B2 (en) | Electrode material and method for producing electrode material | |
JP2011108380A (en) | Electric contact for vacuum valve, and vacuum interrupter using the same | |
JP2008171622A (en) | Contact material for vacuum valve | |
JP6145285B2 (en) | Electrical contact material, method for producing the same, and electrical contact | |
JP2006147263A (en) | Electrode for vacuum circuit breaker, vacuum valve, and manufacture thereof | |
JP2007066753A (en) | Contact material for vacuum valve, and manufacturing method therefor | |
JP2010061935A (en) | Electrical contacts, methods of manufacturing the same, and switchgear for electric power | |
JP6669327B1 (en) | Electrical contacts, vacuum valves with electrical contacts | |
JP6398530B2 (en) | Method for producing electrode material | |
JP2006032036A (en) | Contact material for vacuum valve | |
JP5506873B2 (en) | Contact material and manufacturing method thereof | |
JP2003077375A (en) | Contact material for vacuum valve and vacuum valve | |
JP5116538B2 (en) | Contact material | |
JP4761932B2 (en) | Contact material for vacuum valves | |
JP6657655B2 (en) | Manufacturing method of electrode material | |
JP4988489B2 (en) | Electrical contact | |
JPH09312120A (en) | Contact material for vacuum valve | |
Yoon et al. | Interruption characteristics on the sintering for Cu-Cr contact material | |
JP2001023482A (en) | Contact material for vacuum valve |