JP2008170399A - Method for fixing fluorescent derivative substance to solid substrate - Google Patents

Method for fixing fluorescent derivative substance to solid substrate Download PDF

Info

Publication number
JP2008170399A
JP2008170399A JP2007006366A JP2007006366A JP2008170399A JP 2008170399 A JP2008170399 A JP 2008170399A JP 2007006366 A JP2007006366 A JP 2007006366A JP 2007006366 A JP2007006366 A JP 2007006366A JP 2008170399 A JP2008170399 A JP 2008170399A
Authority
JP
Japan
Prior art keywords
substance
solid substrate
fluorescent
chemically bonded
chemically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007006366A
Other languages
Japanese (ja)
Other versions
JP4849552B2 (en
Inventor
Nobuko Fukuda
伸子 福田
Yoji Ushijima
洋史 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007006366A priority Critical patent/JP4849552B2/en
Publication of JP2008170399A publication Critical patent/JP2008170399A/en
Application granted granted Critical
Publication of JP4849552B2 publication Critical patent/JP4849552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid substrate capable of detecting a specific substance at a high speed with high accuracy, without requiring labeling treatment due to a fluorescent substance by merely allowing a specimen to flow on the solid substrate. <P>SOLUTION: The specific substance in the specimen is detected at a high speed with high accuracy, using the fluorescence emitted from the substance, formed on the solid substrate by the condensation reaction of a fluorescent derived substance, which forms a substance having fluorescence with the detection wavelength by the condensation reaction with the specific substance in the specimen, with the specific substance by fixing the fluorescent derived substance by the direct chemical bond to the surface of the solid substrate or the chemical bond with a connection molecule via the chemical bond of the surface of the solid substrate with a joining molecule. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光誘導体物質の固定基板表面への固定化方法に関し、特に、特定物質の検出用バイオチップとして有用な固体基板を得るための、蛍光誘導体物質の固定化方法に関する。   The present invention relates to a method for immobilizing a fluorescent derivative substance on the surface of a fixed substrate, and more particularly to a method for immobilizing a fluorescent derivative substance for obtaining a solid substrate useful as a biochip for detecting a specific substance.

生体内で分泌される物質のうち、カテコールアミン類やヒドロキシインドールアミン類などの、その構造中に芳香環又は環状炭化水素と1級又は2級アミンを有する化学物質(生理活性アミン)の検出は、検体を蛍光誘導体化物質などで蛍光誘導化した後に液体クロマトグラフィーや電気泳動などで分離し、蛍光によって物質を特定することにより行われている(非特許文献1〜3,特許文献1等参照)。
しかしながら、従来のこれらの方法は、蛍光誘導体化物質と検体中の特定物質との反応を行った後、液体クロマトグラフィーや電気泳動を用いるため、検出に時間が掛かるばかりでなく、一度に測定できる数に限りがあるという課題がある。
Among substances secreted in vivo, detection of chemical substances (bioactive amines) such as catecholamines and hydroxyindoleamines that have an aromatic ring or cyclic hydrocarbon and primary or secondary amine in their structure, It is carried out by subjecting a specimen to fluorescence derivatization with a fluorescent derivatized substance, etc., and then separating the substance by liquid chromatography, electrophoresis, etc., and specifying the substance by fluorescence (see Non-Patent Documents 1 to 3, Patent Document 1). .
However, these conventional methods use liquid chromatography or electrophoresis after the reaction between the fluorescent derivatized substance and a specific substance in the sample, so that detection is not only time consuming but also can be measured at once. There is a problem that the number is limited.

また、蛋白質等の特定物質を検出する方法としては、その検出すべき特定物質と特異的に結合する物質、例えば抗原、抗体等を、固体基板表面に直接又は間接に固定化することがおこなわれている。(特許文献2〜4参照)。
しかしながら、これらの方法では、特定物質を検出するには、別途、検体を蛍光物質で標識する等の工程を必要とするものであり、センサーを用いて直ちに検出することはできないという問題がある。
As a method for detecting a specific substance such as a protein, a substance that specifically binds to the specific substance to be detected, such as an antigen or an antibody, is directly or indirectly immobilized on the surface of a solid substrate. ing. (See Patent Documents 2 to 4).
However, these methods have a problem that, in order to detect a specific substance, a process such as labeling a specimen with a fluorescent substance is required separately, and cannot be immediately detected using a sensor.

一方、特許文献5には、特定の蛍光物質を、多孔性フィルタ内に分散、固定化させて、蛍光発生層とすることが記載されている。しかし、該技術は、光励起により発する蛍光が、存在する酸素の濃度に応じてその強度を減ずる「蛍光消失現象」を利用した酸素濃度測定用素子に関するものである。
”Fluorescentproducts of the reaction for the determination of catecholamines with1,2-diphenylethylenediamine”, H. Nohta et al., Anal. Chem. 1992, 267, 137-139. ”Aromaticglycinonitriles and methylamines as pre-column fluorescence derivatizationreagents for catecholamines”, H. Nohta et al., Anal. Chim. Acta 1997, 344,233-240. ”Simultaneousdetermination of urinary catecholamines and 5-hidroxyindoleamines byhigh-performance liquid chromatography with fluorescence detection”, M.Yamaguchi et al., Analyst 1998, 123, 307-311. 特開平5−223813号公報 特開2005−241389号公報 特開2001−247580号公報 国際公開第2002/012891号パンフレット 特開2001−194304号公報公報
On the other hand, Patent Document 5 describes that a specific fluorescent substance is dispersed and fixed in a porous filter to form a fluorescence generation layer. However, the technology relates to an element for measuring oxygen concentration using a “fluorescence disappearance phenomenon” in which fluorescence emitted by photoexcitation decreases in intensity according to the concentration of oxygen present.
“Fluorescent products of the reaction for the determination of catecholamines with 1,2-diphenylethylenediamine”, H. Nohta et al., Anal. Chem. 1992, 267, 137-139. “Aromaticglycinonitriles and methylamines as pre-column fluorescence derivatizationreagents for catecholamines”, H. Nohta et al., Anal. Chim. Acta 1997, 344,233-240. “Simultaneousdetermination of urinary catecholamines and 5-hidroxyindoleamines by high-performance liquid chromatography with fluorescence detection”, M. Yamaguchi et al., Analyst 1998, 123, 307-311. Japanese Patent Laid-Open No. 5-223413 JP 2005-241389 A JP 2001-247580 A International Publication No. 2002/012891 Pamphlet JP 2001-194304 A

本発明は、以上のような事情に鑑みてなされたものであって、その上に検体を流すだけで、蛍光物質による標識処理を必要とせずに高速度で、高精度に特定物質を検出しうる固体基板を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above. A specific substance can be detected at a high speed and with a high degree of accuracy without requiring a labeling process with a fluorescent substance simply by flowing a specimen over the specimen. An object of the present invention is to provide a solid substrate.

発明者らは、上記目的を達成すべく、鋭意研究を重ねた結果、検出波長では蛍光を発しないが、検体中の特定物質との縮合反応により検出波長の蛍光を有する物質を形成する蛍光誘導体化物質を、固体基板表面に化学的に固定化することにより、特定物質を検出対象とするバイオケミカルチップの作成が容易となり、検出システムの簡素化を行うことができることを見いだした。すなわち、蛍光誘導体化物質が化学的に固定化された固体基板表面には、検出すべき検体と該蛍光誘導体化物質との縮合反応により、蛍光を発する物質が形成され、その蛍光を検出することで、検体中の特定物質を高速かつ高精度で検出することが可能となるという知見を得た。   As a result of intensive research to achieve the above-mentioned object, the inventors have made a fluorescent derivative that does not emit fluorescence at the detection wavelength but forms a substance having fluorescence at the detection wavelength by a condensation reaction with a specific substance in the specimen. It has been found that by chemically immobilizing a chemical substance on the surface of a solid substrate, it becomes easy to create a biochemical chip for detecting a specific substance, and the detection system can be simplified. That is, a fluorescent substance is formed on the surface of a solid substrate on which a fluorescent derivatized substance is chemically immobilized by a condensation reaction between the analyte to be detected and the fluorescent derivatized substance, and the fluorescence is detected. As a result, it has been found that a specific substance in a specimen can be detected at high speed and with high accuracy.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
(1)検体中の特定物質と縮合反応して検出波長の蛍光を有する物質を形成する蛍光誘導体化物質を、固体基板表面への直接的な化学結合により、又は固体基板表面と接続分子との化学結合を介して接続分子との化学結合により、固定化することを特徴とする蛍光誘導体化物質の固体基板表面への固体化方法。
(2)前記接続分子は、固体基板表面と化学結合が可能であり且つ前記蛍光誘導体化物質と化学結合ができる、あるいは前記固体基板表面と化学結合が可能であり且つ他の接続分子と化学結合ができる、あるいは他の接続分子と化学結合が可能であり且つ前記蛍光誘導体化物質と化学結合ができる、あるいは、他の接続分子と化学結合が可能であり且つ別の接続分子と化学結合ができることを特徴とする上記(1)の固定化方法。
(3)前記特定物質は、カテコールアミン類、又はヒドロキシインドール類であって、酸化剤あるいは酸素の存在下で前記蛍光誘導体化物質と化学結合することを特徴とする上記(1)又は(2)の固定化方法。
(4)前記蛍光誘導体化物質は、ベンジルアミン誘導体、フェニルグリシノニトリル誘導体、又はジフェニルエチレンジアミン誘導体のいずれかであり、酸化剤あるいは酸素の存在下で前記特定物質と化学結合して蛍光体を形成することを特徴とする上記(1)〜(3)のいずれかの固定化方法。
(5)前記固体基板は、ガラス又はプラスチック又は金属又は金属酸化物又は珪素を主成分として形成されていることを特徴とする上記(1)〜(4)のいずれかに記載の固定化方法。
(6)前記特定物質が固体基板表面上に固定化された前記蛍光誘導体化物質と化学結合する前は検出波長において蛍光性を示さず、化学結合後に蛍光性を示すことを特徴とする上記(1)〜(5)のいずれかに記載の固定化方法。
The present invention has been completed based on these findings, and is as follows.
(1) A fluorescent derivatized substance that forms a substance having fluorescence at a detection wavelength by a condensation reaction with a specific substance in a specimen is directly bonded to the surface of the solid substrate or between the solid substrate surface and the connecting molecule. A method of solidifying a fluorescent derivatized substance on a solid substrate surface, wherein the fluorescent derivatized substance is immobilized by chemical bonding with a connecting molecule through chemical bonding.
(2) The connecting molecule can be chemically bonded to the surface of the solid substrate and can be chemically bonded to the fluorescent derivatized substance, or can be chemically bonded to the surface of the solid substrate and chemically bonded to other connecting molecules. Can be chemically bonded to other connecting molecules and can be chemically bonded to the fluorescent derivatized substance, or can be chemically bonded to other connecting molecules and can be chemically bonded to another connecting molecule. (1) The immobilization method according to (1) above.
(3) The specific substance is catecholamines or hydroxyindoles, and chemically binds to the fluorescent derivatized substance in the presence of an oxidizing agent or oxygen. Immobilization method.
(4) The fluorescent derivatized substance is either a benzylamine derivative, a phenylglycinonitrile derivative, or a diphenylethylenediamine derivative, and forms a phosphor by chemically bonding with the specific substance in the presence of an oxidizing agent or oxygen. The immobilization method according to any one of (1) to (3) above, wherein
(5) The immobilization method according to any one of (1) to (4), wherein the solid substrate is formed mainly of glass, plastic, metal, metal oxide, or silicon.
(6) The above-mentioned (1), wherein the specific substance does not exhibit fluorescence at the detection wavelength before chemically bonding with the fluorescent derivatized substance immobilized on the surface of the solid substrate, and exhibits fluorescence after chemical bonding. The immobilization method according to any one of 1) to (5).

従来の蛍光検出法では、検出前処理と液体クロマトグラフィーや電気泳動などの検出時間を合わせて、20〜60分を要するが、本発明の方法に得られた固体基板を用いることにより、その表面に検体を流すだけで5分以内に蛍光検出が可能となる。   In the conventional fluorescence detection method, the detection pretreatment and the detection time such as liquid chromatography or electrophoresis require 20 to 60 minutes, but by using the solid substrate obtained in the method of the present invention, the surface can be obtained. Fluorescence detection becomes possible within 5 minutes just by passing a sample through the tube.

本発明における固体基板は、ケミカルバイオセンサに求められる機械的強度を確保するための支持体としての役割を果たす。
基板の形状は、とくに限定されるものではないが、カード状又はディスク状に形成されているのが好ましい。
固体基板を形成するための材料は、蛍光検出型ケミカルバイオセンサの支持体として機能することができれば、とくに限定されるものではなく、例えば、ガラス、石英、セラミックス、プラスチックス、金属、金属酸化物又は珪素を主成分とするものなどによって形成することができる。プラスチックスとしては、ポリカーボネート樹脂、オレフィン樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコン樹脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂、フェノール樹脂、ポリメチルメタクリレート樹脂、ポリイソブチルメタクリレート樹脂、ポリイミド樹脂などが挙げられる。
The solid substrate in the present invention serves as a support for ensuring the mechanical strength required for a chemical biosensor.
The shape of the substrate is not particularly limited, but is preferably formed in a card shape or a disk shape.
The material for forming the solid substrate is not particularly limited as long as it can function as a support for a fluorescence detection type chemical biosensor. For example, glass, quartz, ceramics, plastics, metal, metal oxide Alternatively, it can be formed of a material containing silicon as a main component. Plastics include polycarbonate resin, olefin resin, acrylic resin, epoxy resin, polystyrene resin, polyethylene resin, polypropylene resin, silicon resin, fluorine resin, ABS resin, urethane resin, phenol resin, polymethyl methacrylate resin, polyisobutyl methacrylate. Examples thereof include resins and polyimide resins.

本発明において用いられる蛍光誘導体化物質とは、それ自体は検出波長で蛍光を発しないが、検体中の特定物質と縮合反応して、検出波長で蛍光を有する物質を形成するものである。このような蛍光誘導体化物質は、前述の従来の液体クロマトグラフィーや電気泳動を用いたカテコールアミン等の検出において既によく知られているものが用いられるが、特に、ベンジルアミン誘導体、フェニルグリシノニトリル誘導体、又はジフェニルエチレンジアミン誘導体のような、酸化剤あるいは酸素の存在下で特定物質と化学結合して蛍光体を形成するものが好ましく用いられる。以下にその例を示す。   The fluorescent derivatized substance used in the present invention itself does not emit fluorescence at the detection wavelength, but forms a substance having fluorescence at the detection wavelength by condensation reaction with a specific substance in the specimen. As such fluorescent derivatized substances, those already well known in the above-described conventional liquid chromatography and catecholamine detection using electrophoresis are used, and in particular, benzylamine derivatives, phenylglycinonitrile derivatives. Or, such as a diphenylethylenediamine derivative, which forms a phosphor by chemically bonding with a specific substance in the presence of an oxidizing agent or oxygen is preferably used. An example is shown below.

Figure 2008170399
Figure 2008170399
Figure 2008170399
Figure 2008170399
Figure 2008170399
Figure 2008170399
Figure 2008170399
Figure 2008170399

本発明においては、前記蛍光誘導体化物質を、直接的な固体基板表面への化学結合、あるいは、固体基板表面と接続分子との化学結合を介して、接続分子との化学結合により固定化される。
本発明において用いられる接続分子は、(I)固体基板表面と化学結合が可能であり且つ前記蛍光誘導体化物質と化学結合ができるもの、あるいは(II)前記固体基板表面と化学結合が可能であり且つ他の接続分子と化学結合ができるもの、あるいは(III)他の接続分子と化学結合が可能であり且つ前記蛍光誘導体化物質と化学結合ができるもの、あるいは、(IV)他の接続分子と化学結合が可能であり且つ別の接続分子と化学結合ができるもの、から選ばれる。
以下に、これらの例を記載する。
In the present invention, the fluorescent derivatized substance is immobilized by a chemical bond with a connecting molecule through a chemical bond directly to the surface of the solid substrate or a chemical bond between the solid substrate surface and the connecting molecule. .
The connecting molecule used in the present invention can be (I) a chemical bond with a solid substrate surface and a chemical bond with the fluorescent derivatized substance, or (II) a chemical bond with the solid substrate surface. And those that can chemically bond with other connecting molecules, or (III) those that can chemically bond with other connecting molecules and can chemically bond with the fluorescent derivatized substance, or (IV) with other connecting molecules It is selected from those capable of chemical bonding and capable of chemical bonding with another connecting molecule.
Examples of these are described below.

(I)固体基板表面と化学結合が可能であり、且つ前記蛍光誘導体化物質と化学結合ができるものの例
「ジ(N−スクシンイミジル)カーボネート(DSC)」

Figure 2008170399
ガラスなどの表面に化学結合し、且つ前記蛍光誘導体化物質であるベンジルアミン誘導体の上記(化3)で示されるp−キシリレンジアミン(pXDA)と化学結合する。
「4−メルカプト安息香酸」
Figure 2008170399
メルカプト基が化学反応によって金・銀などの表面に化学結合し、且つ他方末端のカルボキシル基が前記蛍光誘導体化物質であるベンジルアミン誘導体のpXDAのアミノ基と化学結合する。 (I) Examples of those capable of being chemically bonded to the surface of a solid substrate and capable of being chemically bonded to the fluorescent derivatized substance “Di (N-succinimidyl) carbonate (DSC)”
Figure 2008170399
It chemically bonds to the surface of glass or the like, and chemically bonds to p-xylylenediamine (pXDA) represented by the above (Chemical Formula 3) of the benzylamine derivative that is the fluorescent derivatized substance.
“4-Mercaptobenzoic acid”
Figure 2008170399
The mercapto group is chemically bonded to the surface of gold, silver or the like by a chemical reaction, and the carboxyl group at the other end is chemically bonded to the amino group of pXDA of the benzylamine derivative which is the fluorescent derivatizing substance.

(II)前記固体基板表面と化学結合が可能であり且つ他の接続分子と化学結合ができるものの例
「3−アミノプロピルトリエトキシシラン(APS)」

Figure 2008170399
「3−(2−アミノエチルアミノ)プロピルトリメトキシシラン」
Figure 2008170399
これらの(化7)及び(化8)は、一方の末端(アルコキシル基)がガラス基板表面へ化学結合し、他方の末端(アミノ基)がカルボキシル基、スクシンイミジル基あるいはイソチオシアネート基を有する他の接続分子と化学結合する。
「N−スクシンイミジル−4−マレイミドブチラート」
Figure 2008170399
「N−スクシンイミジル−6−マレイミドヘキサノエート」
Figure 2008170399
これらの(化9)及び(化10)は、一方の末端(スクシンイミジル基)がガラス基板表面へ化学結合し、他方の末端(マレイミド基)がメルカプト基を有する他の接続分子と化学結合する。 (II) Examples of those capable of being chemically bonded to the surface of the solid substrate and capable of being chemically bonded to other connecting molecules “3-aminopropyltriethoxysilane (APS)”
Figure 2008170399
“3- (2-Aminoethylamino) propyltrimethoxysilane”
Figure 2008170399
In these (Chemical Formula 7) and (Chemical Formula 8), one terminal (alkoxyl group) is chemically bonded to the glass substrate surface, and the other terminal (amino group) is a carboxyl group, succinimidyl group or isothiocyanate group. Chemically bonds with connecting molecules.
“N-succinimidyl-4-maleimidobutyrate”
Figure 2008170399
“N-succinimidyl-6-maleimidohexanoate”
Figure 2008170399
In these (Chemical Formula 9) and (Chemical Formula 10), one terminal (succinimidyl group) is chemically bonded to the glass substrate surface, and the other terminal (maleimide group) is chemically bonded to another connecting molecule having a mercapto group.

(III)他の接続分子と化学結合が可能であり且つ前記蛍光誘導体化物質と化学結合ができるものの例
「1,4−フェニレンヂイソチオシアネート(PDIC)」

Figure 2008170399
一方の末端(イソチオシアネート基)が他の接続分子のアミノ基と化学結合し、他方の末端(イソチオシアネート基)が蛍光誘導体化物質のベンジルアミン誘導体であるXDAのアミノ基と化学結合する。
「上記(化6)で示される4−メルカプト安息香酸」
一方の末端(メルカプト基)が他の接続分子のマレイミド基と化学結合し、他方の末端(カルボキシル基)が蛍光誘導体化物質のベンジルアミン誘導体であるXDAのアミノ基と化学結合する。
「テレフタル酸」
Figure 2008170399
「アジピン酸」
Figure 2008170399
これらの(化12)及び(化13)は、一方の末端(カルボキシル基)が他の接続分子のアミノ基と化学結合し、他方の末端(カルボキシル基)が蛍光誘導体化物質のベンジルアミン誘導体であるXDAのアミノ基と化学結合する。 (III) Examples of those capable of chemically bonding with other connecting molecules and capable of chemically bonding with the fluorescent derivatized substance "1,4-phenylene diisothiocyanate (PDIC)"
Figure 2008170399
One end (isothiocyanate group) is chemically bonded to the amino group of the other connecting molecule, and the other end (isothiocyanate group) is chemically bonded to the amino group of XDA, which is a benzylamine derivative of the fluorescent derivatizing substance.
“4-mercaptobenzoic acid represented by the above (Chemical Formula 6)”
One end (mercapto group) is chemically bonded to the maleimide group of the other connecting molecule, and the other end (carboxyl group) is chemically bonded to the amino group of XDA, which is a benzylamine derivative of the fluorescent derivatizing substance.
"Terephthalic acid"
Figure 2008170399
"Adipic acid"
Figure 2008170399
In these (Chemical Formula 12) and (Chemical Formula 13), one terminal (carboxyl group) is chemically bonded to the amino group of the other connecting molecule, and the other terminal (carboxyl group) is a benzylamine derivative that is a fluorescent derivatization substance. It chemically bonds to the amino group of some XDA.

(IV)他の接続分子と化学結合が可能であり且つ別の接続分子と化学結合ができるものの例
「1,4−ジアミノブタン」

Figure 2008170399
一方の末端(アミノ基)が他の接続分子のカルボキシル基、イソチオシアネート基あるいはスクシンイミジル基と化学結合し、他方の末端(アミノ基)が別の接続分子のカルボキシル基、イソチオシアネート基あるいはスクシンイミジル基と化学結合する。
「上記(化12)で示されるテレフタル酸」又は「上記(化13)で示されるアジピン酸」
「上記(化11)で示されるPDIC」 (IV) Examples of compounds that can be chemically bonded to other connecting molecules and can be chemically bonded to other connecting molecules "1,4-diaminobutane"
Figure 2008170399
One end (amino group) is chemically bonded to the carboxyl group, isothiocyanate group or succinimidyl group of the other connecting molecule, and the other end (amino group) is connected to the carboxyl group, isothiocyanate group or succinimidyl group of another connecting molecule. Chemically bond.
"Terephthalic acid represented by (Chemical Formula 12)" or "Adipic acid represented by (Chemical Formula 13)"
"PDIC shown in (Chemical 11) above"

本発明の蛍光誘導体化物質を固定化した固体基板を用いて検出しうる特定物質としては、上記蛍光誘導化物質との縮合反応により、検出波長で蛍光を有する物質を形成するものであればいずれのものでも用いることができ、具体的には、体内で分泌される物質であり、その構造中に芳香環又は環状炭化水素と1級又は2級アミンを有するものである。前述のとおり、こうした特徴を有する特定物質は既に知られているところであるが、特に、カテコールアミン類、又はヒドロキシインドール類のように、酸化剤あるいは酸素の存在下で前記蛍光誘導体化物質と化学結合するものが好ましく用いられる。以下にその例を示す。   As the specific substance that can be detected using the solid substrate on which the fluorescent derivatizing substance of the present invention is immobilized, any substance can be used as long as it forms a substance having fluorescence at the detection wavelength by a condensation reaction with the fluorescent derivatizing substance. Specifically, it is a substance secreted in the body, and has an aromatic ring or cyclic hydrocarbon and a primary or secondary amine in its structure. As described above, specific substances having such characteristics are already known, but in particular, such as catecholamines or hydroxyindoles, chemically bond with the fluorescent derivatized substance in the presence of an oxidizing agent or oxygen. Those are preferably used. An example is shown below.

Figure 2008170399
Figure 2008170399
Figure 2008170399
Figure 2008170399
5−ヒドロキシインドール−3−酢酸
Figure 2008170399
Figure 2008170399
Figure 2008170399
Figure 2008170399
5-hydroxyindole-3-acetic acid

次に、本発明の方法により得られた固体基板を用いた検出方法について説明する。
本発明の方法により得られた、蛍光誘導体化物質を固定化した固体基板上に、検体液を流し、該検体中の特定物質と前記蛍光誘導体化物質との縮合反応により検出波長の蛍光を有する物質を形成させ、その蛍光を検出することにより、検体中の特定物質の有無を検出することができる。
前記検体液は、検出すべき特定物質を充分に溶解しうる溶媒を用いて溶液とするとともに、緩衝液を用いてpHが8前後となるようにして調製される。こうして調製された検体液を前記固体基板上に流した後、しばらく静置して該検体中の特定物質と前記蛍光誘導体化物質との縮合反応を充分に行わせ、その後蒸留水でセンサー表面をリンスし、乾燥させる。
Next, a detection method using a solid substrate obtained by the method of the present invention will be described.
A sample liquid is flowed on a solid substrate obtained by immobilizing a fluorescent derivatized substance obtained by the method of the present invention, and has fluorescence at a detection wavelength by a condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance. By forming the substance and detecting the fluorescence, the presence or absence of the specific substance in the sample can be detected.
The sample solution is prepared using a solvent that can sufficiently dissolve the specific substance to be detected, and is prepared so that the pH is about 8 using a buffer solution. After flowing the specimen liquid thus prepared on the solid substrate, the specimen liquid is allowed to stand for a while to sufficiently perform a condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance. Rinse and dry.

本発明の方法により蛍光誘導体化物質が固定化された固体基板表面に励起光を照射して、該検体中の特定物質と前記蛍光誘導体化物質との縮合反応により形成された物質から発生される蛍光を検出する。
例えば、蛍光誘導体化物質としてベンジルアミン誘導体としてp−キシレリンジアミン(pXDA)を用いてエピネフェリンを検出する場合には、励起光として375nmの光を照射し、470nm付近にピークを有する蛍光の有無を検出する。
The solid substrate surface on which the fluorescent derivatized substance is immobilized by the method of the present invention is irradiated with excitation light, and is generated from a substance formed by a condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance. Detect fluorescence.
For example, in the case of detecting epinephrine using p-xylerindiamine (pXDA) as a benzylamine derivative as a fluorescent derivatizing substance, the presence or absence of fluorescence having a peak at around 470 nm when irradiated with 375 nm light as excitation light Is detected.

上記検出方法において、蛍光検出を行うために用いられる励起光は、前記固体基板上の前記蛍光誘導体化物質が固定化された面に照射されても、あるいはその側面に照射されてもよく、また、前記固体基板が励起光を透過する材質である場合には、その反対側の面に照射されても良い。
また、前記蛍光の検出は、透過光、反射光、迷光などの影響がもっとも少ないことから、該入射光に対して直角方向から行われることが好ましい。
さらに、本発明の方法により蛍光誘導体化物質がその表面に固定化された固体基板を用いた場合、検体中の前記特定物質と前記蛍光誘導体化物質との縮合反応により形成される物質の蛍光スペクトルから、検体中に存在する特定物質の種類を特定することができる。
In the above detection method, the excitation light used for fluorescence detection may be irradiated on the surface on which the fluorescent derivatization substance on the solid substrate is immobilized, or may be irradiated on the side surface thereof. When the solid substrate is made of a material that transmits excitation light, the opposite surface may be irradiated.
The fluorescence is preferably detected from a direction perpendicular to the incident light since the influence of transmitted light, reflected light, stray light, etc. is minimal.
Furthermore, when a solid substrate having a fluorescent derivatized substance immobilized on the surface thereof by the method of the present invention is used, the fluorescence spectrum of the substance formed by the condensation reaction between the specific substance in the specimen and the fluorescent derivatized substance Therefore, it is possible to specify the type of the specific substance present in the specimen.

次に本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
以下のようにして、合成石英基板表面に、蛍光誘導体化物質を固定化した。図1ないし図3は、その手順を模式的に示すものである。
水、エタノール等で洗浄した合成石英基板を真空乾燥後、オゾン照射処理をすることによって、表面を親水化し、次に、接続分子である3−アミノプロピルトリエトキシシラン(APS)(前記(化7))10mMを含むエタノール溶液中に、上記合成石英基板を50℃で15時間浸漬した。その後基板を取り出して、エタノールで基板表面をリンスし、乾燥後、100℃1時間放置することによってAPSを合成石英基板表面に化学結合させた。(図1)。
EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(Example 1)
The fluorescent derivatized material was immobilized on the surface of the synthetic quartz substrate as follows. 1 to 3 schematically show the procedure.
A synthetic quartz substrate washed with water, ethanol or the like is vacuum-dried and then treated with ozone to hydrophilize the surface, and then the connecting molecule 3-aminopropyltriethoxysilane (APS) (the above (Chemical Formula 7) )) The synthetic quartz substrate was immersed in an ethanol solution containing 10 mM at 50 ° C. for 15 hours. Thereafter, the substrate was taken out, rinsed with ethanol, dried, and allowed to stand at 100 ° C. for 1 hour to chemically bond APS to the surface of the synthetic quartz substrate. (FIG. 1).

次に、該基板を、接続分子である1,4−フェニレンヂイソチオシアネート(PDIC)(前記(化11))50mMを含むトルエン溶液中に、50℃で2時間浸漬し、トルエンで表面をリンスし乾燥した(図2)。
さらに蛍光誘導体化物質ベンジルアミン誘導体であるp−キシリレンジアミン(XDA)(前記(化3))50mMを含む、50mMほう酸バッファー溶液(pH8.5)中に室温で2時間浸漬し、蛍光誘導体化物質ベンジルアミンの部位が末端に出るように化学結合させた(図3)。
Next, the substrate is immersed in a toluene solution containing 50 mM 1,4-phenylene diisothiocyanate (PDIC) (the above (chemical formula 11)) as a connecting molecule for 2 hours at 50 ° C., and the surface is rinsed with toluene. And dried (Figure 2).
Furthermore, it is immersed in a 50 mM borate buffer solution (pH 8.5) containing 50 mM of p-xylylenediamine (XDA) (the above (Chemical Formula 3)), which is a fluorescent derivatizing substance benzylamine derivative, at room temperature for 2 hours, and then is made into a fluorescent derivatization. Chemical bonding was performed so that the site of the substance benzylamine emerged at the terminal (FIG. 3).

化学的に基板表面へ固定化された蛍光誘導体化基質ベンジルアミンがカテコールアミン類と結合し蛍光体を形成するかどうかを調べるため、カテコールアミン類の一種であるエピネフェリン(前記(化15))500μMを含む、50mMほう酸バッファー溶液と50mMフェリシアン化鉄(III)カリウム溶液の混合溶液中に、表面にベンジルアミン部位が化学的に固定化された合成石英基板を50℃で5分間浸漬した。   In order to investigate whether the fluorescent derivatized substrate benzylamine chemically immobilized on the substrate surface binds to catecholamines to form a phosphor, epinephrine (a chemical formula 15) 500 μM, which is a kind of catecholamines, is used. A synthetic quartz substrate having a benzylamine moiety chemically immobilized on its surface was immersed in a mixed solution of a 50 mM borate buffer solution and a 50 mM potassium ferricyanide solution containing the solution at 50 ° C. for 5 minutes.

これを用いて、375nmを励起光とした蛍光スペクトル測定を行ったところ、470nm付近に、センサー表面のベンジルアミンとエピネフェリンとの反応により生成された蛍光に起因する蛍光ピークが確認された。図4は、蛍光スペクトルを示す図である。図において、点線は、エピネフェリン反応前のスぺクトル、実線はエピネフェリン反応後のスペクトルを、それぞれ表している。
この結果から、エピネフェリンは図5に模式的に示すように固体基板表面上に化学的に固定化されたベンジルアミン部位によって蛍光誘導体化されたものと推測できる。
Using this, fluorescence spectrum measurement was performed using 375 nm as excitation light, and a fluorescence peak due to fluorescence generated by the reaction of benzylamine and epinephrine on the sensor surface was confirmed near 470 nm. FIG. 4 is a diagram showing a fluorescence spectrum. In the figure, the dotted line represents the spectrum before the epinephrine reaction, and the solid line represents the spectrum after the epinephrine reaction.
From this result, it can be inferred that epinephrine was fluorescently derivatized with a benzylamine moiety chemically immobilized on the surface of the solid substrate as schematically shown in FIG.

(実施例2)
以下のようにして、合成石英基板表面に、蛍光誘導体化物質を固定化した。図6及び図7は、その手順を模式的に示すものである。
水、エタノール等で洗浄した合成石英基板を真空乾燥後、オゾン照射処理をすることによって、表面を親水化し、次に、接続分子であるジ(N−スクシンイミジル)カーボネート(DSC)(前記(化5)参照)5mMを含むアセトン溶液15mlを調製し、ここに1.25mlのトリエチルアミンを含むピリジン溶液15mlを混合した。この混合溶液中に親水化した合成石英基板を室温で15時間浸漬することによってDSCを合成石英基板表面に化学結合させた(図6)。
次に、エタノールで基板表面をリンスし乾燥後、蛍光誘導体化物質ベンジルアミン誘導体であるXDA1mMを含む、1/15Mリン酸緩衝液(pH7.4)を30ml調製し、この中に室温で2時間浸漬し、ベンジルアミン部位が末端に出るように化学結合させた(図7)。
(Example 2)
The fluorescent derivatized material was immobilized on the surface of the synthetic quartz substrate as follows. 6 and 7 schematically show the procedure.
A synthetic quartz substrate washed with water, ethanol or the like is vacuum-dried and then subjected to ozone irradiation treatment to hydrophilize the surface. Next, di (N-succinimidyl) carbonate (DSC) (connecting molecule) ) Reference) 15 ml of an acetone solution containing 5 mM was prepared, and 15 ml of a pyridine solution containing 1.25 ml of triethylamine was mixed therewith. The DSC was chemically bonded to the surface of the synthetic quartz substrate by immersing the synthetic quartz substrate hydrophilized in this mixed solution at room temperature for 15 hours (FIG. 6).
Next, after rinsing the substrate surface with ethanol and drying, 30 ml of a 1/15 M phosphate buffer solution (pH 7.4) containing 1 mM XDA which is a fluorescent derivatizing substance benzylamine derivative is prepared, and this is carried out at room temperature for 2 hours. It was immersed and chemically bonded so that the benzylamine moiety appeared at the end (FIG. 7).

(実施例3)
以下のようにして、合成石英基板表面に、蛍光誘導体化物質を固定化した。図1及び図8は、その手順を模式的に示すものである。
水、エタノール等で洗浄した合成石英基板を真空乾燥後、オゾン照射処理をすることによって、表面を親水化し、次に、接続分子である3−アミノプロピルトリエトキシシラン(APS)10mMを含むエタノール溶液中に、合成石英基板を50℃で15時間浸漬した。取り出して、エタノールで基板表面をリンスし乾燥後、100℃1時間放置することによってAPSを合成石英基板表面に化学結合させた(図1)。
次に、4−アミノメチル安息香酸(前記(化4))500μMを含むリン酸緩衝液(pH7.4)10mlと500μMの1−エチルー3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を含むリン酸緩衝液(pH7.4)10mlを混合した溶液を調製し、APSが表面に結合した基板を室温で1時間浸漬することによって末端にベンジルアミン部位を化学的に固定化させた(図8)。
(Example 3)
The fluorescent derivatized material was immobilized on the surface of the synthetic quartz substrate as follows. 1 and 8 schematically show the procedure.
A synthetic quartz substrate washed with water, ethanol or the like is vacuum-dried and then subjected to ozone irradiation treatment to make the surface hydrophilic, and then an ethanol solution containing 10 mM 3-aminopropyltriethoxysilane (APS) as a connecting molecule The synthetic quartz substrate was immersed in it at 50 ° C. for 15 hours. After taking out, rinsing the substrate surface with ethanol, drying, and leaving it to stand at 100 ° C. for 1 hour, APS was chemically bonded to the synthetic quartz substrate surface (FIG. 1).
Next, 10 ml of a phosphate buffer (pH 7.4) containing 500 μM of 4-aminomethylbenzoic acid (the above (Chemical Formula 4)) and 500 μM of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) A solution in which 10 ml of a phosphate buffer (pH 7.4) containing 10 ml was mixed, and a substrate having APS bound to the surface was immersed at room temperature for 1 hour to chemically immobilize the benzylamine moiety at the terminal ( FIG. 8).

本発明の方法により、固体基板表面に蛍光誘導体化物質の化学的な固定化を行うことにより、特定物質、特に、ストレス等負荷により分泌される神経伝達物質のカテコールアミン類を主な対象とした蛍光検出用バイオケミカルチップとして用いることができるため、予防医療、環境等の分野においての活用が期待でき、また、ユビキタス医療(誰でもいつでもどこでも享受できる医療)に用いられるデバイスへの応用も期待できる。   By chemically immobilizing a fluorescent derivatized substance on the surface of a solid substrate by the method of the present invention, fluorescent substances mainly targeted to specific substances, particularly catecholamines of neurotransmitters secreted by a load such as stress. Since it can be used as a biochemical chip for detection, it can be expected to be used in fields such as preventive medicine and the environment, and can also be expected to be applied to devices used in ubiquitous medicine (medicine that anyone can enjoy anywhere, anytime).

親水処理された合成石英基板表面に、3−アミノプロピルトリエトキシシラン(APS)を結合させた様子を模式的に示す図。The figure which shows typically a mode that 3-aminopropyl triethoxysilane (APS) was combined with the synthetic quartz board | substrate surface which carried out the hydrophilic process. 表面がアミノ基で活性になった基板に、チオ尿素結合を介して1,4−フェニレン−ジイソチオシアネート(PDIC)を結合させた様子を模式的に示す図。The figure which shows typically a mode that 1, 4- phenylene diisothiocyanate (PDIC) was couple | bonded through the thiourea bond with the board | substrate which the surface became active by the amino group. チオ尿素結合を介してp−キシリレンジアミン(pXDA)を結合させることにより、末端にベンジルアミンが存在する合成石英基板表面が作製された様子を模式的に示す図。The figure which shows typically a mode that the synthetic quartz board | substrate surface in which benzylamine exists in the terminal was produced by couple | bonding p-xylylenediamine (pXDA) through a thiourea coupling | bonding. ベンジルアミンとエピネフェリンとの反応により生成された蛍光体の蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum of the fluorescent substance produced | generated by reaction of benzylamine and epinephrine. 合成石英基板上に、ベンジルアミンとエピネフェリンとの反応により生成された蛍光体を模式的に示す図。The figure which shows typically the fluorescent substance produced | generated by reaction of benzylamine and epinephrine on a synthetic quartz substrate. 親水処理された合成石英基板表面に、ジ(N−スクシンイミジル)カーボネート(DSC)を結合させた様子を模式的に示す図。The figure which shows typically a mode that di (N-succinimidyl) carbonate (DSC) was combined with the synthetic quartz board | substrate surface which carried out the hydrophilic process. p−キシリレンジアミン(pXDA)を結合させることにより、末端にベンジルアミンが存在する合成石英基板表面が作製された様子を模式的に示す図。The figure which shows typically a mode that the synthetic quartz board | substrate surface in which benzylamine exists in the terminal was produced by combining p-xylylenediamine (pXDA). 末端にベンジルアミンが存在する合成石英基板表面が作製された様子を模式的に示す図。The figure which shows typically a mode that the synthetic quartz substrate surface in which benzylamine exists in the terminal was produced.

Claims (6)

検体中の特定物質と縮合反応して検出波長の蛍光を有する物質を形成する蛍光誘導体化物質を、固体基板表面への直接的な化学結合により、又は固体基板表面と接続分子との化学結合を介して接続分子との化学結合により、固定化することを特徴とする蛍光誘導体化物質の固体基板表面への固体化方法。   A fluorescent derivatized substance that forms a substance having fluorescence at the detection wavelength by a condensation reaction with a specific substance in the sample is directly bonded to the surface of the solid substrate or chemically bonded to the connecting molecule. A method for solidifying a fluorescent derivatized substance onto a solid substrate surface, wherein the fluorescent derivatized substance is immobilized by chemical bonding with a connecting molecule through a connecting molecule. 前記接続分子は、固体基板表面と化学結合が可能であり且つ前記蛍光誘導体化物質と化学結合ができる、あるいは前記固体基板表面と化学結合が可能であり且つ他の接続分子と化学結合ができる、あるいは他の接続分子と化学結合が可能であり且つ前記蛍光誘導体化物質と化学結合ができる、あるいは、他の接続分子と化学結合が可能であり且つ別の接続分子と化学結合ができることを特徴とする請求項1に記載の固定化方法。   The connecting molecule can be chemically bonded to the surface of a solid substrate and can be chemically bonded to the fluorescent derivatized substance, or can be chemically bonded to the surface of the solid substrate and can be chemically bonded to another connecting molecule. Alternatively, it can be chemically bonded to another connecting molecule and can be chemically bonded to the fluorescent derivatized substance, or can be chemically bonded to another connecting molecule and can be chemically bonded to another connecting molecule. The immobilization method according to claim 1. 前記特定物質は、カテコールアミン類、又はヒドロキシインドール類であって、酸化剤あるいは酸素の存在下で前記蛍光誘導体化物質と化学結合することを特徴とする請求項1又は2に記載の固定化方法。   The immobilization method according to claim 1 or 2, wherein the specific substance is catecholamines or hydroxyindoles, and chemically binds to the fluorescent derivatized substance in the presence of an oxidizing agent or oxygen. 前記蛍光誘導体化物質は、ベンジルアミン誘導体、フェニルグリシノニトリル誘導体、又はジフェニルエチレンジアミン誘導体のいずれかであり、酸化剤あるいは酸素の存在下で前記特定物質と化学結合して蛍光体を形成することを特徴とする請求項1〜3のいずれかに記載の固定化方法。   The fluorescent derivatized substance is any one of a benzylamine derivative, a phenylglycinonitrile derivative, and a diphenylethylenediamine derivative, and forms a phosphor by chemically bonding with the specific substance in the presence of an oxidizing agent or oxygen. The immobilization method according to any one of claims 1 to 3. 前記固体基板は、ガラス又はプラスチック又は金属又は金属酸化物又は珪素を主成分として形成されていることを特徴とする請求項1〜4のいずれかに記載の固定化方法。   The immobilization method according to claim 1, wherein the solid substrate is formed of glass, plastic, metal, metal oxide, or silicon as a main component. 前記特定物質が固体基板表面上に固定化された前記蛍光誘導体化物質と化学結合する前は検出波長において蛍光性を示さず、化学結合後に蛍光性を示すことを特徴とする請求項1〜5のいずれかに記載の固定化方法。   6. The specific substance does not exhibit fluorescence at a detection wavelength before being chemically bonded to the fluorescent derivatized substance immobilized on the surface of a solid substrate, and exhibits fluorescence after chemical bonding. The immobilization method according to any of the above.
JP2007006366A 2007-01-15 2007-01-15 Method for immobilizing fluorescent derivative substance on solid substrate surface Expired - Fee Related JP4849552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006366A JP4849552B2 (en) 2007-01-15 2007-01-15 Method for immobilizing fluorescent derivative substance on solid substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006366A JP4849552B2 (en) 2007-01-15 2007-01-15 Method for immobilizing fluorescent derivative substance on solid substrate surface

Publications (2)

Publication Number Publication Date
JP2008170399A true JP2008170399A (en) 2008-07-24
JP4849552B2 JP4849552B2 (en) 2012-01-11

Family

ID=39698619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006366A Expired - Fee Related JP4849552B2 (en) 2007-01-15 2007-01-15 Method for immobilizing fluorescent derivative substance on solid substrate surface

Country Status (1)

Country Link
JP (1) JP4849552B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265158A (en) * 1988-04-18 1989-10-23 Hitachi Ltd Method and apparatus for analyzing catechol amines
JPH05223813A (en) * 1992-02-07 1993-09-03 Tosoh Corp Catechol amine measuring reagent and quantifying method for catechol amine using it
JPH06258311A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Reaction medium of 1,2-diphenyl ethylenediamine with catechol amines
JPH102862A (en) * 1996-06-13 1998-01-06 Bunshi Bio Photonics Kenkyusho:Kk Immobilizing reagent for detecting fluorescence of catechol compound and vanillyl compound, and detecting method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265158A (en) * 1988-04-18 1989-10-23 Hitachi Ltd Method and apparatus for analyzing catechol amines
JPH05223813A (en) * 1992-02-07 1993-09-03 Tosoh Corp Catechol amine measuring reagent and quantifying method for catechol amine using it
JPH06258311A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Reaction medium of 1,2-diphenyl ethylenediamine with catechol amines
JPH102862A (en) * 1996-06-13 1998-01-06 Bunshi Bio Photonics Kenkyusho:Kk Immobilizing reagent for detecting fluorescence of catechol compound and vanillyl compound, and detecting method therefor

Also Published As

Publication number Publication date
JP4849552B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4676983B2 (en) Method and system for detecting biomolecular binding using terahertz radiation
Yakovleva et al. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection
JP5295149B2 (en) Biological material analysis method and biological material analysis cell, chip and apparatus used therefor
Wang et al. Isoelectric bovine serum albumin: robust blocking agent for enhanced performance in optical-fiber based DNA sensing
Zhang et al. “Click” chemistry‐based surface modification of poly (dimethylsiloxane) for protein separation in a microfluidic chip
CN102539733B (en) Visual plastic-based biochip, preparation method and detection method thereof
TWI668429B (en) Biosensing wafer containing graphene and detection device using the same
KR20090083685A (en) Method and apparatus for detecting a specific molecule using surface-enhanced raman spectroscopy
Dou et al. Voltammetric immunoassay for the detection of protein biomarkers
Gupta et al. Epitope imprinting of iron binding protein of Neisseria meningitidis bacteria through multiple monomers imprinting approach
WO2007026731A1 (en) Biochip and immunological analysis method
JP2023175818A (en) Bioactive coating for surface acoustic wave sensor
Xia et al. Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment
TWI475209B (en) Sensor for detection of a target of interest
JP2007003401A (en) Sample analyzer
Qiu et al. Aptamer-based detection of melamine in milk using an evanescent wave fiber sensor
Guliy et al. Biosensors for virus detection
JP4849552B2 (en) Method for immobilizing fluorescent derivative substance on solid substrate surface
CN105137064B (en) A kind of method of small organic molecule modified biological sensing element
Mastichiadis et al. Capillary-based immunoassays, immunosensors and DNA sensors–steps towards integration and multi-analysis
JP6734011B2 (en) Biomolecule detection test kit, biomolecule detection method using the same, biomolecule detection test piece and biomolecule detection labeling reagent used therein
Chen et al. Aptamer‐based thrombin assay on microfluidic platform
JP2008224327A (en) Biochip
JP2012502273A (en) Improved wire grid substrate structure and method of manufacturing such a substrate
JP2008051512A (en) Sensor using near field light and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees