JP2008170238A - Method of manufacturing biochip substrate - Google Patents

Method of manufacturing biochip substrate Download PDF

Info

Publication number
JP2008170238A
JP2008170238A JP2007002853A JP2007002853A JP2008170238A JP 2008170238 A JP2008170238 A JP 2008170238A JP 2007002853 A JP2007002853 A JP 2007002853A JP 2007002853 A JP2007002853 A JP 2007002853A JP 2008170238 A JP2008170238 A JP 2008170238A
Authority
JP
Japan
Prior art keywords
producing
substance
biochip substrate
substrate
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007002853A
Other languages
Japanese (ja)
Inventor
Kenji Uko
賢司 宇▼高▲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007002853A priority Critical patent/JP2008170238A/en
Publication of JP2008170238A publication Critical patent/JP2008170238A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a biochip substrate capable of reducing the irregularity of a fixing amount by uniformly forming a physiologically active substance or a substance having affinity with respect to the physiologically active substance on the surface of a substrate and capable of enhancing production efficiency as a mass production system. <P>SOLUTION: A layer containing a polymeric substance is formed on the surface of the substrate and the physiologically active substance or the substance having affinity with respect to the physiologically active substance is fixed to manufacture the biochip substrate used when the physiologically active substance is detected. This manufacturing method contains the process of forming the layer containing the polymeric substance by a spray coating method using a spray nozzle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板表面に高分子物質を含む層が形成されたバイオチップ用基板の製造方法に関する。   The present invention relates to a method for manufacturing a biochip substrate in which a layer containing a polymer substance is formed on the substrate surface.

一般的に生理活性物質又は生理活性物質と親和性を有する物質を固相表面に固定化したバイオチップ では、基板表面内で前記物質の固定化量にバラツキがある。バラツキの原因としてはいくつか考えられ、前記物質の固定化反応時の問題などが挙げられるが、基板表面に前記物質を固定化するために必要な官能基を導入する際の問題が大きい。
基板表面に官能基を導入する際の基板面内の反応性バラツキを解消する方法として、あらかじめ官能基を有した高分子物質を基板表面に塗布する方法がある。しかし、高分子物質の塗布が均一に行われない限り、バラツキの問題が解消できないことに変わりはなかった。
In general, in a biochip in which a physiologically active substance or a substance having affinity for a physiologically active substance is immobilized on a solid phase surface, the amount of the substance immobilized on the substrate surface varies. There are several possible causes of variations, including problems during the immobilization reaction of the substance, but there are major problems when introducing functional groups necessary to immobilize the substance on the substrate surface.
As a method for eliminating the reactive variation in the substrate surface when the functional group is introduced into the substrate surface, there is a method in which a polymer substance having a functional group is applied to the substrate surface in advance. However, as long as the polymer material is not uniformly applied, the problem of variation cannot be solved.

従来バイオチップ用基板の製造において、有機膜の形成方法として浸漬塗布法で形成する方法が知られている。(特許文献1)この浸漬塗布法において塗布層の膜厚は、塗布液の粘度と基板の引き上げ速度で決まるが、基板を浸漬させる槽内の塗布液の乱れ、重力、風の流れ等の影響を受け易く、膜厚バラツキの要因となっている。特に、基板を浸漬して引き上げ後乾燥するまでの間に、湿った塗膜が重力の影響で下方に流動し、基板上下間で膜厚差を生じ易い。更には、浸漬塗布法では生産効率が悪く、連続的に大量生産する量産システムの構築には不向きである。
特開2005−195576号公報
Conventionally, in the manufacture of a biochip substrate, a method of forming an organic film by a dip coating method is known. (Patent Document 1) In this dip coating method, the thickness of the coating layer is determined by the viscosity of the coating solution and the pulling speed of the substrate, but the influence of disturbance of the coating solution in the tank in which the substrate is immersed, gravity, the flow of wind, etc. This is a cause of film thickness variation. In particular, the wet coating film flows downward due to the influence of gravity between the substrate being dipped, pulled up and dried, and a film thickness difference is likely to occur between the top and bottom of the substrate. Furthermore, the dip coating method has poor production efficiency and is not suitable for construction of a mass production system for continuous mass production.
JP 2005-195576 A

本発明の目的は、生理活性物質又は生理活性物質と親和性を有する物質を固相表面に配置・固定する際に使用するバイオチップ用基板の製造方法において、生理活性物質又は生理活性物質と親和性を有する物質を基板表面上に均一に形成させることで固定化量のバラツキの低減し、かつ、量産システムとして生産効率をあげることが可能なバイオチップ用基板の製造方法を提供することである。   An object of the present invention is to provide a bioactive substance or a physiologically active substance in a method for producing a biochip substrate used when a physiologically active substance or a substance having an affinity for a physiologically active substance is placed and fixed on a solid surface. It is to provide a method for manufacturing a biochip substrate that can reduce the variation in the amount of immobilization by uniformly forming a material having a property on the surface of the substrate and increase the production efficiency as a mass production system. .

本発明は、下記の通りである。
(1)基板表面に高分子物質を含む層が形成され、生理活性物質又は生理活性物質と親和性を有する物質を固定化し、生理活性物質を検出する際に用いられるバイオチップ用基板の製造方法であって、前記高分子物質を含む層をスプレーノズルを使用してスプレーコーティング法で形成する工程を含むことを特徴とするバイオチップ用基板の製造方法。
(2)前記スプレーノズルが2流体噴霧ノズルである(1)記載のバイオチップ用基板の製造方法。
(3)前記スプレーノズルより噴霧される塗布液滴の平均粒径が1μm〜50μmである(1)又は(2)記載のバイオチップ用基板の製造方法。
(4)前記高分子物質を含む層の膜厚が1nm〜20nmである(1)〜(3)いずれか記載のバイオチップ用基板の製造方法。
(5)前記高分子物質を含む層の膜厚CV値が10%以内である(1)〜(4)いずれか記載のバイオチップ用基板の製造方法。
(6)前記スプレーコーティング法の工程で使用する有機溶媒が、炭素数1〜4のアルコール単独溶媒、あるいはそれらの混合溶媒、又はそれらアルコールと水との混合溶媒である(1)〜(5)いずれか記載のバイオチップ用基板の製造方法。
(7)前記基板の材質がプラスチックである(1)〜(6)いずれか記載のバイオチップ用基板の製造方法。
(8)前記プラスチックが環状ポリオレフィン又は環状ポリオレフィンを含む混合物である請求項7記載のバイオチップ用基板の製造方法。
(9)前記高分子物質がホスホリルコリン基を有するものである請求項(1)〜(8)いずれか記載のバイオチップ用基板の製造方法。
(10)前記ホスホリルコリン基が2−メタクリロイルオキシエチルホスホリルコリン基である(9)記載のバイオチップ 用基板の製造方法。
(11)前記高分子物質が活性エステル基を有するものである(1)〜(10)いずれか記載のバイオチップ 用基板の製造方法。
(12)前記活性エステル基がp−ニトロフェニルエステル基又はN−ヒドロキシスクシンイミドエステル基を有するものである(11)記載のバイオチップ用基板の製造方法。
(13)前記高分子物質がブチルメタクリレート基を含む共重合体である請求項(1)〜(12)いずれか記載のバイオチップ用基板の製造方法。
The present invention is as follows.
(1) A method for producing a biochip substrate used when a layer containing a polymer substance is formed on a substrate surface, a physiologically active substance or a substance having an affinity for a physiologically active substance is immobilized, and the physiologically active substance is detected A method for producing a biochip substrate, comprising the step of forming a layer containing the polymer substance by a spray coating method using a spray nozzle.
(2) The method for producing a biochip substrate according to (1), wherein the spray nozzle is a two-fluid spray nozzle.
(3) The method for producing a biochip substrate according to (1) or (2), wherein an average particle diameter of the coating droplet sprayed from the spray nozzle is 1 μm to 50 μm.
(4) The method for producing a biochip substrate according to any one of (1) to (3), wherein the layer containing the polymer substance has a thickness of 1 nm to 20 nm.
(5) The method for producing a biochip substrate according to any one of (1) to (4), wherein the layer containing the polymer substance has a film thickness CV value of 10% or less.
(6) The organic solvent used in the step of the spray coating method is an alcohol single solvent having 1 to 4 carbon atoms, a mixed solvent thereof, or a mixed solvent of alcohol and water (1) to (5). The manufacturing method of the board | substrate for biochips in any one.
(7) The method for producing a biochip substrate according to any one of (1) to (6), wherein a material of the substrate is plastic.
(8) The method for producing a biochip substrate according to claim 7, wherein the plastic is a cyclic polyolefin or a mixture containing a cyclic polyolefin.
(9) The method for producing a biochip substrate according to any one of (1) to (8), wherein the polymer substance has a phosphorylcholine group.
(10) The method for producing a biochip substrate according to (9), wherein the phosphorylcholine group is a 2-methacryloyloxyethyl phosphorylcholine group.
(11) The method for producing a biochip substrate according to any one of (1) to (10), wherein the polymer substance has an active ester group.
(12) The method for producing a biochip substrate according to (11), wherein the active ester group has a p-nitrophenyl ester group or an N-hydroxysuccinimide ester group.
(13) The method for producing a biochip substrate according to any one of (1) to (12), wherein the polymer substance is a copolymer containing a butyl methacrylate group.

本発明のバイオチップ用基板の製造方法によれば、生理活性物質又は生理活性物質と親和性を有する物質を固定化するために必要な官能基を有する高分子物質を均一に基板表面に形成させたバイオチップ用基板が得られので、固定化量のバラツキの低減が可能となり、かつ量産システムとして生産効率をあげることができる。   According to the method for producing a biochip substrate of the present invention, a polymer substance having a functional group necessary for immobilizing a physiologically active substance or a substance having affinity for a physiologically active substance is uniformly formed on the substrate surface. Since a biochip substrate can be obtained, variation in the amount of immobilization can be reduced, and production efficiency can be improved as a mass production system.

以下、本発明の実施形態について詳細に説明する。
(基板の素材)
本発明に使用するバイオチップ用基板の材質は、プラスチックであることが好ましい。プラスチックとしては、熱可塑性樹脂、熱硬化性樹脂を用いることができるが、熱可塑性樹脂の方が製造効率の観点から好ましい。熱可塑性樹脂としては、蛍光発生量の少ないものが好ましく、例えばポリエチレン、ポリプロピレン等の直鎖状ポリオレフィン、環状ポリオレフィン、含フッ素樹脂等が挙げられる。耐熱性、耐薬品性、低蛍光性、成形性に特に優れる環状ポリオレフィンを用いることがより好ましい。ここで環状ポリオレフィンとは、環状オレフィン構造を有する重合体単独または環状オレフィンとα―オレフィンとの共重合体を水素添加した飽和重合体をさす。
Hereinafter, embodiments of the present invention will be described in detail.
(Substrate material)
The material for the biochip substrate used in the present invention is preferably plastic. As the plastic, a thermoplastic resin or a thermosetting resin can be used, but the thermoplastic resin is preferable from the viewpoint of production efficiency. As the thermoplastic resin, those that generate a small amount of fluorescence are preferable, and examples thereof include linear polyolefins such as polyethylene and polypropylene, cyclic polyolefins, and fluorine-containing resins. It is more preferable to use a cyclic polyolefin that is particularly excellent in heat resistance, chemical resistance, low fluorescence, and moldability. Here, the cyclic polyolefin refers to a saturated polymer obtained by hydrogenating a polymer having a cyclic olefin structure or a copolymer of a cyclic olefin and an α-olefin.

前者の例としては、例えばノルボルネン、ジシクロペンタジエン、テトラシクロドデセンに代表されるノルボルネン系モノマー、および、これらのアルキル置換体を開環重合して得られる重合体を水素添加して製造される飽和重合体である。   Examples of the former are produced by hydrogenating norbornene monomers represented by, for example, norbornene, dicyclopentadiene, and tetracyclododecene, and polymers obtained by ring-opening polymerization of these alkyl-substituted products. It is a saturated polymer.

後者の共重合体はエチレンやプロピレン、イソプロピル、1−ブテン、3−メチル−1−ブテン、1−ペンテン、3−メチル−1−ペンテン、1−ヘキセン、1−オクテン等のα―オレフィンと環状オレフィン系モノマーのランダム共重合体を水素添加することにより製造される飽和重合体である。共重合体では、エチレンとの共重合体が最も好ましい。
これら樹脂は単独で用いてもよく、2種類またはそれ以上の共重合体あるいは混合物であってもよい。また、樹脂成分以外に繊維状、球状その他の形状を有する無機物あるいは有機物充填材、または各種添加剤成分を含んでもよい。
The latter copolymer is cyclic with α-olefins such as ethylene, propylene, isopropyl, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 1-hexene and 1-octene. It is a saturated polymer produced by hydrogenating a random copolymer of olefinic monomers. As the copolymer, a copolymer with ethylene is most preferable.
These resins may be used alone, or two or more copolymers or a mixture may be used. Further, in addition to the resin component, an inorganic or organic filler having a fibrous shape, a spherical shape, or other shapes, or various additive components may be included.

(基板の形状)
本発明に使用する基板の形状としては、特に限定しないが、平板状基板あるいは微細流路形状を有した基板等が挙げられる。
(Board shape)
Although it does not specifically limit as a shape of the board | substrate used for this invention, The board | substrate etc. which have the flat board | substrate or the fine flow path shape are mentioned.

(高分子物質)
本発明のバイオチップ用基板は、基板表面に生理活性物質又は生理活性物質と親和性を有する物質を固定化するための高分子物質を有する。高分子物質としては、ホスホリルコリン基を有する高分子物質であることが好ましく、ホスホリルコリン基及び活性エステル基を有する高分子物質であることが更に好ましい。ホスホリルコリン基は生理活性物質や蛍光物質の非特異的吸着を抑制するのに効果があり、活性エステルは生理活性物質を固定化するのに効果がある。
(Polymer substance)
The biochip substrate of the present invention has a polymer substance for immobilizing a physiologically active substance or a substance having an affinity for the physiologically active substance on the substrate surface. The polymer substance is preferably a polymer substance having a phosphorylcholine group, more preferably a polymer substance having a phosphorylcholine group and an active ester group. The phosphorylcholine group is effective in suppressing nonspecific adsorption of physiologically active substances and fluorescent substances, and the active ester is effective in immobilizing physiologically active substances.

ホスホリルコリン基としては、例えば2−メタクリロイルオキシエチルホスホリルコリン、2−メタクリロイルオキシエトキシエチルホスホリルコリン、6−メタクリロイルオキシヘキシルホスホリルコリン、10−メタクリロイルオキシエトキシノニルホスホリルコリン、アリルホスホリルコリン、ブテニルホスホリルコリン、ヘキセニルホスホリルコリン、オクテニルホスホリルコリン、デセニルホスホリルコリン等を挙げられるが、2−メタクリロイルオキシエチルホスホリルコリンがより好ましい。   Examples of the phosphorylcholine group include 2-methacryloyloxyethyl phosphorylcholine, 2-methacryloyloxyethoxyethylphosphorylcholine, 6-methacryloyloxyhexylphosphorylcholine, 10-methacryloyloxyethoxynonylphosphorylcholine, allylphosphorylcholine, butenylphosphorylcholine, hexenylphosphorylcholine, octenylphosphorylcholine, Although decenyl phosphorylcholine etc. are mentioned, 2-methacryloyloxyethyl phosphorylcholine is more preferable.

本発明に使用する「活性エステル基」は、エステル基のアルコール側に酸性度の高い電子求引性基を有して求核反応を活性化するエステル群、すなわち反応活性の高いエステル基を意味するものとして、各種の化学合成、たとえば高分子化学、ペプチド合成等の分野で慣用されているものである。実際的には、フェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有する活性エステル基として知られている。
このような活性エステル基としては、例えば、p−ニトロフェニルエステル基、N−ヒドロキシスクシンイミドエステル基、コハク酸イミドエステル基、フタル酸イミドエステル基、5−ノルボルネン−2,3−ジカルボキシイミドエステル基等が挙げられるが、p−ニトロフェニルエステル基又はN−ヒドロキシスクシンイミドエステル基が好ましい。
本発明に使用する高分子物質は、ホスホリルコリン基又は活性エステル基以外に他の基を含んでもよく、ブチルメタクリレート基を含む単量体との共重合体が好ましい。
The “active ester group” used in the present invention means an ester group having an electron-withdrawing group with high acidity on the alcohol side of the ester group to activate the nucleophilic reaction, that is, an ester group with high reaction activity. As such, it is commonly used in various chemical synthesis fields such as polymer chemistry and peptide synthesis. In practice, phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc. are known as active ester groups having much higher activity than alkyl esters and the like. .
Examples of such active ester groups include p-nitrophenyl ester groups, N-hydroxysuccinimide ester groups, succinimide ester groups, phthalimide ester groups, and 5-norbornene-2,3-dicarboximide ester groups. The p-nitrophenyl ester group or the N-hydroxysuccinimide ester group is preferable.
The polymer substance used in the present invention may contain other groups in addition to the phosphorylcholine group or the active ester group, and is preferably a copolymer with a monomer containing a butyl methacrylate group.

(高分子物質の塗布)
本発明では、基板表面に高分子物質を含む層をスプレーノズルを使用してスプレーコーティング法で形成する。具体的には有機溶媒に溶解した高分子物質溶液をスプレーノズルから液状微粒子として基板表面上に均一に噴霧し、溶媒を乾燥させて薄膜を形成する。この高分子物質の溶液濃度は、0.01重量%〜10重量%にすることが好ましい。前記下限値未満の低濃度では濃度が薄過ぎ、必要な膜厚を得ることが困難となる。また、前記上限値を超える高濃度では、厚膜となる為に厚み制御が難しくなるばかりか溶液が高粘度となり、スプレーで吹き付ける操作自体が不能となる恐れが考えられる。一方、基板表面上の高分子物質を含む層の膜厚は、1nm〜20nmであることが好ましい。基板上に固定化する生理活性物質の固定化量は、蛍光強度により評価を行うが、基板表面上に形成した高分子物質層の膜厚が前記下限値未満では十分なシグナル強度が得られず、また、前記上限値を超える膜厚ではバックグラウンド値が高くなる問題があり、いずれの場合も好ましくない。更に、高分子物質を含む層の膜厚CV値は10%以内であることが好ましい。ここで膜厚CV値とは、任意に測定した基板上の膜厚平均値と標準偏差から算出した変動係数を示す。この値が10%を超えると、基板表面内に生理活性物質又は生理活性物質と親和性を有する物質の固定化量のバラツキが大きくなり好ましくない。
(Polymer substance application)
In the present invention, a layer containing a polymer substance is formed on the substrate surface by a spray coating method using a spray nozzle. Specifically, a polymer material solution dissolved in an organic solvent is uniformly sprayed on the substrate surface as liquid fine particles from a spray nozzle, and the solvent is dried to form a thin film. The solution concentration of the polymer substance is preferably 0.01% by weight to 10% by weight. If the concentration is lower than the lower limit, the concentration is too thin, making it difficult to obtain the required film thickness. Further, at a high concentration exceeding the upper limit value, it becomes difficult to control the thickness because the film is thick, and the solution may have a high viscosity, and the operation of spraying with a spray may be impossible. On the other hand, the film thickness of the layer containing the polymer substance on the substrate surface is preferably 1 nm to 20 nm. The amount of the physiologically active substance immobilized on the substrate is evaluated based on the fluorescence intensity, but sufficient signal intensity cannot be obtained if the thickness of the polymer substance layer formed on the substrate surface is less than the lower limit. Further, when the film thickness exceeds the upper limit, there is a problem that the background value becomes high, which is not preferable in any case. Further, the film thickness CV value of the layer containing the polymer substance is preferably within 10%. Here, the film thickness CV value indicates a coefficient of variation calculated from the film thickness average value and standard deviation on the substrate arbitrarily measured. If this value exceeds 10%, the variation in the amount of immobilization of the physiologically active substance or the substance having affinity with the physiologically active substance in the substrate surface becomes unfavorable.

本発明で使用するスプレーノズルに特に制限は無いが、液体供給部より供給される高分子物質を溶解させた溶液と、気体供給部から供給される高圧気体とをぶつけ合うことにより、高分子物質の溶液を微粒子化し、噴射口から噴霧することができる2流体ノズルであることが好ましい。   Although there is no restriction | limiting in particular in the spray nozzle used by this invention, a polymer substance is made to collide with the solution which melt | dissolved the polymer substance supplied from the liquid supply part, and the high pressure gas supplied from a gas supply part It is preferable that it is a two-fluid nozzle which can atomize the solution and spray it from the injection port.

また、基板表面上にスプレーノズルから高分子物質溶液を噴霧する際、ノズルから噴霧される液滴のサイズは、均一な高分子物質を含む層の成膜に影響する為、微細化かつ均一化されていることが好ましい。特に噴霧する液滴のサイズに制限は無いが、平均粒径1μm〜50μmの範囲であることが好ましい。さらに好ましくは、平均粒径1μm〜20μmの範囲である。スプレーノズルと基板表面との距離は十分に高いほど塗布面積が広くなるが、ノズルから噴霧された高分子物質溶液の液滴が基板表面に達するまでに、乾燥しない程度の高さでなくてはならない。
また、本発明でのスプレーコーティング法において、基板表面上への塗布回数は特に制限は無く、1回の塗布で目的の膜厚を形成してもよいが、極めて薄い膜厚を形成する為には、固形分濃度の低い溶液で複数回塗布して目的の膜厚を形成する方が、均一性が向上する。
In addition, when spraying a polymer material solution from the spray nozzle onto the substrate surface, the size of the droplets sprayed from the nozzle affects the film formation of a layer containing a uniform polymer material. It is preferable that Although there is no restriction | limiting in particular in the size of the droplet to spray, It is preferable that it is the range of an average particle diameter of 1 micrometer-50 micrometers. More preferably, the average particle size is in the range of 1 μm to 20 μm. The coating area increases as the distance between the spray nozzle and the substrate surface is sufficiently high, but it must be high enough not to dry before the droplets of the polymer solution sprayed from the nozzle reach the substrate surface. Don't be.
In the spray coating method of the present invention, the number of coatings on the substrate surface is not particularly limited, and a desired film thickness may be formed by a single coating, but in order to form a very thin film thickness. Is more uniform when it is applied multiple times with a solution having a low solid content concentration to form a desired film thickness.

基板表面上にスプレーノズルから高分子物質溶液を噴霧した後の溶媒の乾燥方法としては、使用する溶媒によって異なる為、特に制限は無いが、例えば、風乾、熱盤、乾燥機等を使って溶媒を揮発させる方法が考えられる。   The method of drying the solvent after spraying the polymer substance solution from the spray nozzle onto the substrate surface is not particularly limited because it varies depending on the solvent used. For example, the solvent is dried using an air dryer, hot platen, dryer, etc. The method of volatilizing can be considered.

高分子物質を溶解する有機溶媒としては、使用する高分子物質にもよるが、沸点の低い溶媒のみをつかった場合、塗膜を形成すると塗膜表面に細かな荒れが発生してしまう。逆に沸点の高すぎる溶媒のみを選択すると塗布後の塗膜は乾きが遅くなり、液だれや膜厚バラツキが大きくなる原因となる。そのため、高分子物質に対して良溶媒でありかつ、スプレーコーティング法に適した沸点の有機溶媒を選択する必要がある。特に炭素数が1〜4のアルコール溶媒を用いることが好ましい。また、前記アルコール溶媒を混合したもの、あるいは、前記アルコール溶媒と水との混合溶媒でも良い。その際の混合比率は、高分子物質に対して良溶媒になる混合比率であれば、任意の混合比率で良い。   As an organic solvent for dissolving the polymer material, depending on the polymer material used, when only a solvent having a low boiling point is used, when the coating film is formed, fine roughness is generated on the surface of the coating film. On the other hand, if only a solvent having a boiling point that is too high is selected, the coated film will dry slowly, resulting in increased dripping and variations in film thickness. Therefore, it is necessary to select an organic solvent having a boiling point suitable for the spray coating method and being a good solvent for the polymer substance. In particular, it is preferable to use an alcohol solvent having 1 to 4 carbon atoms. Moreover, what mixed the said alcohol solvent or the mixed solvent of the said alcohol solvent and water may be sufficient. The mixing ratio at that time may be any mixing ratio as long as it is a mixing ratio that is a good solvent for the polymer substance.

本発明のバイオチップ用基板を使用し各種の生理活性物質を固定化することができる。固定化する生理活性物質として核酸を用いる場合、活性エステル基との反応性を高めるため、アミノ基の導入位置は分子鎖末端あるいは側鎖であってもよいが、分子鎖末端にアミノ基が導入されていることが好ましい。生理活性物質がアプタマー、蛋白質、オリゴペプチド、糖鎖、糖蛋白質の場合もアミノ基を有することが好ましい。   Various bioactive substances can be immobilized using the biochip substrate of the present invention. When nucleic acid is used as the physiologically active substance to be immobilized, the amino group may be introduced at the end of the molecular chain or at the side chain in order to increase the reactivity with the active ester group, but the amino group is introduced at the end of the molecular chain. It is preferable that When the physiologically active substance is an aptamer, protein, oligopeptide, sugar chain or glycoprotein, it preferably has an amino group.

以下に実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
図1に実施方法の形態について示す。飽和環状ポリオレフィン樹脂をスライドガラス形状(寸法:76mm×26mm×1mm)に加工して固相基板を作成し、2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート−p−ニトロフェニルカルボニルオキシエチルメタクリレート共重合体の0.1重量%1−ブタノール溶液を高分子物質溶液として調整した。固相基板6の上方の高さ10.0cmに2流体ノズル1(アトマックス社製アトマックスAM6S−IST)を設置し、ノズルにエア供給ライン2よりエアー圧を0.5MPa、高分子物質溶液をシリンジポンプ4より10.0ml/minで高分子溶液供給ライン3を介して供給し、ベルトコンベア5上を10.4cm/secで流れている固相基板6に噴霧した。高分子溶液の塗布に要した時間は、基板1枚当たり0.7秒であった。次いで、この基板を風乾することにより、基板上に高分子物質の膜厚が均一になるように形成した。
(Example 1)
FIG. 1 shows an embodiment of the method. A saturated cyclic polyolefin resin was processed into a slide glass shape (dimensions: 76 mm × 26 mm × 1 mm) to prepare a solid phase substrate, and 2-methacryloyloxyethyl phosphorylcholine-butyl methacrylate-p-nitrophenylcarbonyloxyethyl methacrylate copolymer A 0.1 wt% 1-butanol solution was prepared as a polymer solution. A two-fluid nozzle 1 (Atomax AM6S-IST, manufactured by Atmax Co., Ltd.) is installed at a height of 10.0 cm above the solid phase substrate 6, and an air pressure is 0.5 MPa from the air supply line 2 to the nozzle. Was supplied from the syringe pump 4 at 10.0 ml / min via the polymer solution supply line 3 and sprayed onto the solid substrate 6 flowing on the belt conveyor 5 at 10.4 cm / sec. The time required for applying the polymer solution was 0.7 seconds per substrate. Next, the substrate was air-dried to form a polymer material with a uniform film thickness on the substrate.

(実施例2)
実施例1記載の共重合体の0.05重量%1−ブタノール溶液を調整し、ノズル設置高さ、エアー圧、溶液供給量、基板送り速度を実施例1と同条件で実施例1記載のプラスチック基板に2回塗布した。高分子溶液の塗布に要した時間は、基板1枚当たり1.4秒であった。次いで、この基板を風乾させて、基板上に高分子物質膜を形成した。
(Example 2)
A 0.05 wt% 1-butanol solution of the copolymer described in Example 1 was prepared, and the nozzle installation height, air pressure, solution supply amount, and substrate feed rate were as described in Example 1 under the same conditions as in Example 1. It was applied twice to a plastic substrate. The time required for applying the polymer solution was 1.4 seconds per substrate. Next, the substrate was air-dried to form a polymer film on the substrate.

(比較例1)
実施例1記載のプラスチック基板を、実施例1記載の共重合体の0.3重量%エタノール溶液に浸漬した。この浸漬塗布に要する時間は、基板1枚当たり20秒であった。次いで、この基板を風乾させて、基板上に高分子物質膜を形成した。
(Comparative Example 1)
The plastic substrate described in Example 1 was immersed in a 0.3 wt% ethanol solution of the copolymer described in Example 1. The time required for this dip coating was 20 seconds per substrate. Next, the substrate was air-dried to form a polymer film on the substrate.

(高分子物質の膜厚評価)
基板表面上に形成した高分子膜の膜厚測定には、自動エリプソメーター「MARY−102」(ファイブラボ社製)を用いた。使用レーザーはHe−Neレーザー(波長は632.8nm)、入射角度は70度である。基板表面内を等間隔となるように、160箇所を選び膜厚測定し、平均値とCV値(変動係数)を算出した。
(Evaluation of film thickness of polymer materials)
For measuring the thickness of the polymer film formed on the substrate surface, an automatic ellipsometer “MARY-102” (manufactured by Fibrabo) was used. The laser used is a He—Ne laser (wavelength is 632.8 nm), and the incident angle is 70 degrees. The film thickness was measured by selecting 160 locations so that the substrate surface was equally spaced, and the average value and CV value (coefficient of variation) were calculated.

(評価結果)
表1に実施例および比較例の膜厚平均値とCV値を示す。実施例1および2は、比較例1と比較して膜厚のバラツキが低減しており、高分子物質の塗布均一性が向上していることが確認できた。更には、本発明によれば高分子物質溶液の塗布に要する時間を大幅に短縮することも可能であった。
(Evaluation results)
Table 1 shows the film thickness average values and CV values of Examples and Comparative Examples. In Examples 1 and 2, the variation in film thickness was reduced as compared with Comparative Example 1, and it was confirmed that the coating uniformity of the polymer substance was improved. Furthermore, according to the present invention, it was possible to significantly reduce the time required for applying the polymer substance solution.

Figure 2008170238
Figure 2008170238

実施例のバイオチップ用基板の製造方法の形態を示す概略図Schematic which shows the form of the manufacturing method of the board | substrate for biochips of an Example.

符号の説明Explanation of symbols

1 2流体ノズル
2 エアー供給ライン
3 高分子物質溶液供給ライン
4 高分子物質溶液供給用シリンジポンプ
5 基板搬送用ベルトコンベア
6 固相基板
DESCRIPTION OF SYMBOLS 1 2 Fluid nozzle 2 Air supply line 3 Polymer substance solution supply line 4 Syringe pump for polymer substance solution supply 5 Belt conveyor 6 for substrate conveyance Solid phase substrate

Claims (13)

基板表面に高分子物質を含む層が形成され、生理活性物質又は生理活性物質と親和性を有する物質を固定化し、生理活性物質を検出する際に用いられるバイオチップ用基板の製造方法であって、前記高分子物質を含む層をスプレーノズルを使用してスプレーコーティング法で形成する工程を含むことを特徴とするバイオチップ用基板の製造方法。 A method for producing a biochip substrate used when a layer containing a polymer substance is formed on a substrate surface, a physiologically active substance or a substance having affinity with a physiologically active substance is immobilized, and the physiologically active substance is detected. A method for producing a biochip substrate, comprising a step of forming a layer containing the polymer substance by a spray coating method using a spray nozzle. 前記スプレーノズルが2流体噴霧ノズルである請求項1記載のバイオチップ用基板の製造方法。 The biochip substrate manufacturing method according to claim 1, wherein the spray nozzle is a two-fluid spray nozzle. 前記スプレーノズルより噴霧される塗布液滴の平均粒径が1μm〜50μmである請求項1又は2記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to claim 1 or 2, wherein an average particle diameter of the coating droplet sprayed from the spray nozzle is 1 µm to 50 µm. 前記高分子物質を含む層の膜厚が1nm〜20nmである請求項1〜3いずれか記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to any one of claims 1 to 3, wherein the layer containing the polymer substance has a thickness of 1 nm to 20 nm. 前記高分子物質を含む層の膜厚CV値が10%以内である請求項1〜4いずれか記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to any one of claims 1 to 4, wherein a film thickness CV value of the layer containing the polymer substance is within 10%. 前記スプレーコーティング法の工程で使用する有機溶媒が、炭素数1〜4のアルコール単独溶媒、あるいはそれらの混合溶媒、又はそれらアルコールと水との混合溶媒である請求項1〜5いずれか記載のバイオチップ用基板の製造方法。 The bio solvent according to any one of claims 1 to 5, wherein the organic solvent used in the step of the spray coating method is an alcohol single solvent having 1 to 4 carbon atoms, a mixed solvent thereof, or a mixed solvent of alcohol and water. A method for manufacturing a chip substrate. 前記基板の材質がプラスチックである請求項1〜6いずれか記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to any one of claims 1 to 6, wherein a material of the substrate is plastic. 前記プラスチックが環状ポリオレフィン又は環状ポリオレフィンを含む混合物である請求項7記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to claim 7, wherein the plastic is a cyclic polyolefin or a mixture containing a cyclic polyolefin. 前記高分子物質がホスホリルコリン基を有するものである請求項1〜8いずれか記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to claim 1, wherein the polymer substance has a phosphorylcholine group. 前記ホスホリルコリン基が2−メタクリロイルオキシエチルホスホリルコリン基である請求項9記載のバイオチップ 用基板の製造方法。 The method for producing a biochip substrate according to claim 9, wherein the phosphorylcholine group is a 2-methacryloyloxyethyl phosphorylcholine group. 前記高分子物質が活性エステル基を有するものである請求項1〜10いずれか記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to any one of claims 1 to 10, wherein the polymer substance has an active ester group. 前記活性エステル基がp−ニトロフェニルエステル基又はN−ヒドロキシスクシンイミドエステル基を有するものである請求項11記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to claim 11, wherein the active ester group has a p-nitrophenyl ester group or an N-hydroxysuccinimide ester group. 前記高分子物質がブチルメタクリレート基を含む共重合体である請求項1〜12いずれか記載のバイオチップ用基板の製造方法。 The method for producing a biochip substrate according to any one of claims 1 to 12, wherein the polymer substance is a copolymer containing a butyl methacrylate group.
JP2007002853A 2007-01-10 2007-01-10 Method of manufacturing biochip substrate Pending JP2008170238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002853A JP2008170238A (en) 2007-01-10 2007-01-10 Method of manufacturing biochip substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002853A JP2008170238A (en) 2007-01-10 2007-01-10 Method of manufacturing biochip substrate

Publications (1)

Publication Number Publication Date
JP2008170238A true JP2008170238A (en) 2008-07-24

Family

ID=39698478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002853A Pending JP2008170238A (en) 2007-01-10 2007-01-10 Method of manufacturing biochip substrate

Country Status (1)

Country Link
JP (1) JP2008170238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148483A (en) * 2012-01-20 2013-08-01 Sumitomo Bakelite Co Ltd Manufacturing method of biochip, and biochip
WO2013165133A1 (en) * 2012-04-30 2013-11-07 피씨엘(주) Improved sol composition injection nozzle for sol-gel chip production, and sol-gel chip making device containing same
JP2014020937A (en) * 2012-07-19 2014-02-03 Sumitomo Bakelite Co Ltd Method for manufacturing biochip, and biochip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146003A (en) * 1994-11-28 1996-06-07 Toppan Printing Co Ltd Molded product for immunoassay and production thereof
JPH10197706A (en) * 1996-11-15 1998-07-31 Mitsubishi Materials Corp Reflection mirror with au thin film
JPH11227091A (en) * 1998-02-13 1999-08-24 Ne Chemcat Corp Manufacture of photocatalyst carrying base plate
WO2005113129A1 (en) * 2004-05-12 2005-12-01 Commissariat A L'energie Atomique Sol-gel process for the functionalisation of a surface of a solid substrate
JP2006184016A (en) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd Method for manufacturing biochip substrate
JP2006343270A (en) * 2005-06-10 2006-12-21 Canon Inc Manufacturing method of probe immobilization carrier for reducing nonspecific adsorption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146003A (en) * 1994-11-28 1996-06-07 Toppan Printing Co Ltd Molded product for immunoassay and production thereof
JPH10197706A (en) * 1996-11-15 1998-07-31 Mitsubishi Materials Corp Reflection mirror with au thin film
JPH11227091A (en) * 1998-02-13 1999-08-24 Ne Chemcat Corp Manufacture of photocatalyst carrying base plate
WO2005113129A1 (en) * 2004-05-12 2005-12-01 Commissariat A L'energie Atomique Sol-gel process for the functionalisation of a surface of a solid substrate
JP2006184016A (en) * 2004-12-24 2006-07-13 Sumitomo Bakelite Co Ltd Method for manufacturing biochip substrate
JP2006343270A (en) * 2005-06-10 2006-12-21 Canon Inc Manufacturing method of probe immobilization carrier for reducing nonspecific adsorption

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148483A (en) * 2012-01-20 2013-08-01 Sumitomo Bakelite Co Ltd Manufacturing method of biochip, and biochip
WO2013165133A1 (en) * 2012-04-30 2013-11-07 피씨엘(주) Improved sol composition injection nozzle for sol-gel chip production, and sol-gel chip making device containing same
JP2014020937A (en) * 2012-07-19 2014-02-03 Sumitomo Bakelite Co Ltd Method for manufacturing biochip, and biochip

Similar Documents

Publication Publication Date Title
JP6616395B2 (en) Spray coating system components and methods including a repellent surface
US5968642A (en) Article having a water-repellent fluororesin surface, and method for manufacturing the same
Fukai et al. Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces
Brown et al. Superhydrophobic hierarchical honeycomb surfaces
Kumar et al. Amphiphilic copolymer coatings via plasma polymerisation process: Switching and anti‐biofouling characteristics
CN1118338C (en) Impregnation process for substrate material and impregnated substrate material and articles made thereof
JP2012509377A5 (en)
JP2002038102A (en) Composition for making barely wettable surface
JP6255748B2 (en) Resin molded body having a surface excellent in water slidability
JP2008170238A (en) Method of manufacturing biochip substrate
KR101260264B1 (en) Priming and coating process
JP5883649B2 (en) COATING COMPOSITION, PROCESS FOR PRODUCING COATING COMPOSITION, COATED ARTICLE, AND METHOD FOR FORMING SUCH ARTICLE
Guntari et al. (Super) hydrophobic and multilayered amphiphilic films prepared by continuous assembly of polymers
Agarwal et al. Reactive multilayers and coatings fabricated by spray assembly: influence of polymer structure and process parameters on multiscale structure and interfacial properties
US20220032338A1 (en) Fabrication of Crosslinked and Reactive Nanoporous Polymer Coatings Using Spray-Based Methods
CN101627062A (en) The method of applying solution catalysts to reactor surfaces
Kim et al. Spray Coating of Nanosilicate‐Based Hydrogel on Concrete
US20050215744A1 (en) Combination of a material and a bath fluid for use in rapid prototyping methods
KR102615417B1 (en) Surface treatment liquid
US11807778B2 (en) Influence of partial side chain hydrolysis on the growth and morphology of reactive polymer multilayers fabricated using azlactone-functionalized polymers
JP6652407B2 (en) Liquid composition for forming antifouling film and method for forming antifouling film using this liquid composition
JP4347212B2 (en) Biochip substrate manufacturing method
KR100649070B1 (en) Compositional gradient coating film-forming coating composition
CN106170587A (en) By polyolefin for the method for stabilisation goods
Jung et al. Fabrication of the Superhydrophobic Surface Inspired from Lotus-Effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228