JP2008171565A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device Download PDF

Info

Publication number
JP2008171565A
JP2008171565A JP2008089710A JP2008089710A JP2008171565A JP 2008171565 A JP2008171565 A JP 2008171565A JP 2008089710 A JP2008089710 A JP 2008089710A JP 2008089710 A JP2008089710 A JP 2008089710A JP 2008171565 A JP2008171565 A JP 2008171565A
Authority
JP
Japan
Prior art keywords
data
memory device
semiconductor memory
area
word line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008089710A
Other languages
Japanese (ja)
Inventor
Katsumi Ouchi
勝美 大内
Kunihiro Katayama
国弘 片山
Takashi Tsunehiro
隆司 常広
Takayuki Tamura
隆之 田村
Kazunori Furusawa
和則 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2008089710A priority Critical patent/JP2008171565A/en
Publication of JP2008171565A publication Critical patent/JP2008171565A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Read Only Memory (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a nonvolatile semiconductor memory device in which data requiring security can be stored like the identification number being intrinsic to a chip. <P>SOLUTION: Information indicating the number of times of erasure of the erasion unit region is present in the management information region of the erasure unit region in a part of region or a whole region of a memory region, and when the information is the prescribed value, voltage required for erasure is not applied to the word line or the data line or the source line of part of the region or the whole region, Also, the same control is performed for writing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セキュリティが必要なデータを格納できる不揮発性半導体記憶装置に関する。   The present invention relates to a nonvolatile semiconductor memory device that can store data requiring security.

デジタルスチルカメラをはじめとする携帯型情報機器の普及に伴い、外部記憶装置であるフラッシュメモリカードの需要が大きくなっている。フラッシュメモリカードは記憶媒体としてフラッシュメモリを搭載した、PCカードまたはそれ以下のサイズの記憶装置である。   With the spread of portable information devices such as digital still cameras, the demand for flash memory cards as external storage devices is increasing. A flash memory card is a PC card or a storage device of a size smaller than that, which is equipped with a flash memory as a storage medium.

フラッシュメモリは電気的に書き換え可能であり、高集積化に適した不揮発性半導体メモリである。フラッシュメモリの主な用途は、フラッシュメモリカードにおける記憶媒体のほかに、PC(Personal Computer)のBIOSの格納、携帯電話のプログラムやデータ(アドレス帳など)の格納に用いられている。   A flash memory is an electrically rewritable nonvolatile semiconductor memory suitable for high integration. The main use of the flash memory is used for storing a BIOS of a PC (Personal Computer), a program of a mobile phone and data (such as an address book) in addition to a storage medium in a flash memory card.

フラッシュメモリはその用途に応じて、AND型、NOR型など様々なセルアレイ構造が提案され、それぞれ特徴をもっている。   Various cell array structures such as an AND type and a NOR type have been proposed for flash memories according to their use, and each has its own characteristics.

AND型フラッシュメモリは、高集積・低電圧化に適したフラッシュメモリであり、ファイルストレージ系の記憶媒体として使われることが多い。AND型フラッシュメモリの公知例としては特許文献1(特開平6−77437号公報)がある。消去は、制御ゲートに高電圧を印加し、ソースおよびドレインおよび基板を接地し、ファウラー・ノルトハイム電流によりチャネルから浮遊ゲートに電子を注入することで行う。その結果、フラッシュメモリセルのしきい値が高くなる。書き込みは、制御ゲートに負電圧、ドレインに低電圧を印加し、ソースを開放、基板を接地して行う。このとき、ファウラー・ノルトハイム電流により浮遊ゲートからドレインへ電子が引き抜かれ、メモリセルのしきい値が低くなる。AND型フラッシュメモリにおいては、メモリセルのしきい値が高い状態が消去状態であり、このときメモリセルが記憶する値は‘1’である。また、しきい値が低い状態が書き込み状態であり、このときメモリセルが記憶する値は‘0’である。   An AND flash memory is a flash memory suitable for high integration and low voltage, and is often used as a storage medium for file storage. As a known example of the AND type flash memory, there is Patent Document 1 (Japanese Patent Laid-Open No. 6-77437). Erasing is performed by applying a high voltage to the control gate, grounding the source, drain, and substrate, and injecting electrons from the channel to the floating gate with a Fowler-Nordheim current. As a result, the threshold value of the flash memory cell increases. Writing is performed by applying a negative voltage to the control gate and applying a low voltage to the drain, opening the source, and grounding the substrate. At this time, electrons are extracted from the floating gate to the drain by the Fowler-Nordheim current, and the threshold value of the memory cell is lowered. In the AND type flash memory, a state in which the threshold value of the memory cell is high is an erased state, and the value stored in the memory cell at this time is “1”. Further, a state in which the threshold is low is a write state, and the value stored in the memory cell at this time is '0'.

また、近年、フラッシュメモリチップの大容量化に伴い、音楽データや電子書籍データを格納する用途への期待が高まっている。フラッシュメモリにこれらのデータを格納する際の問題点は、フラッシュメモリカードに格納するコンテンツに対する著作権保護である。   In recent years, with the increase in capacity of flash memory chips, there is an increasing expectation for uses for storing music data and electronic book data. A problem in storing these data in the flash memory is copyright protection for the content stored in the flash memory card.

コンテンツの著作権保護を実現する一つの方法として、フラッシュメモリチップ内部に固有の識別番号を設け、この識別番号を利用する方法がある。つまり、他の識別番号を持ったフラッシュメモリチップにはコンテンツをコピーできない、または他の識別番号のフラッシュメモリチップにコピーができても正しく再生することができない、といった方法で不正コピーを防止することできる。
特開平6−77437号公報
As one method for realizing copyright protection of content, there is a method in which a unique identification number is provided in the flash memory chip and this identification number is used. In other words, to prevent unauthorized copying in such a way that content cannot be copied to a flash memory chip with another identification number, or it cannot be reproduced correctly even if it can be copied to a flash memory chip with another identification number. it can.
JP-A-6-77437

フラッシュメモリと同一チップ内に設ける識別番号は、書き換えが不可能でなくてはならない。識別番号をマスクROM領域に格納すると、チップの出荷後にユーザ側で識別番号を書き込むといったことができない。一方、従来のフラッシュメモリ領域に識別番号を格納すると、消去や上書きにより自由に改ざんされてしまう。   The identification number provided in the same chip as the flash memory must be rewritable. If the identification number is stored in the mask ROM area, the identification number cannot be written on the user side after the chip is shipped. On the other hand, when the identification number is stored in the conventional flash memory area, it is freely tampered with by erasing or overwriting.

識別番号のようにセキュリティが必要なデータを、フラッシュメモリ領域に格納するときの課題は、(1)識別番号を書き込む前に最低1回は消去できる、(2)1回書き込みを行った後は再び書き込むことができない、または、(3)識別番号の上書きが検出された場合は他のデータを読み書きできない、ようなフラッシュメモリを実現することである。   The issues when storing data that requires security, such as identification numbers, in the flash memory area are: (1) can be erased at least once before writing the identification number; (2) after writing once It is to realize a flash memory that cannot be written again, or (3) cannot read or write other data when overwriting of an identification number is detected.

本発明の目的は、所定回数だけ消去した後は、再び消去することができない記憶領域を有する不揮発性半導体記憶装置を実現することである。   An object of the present invention is to realize a nonvolatile semiconductor memory device having a storage area that cannot be erased again after being erased a predetermined number of times.

本発明の他の目的は、1度書き込んだ後は、再び書き込みができない記憶領域を有する不揮発性半導体記憶装置を実現することである。   Another object of the present invention is to realize a nonvolatile semiconductor memory device having a storage area in which writing cannot be performed again after writing once.

本発明のさらに他の目的は、データの上書きが検出された場合は他のデータを読み書きできない不揮発性半導体記憶装置を実現することである。   Still another object of the present invention is to realize a nonvolatile semiconductor memory device that cannot read / write other data when overwriting of data is detected.

上記目的を達成するために、
複数個の消去単位領域で構成され、消去単位領域ごとに通常のデータ領域と、消去単位領域全体の管理情報を記憶する管理情報領域とを有する記憶領域と、
外部より入力したアドレス値により、ワード線またはデータ線またはソース線を選択し所定の電圧を印加する選択装置と、
消去・書き込み・読み出し等の動作を制御する動作制御装置と、
不揮発性半導体記憶装置の状態を記憶する一時記憶装置とを有する不揮発性半導体記憶装置において、
記憶領域の一部または全部の領域内の、消去単位領域の管理情報領域に、消去単位領域を1度消去したことを示す情報を有し、この情報が所定の値であるとき、選択装置に対する動作制御装置の制御により、一部または全部の領域のワード線またはデータ線またはソース線に対して、消去に必要な電圧の印加を抑止する手段を設ける。
To achieve the above objective,
A storage area composed of a plurality of erasing unit areas, and having a normal data area for each erasing unit area and a management information area for storing management information of the entire erasing unit area;
A selection device that selects a word line, a data line, or a source line according to an address value input from the outside and applies a predetermined voltage;
An operation control device for controlling operations such as erasing, writing, and reading;
In a nonvolatile semiconductor memory device having a temporary storage device that stores a state of the nonvolatile semiconductor memory device,
In the management information area of the erase unit area in a part or all of the storage area, there is information indicating that the erase unit area has been erased once. When this information is a predetermined value, Under the control of the operation control device, means for suppressing application of a voltage necessary for erasing is provided to a word line, data line or source line in a part or all of the region.

また、本発明の他の目的を達成するために、
記憶領域の一部または全部の領域内の、消去単位領域の管理情報領域に、消去単位領域に1度書き込みを行ったことを示す情報を有し、この情報が所定の値であるとき、選択装置に対する動作制御装置の制御により、一部または全部の領域のワード線またはデータ線またはソース線に対して、書き込みに必要な電圧の印加を抑止する手段を設ける。
In order to achieve another object of the present invention,
In the management information area of the erase unit area in a part or all of the storage area, there is information indicating that data has been written once in the erase unit area, and this information is selected when it is a predetermined value. Means for suppressing application of a voltage necessary for writing to a word line, a data line, or a source line in a part or all of the region is provided by control of the operation control device for the device.

また、本発明のさらに他の目的を達成するために、
通常データの各ビットと1対1の写像関係にあるデータを生成する装置を有し、記憶領域内の一部または全部の領域に対して、同一の書き込み単位領域に、通常データおよび写像関係のデータを書き込む領域を有し、他のデータ領域に対して書き込みおよび読み出しを行うとき、予め通常データおよび写像関係のデータが互いに写像関係にあるかを検証し、写像関係にない場合は前記データ領域への書き込みおよび読み出しを不可能に設定する手段を設ける。
In order to achieve yet another object of the present invention,
It has a device that generates data having a one-to-one mapping relationship with each bit of normal data, and the normal data and mapping relationship are stored in the same writing unit area for a part or all of the storage area. It has an area for writing data, and when writing and reading to other data areas, it is verified in advance whether normal data and mapping-related data are in a mapping relationship with each other. Means are provided for making writing to and reading from impossible.

本発明により、不揮発性半導体記憶装置の記憶領域内に、所定の回数以上は消去ができない、さらには、1度しか書き込みができない領域を設けることができる。   According to the present invention, it is possible to provide an area that cannot be erased a predetermined number of times or more and can be written only once in the storage area of the nonvolatile semiconductor memory device.

また、再消去禁止領域内の同じ書き込み単位領域に、通常データとその反転データを書き込むことで、通常データの改ざんが容易に検出することができるようになる。これを利用して、通常データの改ざんが検出された場合はチップ内の他のデータにアクセスできなくするといった応用が可能となる。   Further, by writing normal data and its inverted data in the same write unit area in the re-erasure prohibition area, it becomes possible to easily detect alteration of normal data. By utilizing this, when alteration of normal data is detected, it becomes possible to make an application in which other data in the chip cannot be accessed.

以上により、フラッシュメモリチップ内に、チップ固有の識別番号などセキュリティが必要なデータを格納することができる効果が得られる。   As described above, there is an effect that data requiring security such as an identification number unique to the chip can be stored in the flash memory chip.

(第1の実施例)
まず、本発明の第一の実施例を説明する。図2は、AND型フラッシュメモリチップ201のブロック構成を示す。以下、AND型フラッシュメモリチップ201を構成する各ブロックについて説明する。
(First embodiment)
First, a first embodiment of the present invention will be described. FIG. 2 shows a block configuration of the AND type flash memory chip 201. Hereinafter, each block constituting the AND flash memory chip 201 will be described.

AND型フラッシュメモリのセルアレイ群202は8面のセルアレイで構成する。データの消去・書き込み・読み出しは、8面のセルアレイで並列に行われる。セルアレイはフラッシュメモリセルを平面的に配列したものである。図3にAND型フラッシュメモリのセルアレイの構造を示す。ドレイン側とソース側にそれぞれ選択トランジスタ(301、302、303、及び304、305、306)が設けられ、この2つの選択トランジスタの間にM個のフラッシュメモリセルが並列に接続されている。この1組の選択トランジスタではさんだ記憶領域、すなわち図3において点線で囲まれた記憶領域を、以下メモリブロックと呼ぶ。また、共通ソース線には接地電圧Vssが印加されている。   The cell array group 202 of the AND type flash memory is composed of eight cell arrays. Data erasing / writing / reading is performed in parallel in an 8-sided cell array. The cell array has flash memory cells arranged in a plane. FIG. 3 shows the structure of the cell array of the AND type flash memory. Select transistors (301, 302, 303, and 304, 305, 306) are provided on the drain side and the source side, respectively, and M flash memory cells are connected in parallel between the two select transistors. The storage area sandwiched between the set of select transistors, that is, the storage area surrounded by a dotted line in FIG. 3, is hereinafter referred to as a memory block. A ground voltage Vss is applied to the common source line.

AND型フラッシュメモリは、選択したワード線に接続された全てのフラッシュメモリセルに対して、消去・書き込み・読み出しを行う。例えば、図3でワード線W2に接続されたメモリセル群M2を選択した場合を考える。   The AND flash memory performs erasing, writing, and reading with respect to all the flash memory cells connected to the selected word line. For example, consider the case where the memory cell group M2 connected to the word line W2 is selected in FIG.

消去動作は、ドレイン側およびソース側の選択トランジスタのゲートSDおよびSSに電源電圧Vcc、ワード線W2に高電圧Vpp、データ線D1〜D528に接地電圧Vssを印加して行う。書き込み動作は、ドレイン側の選択トランジスタのゲートSDに電源電圧Vcc、ソース側の選択トランジスタのゲートSSに接地電圧Vss、ワード線W2に負電圧Vnn、データ線に電源電圧Vccを印加して行う。読み出し動作は、ドレイン側およびソース側の選択トスタランジのゲートSDおよびSSに電源電圧Vcc、ワード線W2に電源電圧Vcc、データ線D1からD528に所定の正電圧を印加して行う。   The erase operation is performed by applying the power supply voltage Vcc to the gates SD and SS of the selection transistors on the drain side and the source side, the high voltage Vpp to the word line W2, and the ground voltage Vss to the data lines D1 to D528. The write operation is performed by applying the power supply voltage Vcc to the gate SD of the selection transistor on the drain side, the ground voltage Vss to the gate SS of the selection transistor on the source side, the negative voltage Vnn to the word line W2, and the power supply voltage Vcc to the data line. The read operation is performed by applying a power supply voltage Vcc to the gates SD and SS of the selected transistor on the drain side and the source side, a power supply voltage Vcc to the word line W2, and a predetermined positive voltage to the data lines D1 to D528.

セルアレイ内の一本のワード線(Wn)には528個のフラッシュメモリセルが接続されている。また、本実施例では1つのフラッシュメモリセルにつき1ビットデータを記憶する。セルアレイ群202は8面のセルアレイで構成するので、消去・書き込み・読み出しの単位は528バイトとなる。   528 flash memory cells are connected to one word line (Wn) in the cell array. In this embodiment, 1-bit data is stored for each flash memory cell. Since the cell array group 202 is composed of eight cell arrays, the unit of erasing, writing, and reading is 528 bytes.

図32にセルアレイ群202のデータ構成を示す。一本のワード線ごとにアドレスが割り当てられている。また、1つのアドレスに対応する528バイトのデータは、512バイトのセクタデータ領域と、セクタデータを管理する情報を格納する16バイトの管理情報領域とで構成する。セクタデータを512バイトとしたのは、磁気ディスクのセクタサイズと同じにするためである。行アドレス0は消去禁止領域である。また行アドレス1〜16383は消去可能領域である。   FIG. 32 shows the data structure of the cell array group 202. An address is assigned to each word line. The 528-byte data corresponding to one address is composed of a 512-byte sector data area and a 16-byte management information area for storing information for managing the sector data. The reason why the sector data is 512 bytes is to make it the same as the sector size of the magnetic disk. Row address 0 is an erase prohibited area. Row addresses 1 to 16383 are erasable areas.

図2の行デコーダ203は、セルアレイ群202内のワード線を選択し所定の電圧を印加する。図33に示すように、行デコーダ203は、消去禁止領域のワード線選択回路100、および消去可能領域のワード線選択回路101、およびメモリブロック選択回路102、103で構成する。   The row decoder 203 in FIG. 2 selects a word line in the cell array group 202 and applies a predetermined voltage. As shown in FIG. 33, the row decoder 203 includes a word line selection circuit 100 in an erasure prohibited area, a word line selection circuit 101 in an erasable area, and memory block selection circuits 102 and 103.

消去禁止領域のワード線選択回路100、および消去可能領域のワード線選択回路101は、行アドレスをデコードしてワード線を選択し、ワード線に印加する電圧を制御する。図33には示していないが、行アドレスは行アドレスバッファ204を介して行デコーダ203に入力する。行アドレスが0のとき、消去禁止領域のワード線選択回路100がワード線を選択する。また行アドレスが1から16383のとき、消去可能領域のワード線選択回路101が行アドレスに対応するワード線を選択する。消去可能領域のワード線選択回路101には、ワード線電圧Vwおよび接地電圧Vssが、消去禁止領域のワード線選択回路100には、接地電圧Vssのみが図2に示す内部電源発生回路213より供給される。   The word line selection circuit 100 in the erasure prohibited area and the word line selection circuit 101 in the erasable area select the word line by decoding the row address, and control the voltage applied to the word line. Although not shown in FIG. 33, the row address is input to the row decoder 203 via the row address buffer 204. When the row address is 0, the word line selection circuit 100 in the erase prohibition area selects a word line. When the row address is from 1 to 16383, the word line selection circuit 101 in the erasable area selects the word line corresponding to the row address. Only the word line voltage Vw and the ground voltage Vss are supplied to the word line selection circuit 101 in the erasable area, and only the ground voltage Vss is supplied to the word line selection circuit 100 in the erasure prohibited area from the internal power generation circuit 213 shown in FIG. Is done.

消去禁止領域のワード線選択回路100の内部構成を図34に、また、消去可能領域のワード線選択回路101のうち、1本のワード線に対応する回路を図35に示す。チップ外部より行アドレスとして0を入力すると、消去禁止領域内のワード線が選択される。このとき、コントロール回路211からの制御信号ERSに応じてワード線に印加する電圧が変化する。すなわち、制御信号ERSが‘H’レベルのときワード線には接地電圧Vssが印加され、制御信号ERSが‘L’レベルのときワード線にはワード線電圧Vwが印加される。また、消去可能領域内のワード線は選択されていないので接地電圧Vssが印加される。   FIG. 34 shows an internal configuration of the word line selection circuit 100 in the erasure prohibition area, and FIG. 35 shows a circuit corresponding to one word line in the word line selection circuit 101 in the erasable area. When 0 is input as a row address from the outside of the chip, a word line in the erase prohibition area is selected. At this time, the voltage applied to the word line changes according to the control signal ERS from the control circuit 211. That is, when the control signal ERS is at the “H” level, the ground voltage Vss is applied to the word line, and when the control signal ERS is at the “L” level, the word line voltage Vw is applied to the word line. Further, since the word line in the erasable area is not selected, the ground voltage Vss is applied.

一方、行アドレスとして1から16383を入力すると、消去可能領域内の行アドレスに対応したワード線が選択される。このとき消去可能領域のワード線選択回路101は、選択したワード線にはワード線電圧Vwを印加する。また、消去禁止領域のワード線選択回路100、消去可能領域のワード線選択回路101ともに非選択のワード線に対しては接地電圧Vssを印加する。   On the other hand, when 1 to 16383 is input as the row address, the word line corresponding to the row address in the erasable area is selected. At this time, the word line selection circuit 101 in the erasable region applies the word line voltage Vw to the selected word line. In addition, the ground voltage Vss is applied to unselected word lines in both the word line selection circuit 100 in the erasure prohibited area and the word line selection circuit 101 in the erasable area.

メモリブロック選択回路102、103は、行アドレスをデコードしてメモリブロックを選択する。図33には示していないが、メモリブロック選択回路102、103には行アドレスが入力する。また、電源電圧Vcc、接地電圧Vssが供給される。メモリブロック選択回路102、103は、コントロール回路211からの制御信号に応じて、ドレイン側およびソース側の選択トランジスタのゲートに印加する電圧を制御する。消去動作および読み出し動作において、メモリブロック選択回路102、103は、ドレイン側およびソース側の選択トランジスタのゲートに電源電圧Vccを印加する。また、書き込み動作において、メモリブロック選択回路102、103は、ドレイン側の選択トランジスタのゲートに電源電圧Vccを印加し、ソース側の選択トランジスタのゲートに接地電圧Vssを印加する。   Memory block selection circuits 102 and 103 select a memory block by decoding the row address. Although not shown in FIG. 33, the row address is input to the memory block selection circuits 102 and 103. Further, the power supply voltage Vcc and the ground voltage Vss are supplied. The memory block selection circuits 102 and 103 control the voltage applied to the gates of the selection transistors on the drain side and the source side in accordance with a control signal from the control circuit 211. In the erase operation and the read operation, the memory block selection circuits 102 and 103 apply the power supply voltage Vcc to the gates of the drain side and source side selection transistors. In the write operation, the memory block selection circuits 102 and 103 apply the power supply voltage Vcc to the gate of the drain-side selection transistor and apply the ground voltage Vss to the gate of the selection transistor on the source side.

ラッチ回路205は、書き込み時は書き込みデータを保持し、読み出し時はセンスアンプとして読み出し電圧を増幅し保持する役割をもつ。列アドレスカウンタ206は、チップ外部から入力された列アドレスのバッファになるとともに、コントロール回路211からの制御信号により列アドレスをインクリメントし、アクセスする列アドレスを変化させる。列デコーダ207は、列アドレスをデコードし、アクセスするデータ線を選択するための信号を出力する。列ゲート208は、列デコーダ207の出力によりアクセスするデータ線を選択する。   The latch circuit 205 has a role of holding write data at the time of writing and amplifying and holding a read voltage as a sense amplifier at the time of reading. The column address counter 206 becomes a buffer for a column address inputted from the outside of the chip, and increments the column address by a control signal from the control circuit 211 to change the accessed column address. The column decoder 207 decodes the column address and outputs a signal for selecting a data line to be accessed. The column gate 208 selects a data line to be accessed based on the output of the column decoder 207.

入力データ制御回路209は、消去動作または読み出し動作において、コントロール回路211からの制御信号に応じてセルアレイ群202内のデータ線に印加する電圧を制御する。書き込み動作の場合は、マルチプレクサ210からの入力データをそのまま列ゲート208へ伝える。マルチプレクサ210は、コントロール回路211からの制御信号により、バスの切替を行う。コントロール回路211はチップ内部の動作を制御する回路である。コントロール回路211はチップ外部より各種制御信号を入力する。また、コントロール回路211は各動作について所定のタイミングで、チップ内の各ブロックへ制御信号を出力する。   The input data control circuit 209 controls the voltage applied to the data lines in the cell array group 202 in accordance with a control signal from the control circuit 211 in the erase operation or the read operation. In the case of a write operation, the input data from the multiplexer 210 is transmitted to the column gate 208 as it is. The multiplexer 210 performs bus switching according to a control signal from the control circuit 211. The control circuit 211 is a circuit that controls the operation inside the chip. The control circuit 211 inputs various control signals from outside the chip. The control circuit 211 outputs a control signal to each block in the chip at a predetermined timing for each operation.

ステータスレジスタ212はフラッシュメモリチップ201の動作状態または動作結果を示す。ステータスレジスタ212のビット構成を図7に示す。ステータスレジスタは8ビットで構成されている。第0ビット(R_B)は、‘0’のときチップはビジー状態であり、‘1’のときチップはレディー状態である。ビット2(EER)は、‘1’のとき消去エラーであることを示す。ビット3(PER)は、‘1’のとき書き込みエラーであることを示す。ビット4(EIH)は、‘1’のとき消去禁止領域に対して消去コマンドを発行したためエラーであることを示す。その他のビットは予備ビットである。   The status register 212 indicates the operation state or operation result of the flash memory chip 201. The bit configuration of the status register 212 is shown in FIG. The status register is composed of 8 bits. When the 0th bit (R_B) is “0”, the chip is busy, and when it is “1”, the chip is ready. Bit 2 (EER) indicates an erase error when it is "1". Bit 3 (PER) indicates a write error when “1”. Bit 4 (EIH) indicates that an error occurs because the erase command is issued to the erase-inhibited area when “1”. The other bits are reserved bits.

内部電源発生回路213は、チップ外部より電源電圧Vccおよび接地電圧Vssを入力する。電源電圧Vccは、例えば3.3Vの単一電源である。また、接地電圧Vssは0Vである。内部電源発生回路213は、コントロール回路211からの制御信号に応じて、電源電圧Vccから高電圧Vppへの昇圧、または負電圧Vnnへの降圧を行い、ワード線電圧Vwとして出力する。ここで高電圧Vppは例えば12V、負電圧Vnnは例えば−7Vである。内部電源発生回路213は、電源電圧Vccおよび接地電圧Vssを各ブロックへ出力し、また、ワード線電圧Vwについては行デコーダ203へ出力する。   The internal power generation circuit 213 receives the power supply voltage Vcc and the ground voltage Vss from the outside of the chip. The power supply voltage Vcc is, for example, a single power supply of 3.3V. The ground voltage Vss is 0V. The internal power supply generation circuit 213 performs step-up from the power supply voltage Vcc to the high voltage Vpp or step-down to the negative voltage Vnn in accordance with a control signal from the control circuit 211, and outputs it as the word line voltage Vw. Here, the high voltage Vpp is 12 V, for example, and the negative voltage Vnn is -7 V, for example. Internal power supply generation circuit 213 outputs power supply voltage Vcc and ground voltage Vss to each block, and outputs word line voltage Vw to row decoder 203.

以下、図2を用いて、AND型フラッシュメモリチップ201の入出力信号を説明する。   Hereinafter, input / output signals of the AND type flash memory chip 201 will be described with reference to FIG.

I/Oは8本で構成されるデータ信号バスである。コマンドの入力やデータの入出力は、データ入出力信号端子I/Oを介して1バイトずつ行われる。ADDRはアドレス信号バスであり、行アドレスと列アドレスで構成する。/CEはチップ選択信号である。信号名の前の‘/’は信号が負論理であることを示す。/OEは、メモリデータやステータスレジスタを読み出す場合にアサートする信号である。   I / O is a data signal bus composed of eight lines. Command input and data input / output are performed byte by byte via the data input / output signal terminal I / O. ADDR is an address signal bus, and is composed of a row address and a column address. / CE is a chip selection signal. '/' In front of the signal name indicates that the signal is negative logic. / OE is a signal to be asserted when reading memory data or a status register.

/WEは、外部から入力したコマンドやアドレスをラッチする信号である。SCは、書き込みや読み出しにおいて、データを1バイトずつラッチする信号である。R/Bは、フラッシュメモリチップ201内部が消去中または書き込み中でビジー状態のとき、‘0’を出力する。一方レディー状態のときはハイインピーダンスを出力する。   / WE is a signal for latching an externally input command or address. SC is a signal for latching data byte by byte in writing and reading. R / B outputs “0” when the flash memory chip 201 is busy during erasing or writing. On the other hand, high impedance is output in the ready state.

以下、このAND型フラッシュメモリチップ201の消去動作、書き込み動作、読み出し動作について説明する。   Hereinafter, the erase operation, write operation, and read operation of the AND flash memory chip 201 will be described.

まず、消去動作の手順について説明する。   First, the erase operation procedure will be described.

(1)チップ外部より/CEをアサートした後、消去コマンドを入力する。消去コマンドは、マルチプレクサ210を介してコントロール回路211に入力する。   (1) After / CE is asserted from outside the chip, an erase command is input. The erase command is input to the control circuit 211 via the multiplexer 210.

(2)チップ外部よりアドレス(行アドレス+列アドレス)を入力する。入力したアドレスのうち、行アドレスは行アドレスバッファ204およびコントロール回路211に、列アドレスは列アドレスカウンタ206に入力する。   (2) An address (row address + column address) is input from outside the chip. Of the inputted addresses, the row address is inputted to the row address buffer 204 and the control circuit 211, and the column address is inputted to the column address counter 206.

(3)コントロール回路211は制御信号ERSを‘1’にセットする。   (3) The control circuit 211 sets the control signal ERS to “1”.

(4)チップ外部より消去開始コマンドを入力する。   (4) An erase start command is input from outside the chip.

(5)入力した行アドレスが0であるかどうかに関わらず、行アドレス0のワード線には接地電圧Vssが印加される。つまりワード線と基板との間で電位差が生じないので消去を行うことができない。   (5) Regardless of whether or not the input row address is 0, the ground voltage Vss is applied to the word line of the row address 0. That is, since no potential difference is generated between the word line and the substrate, erasing cannot be performed.

書き込み動作については、行アドレスが指定するワード線が消去禁止領域にあるか消去可能領域にあるかに関わらず、選択したワード線には負電圧Vnnを印加し、非選択のワード線には接地電圧Vssを印加する。よって、消去禁止領域・消去可能領域の区別なくデータの書き込みを行うことができる。   For write operations, the negative voltage Vnn is applied to the selected word line and the unselected word line is grounded regardless of whether the word line specified by the row address is in the erasure prohibited area or the erasable area. Apply voltage Vss. Therefore, data can be written without distinction between the erasure prohibited area and the erasable area.

読み出し動作についても、行アドレスが指定するワード線が消去禁止領域にあるか消去可能領域にあるかに関わらず、選択したワード線には電源電圧Vccを印加し、非選択のワード線には接地電圧Vssを印加する。よって、消去禁止領域・消去可能領域の区別なくデータの読み出しを行うことができる。   In the read operation, the power supply voltage Vcc is applied to the selected word line and the unselected word line is grounded regardless of whether the word line specified by the row address is in the erasure prohibited area or the erasable area. Apply voltage Vss. Therefore, data can be read without distinction between the erasure prohibited area and the erasable area.

本実施例により、1回たりとも消去できない消去禁止領域を設けることができる。しかし、フラッシュメモリチップの製造後の選別処理では消去動作を行うのが一般的である。   According to this embodiment, it is possible to provide an erase prohibition area that cannot be erased even once. However, the erasing operation is generally performed in the sorting process after manufacturing the flash memory chip.

そこで第二の実施例として、1回だけ消去可能なAND型フラッシュメモリについて説明する。   Therefore, as a second embodiment, an AND flash memory that can be erased only once will be described.

(第二の実施例)
以下、第一の実施例と異なる個所を中心に説明する。
(Second embodiment)
The following description will focus on the points different from the first embodiment.

図4にセルアレイ群202のデータ構成を示す。   FIG. 4 shows the data structure of the cell array group 202.

行アドレス0は再消去禁止領域である。再消去禁止領域の管理情報領域は、1バイトの消去済バイトを格納する。このバイトに対しては、チップ201外部から読み書きを行うことはできない。行アドレス1〜16383は消去可能領域である。消去可能領域の管理情報領域にも消去済バイトを格納する領域を有するが使用しない。   Row address 0 is a re-erasure prohibited area. The management information area of the re-erasure prohibited area stores 1 byte of erased bytes. This byte cannot be read or written from outside the chip 201. Row addresses 1 to 16383 are erasable areas. The management information area of the erasable area also has an area for storing erased bytes, but is not used.

図1は、第二の実施例におけるセルアレイとその周辺の詳細を示す。   FIG. 1 shows details of the cell array and its periphery in the second embodiment.

図1に示す再消去禁止領域のワード線選択回路100、および消去可能領域のワード線選択回路101は、行アドレスをデコードしてワード線を選択し、ワード線に印加する電圧を制御する。図1には示していないが、行アドレスは行アドレスバッファ204を介して行デコーダ203に入力する。行アドレスが0のとき、再消去禁止領域のワード線選択回路100がワード線を選択する。また行アドレスが1から16383のとき、消去可能領域のワード線選択回路101が行アドレスに対応するワード線を選択する。再消去禁止領域のワード線選択回路100および消去可能領域のワード線選択回路101には、ワード線電圧Vwおよび接地電圧Vssが内部電源発生回路213より供給される。   The word line selection circuit 100 in the re-erasure prohibited area and the word line selection circuit 101 in the erasable area shown in FIG. 1 select a word line by decoding the row address, and control the voltage applied to the word line. Although not shown in FIG. 1, the row address is input to the row decoder 203 via the row address buffer 204. When the row address is 0, the word line selection circuit 100 in the re-erasure prohibited area selects a word line. When the row address is from 1 to 16383, the word line selection circuit 101 in the erasable area selects the word line corresponding to the row address. The word line voltage Vw and the ground voltage Vss are supplied from the internal power supply generation circuit 213 to the word line selection circuit 100 in the re-erasure prohibited area and the word line selection circuit 101 in the erasable area.

再消去禁止領域のワード線選択回路100の内部構成を図5に、また、消去可能領域のワード線選択回路101のうち、1本のワード線に対応する回路を図6に示す。チップ外部より行アドレスとして0を入力すると、再消去禁止領域内のワード線が選択される。このとき再消去禁止領域のワード線選択回路100が行アドレス0に対応するワード線に印加する電圧は、外部からの制御信号EPHにより異なる。図1に示すように、各セルアレイのデータ線D528に対応するラッチが記憶する値がすべて‘1’のとき、制御信号EPHは‘1’となる。EPHが‘0’のとき、ワード線にはワード線電圧Vwを印加し、EPHが‘1’のとき、ワード線には接地電圧Vssを印加する。また、消去可能領域内のワード線は選択されていないので接地電圧Vssが印加される。   FIG. 5 shows an internal configuration of the word line selection circuit 100 in the re-erasure prohibition area, and FIG. 6 shows a circuit corresponding to one word line in the word line selection circuit 101 in the erasable area. When 0 is input as a row address from the outside of the chip, a word line in the re-erasure prohibited area is selected. At this time, the voltage applied to the word line corresponding to the row address 0 by the word line selection circuit 100 in the re-erasure prohibited area differs depending on the control signal EPH from the outside. As shown in FIG. 1, when all the values stored in the latches corresponding to the data line D528 of each cell array are ‘1’, the control signal EPH is ‘1’. When EPH is ‘0’, the word line voltage Vw is applied to the word line, and when EPH is ‘1’, the ground voltage Vss is applied to the word line. Further, since the word line in the erasable area is not selected, the ground voltage Vss is applied.

一方、行アドレスとして1から16383を入力すると、消去可能領域内の行アドレスに対応したワード線が選択される。このとき消去可能領域のワード線選択回路101は、選択したワード線にはワード線電圧Vwを印加する。また、再消去禁止領域のワード線選択回路100、消去可能領域のワード線選択回路101ともに非選択のワード線に対しては接地電圧Vssを印加する。   On the other hand, when 1 to 16383 is input as the row address, the word line corresponding to the row address in the erasable area is selected. At this time, the word line selection circuit 101 in the erasable region applies the word line voltage Vw to the selected word line. Further, the ground voltage Vss is applied to the unselected word lines in both the word line selection circuit 100 in the re-erasure prohibited area and the word line selection circuit 101 in the erasable area.

メモリブロック選択回路102、103は、行アドレスをデコードしてメモリブロックを選択する。図1には示していないが、メモリブロック選択回路102、103には行アドレスが入力する。また、電源電圧Vcc、接地電圧Vssが供給される。   Memory block selection circuits 102 and 103 select a memory block by decoding the row address. Although not shown in FIG. 1, the row address is input to the memory block selection circuits 102 and 103. Further, the power supply voltage Vcc and the ground voltage Vss are supplied.

以下、AND型フラッシュメモリチップ201の消去動作、書き込み動作、読み出し動作について説明する。   Hereinafter, the erase operation, write operation, and read operation of the AND flash memory chip 201 will be described.

まず、消去動作について図8から図11を用いて説明する。以下、図8を用いて消去動作の詳細な手順を示す。   First, the erase operation will be described with reference to FIGS. The detailed procedure of the erase operation will be described below using FIG.

(ステップ801)チップ外部より/CEをアサートした後、消去コマンドを入力する。消去コマンドは、マルチプレクサ210を介してコントロール回路211に入力する。   (Step 801) After / CE is asserted from outside the chip, an erase command is input. The erase command is input to the control circuit 211 via the multiplexer 210.

(ステップ802)チップ外部よりアドレス(行アドレス+列アドレス)を入力する。入力したアドレスのうち、行アドレスは行アドレスバッファ204およびコントロール回路211に、列アドレスは列アドレスカウンタ206に入力する。   (Step 802) An address (row address + column address) is input from outside the chip. Of the inputted addresses, the row address is inputted to the row address buffer 204 and the control circuit 211, and the column address is inputted to the column address counter 206.

(ステップ803)コントロール回路211は入力した行アドレスが0であるかどうかを判定する。   (Step 803) The control circuit 211 determines whether or not the input row address is zero.

(ステップ804)行アドレスが0でないとき、チップ外部より消去開始コマンドを入力する。   (Step 804) When the row address is not 0, an erase start command is input from the outside of the chip.

(ステップ805)一方、行アドレスが0であるとき、コントロール回路211は、まず制御信号CNFを‘1’にセットする。つぎに、内部電源発生回路213および入力データ制御回路209に読み出しを行うための制御信号を出して、管理情報領域の消去済バイトをラッチ回路205へ読み出す。この間、R/B信号は‘0’を出力し、チップ内部がビジー状態であることを示す。読み出し終了後、コントロール回路211は制御信号CNFを‘0’にセットする。   (Step 805) On the other hand, when the row address is 0, the control circuit 211 first sets the control signal CNF to “1”. Next, a control signal for reading is issued to the internal power generation circuit 213 and the input data control circuit 209, and the erased byte in the management information area is read to the latch circuit 205. During this time, the R / B signal outputs “0” to indicate that the inside of the chip is busy. After the reading is completed, the control circuit 211 sets the control signal CNF to “0”.

(ステップ806)ステップ805の処理終了後、チップ外部より消去開始コマンドを入力する。   (Step 806) After the processing of step 805 is completed, an erase start command is input from the outside of the chip.

(ステップ807)消去済バイト内の全ビットのうち少なくとも1ビットが‘0’である場合(すなわち、消去を一度も行っていない場合)、または、ステップ804の処理終了後、コントロール回路211は、内部電源発生回路213および入力データ制御回路209に消去を行うための制御信号を出力する。このとき、選択したワード線には高電圧Vppを印加し、データ線D1からD528には接地電圧Vssを印加する。これにより、選択したワード線に接続されたフラッシュメモリセルの消去が開始する。フラッシュメモリセルを消去している間、出力信号R/Bは‘0’であり、チップ内部がビジー状態であることを示す。また、消去中に/OEをアサートすると、ステータスレジスタ212の内容を読み出すことができる。このとき、図7のビット0(R_B)は‘0’である。   (Step 807) When at least one bit among all the bits in the erased byte is “0” (that is, when erasing has never been performed), or after the processing of Step 804 is finished, the control circuit 211 A control signal for erasing is output to internal power supply generation circuit 213 and input data control circuit 209. At this time, the high voltage Vpp is applied to the selected word line, and the ground voltage Vss is applied to the data lines D1 to D528. Thereby, erasing of the flash memory cell connected to the selected word line is started. While the flash memory cell is being erased, the output signal R / B is ‘0’, indicating that the inside of the chip is busy. Further, when / OE is asserted during erasing, the contents of the status register 212 can be read. At this time, bit 0 (R_B) of FIG. 7 is “0”.

(ステップ808)消去が終わると、出力信号R/Bがハイインピーダンス、すなわちレディー状態に戻る。この後、/OEをアサートしてステータスレジスタ212を読み出すと、図7のビット0(R_B)は‘1’、ビット4(EIH)は‘0’である。   (Step 808) When erasing is finished, the output signal R / B returns to high impedance, that is, ready state. Thereafter, when / OE is asserted and the status register 212 is read, bit 0 (R_B) in FIG. 7 is ‘1’ and bit 4 (EIH) is ‘0’.

(ステップ809)消去済バイトの全ビットが‘1’である場合(すなわち、一度消去を行っている場合)、内部電源発生回路213および入力データ制御回路209に消去を行うための制御信号を出力する。このとき、選択したワード線には接地電圧Vssが印加され、基板との間で電位差が生じないので消去を行うことができない。ここで、出力信号R/Bはハイインピーダンス状態である。また、ここでステータスレジスタ212を読み出すと、図7のビット0(R_B)は‘1’、ビット4(EIH)は‘1’である。   (Step 809) When all the bits of the erased byte are “1” (that is, when erasing is performed once), a control signal for erasing is output to the internal power generation circuit 213 and the input data control circuit 209 To do. At this time, the ground voltage Vss is applied to the selected word line, and no potential difference is generated between the selected word line and erasing cannot be performed. Here, the output signal R / B is in a high impedance state. When the status register 212 is read here, bit 0 (R_B) in FIG. 7 is ‘1’ and bit 4 (EIH) is ‘1’.

図9に消去可能領域へ消去コマンドを発行したときのタイミングチャートを示す。図10に再消去禁止領域へ最初に消去コマンドを発行したときのタイミングチャートを示す。図11に再消去禁止領域へ2回目以降に消去コマンドを発行したときのタイミングチャートを示す。書き込み動作、読み出し動作については、アドレスを入力した後、コントロール回路211は行アドレスが0であるかを判定したり、消去済バイトをラッチ回路205へ読み出すことはしない。   FIG. 9 shows a timing chart when an erase command is issued to the erasable area. FIG. 10 shows a timing chart when the erase command is first issued to the re-erasure prohibited area. FIG. 11 shows a timing chart when the erase command is issued to the re-erasure prohibited area for the second time and thereafter. As for the write operation and the read operation, after inputting the address, the control circuit 211 does not determine whether the row address is 0 or read the erased byte to the latch circuit 205.

書き込み動作については、行アドレスが指定するワード線が再消去禁止領域にあるか消去可能領域にあるかに関わらず、選択したワード線には負電圧Vnnを印加し、非選択のワード線には接地電圧Vssを印加する。よって、再消去禁止領域・消去可能領域の区別なくデータの書き込みを行うことができる。   For the write operation, a negative voltage Vnn is applied to the selected word line and a non-selected word line is applied to the selected word line regardless of whether the word line specified by the row address is in the re-erasure prohibited area or the erasable area. Apply ground voltage Vss. Therefore, data can be written without distinction between the re-erasure prohibited area and the erasable area.

読み出し動作についても、行アドレスが指定するワード線が再消去禁止領域にあるか消去可能領域にあるかに関わらず、選択したワード線には電源電圧Vccを印加し、非選択のワード線には接地電圧Vssを印加する。よって、再消去禁止領域・消去可能領域の区別なくデータの読み出しを行うことができる。   In the read operation, the power supply voltage Vcc is applied to the selected word line regardless of whether the word line specified by the row address is in the re-erasure prohibited area or the erasable area, and the non-selected word line is applied. Apply ground voltage Vss. Therefore, data can be read without distinction between the re-erasure prohibited area and the erasable area.

本実施例により、AND型フラッシュメモリの一部のメモリ領域に対して、1回だけ消去可能な領域を設けることができる。   According to the present embodiment, an erasable area can be provided only once in a part of the memory area of the AND type flash memory.

本実施例では再消去禁止領域に対して許容する消去回数は1回であった。これを拡張して、所定の回数だけ消去した後に消去を禁止することもできる。このとき、管理情報領域には消去済バイトの代わりに消去回数を格納する。消去回数は、コントロール回路211が入力データ制御回路209を制御して書き込む。   In this embodiment, the number of erasures allowed for the re-erasure prohibited area is one. This can be expanded to prohibit erasure after erasing a predetermined number of times. At this time, the number of erasures is stored in the management information area instead of the erased bytes. The number of times of erasure is written by the control circuit 211 by controlling the input data control circuit 209.

また、本実施例ではAND型フラッシュメモリについて説明したが、本実施例の効果はAND型に限るものではない。DINOR型、NOR型、NAND型など他のフラッシュメモリセル構造でも同様にして再消去禁止領域を設けることができる。   In the present embodiment, the AND type flash memory has been described. However, the effect of the present embodiment is not limited to the AND type. In other flash memory cell structures such as DINOR type, NOR type, and NAND type, the re-erasure prohibition region can be provided in the same manner.

また、本実施例と同様な効果は、図36に示すようなフラッシュメモリチップ群311とカードコントローラチップ312で構成されるフラッシュメモリカード310でも得ることができる。つまり、消去バイトを読み出し、再消去禁止領域への消去を制御する手段をカードコントローラチップ312の中に内蔵していてもよい。また、カードコントローラチップ312内のカードステータスレジスタ313を利用して、再消去エラーを表示させることもできる。これにより、カードステータスレジスタ313の内容をノート型PCなどのホスト機器から読み出すことができる。このとき、フラッシュメモリチップ群311は従来のフラッシュメモリチップで構成してよい。   The same effect as that of the present embodiment can also be obtained by a flash memory card 310 including a flash memory chip group 311 and a card controller chip 312 as shown in FIG. That is, the card controller chip 312 may incorporate a means for reading the erase byte and controlling the erase to the re-erasure prohibited area. Further, a re-erasure error can be displayed using the card status register 313 in the card controller chip 312. As a result, the contents of the card status register 313 can be read from a host device such as a notebook PC. At this time, the flash memory chip group 311 may be formed of a conventional flash memory chip.

(第三の実施例)
つぎに、第三の実施例を図12から図19を用いて説明する。本実施例は、第一の実施例で説明した再消去禁止領域を発展させ、さらに上書きを防止する機能を持たせる。すなわち、1回だけ消去可能であることに加え、1回だけ書き込み可能な領域を実現することが目的である。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. This embodiment develops the re-erasure prohibition area described in the first embodiment and further has a function of preventing overwriting. That is, in addition to being erasable only once, it is an object to realize an area that can be written only once.

図13に、本実施例におけるセルアレイ群202のデータ構成を示す。行アドレス0は再消去・再書き込み禁止領域である。行アドレス0の管理情報領域には、消去済バイトに加え、1バイトの書き込み済バイトを格納する。この書き込み済バイトには、チップ201外部から読み書きすることができない。   FIG. 13 shows the data configuration of the cell array group 202 in this embodiment. Row address 0 is a re-erase / re-write prohibited area. In the management information area at row address 0, 1 byte of written bytes is stored in addition to the erased bytes. This written byte cannot be read or written from outside the chip 201.

書き込み動作において、コントロール回路211は、書き込み済バイトを読み込んで、全ビットデータが‘0’であるかどうかを判定し、行デコーダ203への制御信号OTPをセットする。また、再消去・再書き込み禁止領域に対する最初の書き込み動作において、コントロール回路211は入力データ制御回路209を制御して、書き込み済バイトの全ビットに ‘0’を格納する。   In the write operation, the control circuit 211 reads the written byte, determines whether all the bit data is “0”, and sets the control signal OTP to the row decoder 203. In the first write operation to the re-erase / rewrite prohibited area, the control circuit 211 controls the input data control circuit 209 to store “0” in all bits of the written byte.

図15にステータスレジスタ212のビット構成を示す。第一の実施例でのステータスレジスタのビット構成に対して、ビット5に再書き込みエラービット(PIH)が新たに追加される。再消去・再書き込み禁止領域に対して、2回目以降に書き込みコマンドを発行した場合は、ビット5(PIH)が‘1’にセットされる。   FIG. 15 shows the bit configuration of the status register 212. A rewrite error bit (PIH) is newly added to bit 5 with respect to the bit configuration of the status register in the first embodiment. Bit 5 (PIH) is set to ‘1’ when a write command is issued for the second or later re-erasure / re-write prohibited area.

書き込み動作について図16から図19を用いて説明する。以下、図16を用いて書き込み動作の手順を説明する。   The write operation will be described with reference to FIGS. Hereinafter, the procedure of the write operation will be described with reference to FIG.

(ステップ1601)チップ外部より/CEをアサートした後、書き込みコマンドを入力する。書き込みコマンドは、マルチプレクサ210を介してコントロール回路211に入力する。   (Step 1601) After / CE is asserted from outside the chip, a write command is input. The write command is input to the control circuit 211 via the multiplexer 210.

(ステップ1602)チップ外部よりアドレス(行アドレス+列アドレス)を入力する。入力したアドレスのうち、行アドレスは行アドレスバッファ204およびコントロール回路211に、列アドレスは列アドレスカウンタ206に入力する。   (Step 1602) An address (row address + column address) is input from outside the chip. Of the inputted addresses, the row address is inputted to the row address buffer 204 and the control circuit 211, and the column address is inputted to the column address counter 206.

(ステップ1603)コントロール回路211は入力した行アドレスが0であるかどうかを判定する。   (Step 1603) The control circuit 211 determines whether or not the input row address is zero.

(ステップ1604)行アドレスが0でないと判定した場合、チップ外部より書き込みデータを1バイトずつ入力する。このとき、最大526バイトまで入力することができる。入力されたデータはラッチ回路205に記憶される。   (Step 1604) When it is determined that the row address is not 0, write data is input byte by byte from the outside of the chip. At this time, a maximum of 526 bytes can be input. The input data is stored in the latch circuit 205.

(ステップ1605)入力終了後、チップ外部より書き込み開始コマンドを入力する。   (Step 1605) After the input is completed, a write start command is input from the outside of the chip.

(ステップ1606)一方、ステップ1603にて行アドレスが0であると判定した場合、コントロール回路211は、まず制御信号CNFを‘1’にセットする。つぎに、内部電源発生回路213および入力データ制御回路209に読み出しを行うための制御信号を出力し、管理情報領域の消去済バイトおよび書き込み済バイトをラッチ回路205へ読み込む。この間、出力信号R/Bは‘0’を出力し、チップ内部がビジー状態であることを示す。読み出し終了後、コントロール回路211は制御信号CNFを‘0’にセットする。   (Step 1606) On the other hand, if it is determined in Step 1603 that the row address is 0, the control circuit 211 first sets the control signal CNF to “1”. Next, a control signal for reading is output to the internal power generation circuit 213 and the input data control circuit 209, and the erased bytes and written bytes in the management information area are read into the latch circuit 205. During this time, the output signal R / B outputs “0” to indicate that the inside of the chip is busy. After the reading is completed, the control circuit 211 sets the control signal CNF to “0”.

(ステップ1607)チップ外部より書き込みデータを1バイトずつ入力する。このとき、最大526バイトまで入力することができる。入力されたデータはラッチ回路205にラッチされる。入力終了後、入力データ制御回路209は、セルアレイ群202内のデータ線D527に対応する8個のラッチに‘0’をラッチする。   (Step 1607) Write data is input byte by byte from outside the chip. At this time, a maximum of 526 bytes can be input. The input data is latched by the latch circuit 205. After the input is completed, the input data control circuit 209 latches “0” in the eight latches corresponding to the data line D527 in the cell array group 202.

(ステップ1608)チップ外部より書き込み開始コマンドを入力する。   (Step 1608) A write start command is input from outside the chip.

(ステップ1609)消去済バイトの全ビットが‘1’かつ書き込み済バイトの全ビットが‘0’を満足しない場合、または、ステップ1605の処理終了後、コントロール回路211は、内部電源発生回路213および入力データ制御回路209に書き込みを行うための制御信号を出力する。このとき、選択したワード線には負電圧Vnnを印加する。データ線に印加される電圧は、ラッチ回路205が記憶する値に対応する。これにより、選択したワード線に接続されたフラッシュメモリセルの書き込みが開始する。再消去・再書き込み禁止領域の最初の書き込みにおいては、管理情報領域内の書き込み済バイトの全ビットに‘0’が書き込まれる。この間、出力信号R/Bは‘0’であり、チップ内部がビジー状態であることを示す。また、書き込み中に/OEをアサートすると、ステータスレ
ジスタ212の内容を読み出すことができる。このとき、図15のビット0(R_B)は‘0’である。
(Step 1609) When all the bits of the erased byte do not satisfy “1” and all the bits of the written byte satisfy “0”, or after the processing of Step 1605 ends, the control circuit 211 executes the internal power generation circuit 213 and A control signal for writing to the input data control circuit 209 is output. At this time, a negative voltage Vnn is applied to the selected word line. The voltage applied to the data line corresponds to the value stored in the latch circuit 205. Thereby, writing of the flash memory cell connected to the selected word line is started. In the first writing in the re-erase / re-write prohibited area, “0” is written in all bits of the written byte in the management information area. During this time, the output signal R / B is “0”, indicating that the inside of the chip is busy. Further, when / OE is asserted during writing, the contents of the status register 212 can be read. At this time, bit 0 (R_B) of FIG. 15 is “0”.

(ステップ1610)書き込みが終了すると、出力信号R/Bがハイインピーダンス、すなわちレディー状態に戻る。この後、/OEをアサートしてステータスレジスタ212を読み出すと、図15のビット0(R_B)は‘1’、ビット5(PIH)は‘0’である。   (Step 1610) When the writing is completed, the output signal R / B returns to the high impedance, that is, ready state. Thereafter, when / OE is asserted and the status register 212 is read, bit 0 (R_B) in FIG. 15 is ‘1’ and bit 5 (PIH) is ‘0’.

(ステップ1611)消去済バイトの全ビットが‘1’かつ書き込み済バイトの全ビットが‘0’である場合(すなわち、消去および書き込みをすでに行った場合)、コントロール回路211は、内部電源発生回路213および入力データ制御回路209に書き込みを行うための制御信号を出力する。このとき、選択したワード線には接地電圧Vssを印加され、接地電圧Vssまたは電源電圧Vccに印加されているデータ線との間で電位差が生じない、または電位差が小さいので書き込みが発生しない。ここで、出力信号R/Bはハイインピーダンス状態である。また、ステータスレジスタ212を読み出すと、図15のビット0(R_B)は‘1’、ビット5(PIH)は‘1’である。   (Step 1611) When all the bits of the erased byte are “1” and all the bits of the written byte are “0” (that is, when erasing and writing have already been performed), the control circuit 211 uses the internal power generation circuit. A control signal for writing to 213 and the input data control circuit 209 is output. At this time, the ground voltage Vss is applied to the selected word line, and no potential difference is generated between the selected word line and the data line applied to the ground voltage Vss or the power supply voltage Vcc, or writing is not generated because the potential difference is small. Here, the output signal R / B is in a high impedance state. When the status register 212 is read, bit 0 (R_B) in FIG. 15 is “1” and bit 5 (PIH) is “1”.

図17に消去・書き込み可能領域へ書き込みコマンドを発行したときのタイミングチャートを示す。図18に再消去・再書き込み禁止領域へ最初に書き込みコマンドを発行したときのタイミングチャートを示す。図19に再消去・再書き込み禁止領域へ2回目以降に書き込みコマンドを発行したときのタイミングチャートを示す。消去動作、読み出し動作については第一の実施例と同様である。   FIG. 17 shows a timing chart when a write command is issued to the erasable / writable area. FIG. 18 shows a timing chart when a write command is first issued to the re-erase / re-write prohibited area. FIG. 19 shows a timing chart when a write command is issued to the re-erase / rewrite prohibited area for the second time and thereafter. The erase operation and read operation are the same as in the first embodiment.

本実施例により、AND型フラッシュメモリの一部のメモリ領域に対して、1回だけ書き込み可能な領域を設けることができる。再消去・再書き込み禁止領域のデータに対して、消去だけでなく、書き込みを許容しないことで、上書きによるデータの破壊を防止することができる。   According to this embodiment, it is possible to provide an area in which data can be written only once in a part of the memory area of the AND type flash memory. By not permitting not only erasing but also writing to the data in the re-erase / re-write prohibited area, it is possible to prevent data destruction due to overwriting.

本実施例についても、同様な効果を図36に示すようなフラッシュメモリチップ群311とカードコントローラチップ312で構成されるフラッシュメモリカード310でも得ることができる。   Also in this embodiment, the same effect can be obtained with a flash memory card 310 including a flash memory chip group 311 and a card controller chip 312 as shown in FIG.

(第四の実施例)
つぎに、第四の実施例を図20から図31を用いて説明する。本実施例は、第二の実施例の再消去禁止領域を第三の実施例とは異なる形式で発展させたものである。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. In this embodiment, the erasure prohibition area of the second embodiment is developed in a different form from that of the third embodiment.

図20は、AND型フラッシュメモリチップ901のブロック構成を示す。以下、本実施例で新規に追加されたブロック、および、第一の実施例で説明したブロックと機能が異なるブロックについて説明する。   FIG. 20 shows a block configuration of an AND type flash memory chip 901. Hereinafter, a block newly added in the present embodiment and a block having a different function from the block described in the first embodiment will be described.

セルアレイ群902は、第一の実施例と同様に8面のセルアレイで構成される。図21にセルアレイ群902のデータ構成を示す。   The cell array group 902 is composed of an 8-sided cell array as in the first embodiment. FIG. 21 shows a data structure of the cell array group 902.

行アドレス0は、第二の実施例と同様に528ビット×8=528バイトの再消去禁止領域である。再消去禁止領域のセクタデータ領域は、256バイト以内の識別番号を格納する領域と、256バイト以内の識別番号の反転データを格納する領域とで構成する。識別番号の反転データとは、識別番号を‘0’,‘1’の2進数で表現したとき、‘0’を‘1’に、‘1’を‘0’に反転したデータである。行アドレス1から行アドレス16383は消去可能領域であり、セクタデータ領域にはユーザデータを格納する。   The row address 0 is a erasure prohibition area of 528 bits × 8 = 528 bytes as in the second embodiment. The sector data area of the re-erasure prohibition area is composed of an area for storing identification numbers within 256 bytes and an area for storing inverted data of identification numbers within 256 bytes. The inverted data of the identification number is data obtained by inverting “0” to “1” and “1” to “0” when the identification number is expressed in binary numbers of “0” and “1”. Row address 1 to row address 16383 are erasable areas, and user data is stored in the sector data area.

行デコーダ903は、第二の実施例と同様に、再消去禁止領域のワード線選択回路、消去可能領域のワード線選択回路、メモリブロック選択回路で構成する。再消去禁止領域のワード線選択回路を図22に示す。チップ外部から入力した行アドレスが0でなくても、コントローラ回路211からの制御信号RIDによりワード線を選択し、読み出しに必要な電源電圧Vccを印加できるようにしている。また、消去可能領域のワード線選択回路は、図1の消去可能領域のワード線選択回路101と同一である。よって、ワード線ごとの回路は図6と同一である。また、メモリブロック選択回路も図1のメモリブロック選択回路102、103と同一である。   Similar to the second embodiment, the row decoder 903 includes a word line selection circuit for a re-erasure prohibition area, a word line selection circuit for an erasable area, and a memory block selection circuit. FIG. 22 shows a word line selection circuit in the re-erasure prohibited area. Even if the row address input from the outside of the chip is not 0, the word line is selected by the control signal RID from the controller circuit 211 so that the power supply voltage Vcc necessary for reading can be applied. The word line selection circuit in the erasable area is the same as the word line selection circuit 101 in the erasable area in FIG. Therefore, the circuit for each word line is the same as in FIG. The memory block selection circuit is also the same as the memory block selection circuits 102 and 103 in FIG.

データ線電圧制御回路906は、図2の入力データ制御回路209に相当する。データ線電圧制御回路906は、消去・書き込み・読み出しの各動作において、コントロール回路211からの制御信号OPRに応じて、データ線に印加する電圧を制御する。   The data line voltage control circuit 906 corresponds to the input data control circuit 209 in FIG. The data line voltage control circuit 906 controls the voltage applied to the data line in accordance with the control signal OPR from the control circuit 211 in each of the erase, write, and read operations.

図23に反転/照合回路907、マルチプレクサ904、905、ゲート回路908、ラッチ回路205の詳細図を示す。   FIG. 23 is a detailed diagram of the inversion / collation circuit 907, the multiplexers 904 and 905, the gate circuit 908, and the latch circuit 205.

反転/照合回路907は2つの役割をもつ。一つの役割は、識別番号の書き込みにおいて反転/照合回路907内部で識別番号の反転データを生成し、識別番号とその反転データをデータ線へ出力することである。もう一つの役割は、ユーザデータのアクセスにおいて、アクセス前に識別番号の改ざんのチェックを行うことである。ここで言うチェックとは、識別番号領域と反転データ領域に格納された2つのデータを読み出して、互いが反転関係にあるかどうかを検証することである。2つのデータが反転関係にある場合は、ゲート回路908内のMOSスイッチがONになるのでユーザデータの読み出し/書き込みが可能となる。逆に、2つのデータが反転の関係にない場合は、ゲート回路908内のMOSスイッチがOFFになるのでユーザデータの読み出し/書き込みが不可能となる。   The inversion / collation circuit 907 has two roles. One role is to generate inverted data of the identification number in the inversion / collation circuit 907 in writing the identification number, and to output the identification number and its inverted data to the data line. Another role is to check the alteration of the identification number before accessing the user data. Here, the check is to read two data stored in the identification number area and the inverted data area and verify whether they are in an inverted relationship. When the two data are in an inverted relationship, the MOS switch in the gate circuit 908 is turned on, so that user data can be read / written. On the other hand, when the two data are not reversed, the MOS switch in the gate circuit 908 is turned off, so that user data cannot be read / written.

マルチプレクサ904、905は、再消去禁止領域に対する入出力または消去可能領域に対する入出力の切替制御を行う。切替制御はコントロール回路211からの制御信号UDIDにより行う。   The multiplexers 904 and 905 perform input / output switching control for the re-erasure prohibited area or input / output for the erasable area. Switching control is performed by a control signal UDID from the control circuit 211.

ステータスレジスタ212のビット構成を図24に示す。第一の実施例のときと比較して、ビット5(TMP)が新規に追加されている。ビット5(TMP)が‘1’のとき、識別番号が上書きされているためユーザデータにアクセスできないことを示す。   The bit configuration of the status register 212 is shown in FIG. Compared to the case of the first embodiment, bit 5 (TMP) is newly added. When bit 5 (TMP) is “1”, it indicates that the user data cannot be accessed because the identification number is overwritten.

以下、識別番号のアクセス手順を説明する。ここでは、図25を用いて識別番号の書き込みを例に手順を説明する。   The access procedure for the identification number will be described below. Here, the procedure will be described using the writing of the identification number as an example with reference to FIG.

(ステップ2501)チップ外部より/CEをアサートした後、書き込みコマンドを入力する。書き込みコマンドは、マルチプレクサ210を介してコントロール回路211へ入力する。   (Step 2501) After / CE is asserted from outside the chip, a write command is input. The write command is input to the control circuit 211 via the multiplexer 210.

(ステップ2502)チップ外部よりアドレス(ただし、行アドレス=0)を入力する。入力したアドレスのうち、行アドレスは行アドレスバッファ204とコントロール回路211に、列アドレスは列アドレスカウンタ206に入力する。   (Step 2502) An address (however, row address = 0) is input from outside the chip. Of the inputted addresses, the row address is inputted to the row address buffer 204 and the control circuit 211, and the column address is inputted to the column address counter 206.

(ステップ2503)コントロール回路211は、マルチプレクサ904、905への制御信号UDIDを‘0’にセットする。   (Step 2503) The control circuit 211 sets the control signal UDID to the multiplexers 904 and 905 to “0”.

(ステップ2504)コントロール回路211は、行アドレスが0であると判定したあと、行デコーダ903への制御信号RIDを‘0’にセットする。   (Step 2504) After determining that the row address is 0, the control circuit 211 sets the control signal RID to the row decoder 903 to “0”.

(ステップ2505)チップ外部より識別番号および管理情報を1バイトずつ入力する。このとき、入力可能な最大バイト数は(256+15)=271バイトである。入力した識別番号および識別番号の反転データは、反転/照合回路907内部のラッチ回路に記憶される。また、管理情報はラッチ回路205に記憶される。   (Step 2505) An identification number and management information are input byte by byte from the outside of the chip. At this time, the maximum number of bytes that can be input is (256 + 15) = 271 bytes. The input identification number and inverted data of the identification number are stored in a latch circuit in the inversion / collation circuit 907. Management information is stored in the latch circuit 205.

(ステップ2506)チップ外部より書き込み開始コマンドを入力する。   (Step 2506) A write start command is input from outside the chip.

(ステップ2507)コントローラ回路211は、内部電源発生回路213およびデータ線電圧制御回路906に、書き込みを行うための制御信号を出力する。このとき、行デコーダ903内の再消去禁止領域のワード線選択回路は、選択したワード線に負電圧Vnnを印加する。また、データ線電圧制御回路906はデータ線に電圧を印加せず、データ線には反転/照合回路907内部のラッチ、およびラッチ回路205が記憶する値に応じた電圧が印加される。これにより、行アドレス0への書き込みが開始する。この間、出力信号R/Bは‘0’であり、チップ内部がビジー状態であることを示す。また、書き込み中に/OEをアサートすると、ステータスレジスタ212の内容を読み出すことができる。このとき、図24のビット0(R_B)は‘0’である。   (Step 2507) The controller circuit 211 outputs a control signal for performing writing to the internal power generation circuit 213 and the data line voltage control circuit 906. At this time, the word line selection circuit in the re-erasure prohibited area in the row decoder 903 applies a negative voltage Vnn to the selected word line. The data line voltage control circuit 906 does not apply a voltage to the data line, and a voltage corresponding to a value stored in the inversion / collation circuit 907 and a value stored in the latch circuit 205 is applied to the data line. As a result, writing to the row address 0 is started. During this time, the output signal R / B is “0”, indicating that the inside of the chip is busy. Further, when / OE is asserted during writing, the contents of the status register 212 can be read. At this time, bit 0 (R_B) of FIG. 24 is “0”.

(ステップ2508)書き込みが終了すると、出力信号R/Bがハイインピーダンス、すなわちレディー状態に戻る。この後、/OEをアサートしてステータスレジスタ212を読み出すと、図24のビット0(R_B)は‘1’である。   (Step 2508) When the writing is completed, the output signal R / B returns to the high impedance, that is, ready state. Thereafter, when / OE is asserted and the status register 212 is read, bit 0 (R_B) in FIG. 24 is “1”.

以上の手順により、識別番号およびその反転データがそれぞれの領域に書き込まれる。図28に識別番号の書き込みタイミングチャートを示す。   Through the above procedure, the identification number and its inverted data are written in each area. FIG. 28 shows an identification number writing timing chart.

つづいて、ユーザデータのアクセス手順を説明する。ここでは、ユーザデータの書き込みを例に、図26を用いて手順を説明する。   Next, the user data access procedure will be described. Here, an example of writing user data will be described with reference to FIG.

(ステップ2601)チップ外部より/CEをアサートした後、書き込みコマンドを入力する。書き込みコマンドは、マルチプレクサ210を介してコントロール回路211へ入力する。   (Step 2601) After / CE is asserted from outside the chip, a write command is input. The write command is input to the control circuit 211 via the multiplexer 210.

(ステップ2602)チップ外部よりアドレス(ただし、行アドレス≠0)を入力する。入力したアドレスのうち、行アドレスは行アドレスバッファ204とコントロール回路211に、列アドレスは列アドレスカウンタ206に入力する。   (Step 2602) An address (however, a row address ≠ 0) is input from outside the chip. Of the inputted addresses, the row address is inputted to the row address buffer 204 and the control circuit 211, and the column address is inputted to the column address counter 206.

(ステップ2603)コントロール回路211は、マルチプレクサ904、905への制御信号UDIDを‘0’にセットする。   (Step 2603) The control circuit 211 sets the control signal UDID to the multiplexers 904 and 905 to “0”.

(ステップ2604)コントロール回路211は、行アドレスが0でないと判定したあと、行デコーダ903への制御信号RIDを‘1’にセットする。このとき、再消去禁止領域のワード線選択回路は行アドレス0のワード線に電源電圧Vccを印加する。また、データ線電圧制御回路906は、コントロール回路211からの制御信号により、データ線に所定の正電圧を印加して識別番号領域および反転データ領域のデータを反転/照合回路907内のラッチへ読み出す。この間、出力信号R/Bは‘0’を出力し、チップがビジー状態であることを示す。   (Step 2604) After determining that the row address is not 0, the control circuit 211 sets the control signal RID to the row decoder 903 to ‘1’. At this time, the word line selection circuit in the re-erasure prohibition region applies the power supply voltage Vcc to the word line at the row address 0. Also, the data line voltage control circuit 906 applies a predetermined positive voltage to the data line in accordance with a control signal from the control circuit 211, and reads the data in the identification number area and the inverted data area to the latch in the inversion / collation circuit 907. . During this time, the output signal R / B outputs ‘0’, indicating that the chip is busy.

反転/照合回路907内では、ラッチに読み出された識別番号および反転データが反転関係にあるかどうかを判定する。   In the inversion / collation circuit 907, it is determined whether or not the identification number and the inverted data read by the latch are in an inversion relationship.

一般にフラッシュメモリでは、書き込みコマンドでは、単方向にしかデータの書き込みができない。例えば、AND型フラッシュメモリでは、書き込み状態でメモリセルが記憶する値が‘0’で、消去状態では‘1’である。このとき、書き込みコマンドによる記憶データの変化は‘1’から‘0’の単方向にしか起こらない。つまり、メモリセル記憶する情報が‘0’であるとき、書き込みコマンドにより‘1’にすることはできない。この性質を利用して、すでに格納されている通常データとその反転データに対して上書きを行った場合、図27のように上書き後の2つのデータは反転関係でなくなる。よって、2つのデータが反転関係にあるかどうかを調べることで、識別番号が上書きされているかどうかを知ることができる。判定の結果、2つのデータが反転関係にある場合はゲート回路908のMOSトランジスタ群がONになる。反転関係にない場合はMOSトランジスタ群がOFFになる。   Generally, in a flash memory, data can be written only in one direction by a write command. For example, in the AND flash memory, the value stored in the memory cell in the written state is ‘0’, and in the erased state, the value is ‘1’. At this time, the change of the storage data by the write command occurs only in one direction from “1” to “0”. That is, when the information stored in the memory cell is “0”, it cannot be set to “1” by the write command. If this property is used to overwrite the already stored normal data and its inverted data, the two data after overwriting are not in an inverted relationship as shown in FIG. Therefore, it is possible to know whether or not the identification number has been overwritten by checking whether or not the two data are in an inverted relationship. As a result of the determination, when the two data are in an inverted relationship, the MOS transistor group of the gate circuit 908 is turned on. If the inversion relationship is not established, the MOS transistor group is turned off.

(ステップ2605)コントローラ回路211は、行デコーダ903への制御信号RIDを‘0’に、マルチプレクサ904、905への制御信号UDIDを‘1’にセットする。また、出力信号R/Bをハイインピーダンスに戻し、チップがレディー状態であることを示す。   (Step 2605) The controller circuit 211 sets the control signal RID to the row decoder 903 to ‘0’ and the control signal UDID to the multiplexers 904 and 905 to ‘1’. Also, the output signal R / B is returned to high impedance, indicating that the chip is ready.

(ステップ2606)チップ外部よりユーザデータおよび管理情報を1バイトずつ入力する。このとき、入力可能な最大バイト数は527バイトである。入力したユーザデータはラッチ回路205に記憶される。   (Step 2606) User data and management information are input byte by byte from outside the chip. At this time, the maximum number of bytes that can be input is 527 bytes. The input user data is stored in the latch circuit 205.

(ステップ2607)チップ外部から書き込み開始コマンドを入力する。コントローラ回路211は、内部電源発生回路213およびデータ線電圧制御回路906に、書き込みを行うための制御信号を出力する。このとき、行デコーダ903内の消去可能領域のワード線選択回路は、選択したワード線に負電圧Vnnを印加する。また、データ線電圧制御回路906はデータ線に電圧を印加しない。   (Step 2607) A write start command is input from the outside of the chip. The controller circuit 211 outputs a control signal for writing to the internal power generation circuit 213 and the data line voltage control circuit 906. At this time, the word line selection circuit in the erasable region in the row decoder 903 applies a negative voltage Vnn to the selected word line. The data line voltage control circuit 906 does not apply a voltage to the data line.

(ステップ2608)識別番号が上書きされていない、すなわち、ゲート回路908内のMOSトランジスタ群がONになっていれば、データ線にはラッチ回路205内部のラッチが記憶する値に応じた電圧が印加され、ユーザデータを書き込める。このとき、出力信号R/Bは‘0’である。また、/OEをアサートするとステータスレジスタ212の内容を読み出すことができる。このとき、図24のビット0(R_B)は‘0’、ビット5(TMP)は‘0’である。   (Step 2608) If the identification number is not overwritten, that is, if the MOS transistor group in the gate circuit 908 is ON, a voltage corresponding to the value stored in the latch in the latch circuit 205 is applied to the data line. User data can be written. At this time, the output signal R / B is “0”. Further, when / OE is asserted, the contents of the status register 212 can be read. At this time, bit 0 (R_B) in FIG. 24 is ‘0’, and bit 5 (TMP) is ‘0’.

(ステップ2609)書き込みが終了すると、出力信号R/Bがハイインピーダンス、すなわちレディー状態に戻る。この後、/OEをアサートしてステータスレジスタ212を読み出すと、図24のビット0(R_B)は‘1’、ビット5(TMP)は‘0’である。   (Step 2609) When the writing is completed, the output signal R / B returns to the high impedance, that is, ready state. Thereafter, when / OE is asserted and the status register 212 is read, bit 0 (R_B) in FIG. 24 is ‘1’ and bit 5 (TMP) is ‘0’.

(ステップ2610)一方識別番号が上書きされている、すなわち、ゲート回路908内のMOSトランジスタ群がOFFになっていれば、ユーザデータ領域にデータを書き込むことはできない。このとき、出力信号R/Bはハイインピーダンスである。また、/OEをアサートするとステータスレジスタ212の内容を読み出すことができる。このとき、図24のビット0(R_B)は‘1’、ビット5(TMP)は‘1’である。   (Step 2610) On the other hand, if the identification number is overwritten, that is, if the MOS transistor group in the gate circuit 908 is OFF, data cannot be written in the user data area. At this time, the output signal R / B is high impedance. Further, when / OE is asserted, the contents of the status register 212 can be read. At this time, bit 0 (R_B) in FIG. 24 is ‘1’, and bit 5 (TMP) is ‘1’.

図29に識別番号が改ざんされていない場合のユーザデータの書き込みタイミングチャートを示す。また、図30に識別番号が改ざんされている場合のユーザデータの書き込みタイミングチャートを示す。   FIG. 29 shows a write timing chart of user data when the identification number has not been tampered with. FIG. 30 shows a timing chart for writing user data when the identification number is falsified.

本実施例では識別番号の上書きを防止することはできないが、識別番号が改ざんされたことを検出できる。さらに識別番号が改ざんされていた場合、ユーザデータにアクセスできなくなるといった応用が可能となり、ユーザデータにセキュリティ機能を持たせることができる。   In this embodiment, the identification number cannot be overwritten, but it can be detected that the identification number has been tampered with. Furthermore, when the identification number has been tampered with, it becomes possible to apply such that the user data cannot be accessed, and the user data can have a security function.

また本実施例と同様な効果は、図31に示すようなフラッシュメモリチップ群311とカードコントローラチップ312で構成されるフラッシュメモリカード310でも得ることができる。つまり、反転データを生成する手段や、通常データと反転データが反転の関係にあるかどうかを照合する手段を、カードコントローラチップ312の中に内蔵していてもよい。また、カードコントローラチップ312内のカードステータスレジスタ313を利用して、再消去エラーや上書きエラーを表示させることもできる。これにより、カードステータスレジスタ313の内容をノート型PCなどのホスト機器から読み出すことができる。このとき、フラッシュメモリチップ群311は従来のフラッシュメモリチップで構成してよい。   The same effect as that of the present embodiment can also be obtained with a flash memory card 310 including a flash memory chip group 311 and a card controller chip 312 as shown in FIG. That is, the card controller chip 312 may include a means for generating inverted data and a means for checking whether the normal data and the inverted data are in an inverted relationship. Further, the card status register 313 in the card controller chip 312 can be used to display a re-erase error or an overwrite error. As a result, the contents of the card status register 313 can be read from a host device such as a notebook PC. At this time, the flash memory chip group 311 may be formed of a conventional flash memory chip.

本発明の第二の実施例における、セルアレイとその周辺の詳細を示す図である。It is a figure which shows the detail of a cell array and its periphery in the 2nd Example of this invention. 本発明の第一から第三の実施例における、AND型フラッシュメモリのブロック構成を示す図である。It is a figure which shows the block structure of the AND type flash memory in the 1st to 3rd Example of this invention. AND型フラッシュメモリのセルアレイの構造を示す図である。It is a figure which shows the structure of the cell array of AND type flash memory. 本発明の第二の実施例における、セルアレイ群の構成を示す図である。It is a figure which shows the structure of the cell array group in the 2nd Example of this invention. 本発明の第二の実施例における、再消去禁止領域のワード線選択回路を示す図である。FIG. 10 is a diagram showing a word line selection circuit in a re-erasure prohibited area in the second embodiment of the present invention. 本発明の第二の実施例における、消去可能領域のワード線選択回路における1本のワード線に対応する選択回路を示す図である。FIG. 10 is a diagram showing a selection circuit corresponding to one word line in a word line selection circuit in an erasable region in the second embodiment of the present invention. 本発明の第一から第三の実施例における、ステータスレジスタのビット構成を示す図である。It is a figure which shows the bit structure of a status register in the 1st to 3rd Example of this invention. 本発明の第二の実施例における、消去動作の手順を示す図である。It is a figure which shows the procedure of erasure | elimination operation | movement in the 2nd Example of this invention. 本発明の第二の実施例における、消去可能領域への消去のタイミングチャートを示す図である。It is a figure which shows the timing chart of the erasure | elimination to the erasable area | region in the 2nd Example of this invention. 本発明の第二の実施例における、再消去禁止領域への最初の消去タイミングチャートを示す図である。It is a figure which shows the first erase timing chart to the re-erasure prohibition area | region in the 2nd Example of this invention. 本発明の第二の実施例における、再消去禁止領域への2回目以降の消去タイミングチャートを示す図である。It is a figure which shows the erasing timing chart of the 2nd time or more to the re-erasure prohibition area | region in the 2nd Example of this invention. 本発明の第三の実施例における、セルアレイとその周辺の詳細を示す図である。It is a figure which shows the detail of a cell array and its periphery in the 3rd Example of this invention. 本発明の第三の実施例における、セルアレイ群の構成を示す図である。It is a figure which shows the structure of the cell array group in the 3rd Example of this invention. 本発明の第三の実施例における、再消去禁止領域のワード線選択回路を示す図である。It is a figure which shows the word line selection circuit of the re-erasure prohibition area | region in the 3rd Example of this invention. 本発明の第三の実施例における、ステータスレジスタのビット構成を示す図である。It is a figure which shows the bit structure of a status register in the 3rd Example of this invention. 本発明の第三の実施例における、書き込み動作の手順を示す図である。It is a figure which shows the procedure of the write-in operation | movement in the 3rd Example of this invention. 本発明の第三の実施例における、消去・書き込み可能領域への書き込みのタイミングチャートを示す図である。It is a figure which shows the timing chart of the writing to the erasable and writable area | region in the 3rd Example of this invention. 本発明の第三の実施例における、再消去・再書き込み不可領域への最初の書き込みタイミングチャートを示す図である。It is a figure which shows the first write-in timing chart to the non-re-erasable / re-writeable area in the 3rd Example of this invention. 本発明の第三の実施例における、再消去・再書き込み不可領域への2回目以降の書き込みタイミングチャートを示す図である。It is a figure which shows the write-timing chart after the 2nd time to the non-re-erasable / re-writable area in the 3rd Example of this invention. 本発明の第四の実施例における、AND型フラッシュメモリのブロック構成を示す図である。It is a figure which shows the block configuration of AND type flash memory in the 4th Example of this invention. 本発明の第四の実施例における、セルアレイ群の構成を示す図である。It is a figure which shows the structure of the cell array group in the 4th Example of this invention. 本発明の第四の実施例における、再消去禁止領域のワード線選択回路を示す図である。It is a figure which shows the word line selection circuit of the re-erasure prohibition area | region in the 4th Example of this invention. 本発明の第四の実施例における、反転/照合回路、マルチプレクサ等の詳細を示す図である。It is a figure which shows the detail of the inversion / collation circuit, a multiplexer, etc. in the 4th Example of this invention. 本発明の第四の実施例における、ステータスレジスタのビット構成を示す図である。It is a figure which shows the bit structure of a status register in the 4th Example of this invention. 本発明の第四の実施例における、識別番号の書き込み手順を示す図である。It is a figure which shows the write-in procedure of the identification number in the 4th Example of this invention. 本発明の第四の実施例における、ユーザデータの書き込み手順を示す図である。It is a figure which shows the write-in procedure of user data in the 4th Example of this invention. 本発明の第四の実施例における、識別番号およびその反転データに対する上書きを示す図である。It is a figure which shows the overwriting with respect to the identification number and its inversion data in the 4th Example of this invention. 本発明の第四の実施例における、識別番号の書き込みタイミングチャートを示す図である。It is a figure which shows the write-in timing chart of the identification number in the 4th Example of this invention. 本発明の第四の実施例における、識別番号が改ざんされていない場合のユーザデータの書き込みタイミングチャートを示す図である。It is a figure which shows the write-in timing chart of the user data in case the identification number is not falsified in the 4th Example of this invention. 本発明の第四の実施例における、識別番号が改ざんされている場合のユーザデータの書き込みタイミングチャートを示す図である。It is a figure which shows the write-in timing chart of the user data in case the identification number is tampered in the 4th Example of this invention. 本発明の第四の実施例における、フラッシュメモリカードの内部構成を示す図である。It is a figure which shows the internal structure of the flash memory card in the 4th Example of this invention. 本発明の第一の実施例における、セルアレイ群の構成を示す図である。It is a figure which shows the structure of the cell array group in the 1st Example of this invention. 本発明の第一の実施例における、セルアレイとその周辺の詳細を示す図である。It is a figure which shows the detail of a cell array and its periphery in 1st Example of this invention. 本発明の第一の実施例における、消去禁止領域のワード線選択回路を示す図である。FIG. 3 is a diagram showing a word line selection circuit in an erase prohibition area in the first embodiment of the present invention. 本発明の第一の実施例における、消去可能領域のワード線選択回路における1本のワード線に対応する選択回路を示す図である。FIG. 3 is a diagram showing a selection circuit corresponding to one word line in the word line selection circuit in the erasable region in the first embodiment of the present invention. 本発明の第二の実施例における、フラッシュメモリカードの内部構成を示す図である。It is a figure which shows the internal structure of the flash memory card in the 2nd Example of this invention.

符号の説明Explanation of symbols

201 AND型フラッシュメモリチップ
202 セルアレイ群
203 行デコーダ
211 コントロール回路
212 ステータスレジスタ
907 反転/照合回路
201 AND type flash memory chip 202 cell array group 203 row decoder 211 control circuit 212 status register 907 inversion / collation circuit

Claims (7)

複数個の消去単位領域で構成され、消去単位領域ごとに通常のデータ領域と、消去単位領域全体の管理情報を記憶する管理情報領域とを有する記憶領域と、
外部より入力したアドレス値によりワード線またはデータ線またはソース線を選択し所定の電圧を印加する選択装置と、
消去・書き込み・読み出し等の動作を制御する動作制御装置と、
不揮発性半導体記憶装置の状態を記憶する一時記憶装置とを有する不揮発性半導体記憶装置において、
通常データの各ビットと1対1の写像関係にあるデータを生成する装置を有し、前記記憶領域内の一部または全部の領域に対して、同一の書き込み単位領域に、前記通常データおよび前記写像関係のデータを書き込むことを特徴とする不揮発性半導体記憶装置。
A storage area composed of a plurality of erasing unit areas, and having a normal data area for each erasing unit area and a management information area for storing management information of the entire erasing unit area;
A selection device for selecting a word line, a data line or a source line according to an address value inputted from the outside and applying a predetermined voltage;
An operation control device for controlling operations such as erasing, writing, and reading;
In a nonvolatile semiconductor memory device having a temporary storage device that stores the state of the nonvolatile semiconductor memory device,
A device that generates data having a one-to-one mapping relationship with each bit of normal data, and the normal data and the write data in the same write unit area with respect to a part or all of the storage area A non-volatile semiconductor memory device, wherein mapping-related data is written.
請求項1に記載の不揮発性半導体記憶装置において、
前記通常データの各ビットと1対1の写像関係にあるデータは、前記通常データの1の補数データ、すなわち‘0’/‘1’に関する反転データであることを特徴とする不揮発性半導体記憶装置。
The nonvolatile semiconductor memory device according to claim 1,
Nonvolatile semiconductor memory device characterized in that the data having a one-to-one mapping relationship with each bit of the normal data is 1's complement data of the normal data, that is, inverted data related to '0' / '1' .
請求項1に記載の不揮発性半導体記憶装置において、
前記通常データが、不揮発性半導体記憶装置に固有な識別番号であることを特徴とする不揮発性半導体記憶装置。
The nonvolatile semiconductor memory device according to claim 1,
The non-volatile semiconductor memory device, wherein the normal data is an identification number unique to the non-volatile semiconductor memory device.
請求項1に記載の不揮発性半導体記憶装置において、
前記通常データおよび前記写像関係のデータを格納する領域以外のデータ領域に対して書き込みおよび読み出しを行うとき、予め前記通常データおよび前記写像関係のデータが互いに写像関係にあるかを検証し、互いに写像関係にある場合は書き込みおよび読み出しが可能に設定し、互いに写像関係にない場合は前記データ領域への書き込みおよび読み出しが不可能に設定する手段を有することを特徴とする不揮発性半導体記憶装置。
The nonvolatile semiconductor memory device according to claim 1,
When writing to and reading from the data area other than the area for storing the normal data and the mapping data, the normal data and the mapping data are verified in advance and mapped to each other. A non-volatile semiconductor memory device comprising means for setting writing and reading to be possible when in a relationship, and setting to make writing and reading to the data area impossible when not in a mapping relationship with each other.
請求項4に記載の不揮発性半導体記憶装置において、
前記通常データおよび前記写像関係のデータが互いに写像関係にない場合は書き込みおよび読み出しが不可能であることを装置外部に知らせる手段を有することを特徴とする不揮発性半導体記憶装置。
The nonvolatile semiconductor memory device according to claim 4,
A non-volatile semiconductor memory device comprising means for informing the outside of the device that writing and reading are impossible when the normal data and the mapping data are not mapped to each other.
請求項5に記載の不揮発性半導体記憶装置において、
前記書き込みおよび読み出しが不可能であることを不揮発性半導体記憶装置の外部に知らせる手段が、前記一時記憶装置であることを特徴とする不揮発性半導体記憶装置。
The nonvolatile semiconductor memory device according to claim 5,
The non-volatile semiconductor memory device, wherein the means for notifying the outside of the non-volatile semiconductor memory device that writing and reading are impossible is the temporary memory device.
請求項5に記載の不揮発性半導体記憶装置において、
前記書き込みおよび読み出しが不可能であることを不揮発性半導体記憶装置の外部に知らせる手段が、1本または複数本の専用出力ピンから出力する信号値であることを特徴とする不揮発性半導体記憶装置。
The nonvolatile semiconductor memory device according to claim 5,
The non-volatile semiconductor memory device, wherein the means for informing the outside of the non-volatile semiconductor memory device that writing and reading are impossible is a signal value output from one or a plurality of dedicated output pins.
JP2008089710A 2008-03-31 2008-03-31 Nonvolatile semiconductor memory device Withdrawn JP2008171565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089710A JP2008171565A (en) 2008-03-31 2008-03-31 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089710A JP2008171565A (en) 2008-03-31 2008-03-31 Nonvolatile semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28382799A Division JP2001109666A (en) 1999-10-05 1999-10-05 Non-volatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JP2008171565A true JP2008171565A (en) 2008-07-24

Family

ID=39699475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089710A Withdrawn JP2008171565A (en) 2008-03-31 2008-03-31 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2008171565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096047A1 (en) * 2010-02-02 2011-08-11 株式会社日立製作所 Semiconductor memory and data processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096047A1 (en) * 2010-02-02 2011-08-11 株式会社日立製作所 Semiconductor memory and data processing method
JP5377669B2 (en) * 2010-02-02 2013-12-25 株式会社日立製作所 Semiconductor memory device
US9318178B2 (en) 2010-02-02 2016-04-19 Hitachi, Ltd. Semiconductor storage device and data processing method

Similar Documents

Publication Publication Date Title
JP4806814B2 (en) Multilevel programming in non-volatile memory devices
US9159427B2 (en) Memory devices and their operation with different sets of logical erase blocks
US6288940B1 (en) Non-volatile semiconductor memory device
JP2005108273A (en) Nonvolatile semiconductor memory device
KR100939146B1 (en) Non-volatile semiconductor memory system and data write method thereof
US8607120B2 (en) Semiconductor memory device for performing additional ECC correction according to cell pattern and electronic system including the same
US7203791B2 (en) Flash memory device with partial copy-back mode
JPH11176178A (en) Non-volatile semiconductor storage and ic memory card using it
JP2003217288A (en) Flash memory in which read-disturbance is relaxed
US9489143B2 (en) Method for accessing flash memory and associated controller and memory device
US9019780B1 (en) Non-volatile memory apparatus and data verification method thereof
TWI228256B (en) Flash memory device with stable source line regardless of bit line coupling and loading effect
JP2010135036A (en) Nonvolatile memory, memory control device, memory control system, and control method of nonvolatile memory
US7532517B2 (en) Non-volatile one time programmable memory
US6826081B2 (en) Nonvolatile semiconductor memory device, nonvolatile semiconductor memory device-integrated system, and defective block detecting method
JP2006164408A (en) Nonvolatile semiconductor memory device, and data erasure method therefor
JP5734492B1 (en) Semiconductor memory device
US8275934B2 (en) Nonvolatile memory device and cache read method using the same
JP2001109666A (en) Non-volatile semiconductor storage device
JP2008171565A (en) Nonvolatile semiconductor memory device
JP2004030849A (en) Semiconductor nonvolatile memory having rewritable function for part of data
JP2007188547A (en) Nonvolatile semiconductor memory device
JP4332108B2 (en) Memory controller, flash memory system, and flash memory control method
JP2004273117A (en) Semiconductor device mounting composite flash memory thereon, and portable device
JPH08221320A (en) Semiconductor memory and information system using the memory

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081117