JP2008170223A - Measuring method of water level of nuclear reactor and its device - Google Patents

Measuring method of water level of nuclear reactor and its device Download PDF

Info

Publication number
JP2008170223A
JP2008170223A JP2007002434A JP2007002434A JP2008170223A JP 2008170223 A JP2008170223 A JP 2008170223A JP 2007002434 A JP2007002434 A JP 2007002434A JP 2007002434 A JP2007002434 A JP 2007002434A JP 2008170223 A JP2008170223 A JP 2008170223A
Authority
JP
Japan
Prior art keywords
water level
pressure vessel
microwave
reactor
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007002434A
Other languages
Japanese (ja)
Other versions
JP4945250B2 (en
Inventor
Hidehiko Kuroda
英彦 黒田
Hideo Namihira
英夫 波平
Yuka Matsuo
由佳 松尾
Yasushi Goto
泰志 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007002434A priority Critical patent/JP4945250B2/en
Publication of JP2008170223A publication Critical patent/JP2008170223A/en
Application granted granted Critical
Publication of JP4945250B2 publication Critical patent/JP4945250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for measuring water level of a nuclear reactor having a simplified structure without requiring a complicated structure of the nuclear reactor. <P>SOLUTION: This method is provided with introducing a microwave generated by a microwave source 11, set outside of a pressure vessel 1 of a nuclear reactor, to inside of the pressure vessel 1, and projecting it to the water surface 16 of the water 1b stocked inside of the pressure vessel 1, and then the water level of the water 1b is obtained from the relationship between the intensity of the reflected microwave and time or from a resonant frequency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、沸騰水型原子炉や加圧水型原子炉の冷却材の液面高さを測定する原子炉水位の測定方法および装置に関する。   The present invention relates to a reactor water level measuring method and apparatus for measuring the liquid level height of a coolant in a boiling water reactor or a pressurized water reactor.

一般に、沸騰水型原子炉の水位計としては、差圧式水位計が知られている(特許文献1)。差圧式水位計では、図9に示すように、炉心1aと冷却材1bを収容した原子炉圧力容器1に対して計装配管2、3、4が設けられ、凝縮槽5が取り付けられた最上部の計装配管2が、差圧計6、7を介して下部の計装配管3、4にそれぞれ接続されている。差圧計6、7では、原子炉水位に比例した圧力が測定されるため、圧力から原子炉水位を求めることができる。差圧計6、7のいずれでも原子炉水位を求めることができるが、測定範囲と精度が異なる。8は補正用の差圧計である。   Generally, a differential pressure type water level gauge is known as a water level gauge for a boiling water reactor (Patent Document 1). In the differential pressure type water level gauge, as shown in FIG. 9, instrumentation pipes 2, 3, and 4 are provided for the reactor pressure vessel 1 containing the core 1a and the coolant 1b, and the condensing tank 5 is attached. The upper instrumentation pipe 2 is connected to the lower instrumentation pipes 3 and 4 via differential pressure gauges 6 and 7, respectively. Since the differential pressure gauges 6 and 7 measure a pressure proportional to the reactor water level, the reactor water level can be obtained from the pressure. The reactor water level can be obtained by either of the differential pressure gauges 6 and 7, but the measurement range and accuracy are different. Reference numeral 8 denotes a differential pressure gauge for correction.

他方、加圧水型原子炉の水位計としては、熱電対式水位計が知られている。熱電対式水位計では、図10に示すように、原子炉圧力容器1に対して熱電対式センサ9を収納した被覆管10が取り付けられる。熱電対式センサ9の下端部には、感温部が2ヵ所有り、一方の感温部に発熱部を備えた構造になっている。熱電対式センサ9よりも下方に水位が存在する場合、感温部に温度差が発生することから水の有無が分かるため、水位を求めることができる(特許文献2)。また、熱電対式センサ9に代えて超音波、電磁気、磁気等のセンサを用いることもできる(特許文献3)。
特開平5−302840号公報 特開平8−220284号公報 特開平10−142028号公報
On the other hand, a thermocouple type water level gauge is known as a water level gauge for a pressurized water reactor. In the thermocouple type water level gauge, as shown in FIG. 10, a cladding tube 10 containing a thermocouple sensor 9 is attached to the reactor pressure vessel 1. The thermocouple sensor 9 has two temperature sensitive parts at the lower end, and one temperature sensitive part has a heat generating part. When the water level is present below the thermocouple sensor 9, since the temperature difference is generated in the temperature sensing part, the presence or absence of water is known, so that the water level can be obtained (Patent Document 2). Moreover, it can replace with the thermocouple type sensor 9, and can also use sensors, such as an ultrasonic wave, an electromagnetic, and a magnetism (patent document 3).
JP-A-5-302840 JP-A-8-220284 Japanese Patent Laid-Open No. 10-142028

上述した従来の差圧式水位計では、原子炉水位を測定するための計装配管2、3、4および凝縮槽5が必要であり、原子炉の構造が複雑になるという課題がある。   The conventional differential pressure type water level meter described above requires the instrumentation pipes 2, 3, 4 and the condensing tank 5 for measuring the reactor water level, and there is a problem that the structure of the reactor becomes complicated.

他方、上述の熱電対式水位計では、熱電対式センサ9を複数取り付ける、または熱電対式センサ9に上下駆動機構を取り付けることが必要であり、差圧式水位計と同様、原子炉の構造が複雑になるという課題がある。   On the other hand, in the above-described thermocouple type water level gauge, it is necessary to attach a plurality of thermocouple type sensors 9 or to attach a vertical drive mechanism to the thermocouple type sensor 9, and the structure of the nuclear reactor is similar to the differential pressure type water level gauge. There is a problem of becoming complicated.

本発明は、上述の課題を解決するためになされたものであり、原子炉の構造を複雑にすることのない簡素な原子炉水位の測定方法および装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a simple method and apparatus for measuring the reactor water level without complicating the structure of the reactor.

本発明の原子炉水位の測定装置は、原子炉の圧力容器の外部に設置されマイクロ波を発生するマイクロ波源と、マイクロ波を導波伝送する導波伝送手段と、前記導波伝送手段に接続され圧力容器の外壁までマイクロ波を無線伝送する無線伝送手段と、圧力容器の外壁において前記無線伝送手段に接続され、圧力容器の内部まで貫通し、圧力容器の内部へマイクロ波を伝送するケーブル伝送手段と、前記ケーブル伝送手段に接続され、圧力容器の内部の水面に対してマイクロ波を投射し反射マイクロ波を受信するアンテナ手段と、前記アンテナ手段で受信され前記ケーブル伝送手段により圧力容器の外部へ伝送された反射マイクロ波を前記無線伝送手段によって無線伝送して前記導波伝送手段へ伝送した後、分岐し導波する導波分岐手段と、前記導波分岐手段によって導波された反射マイクロ波を検知する検知手段と、検知された反射マイクロ波から圧力容器の内部の水位を演算して求める水位演算手段とを備えている構成とする。   The reactor water level measuring apparatus according to the present invention includes a microwave source that is installed outside a reactor pressure vessel and generates a microwave, a waveguide transmission unit that performs microwave transmission, and is connected to the waveguide transmission unit. Wireless transmission means for wirelessly transmitting microwaves to the outer wall of the pressure vessel, and cable transmission connected to the wireless transmission means on the outer wall of the pressure vessel, penetrating to the inside of the pressure vessel, and transmitting microwaves to the inside of the pressure vessel Means, antenna means connected to the cable transmission means, for projecting microwaves on the water surface inside the pressure vessel and receiving reflected microwaves, and received by the antenna means and external to the pressure vessel by the cable transmission means Waveguide branching means for branching and guiding after the reflected microwave transmitted to the wireless transmission by the wireless transmission means and transmitted to the waveguide transmission means, Detection means for detecting the reflected microwaves guided by the waveguide branching means, from the sensed reflected microwave configured to have a water level calculation means for calculating calculates the water level inside the pressure vessel.

本発明の原子炉水位の測定方法は、原子炉の圧力容器の外部に設けられたマイクロ波源によって発生したマイクロ波を圧力容器内に導入して圧力容器内に貯留された水の表面に投射し、反射マイクロ波の強度と時間の関係または共振周波数から前記水の表面の高さを求める方法とする。   The method for measuring the reactor water level according to the present invention introduces a microwave generated by a microwave source provided outside the reactor pressure vessel into the pressure vessel and projects the microwave onto the surface of the water stored in the pressure vessel. The height of the surface of the water is obtained from the relationship between the intensity of reflected microwave and time or the resonance frequency.

本発明によれば、原子炉の構造を複雑にすることのない簡素な原子炉水位の測定方法および装置を提供することができる。   According to the present invention, it is possible to provide a simple method and apparatus for measuring a reactor water level without complicating the structure of the reactor.

以下、本発明に係る原子炉水位の測定方法および装置の第1ないし第4の実施の形態について図面を参照して説明する。   Hereinafter, first to fourth embodiments of a reactor water level measuring method and apparatus according to the present invention will be described with reference to the drawings.

(第1の実施の形態)
(構成)
本実施の形態の原子炉水位の測定装置は、図1に示すように、原子炉圧力容器1の外部に設置され、圧力容器の内部の水位を計測するためのマイクロ波を発生するマイクロ波源11と、原子炉圧力容器1の近傍までマイクロ波を導波伝送する導波伝送手段12と、導波伝送手段12および原子炉圧力容器1の外壁13に取り付けられ、導波伝送手段12から原子炉圧力容器1の外壁13までマイクロ波を無線伝送する無線伝送手段14a,14bと、原子炉圧力容器1の外壁13の無線伝送手段14bに取り付けられ、原子炉圧力容器1の内部まで貫通し、原子炉圧力容器1の内部へマイクロ波を伝送するケーブル伝送手段15と、ケーブル伝送手段15に取り付けられ、原子炉圧力容器1の内部の水面16に対してマイクロ波を投射するアンテナ手段17と、水面16で反射されアンテナ手段17で受信され、ケーブル伝送手段15により原子炉圧力容器1の外部へ伝送された反射マイクロ波を無線伝送手段14a,14bによって無線伝送して導波伝送手段12へ伝送した後、分岐する導波分岐手段18と、導波分岐手段18によって導かれた反射マイクロ波を検知する検知手段19と、検知された反射マイクロ波から原子炉圧力容器1の内部の水位を演算して求める水位演算手段20と、水位の演算結果を無線で情報伝送する情報無線伝送手段21a,21bと、マイクロ波源11および検知手段19および水位演算手段20の一部または全てを無線で遠隔操作する無線操作手段22a,22bと、情報無線伝送手段21a,21bや無線操作手段22a,22bの無線伝送を中継する無線中継手段23と、から構成されている。
(First embodiment)
(Constitution)
As shown in FIG. 1, the reactor water level measuring apparatus according to the present embodiment is installed outside the reactor pressure vessel 1 and generates a microwave 11 for measuring the water level inside the pressure vessel. And a waveguide transmission means 12 that guides and transmits microwaves to the vicinity of the reactor pressure vessel 1, and is attached to the waveguide transmission means 12 and the outer wall 13 of the reactor pressure vessel 1. Wireless transmission means 14a, 14b for wirelessly transmitting microwaves to the outer wall 13 of the pressure vessel 1, and wireless transmission means 14b on the outer wall 13 of the reactor pressure vessel 1, are attached to the inside of the reactor pressure vessel 1, A cable transmission means 15 for transmitting microwaves to the inside of the reactor pressure vessel 1 and an antenna that is attached to the cable transmission means 15 and that projects microwaves onto the water surface 16 inside the reactor pressure vessel 1. The reflected microwaves reflected by the tener means 17 and the water means 16 and received by the antenna means 17 and transmitted to the outside of the reactor pressure vessel 1 by the cable transmission means 15 are wirelessly transmitted and guided by the wireless transmission means 14a and 14b. After being transmitted to the transmission means 12, the branching waveguide means 18 branching, the detection means 19 for detecting the reflected microwave guided by the waveguide branching means 18, and the reactor pressure vessel 1 from the detected reflected microwave Some or all of the water level calculation means 20 for calculating and calculating the internal water level, the information wireless transmission means 21a and 21b for wirelessly transmitting the water level calculation results, the microwave source 11, the detection means 19 and the water level calculation means 20 Wireless operation means 22a, 22b for remotely operating the wireless communication and wireless transmission of information wireless transmission means 21a, 21b and wireless operation means 22a, 22b A radio relay unit 23 for relaying, and a.

マイクロ波源11は、クライストロン、マグネトロン、進行波管などの電子管、ガンダイオードなどの半導体素子などで構成される。マイクロ波の周波数は、マイクロ波の指向性や伝送損失、無線伝送手段14a,14bやケーブル伝送手段15の寸法を考慮して選定される。   The microwave source 11 includes an electron tube such as a klystron, a magnetron, or a traveling wave tube, or a semiconductor element such as a Gunn diode. The frequency of the microwave is selected in consideration of the directivity and transmission loss of the microwave, and the dimensions of the wireless transmission means 14a and 14b and the cable transmission means 15.

導波伝送手段12は、中空構造の導体で構成され、断面形状の制限はないが、内径寸法はマイクロ波の周波数に適合するように選定する。   The waveguide transmission means 12 is formed of a hollow conductor and has no cross-sectional shape limitation, but the inner diameter is selected so as to match the frequency of the microwave.

無線伝送手段14a,14bは、各々ホーンアンテナで構成され、マイクロ波は直進性が高いため、ホーンアンテナは、互いに向き合うように設置される。
ケーブル伝送手段15は、例えば、図2に示す断面構造の同軸ケーブルで構成される。図2は、二重構造の同軸ケーブルであり、導体24、26、鉱物性絶縁体25、27、ステンレスシース28、で構成される。ケーブル伝送手段15は、ろう付け、溶接などによって圧力容器1の外壁13や内壁に取り付けられる。
Each of the wireless transmission units 14a and 14b is composed of a horn antenna, and the microwaves are highly linear, so the horn antennas are installed to face each other.
The cable transmission means 15 is comprised with the coaxial cable of the cross-sectional structure shown in FIG. 2, for example. FIG. 2 shows a coaxial cable having a double structure, which includes conductors 24 and 26, mineral insulators 25 and 27, and a stainless sheath 28. The cable transmission means 15 is attached to the outer wall 13 or the inner wall of the pressure vessel 1 by brazing, welding, or the like.

アンテナ手段17は、無線伝送手段14a,14bと同様、ホーンアンテナで構成される。
導波分岐手段18は、磁性体を内部に設置した中空構造の導体で構成され、導波伝送手段12と同様、断面形状の制限はないが、内径寸法はマイクロ波の周波数に適合するように選定する。導波分岐手段18は、導波伝送手段12と組み合わされて循環器を構成し、マイクロ波源11で発生したマイクロ波を無線伝送手段14aへ伝送し、無線伝送手段14aで受信した反射マイクロ波を検知手段19へ伝送するようになっている。
The antenna means 17 is composed of a horn antenna, like the radio transmission means 14a and 14b.
The waveguide branching means 18 is composed of a hollow conductor with a magnetic material installed therein, and, like the waveguide transmission means 12, there is no restriction on the cross-sectional shape, but the inner diameter dimension is adapted to the microwave frequency. Select. The waveguide branching means 18 is combined with the waveguide transmission means 12 to constitute a circulator, transmits the microwave generated by the microwave source 11 to the wireless transmission means 14a, and receives the reflected microwave received by the wireless transmission means 14a. The data is transmitted to the detection means 19.

検知手段19は、ボロメーター、サーミスター、ダイオードなどで構成される。
水位演算手段20は、図3に示すように、検知された反射マイクロ波の信号強度と時間の関係を求める信号処理装置で構成される。蒸気と水が二相状態を形成する場合は、蒸気と水で誘電率が異なるため、信号強度が不連続になる不連続点29ができる。
The detection means 19 includes a bolometer, thermistor, diode, and the like.
As shown in FIG. 3, the water level calculation means 20 is composed of a signal processing device that obtains the relationship between the signal intensity of the detected reflected microwave and time. When steam and water form a two-phase state, since the dielectric constant differs between steam and water, a discontinuous point 29 where the signal intensity becomes discontinuous is formed.

情報無線伝送手段21a,21bは、無線通信装置で構成され、マイクロ波通信やミリ波通信、長波から超短波の通信が適用可能である。伝送される情報は、情報無線伝送手段21aにおいて変調および送信され、情報無線伝送手段21bにおいて受信および復調される。   The information wireless transmission means 21a and 21b are composed of wireless communication devices, and microwave communication, millimeter wave communication, and long wave to ultra short wave communication are applicable. The information to be transmitted is modulated and transmitted by the information wireless transmission means 21a, and received and demodulated by the information wireless transmission means 21b.

無線操作手段22a,22bについても、情報無線伝送手段21a,21bと同様、無線通信装置で構成され、マイクロ波通信やミリ波通信、長波から超短波の通信が適用可能である。伝送される情報は、無線操作手段22aにおいて変調および送信され、無線操作手段22bにおいて受信および復調される。   Similarly to the information wireless transmission means 21a and 21b, the wireless operation means 22a and 22b are configured by wireless communication devices, and microwave communication, millimeter wave communication, and communication from long wave to ultrashort wave can be applied. The information to be transmitted is modulated and transmitted by the wireless operation means 22a, and received and demodulated by the wireless operation means 22b.

なお、情報無線伝送手段21bや無線操作手段22aは、異なる場所に複数設置可能であるが、無線操作手段22a,22bと情報無線伝送手段21a,21bの搬送周波数は、異なるように設定する。   A plurality of information wireless transmission means 21b and wireless operation means 22a can be installed in different places, but the carrier frequencies of the wireless operation means 22a and 22b and the information wireless transmission means 21a and 21b are set to be different.

無線中継手段23は、長距離や複雑な経路を伝送する場合などに、情報無線伝送手段21a,21bや無線操作手段22a,22bの伝送信号の増幅および中継を行う装置である。例えば、マイクロ波通信の場合は、情報無線伝送手段21aと21bが向き合うことができない場合に適用される。また、無線中継手段23は、複数設置することができ、伝送路の多重化や多経路化、複数の場所への同時配信も可能である。   The wireless relay means 23 is an apparatus that amplifies and relays transmission signals of the information wireless transmission means 21a and 21b and the wireless operation means 22a and 22b when transmitting a long distance or a complicated route. For example, in the case of microwave communication, it is applied when the information wireless transmission means 21a and 21b cannot face each other. In addition, a plurality of wireless relay means 23 can be installed, and transmission paths can be multiplexed, multi-pathed, and distributed simultaneously to a plurality of locations.

(作用)
マイクロ波源11によってパルス発振されたマイクロ波は、導波伝送手段12を導波して無線伝送手段14aへ伝送され、無線伝送手段14aから無線伝送される。無線伝送されたマイクロ波は、無線伝送手段14bによって受信され、ケーブル伝送手段15によって原子炉圧力容器1の外壁13から内部へ伝送される。
(Function)
The microwave pulse-oscillated by the microwave source 11 is transmitted through the waveguide transmission means 12 to the wireless transmission means 14a, and is wirelessly transmitted from the wireless transmission means 14a. The wirelessly transmitted microwave is received by the wireless transmission means 14 b and transmitted from the outer wall 13 of the reactor pressure vessel 1 to the inside by the cable transmission means 15.

マイクロ波の伝送損失を考えた場合、原子炉圧力容器1の外壁13から内部への伝送手段は導波管が適するが、導波管は中空構造であるため、原子炉圧力容器1内の気密性が保持できない。他方、一般の同軸ケーブルは、原子炉圧力容器1内が高温高圧および放射線環境であるため適用できない。そこで、図2に示した構造の同軸ケーブルを用いることによって、高温高圧および放射線環境に適用でき、ろう付けや溶接によって原子炉圧力容器1の外壁13や内壁に取り付けることにより、原子炉圧力容器1内の気密性を確保することができる。   In consideration of microwave transmission loss, a waveguide is suitable as a transmission means from the outer wall 13 of the reactor pressure vessel 1 to the inside. However, since the waveguide has a hollow structure, the airtightness in the reactor pressure vessel 1 is reduced. Sex cannot be maintained. On the other hand, a general coaxial cable cannot be applied because the reactor pressure vessel 1 is in a high temperature and high pressure and radiation environment. Therefore, by using the coaxial cable having the structure shown in FIG. 2, it can be applied to a high temperature and high pressure and radiation environment, and by attaching to the outer wall 13 or the inner wall of the reactor pressure vessel 1 by brazing or welding, the reactor pressure vessel 1 The inside airtightness can be secured.

原子炉圧力容器1の内部へ伝送されたパルス性のマイクロ波は、アンテナ手段17から原子炉圧力容器1の内部の水面16に投射され、水面で反射したマイクロ波がアンテナ手段17で受信される。反射マイクロ波は、アンテナ手段17からケーブル伝送手段15に戻って原子炉圧力容器1の外部へ伝送され、無線伝送手段14bから無線伝送される。そして、無線伝送手段14aにおいて受信された反射マイクロ波は、導波分岐手段18を導波して検知手段19で検知される。なお、圧力容器1の内部が高温高圧のため、水と蒸気の混合状態となり、検知信号が小さくなる場合がある。このような場合は、マイクロ波の周波数を変えてマイクロ波の伝送損失を小さくし、検知信号が大きくなるようにする。   The pulsed microwave transmitted to the inside of the reactor pressure vessel 1 is projected from the antenna means 17 to the water surface 16 inside the reactor pressure vessel 1, and the microwave reflected by the water surface is received by the antenna means 17. . The reflected microwave returns from the antenna means 17 to the cable transmission means 15, is transmitted to the outside of the reactor pressure vessel 1, and is wirelessly transmitted from the wireless transmission means 14b. Then, the reflected microwave received by the wireless transmission means 14 a is guided by the waveguide branching means 18 and detected by the detection means 19. In addition, since the inside of the pressure vessel 1 is high temperature and high pressure, it will be in the mixed state of water and steam, and a detection signal may become small. In such a case, the microwave frequency is changed to reduce the transmission loss of the microwave so that the detection signal is increased.

水位演算手段20では、図3に示したような結果が得られ、不連続点29が、誘電率の異なる二相、すなわち蒸気相と水相の境界面である水面16を表わすことになる。ここで、不連続点29が不明確な場合は、上述したようにマイクロ波の周波数を変更して明確になるようにする。水位は、マイクロ波の伝搬速度と不連続点29の時間から求められる。   In the water level calculation means 20, the result as shown in FIG. 3 is obtained, and the discontinuous point 29 represents the water surface 16 which is a two-phase different dielectric constant, that is, the boundary surface between the vapor phase and the water phase. Here, when the discontinuous point 29 is unclear, the frequency of the microwave is changed as described above to make it clear. The water level is obtained from the propagation speed of the microwave and the time of the discontinuity point 29.

求められた水位は、時間や場所、マイクロ波源11の設定、その他必要な情報が付加され、情報無線伝送手段21aから無線中継手段23を経由し、情報無線伝送手段21bへ無線伝送される。情報無線伝送手段21bは、中央操作室や管理区域外などの場所に設置され、それらの場所で水位やその他の情報を効率的かつ経済的に入手する。   The obtained water level is added with time, place, setting of the microwave source 11, and other necessary information, and is wirelessly transmitted from the information wireless transmission means 21a to the information wireless transmission means 21b via the wireless relay means 23. The information wireless transmission means 21b is installed in places such as the central operation room and outside the management area, and obtains the water level and other information efficiently and economically at those places.

他方、マイクロ波源11、検知手段19、水位演算手段20に関する操作、停止、緊急停止、その他必要な運転および操作条件は、無線操作手段22aで設定され、無線中継手段23を経由して無線操作手段22bへ無線伝送される。そして、無線操作手段22bにより、マイクロ波源11、検知手段19、水位演算手段20を操作する。無線操作手段22aは、情報無線伝送手段21bと同様、中央操作室や管理区域外などの場所に設置され、効率的かつ経済的に操作される。   On the other hand, the operation, stop, emergency stop, and other necessary operation and operation conditions related to the microwave source 11, the detection unit 19, and the water level calculation unit 20 are set by the wireless operation unit 22a, and the wireless operation unit is connected via the wireless relay unit 23. 22b is wirelessly transmitted. Then, the microwave source 11, the detection unit 19, and the water level calculation unit 20 are operated by the wireless operation unit 22b. Similarly to the information wireless transmission means 21b, the wireless operation means 22a is installed in a place such as a central operation room or outside the management area, and is operated efficiently and economically.

(効果)
本実施の形態によれば、原子炉圧力容器1の内部の水位を計測するためにマイクロ波を用い、アンテナと同軸ケーブルを用いてマイクロ波を圧力容器の内部へ伝送し、原子炉圧力容器1内の水面16で反射するマイクロ波から水位を計測することによって、計装配管が不必要であり、また駆動機構や複数のセンサが不必要であるため、原子炉の構造が複雑になることがない簡素な原子炉水位の測定装置を提供することができる。また、中央操作室や管理区域外などの離れた場所からも、無線操作によって水位やその他の情報の把握が可能となり、さらに、離れた各々の場所において水位やその他の情報を同時に把握することもできる。
(effect)
According to the present embodiment, the microwave is used to measure the water level inside the reactor pressure vessel 1, the microwave is transmitted to the inside of the pressure vessel using the antenna and the coaxial cable, and the reactor pressure vessel 1 By measuring the water level from the microwave reflected by the water surface 16 inside, the instrumentation piping is unnecessary, and the drive mechanism and multiple sensors are unnecessary, which may complicate the structure of the reactor. A simple reactor water level measuring device can be provided. In addition, it is possible to grasp the water level and other information from a remote location such as outside the central control room or management area by wireless operation, and it is also possible to simultaneously grasp the water level and other information at each remote location. it can.

(第2の実施の形態)
(構成)
次に、図4を用いて本発明の第2の実施の形態の原子炉水位の測定装置を説明する。なお第1の実施の形態と同じ構成には同じ符号を付して重複する説明は省略する。
(Second Embodiment)
(Constitution)
Next, a reactor water level measuring apparatus according to a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment, and the overlapping description is abbreviate | omitted.

本実施の形態の原子炉水位の測定装置は、原子炉圧力容器1の外側に設置され、原子炉圧力容器1の内部の水位を計測するためのマイクロ波を発生するマイクロ波源11と、原子炉圧力容器1の外壁13までマイクロ波を導波管伝送する導波伝送手段30と、原子炉圧力容器1の外壁13において導波伝送手段30に接続され、原子炉圧力容器1の内部まで貫通し、原子炉圧力容器1の内部へマイクロ波を伝送するケーブル伝送手段15と、原子炉圧力容器1内の構造物に取り付けられ、ケーブル伝送されたマイクロ波を原子炉圧力容器1の内部の水面16に対して投射するアンテナ手段31と、水面16で反射されアンテナ手段31で受信され、ケーブル伝送手段15によって原子炉圧力容器1の外部の導波伝送手段30へ伝送された反射マイクロ波を分岐する導波分岐手段18と、導波分岐手段18によって導かれた反射マイクロ波を検知する検知手段19と、検知された反射マイクロ波から原子炉圧力容器1の内部の水位を演算して求める水位演算手段20と、水位の演算結果を無線で情報伝送する情報無線伝送手段21a,21bと、無線伝送の一部または全てを有線で伝送する有線中継手段32と、から構成されている。   The reactor water level measuring apparatus according to the present embodiment is installed outside the reactor pressure vessel 1 and generates a microwave source 11 for measuring the water level inside the reactor pressure vessel 1. A waveguide transmission means 30 for waveguide-transmitting microwaves to the outer wall 13 of the pressure vessel 1 and a waveguide transmission means 30 connected to the outer wall 13 of the reactor pressure vessel 1 and penetrating to the inside of the reactor pressure vessel 1. The cable transmission means 15 for transmitting the microwave to the inside of the reactor pressure vessel 1 and the microwave that is attached to the structure in the reactor pressure vessel 1 and transmits the microwave to the water surface 16 inside the reactor pressure vessel 1. The antenna means 31 for projecting to the reflection, the reflection reflected by the water surface 16 and received by the antenna means 31, and transmitted by the cable transmission means 15 to the waveguide transmission means 30 outside the reactor pressure vessel 1 Waveguide branching means 18 for branching the microwave, detection means 19 for detecting the reflected microwave guided by the waveguide branching means 18, and calculating the water level inside the reactor pressure vessel 1 from the detected reflected microwave Water level calculation means 20, information wireless transmission means 21a, 21b for wirelessly transmitting the water level calculation result, and wired relay means 32 for transmitting a part or all of the wireless transmission by wire. Yes.

導波伝送手段30は、前記導波伝送手段12と同様、中空構造の導体で構成され、断面形状の制限はないが、内径寸法はマイクロ波の周波数に適合するように選定する。   Like the waveguide transmission means 12, the waveguide transmission means 30 is composed of a conductor having a hollow structure, and there is no restriction on the cross-sectional shape, but the inner diameter dimension is selected so as to match the microwave frequency.

アンテナ手段31は、パラボラアンテナで構成され、気水分離器や蒸気発生器などの原子炉圧力容器1内の構造物や原子炉圧力容器1の内壁などに取り付けられる。アンテナ手段31は、原子炉圧力容器1の内部の水面16に対してマイクロ波を投射し、その反射波が受信できるようにパラボラアンテナの形状や向きが設定されている。アンテナ手段31は、ケーブル伝送手段15から分離しているため、構造が簡単で定期検査時における保守が容易である。   The antenna means 31 is constituted by a parabolic antenna and is attached to a structure in the reactor pressure vessel 1 such as a steam separator or a steam generator, an inner wall of the reactor pressure vessel 1 or the like. The antenna means 31 projects the microwave on the water surface 16 inside the reactor pressure vessel 1, and the shape and direction of the parabolic antenna are set so that the reflected wave can be received. Since the antenna means 31 is separated from the cable transmission means 15, the structure is simple and the maintenance during the periodic inspection is easy.

有線中継手段32は、複雑な経路を伝送する場合などに、情報無線伝送手段21a,21bや無線操作手段22a,22bの伝送信号の増幅および伝送を行う装置である。有線中継手段32は、無線送受信装置と信号伝送ケーブルで構成され、信号伝送ケーブルによって無線受信装置と無線送信装置の間の有線通信を行う。信号伝送ケーブルは、他の計装配線と同様に敷設でき、また光信号に変換して光ファイバーケーブルで伝送することもできる。また、前記無線中継手段23と同様、有線中継手段32は、複数設置することができ、伝送路の多重化や多経路化、複数の場所への同時配信も可能である。   The wired relay means 32 is an apparatus that amplifies and transmits the transmission signals of the information wireless transmission means 21a and 21b and the wireless operation means 22a and 22b when transmitting a complicated route. The wired relay unit 32 includes a wireless transmission / reception device and a signal transmission cable, and performs wired communication between the wireless reception device and the wireless transmission device using the signal transmission cable. The signal transmission cable can be laid in the same manner as other instrumentation wirings, or can be converted into an optical signal and transmitted through an optical fiber cable. Similarly to the wireless relay unit 23, a plurality of wired relay units 32 can be installed, and transmission paths can be multiplexed, multi-pathed, and simultaneously distributed to a plurality of locations.

(作用)
マイクロ波源11によってパルス発振されたマイクロ波は、導波伝送手段30によって原子炉圧力容器1の外壁13まで効率的に伝送され、ケーブル伝送手段15によって原子炉圧力容器1の内部へ伝送される。原子炉圧力容器1の内部では、ケーブル伝送手段15が一次放射器となってマイクロ波が放射され、アンテナ手段31で反射して原子炉圧力容器1の内部の水面16に対してマイクロ波が投射される。水面で反射したマイクロ波は、アンテナ手段31で反射し、一次放射器のケーブル伝送手段15で受信され、原子炉圧力容器1の外部へ伝送される。そして、原子炉圧力容器1の外部へ伝送された反射マイクロ波は、導波伝送手段30を導波後、導波分岐手段18を通って検知手段19で検知される。検知信号が小さい場合は、第1の実施の形態と同様、マイクロ波の周波数を変えてマイクロ波の伝送損失を小さくし、検知信号が大きくなるようにする。水位演算手段20では、図3に示したような結果が得られるため、不連続点29の時間とマイクロ波の伝搬速度から水位を求める。ここで、不連続点29が不明確な場合は、上述したようにマイクロ波の周波数を変更して明確になるようにする。
(Function)
The microwave pulsated by the microwave source 11 is efficiently transmitted to the outer wall 13 of the reactor pressure vessel 1 by the waveguide transmission means 30 and is transmitted to the inside of the reactor pressure vessel 1 by the cable transmission means 15. Inside the reactor pressure vessel 1, the cable transmission means 15 serves as a primary radiator to radiate microwaves, which are reflected by the antenna means 31 and projected to the water surface 16 inside the reactor pressure vessel 1. Is done. The microwave reflected by the water surface is reflected by the antenna means 31, received by the cable transmission means 15 of the primary radiator, and transmitted to the outside of the reactor pressure vessel 1. Then, the reflected microwave transmitted to the outside of the reactor pressure vessel 1 is detected by the detection means 19 through the waveguide branching means 18 after being guided through the waveguide transmission means 30. When the detection signal is small, as in the first embodiment, the microwave frequency is changed to reduce the transmission loss of the microwave so that the detection signal becomes large. Since the water level calculation means 20 obtains the result as shown in FIG. 3, the water level is obtained from the time of the discontinuous point 29 and the propagation speed of the microwave. Here, when the discontinuous point 29 is unclear, the frequency of the microwave is changed as described above to make it clear.

求められた水位は、時間や場所、マイクロ波源11の設定、その他必要な情報が付加され、情報無線伝送手段21aから有線中継手段32を経由し、情報無線伝送手段21bへ無線伝送され、中央操作室や管理区域外などの場所において、水位やその他の情報を効率的かつ経済的に入手する。なお、有線中継手段32の部分は、信号伝送ケーブルであるため、複雑な経路であっても伝送が容易であり、また既設の計装配線の利用も可能である。   The obtained water level is added with time, place, setting of the microwave source 11, and other necessary information, and is wirelessly transmitted from the information wireless transmission means 21a to the information wireless transmission means 21b via the wired relay means 32, and is operated centrally. Obtain water level and other information efficiently and economically in places such as rooms and out of control areas. In addition, since the part of the wire relay means 32 is a signal transmission cable, transmission is easy even if it is a complicated path | route, and the utilization of the existing instrumentation wiring is also possible.

(効果)
本実施の形態によれば、原子炉圧力容器1の内部の水位を計測するためにマイクロ波を用い、導波管と同軸ケーブルを用いてマイクロ波を原子炉圧力容器1の内部へ伝送し、原子炉圧力容器1内の水面16で反射したマイクロ波から水位を計測することによって、計装配管の数を低減でき、また駆動機構や複数のセンサが不必要であるため、原子炉の構造が複雑になることがない簡素な原子炉水位の測定装置を提供することができる。
(effect)
According to the present embodiment, the microwave is used to measure the water level inside the reactor pressure vessel 1, and the microwave is transmitted to the inside of the reactor pressure vessel 1 using the waveguide and the coaxial cable. By measuring the water level from the microwave reflected by the water surface 16 in the reactor pressure vessel 1, the number of instrumentation pipes can be reduced, and a drive mechanism and a plurality of sensors are not required. It is possible to provide a simple reactor water level measuring device that does not become complicated.

また、原子炉圧力容器1内のアンテナ手段31が、原子炉圧力容器1内の構造物や原子炉圧力容器1の内壁などに取り付けられ、マイクロ波を原子炉圧力容器1の内部へ伝送するケーブル伝送手段15と分離しているため、構造が簡単で定期検査時における保守が容易である。   Further, the antenna means 31 in the reactor pressure vessel 1 is attached to a structure in the reactor pressure vessel 1 or an inner wall of the reactor pressure vessel 1 and transmits a microwave to the inside of the reactor pressure vessel 1. Since it is separated from the transmission means 15, the structure is simple and the maintenance during the periodic inspection is easy.

さらに、中央操作室や管理区域外などが複雑な経路の先にある場合においても、これらの場所で水位やその他の情報の把握が可能であり、簡素な原子炉水位の測定装置を提供することができる。加えて、離れた各々の場所において、水位やその他の情報を同時に把握することもできる。   Furthermore, even when the central control room or outside the control area is at the end of complicated routes, the water level and other information can be grasped at these locations, and a simple reactor water level measurement device should be provided. Can do. In addition, the water level and other information can be grasped simultaneously at each remote location.

(第3の実施の形態)
(構成)
次に図5を用いて本発明の第3の実施の形態の原子炉水位の測定装置を説明する。なお第1、第2の実施の形態と同じ構成には同じ符号を付して重複する説明は省略する。
(Third embodiment)
(Constitution)
Next, a reactor water level measuring apparatus according to a third embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same structure as 1st, 2nd embodiment, and the overlapping description is abbreviate | omitted.

本実施の形態の原子炉水位の測定装置は、原子炉圧力容器1の外側に設置され、原子炉圧力容器1の内部の水位を計測するためのマイクロ波を発生するマイクロ波源11と、原子炉圧力容器1の外壁13までマイクロ波を導波管伝送する導波伝送手段30と、原子炉圧力容器1の外壁13において導波伝送手段30に接続され、原子炉圧力容器1の内部まで貫通し、原子炉圧力容器1の内部へマイクロ波を伝送するケーブル伝送手段15と、原子炉圧力容器1内の構造物に取り付けられ、ケーブル伝送されたマイクロ波を無線送受信するアンテナ手段31と、同様に圧力容器内の構造物に取り付けられ、アンテナ手段31から投射されたマイクロ波を反射させて水面16へ投射する反射手段33a,33bと、水面16に浮いてマイクロ波を反射する浮付きの反射手段33cと、浮付きの反射手段33cで反射し、さらに反射手段33a,33bで反射してアンテナ手段31で受信され、ケーブル伝送手段15によって原子炉圧力容器1の外部の導波伝送手段30へ伝送された水面16からの反射マイクロ波を分岐し導波する導波分岐手段18と、導波分岐手段18によって導波された水面16からの反射マイクロ波を検知する検知手段19と、検知された反射マイクロ波から原子炉圧力容器1の内部の水位を演算して求める水位演算手段20と、水位の演算結果を無線で情報伝送する情報無線伝送手段21a,21bと、無線伝送の一部または全てを有線で伝送する有線中継手段32と、から構成されている。   The reactor water level measuring apparatus according to the present embodiment is installed outside the reactor pressure vessel 1 and generates a microwave source 11 for measuring the water level inside the reactor pressure vessel 1. A waveguide transmission means 30 for waveguide-transmitting microwaves to the outer wall 13 of the pressure vessel 1 and a waveguide transmission means 30 connected to the outer wall 13 of the reactor pressure vessel 1 and penetrating to the inside of the reactor pressure vessel 1. In the same manner as the cable transmission means 15 for transmitting the microwave to the inside of the reactor pressure vessel 1 and the antenna means 31 attached to the structure in the reactor pressure vessel 1 for wirelessly transmitting and receiving the microwave transmitted by the cable. Reflecting means 33a and 33b which are attached to the structure in the pressure vessel, reflect the microwave projected from the antenna means 31 and project it to the water surface 16, and float on the water surface 16 to transmit the microwave. Reflected by the floating reflecting means 33c and the floating reflecting means 33c, further reflected by the reflecting means 33a and 33b and received by the antenna means 31, and by the cable transmission means 15 outside the reactor pressure vessel 1 Waveguide branching means 18 for branching and guiding the reflected microwave from the water surface 16 transmitted to the waveguide transmission means 30, and detection for detecting the reflected microwave from the water surface 16 guided by the waveguide branching means 18. Means 19; water level calculation means 20 for calculating the water level inside the reactor pressure vessel 1 from the detected reflected microwave; and information wireless transmission means 21a, 21b for wirelessly transmitting the water level calculation results; Wire relaying means 32 for transmitting a part or all of the wireless transmission by wire.

本実施の形態の場合、アンテナ手段31は、反射手段33a,33bや浮付きの反射手段33cによる多重反射を用いた無線送受信ができるようにパラボラアンテナの形状や向きが設定されている。   In the case of the present embodiment, the shape and orientation of the parabolic antenna are set so that the antenna means 31 can perform wireless transmission and reception using multiple reflections by the reflecting means 33a and 33b and the floating reflecting means 33c.

反射手段33a,33bは、平板形状やパラボラ形状の導体で構成され、気水分離器や蒸気発生器などの原子炉圧力容器1内の構造物34や原子炉圧力容器1の内壁などに取り付けられる。また、状況に応じて原子炉圧力容器1内の構造物34の表面や原子炉圧力容器1の内壁表面などを反射手段とすることもできる。   The reflecting means 33a and 33b are made of a flat or parabolic conductor, and are attached to a structure 34 in the reactor pressure vessel 1 such as a steam separator or a steam generator, an inner wall of the reactor pressure vessel 1 or the like. . Further, depending on the situation, the surface of the structure 34 in the reactor pressure vessel 1 or the inner wall surface of the reactor pressure vessel 1 can be used as the reflection means.

浮付きの反射手段33cは、平板形状やパラボラ形状の導体に浮きを取り付けて構成され、水面16に浮くようになっている。   The floating reflecting means 33 c is configured by attaching a float to a flat plate-shaped or parabolic conductor, and floats on the water surface 16.

(作用)
マイクロ波源11によってパルス発振されたマイクロ波は、導波伝送手段30によって原子炉圧力容器1の外壁13まで効率的に伝送され、ケーブル伝送手段15によって原子炉圧力容器1の内部へ伝送される。原子炉圧力容器1の内部では、ケーブル伝送手段15の先端から放射されたマイクロ波が、アンテナ手段31で反射し、続いて反射手段33a,33bの間で多重反射を繰り返して水面16へ投射される。水面16へ投射されたマイクロ波は、水面16の浮付きの反射手段33cで反射し、さらに反射手段33a,33bの間で多重反射を繰り返してアンテナ手段31へ入射され、ケーブル伝送手段15で受信される。受信された水面反射のマイクロ波は、第2の実施の形態におけると同様の作用によって検知手段19で検知される。
(Function)
The microwave pulsated by the microwave source 11 is efficiently transmitted to the outer wall 13 of the reactor pressure vessel 1 by the waveguide transmission means 30 and is transmitted to the inside of the reactor pressure vessel 1 by the cable transmission means 15. Inside the reactor pressure vessel 1, the microwave radiated from the tip of the cable transmission means 15 is reflected by the antenna means 31, and then repeatedly reflected between the reflecting means 33 a and 33 b and projected onto the water surface 16. The The microwave projected on the water surface 16 is reflected by the floating reflecting means 33 c on the water surface 16, is further subjected to multiple reflection between the reflecting means 33 a and 33 b, is incident on the antenna means 31, and is received by the cable transmission means 15. Is done. The received microwave reflected from the water surface is detected by the detection means 19 by the same action as in the second embodiment.

本実施の形態においては、反射手段33a,33bや浮き付きの反射手段33cによってマイクロ波が効率的に反射されるため、検知手段19では、高SN比の検知信号を得ることができ、図3に示した不連続点29とマイクロ波の伝搬速度から水位を求める。ここで、不連続点29が不明確な場合は、第1、第2の実施の形態と同様にマイクロ波の周波数を変更して明確になるようにする。   In the present embodiment, since the microwaves are efficiently reflected by the reflecting means 33a and 33b and the floating reflecting means 33c, the detecting means 19 can obtain a detection signal with a high S / N ratio. The water level is obtained from the discontinuous point 29 shown in FIG. Here, when the discontinuity 29 is unclear, the microwave frequency is changed to be clear as in the first and second embodiments.

そして、情報無線伝送手段21a,21bおよび有線中継手段32を用い、無線および有線で情報伝送することにより、中央操作室や管理区域外などの場所において、水位やその他の情報を取得する。   Then, by using the information wireless transmission means 21a, 21b and the wired relay means 32 to transmit information wirelessly and by wire, the water level and other information are acquired in places such as the central operation room and outside the management area.

(効果)
本実施の形態によれば、原子炉圧力容器1の内部の水位を計測するためにマイクロ波を用い、導波管と同軸ケーブルを用いてマイクロ波を原子炉圧力容器1の内部へ伝送し、炉内構造物や水面に設けた反射手段33a,33b,33cによってマイクロ波を効率的に反射し、水面で反射するマイクロ波から水位を計測することによって、計装配管の数を低減でき、また駆動機構や複数のセンサが不必要となり、さらに高SN比の計測が可能であることからマイクロ波源が大型化することなく、原子炉の構造が複雑になることがない簡素な原子炉水位の測定装置を提供することができる。
(effect)
According to the present embodiment, the microwave is used to measure the water level inside the reactor pressure vessel 1, and the microwave is transmitted to the inside of the reactor pressure vessel 1 using the waveguide and the coaxial cable. The number of instrumentation pipes can be reduced by efficiently reflecting the microwaves by the reflecting means 33a, 33b, 33c provided on the reactor internal structure and the water surface, and measuring the water level from the microwaves reflected by the water surface. Simple measurement of the reactor water level without the need for a drive mechanism and multiple sensors, and the ability to measure a high signal-to-noise ratio without increasing the size of the microwave source and complicating the reactor structure An apparatus can be provided.

(第4の実施の形態)
(構成)
次に図6を用いて本発明の第4の実施の形態の原子炉水位の測定装置を説明する。なお第1から第3の実施の形態と同じ構成には同じ符号を付して重複する説明は省略する。
(Fourth embodiment)
(Constitution)
Next, a reactor water level measuring apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same structure as 1st-3rd embodiment, and the overlapping description is abbreviate | omitted.

本実施の形態の原子炉水位の測定装置は、原子炉圧力容器1の外側に設置され、原子炉圧力容器1の内部の水位を計測するためのマイクロ波を発生するマイクロ波源11と、原子炉圧力容器1の外壁13までマイクロ波を導波管伝送する導波伝送手段30と、原子炉圧力容器1の外壁13において導波伝送手段30に接続され、原子炉圧力容器1の内部まで貫通し、原子炉圧力容器1の内部へマイクロ波を伝送するケーブル伝送手段15と、原子炉圧力容器1内に設置され、ケーブル伝送されたマイクロ波を導波送受信し、水面16の水位に応じて水没する長さが変化する導波送受信手段35と、導波送受信手段35の水没長さに応じて共振し、ケーブル伝送手段15によって圧力容器1の外部の導波伝送手段30へ伝送されたマイクロ波を分岐し導波する導波分岐手段18と、導波分岐手段18によって導波されたマイクロ波を検知する検知手段19と、検知されたマイクロ波の共振周波数から原子炉圧力容器1の内部の水位を演算して求める水位演算手段20と、水位の演算結果を無線で情報伝送する情報無線伝送手段21a,21bと、無線伝送の一部または全てを有線で伝送する有線中継手段32と、から構成されている。   The reactor water level measuring apparatus according to the present embodiment is installed outside the reactor pressure vessel 1 and generates a microwave source 11 for measuring the water level inside the reactor pressure vessel 1. A waveguide transmission means 30 for waveguide-transmitting microwaves to the outer wall 13 of the pressure vessel 1 and a waveguide transmission means 30 connected to the outer wall 13 of the reactor pressure vessel 1 and penetrating to the inside of the reactor pressure vessel 1. The cable transmission means 15 for transmitting the microwave to the inside of the reactor pressure vessel 1 and the microwave transmitted through the cable are installed in the reactor pressure vessel 1, and are submerged in accordance with the water level of the water surface 16. Waveguide transmission / reception means 35 of varying length, and microwaves resonated according to the submerged length of the waveguide transmission / reception means 35 and transmitted to the waveguide transmission means 30 outside the pressure vessel 1 by the cable transmission means 15 The A waveguide branching means 18 for branching and guiding, a detection means 19 for detecting a microwave guided by the waveguide branching means 18, and a water level inside the reactor pressure vessel 1 from the detected resonance frequency of the microwave A water level calculation means 20 that calculates the water level, information wireless transmission means 21a and 21b that wirelessly transmit the water level calculation results, and a wired relay means 32 that transmits part or all of the wireless transmission by wire. Has been.

本実施の形態の場合、水位演算手段20は、図7に示すようにマイクロ波の周波数と信号強度の関係を求める信号処理装置で構成される。導波送受信手段35において、水面16を反射端としてマイクロ波の共振が発生するため、共振周波数36が生じる。   In the case of the present embodiment, the water level calculation means 20 is constituted by a signal processing device that obtains the relationship between the frequency of the microwave and the signal intensity as shown in FIG. In the waveguide transmission / reception means 35, the resonance of the microwave occurs because the resonance of the microwave occurs with the water surface 16 as the reflection end.

導波送受信手段35は、図8に示すように、下端に端部開口37を有し上端に上部開口38を有する中空構造の導体で構成され、原子炉圧力容器1内に設置されて水面16の水位に応じて水没する長さが変わり、下端の開口37から水が水位と同じ高さまで浸入し、上部の開口38から高温高圧の蒸気が抜けるようになっている。そして水位に依存する周波数で共振する。共振周波数36と水位の関係は予め測定しておく。   As shown in FIG. 8, the waveguide transmission / reception means 35 is configured by a hollow conductor having an end opening 37 at the lower end and an upper opening 38 at the upper end, and is installed in the reactor pressure vessel 1 to be placed on the water surface 16. The submerged length changes according to the water level, water enters the same height as the water level from the opening 37 at the lower end, and high-temperature and high-pressure steam escapes from the upper opening 38. It resonates at a frequency that depends on the water level. The relationship between the resonance frequency 36 and the water level is measured in advance.

(作用)
マイクロ波源11によって連続発振されたマイクロ波は、導波伝送手段30によって原子炉圧力容器1の外壁13まで伝送され、ケーブル伝送手段15によって原子炉圧力容器1の内部の導波送受信手段35へ伝送される。導波送受信手段35では水面16の水位に応じた周波数で共振が生じる。
(Function)
The microwave continuously oscillated by the microwave source 11 is transmitted to the outer wall 13 of the reactor pressure vessel 1 by the waveguide transmission means 30 and is transmitted to the waveguide transmission / reception means 35 inside the reactor pressure vessel 1 by the cable transmission means 15. Is done. In the waveguide transmitting / receiving means 35, resonance occurs at a frequency corresponding to the water level of the water surface 16.

ここで、マイクロ波の周波数を走査しながら、ケーブル伝送手段15から原子炉圧力容器1の外部へ伝送され、導波伝送手段30を導波後、導波分岐手段18によってマイクロ波を検知手段19で検知する。導波送受信手段35によってマイクロ波の効率的な伝送が可能であり、検知手段19は高SN比の検知信号が得られる。   Here, while scanning the frequency of the microwave, it is transmitted from the cable transmission means 15 to the outside of the reactor pressure vessel 1, guided through the waveguide transmission means 30, and then detected by the waveguide branching means 18. Detect with. The waveguide transmission / reception means 35 can efficiently transmit microwaves, and the detection means 19 can obtain a detection signal with a high S / N ratio.

水位演算手段20では、図7に示すような結果が得られ、共振周波数36が導波送受信手段35の共振周波数を示すため、予め測定してある共振周波数と水位の関係から実際の水位を求める。   In the water level calculation means 20, the result as shown in FIG. 7 is obtained, and the resonance frequency 36 indicates the resonance frequency of the waveguide transmission / reception means 35. Therefore, the actual water level is obtained from the relationship between the resonance frequency measured in advance and the water level. .

求められた水位は、時間や場所、マイクロ波源11の設定、その他必要な情報が付加され、情報無線伝送手段21aから有線中継手段32を経由し、情報無線伝送手段21bへ無線伝送され、中央操作室や管理区域外などの場所において、水位やその他の情報を取得する。   The obtained water level is added with time, place, setting of the microwave source 11, and other necessary information, and is wirelessly transmitted from the information wireless transmission means 21a to the information wireless transmission means 21b via the wired relay means 32, and is operated centrally. Obtain water level and other information in places such as rooms and out of control areas.

(効果)
本実施の形態によれば、原子炉圧力容器1の内部の水位を計測するためにマイクロ波を用い、導波管と同軸ケーブルを用いてマイクロ波を原子炉圧力容器1の内部へ伝送し、マイクロ波を効率的に伝送する導波送受信手段35において水面で共振するマイクロ波の共振周波数から水位を計測するので、計装配管の数を低減でき、また駆動機構や複数のセンサが不必要となる。さらに高SN比のマイクロ波検知が可能であることからマイクロ波源が大型化することなく、高精度の水位計測が可能となり、原子炉の構造が複雑になることがない簡素な原子炉水位の測定装置を提供することができる。
(effect)
According to the present embodiment, the microwave is used to measure the water level inside the reactor pressure vessel 1, and the microwave is transmitted to the inside of the reactor pressure vessel 1 using the waveguide and the coaxial cable. Since the water level is measured from the resonance frequency of the microwave that resonates on the water surface in the waveguide transmission / reception means 35 that efficiently transmits the microwave, the number of instrumentation pipes can be reduced, and a drive mechanism and a plurality of sensors are unnecessary. Become. In addition, because it is possible to detect microwaves with a high signal-to-noise ratio, high-precision water level measurement is possible without increasing the size of the microwave source, and simple measurement of the reactor water level without complicating the reactor structure. An apparatus can be provided.

本発明の第1の実施の形態の原子炉水位の測定装置の構成を示す図。The figure which shows the structure of the measuring apparatus of the reactor water level of the 1st Embodiment of this invention. 本発明の第1の実施の形態の原子炉水位の測定装置に備えられるケーブル伝送手段の構成を示す断面図。Sectional drawing which shows the structure of the cable transmission means with which the reactor water level measuring apparatus of the 1st Embodiment of this invention is equipped. 本発明の第1の実施の形態の原子炉水位の測定装置に備えられる水位演算手段の動作を説明するグラフ。The graph explaining operation | movement of the water level calculating means with which the reactor water level measuring apparatus of the 1st Embodiment of this invention is equipped. 本発明の第2の実施の形態の原子炉水位の測定装置の構成を示す図。The figure which shows the structure of the measuring apparatus of the reactor water level of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の原子炉水位の測定装置の構成を示す図。The figure which shows the structure of the measuring apparatus of the reactor water level of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の原子炉水位の測定装置の構成を示す図。The figure which shows the structure of the measuring apparatus of the reactor water level of the 4th Embodiment of this invention. 本発明の第4の実施の形態の原子炉水位の測定装置に備えられる水位演算手段の動作を説明するグラフ。The graph explaining operation | movement of the water level calculating means with which the reactor water level measuring apparatus of the 4th Embodiment of this invention is equipped. 本発明の第4の実施の形態の原子炉水位の測定装置に備えられる導波送受信手段の構成を示す図。The figure which shows the structure of the waveguide transmission / reception means with which the reactor water level measuring apparatus of the 4th Embodiment of this invention is equipped. 従来の原子炉水位の測定装置の構成を示す図。The figure which shows the structure of the conventional reactor water level measuring apparatus. 従来の原子炉水位の測定装置の構成を示す図。The figure which shows the structure of the conventional reactor water level measuring apparatus.

符号の説明Explanation of symbols

1…原子炉圧力容器、1a…炉心、1b…冷却材、2,3,4…計装配管、5…凝縮槽、6,7,8…差圧計、9…熱電対式センサ、10…被覆管、11…マイクロ波源、12…導波伝送手段、13…圧力容器の外壁、14a,14b…無線伝送手段、15…ケーブル伝送手段、16…水面、17…アンテナ手段、18…導波分岐手段、19…検知手段、20…水位演算手段、21a,21b…情報無線伝送手段、22a,22b…無線操作手段、23…無線中継手段、24,26…導体、25,27…鉱物性絶縁体、28…ステンレスシース、29…不連続点、30…導波伝送手段、31…アンテナ手段、32…有線中継手段、33a,33b,33c…反射手段、34…炉内構造物、35…導波送受信手段、36…共振周波数、37…端部開口、38…上部開口。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 1a ... Core, 1b ... Coolant, 2, 3, 4 ... Instrument piping, 5 ... Condensing tank, 6, 7, 8 ... Differential pressure gauge, 9 ... Thermocouple sensor, 10 ... Coating Tube 11, microwave source 12, waveguide transmission means 13, outer wall of pressure vessel 14 a, 14 b wireless transmission means 15 cable transmission means 16 water surface 17 antenna means 18 waveguide branching means , 19 ... detection means, 20 ... water level calculation means, 21a, 21b ... information wireless transmission means, 22a, 22b ... wireless operation means, 23 ... wireless relay means, 24,26 ... conductor, 25,27 ... mineral insulator, 28 ... Stainless steel sheath, 29 ... Discontinuous point, 30 ... Waveguide transmission means, 31 ... Antenna means, 32 ... Wire relay means, 33a, 33b, 33c ... Reflection means, 34 ... In-furnace structure, 35 ... Waveguide transmission / reception Means 36 ... resonance frequency 37 ... end Mouth, 38 ... upper opening.

Claims (11)

原子炉の圧力容器の外部に設置されマイクロ波を発生するマイクロ波源と、マイクロ波を導波伝送する導波伝送手段と、前記導波伝送手段に接続され圧力容器の外壁までマイクロ波を無線伝送する無線伝送手段と、圧力容器の外壁において前記無線伝送手段に接続され、圧力容器の内部まで貫通し、圧力容器の内部へマイクロ波を伝送するケーブル伝送手段と、前記ケーブル伝送手段に接続され、圧力容器の内部の水面に対してマイクロ波を投射し反射マイクロ波を受信するアンテナ手段と、前記アンテナ手段で受信され前記ケーブル伝送手段により圧力容器の外部へ伝送された反射マイクロ波を前記無線伝送手段によって無線伝送して前記導波伝送手段へ伝送した後、分岐し導波する導波分岐手段と、前記導波分岐手段によって導波された反射マイクロ波を検知する検知手段と、検知された反射マイクロ波から圧力容器の内部の水位を演算して求める水位演算手段とを備えていることを特徴とする原子炉水位の測定装置。   A microwave source installed outside the pressure vessel of the nuclear reactor to generate microwaves, waveguide transmission means for guiding and transmitting microwaves, and microwave transmission to the outer wall of the pressure vessel connected to the waveguide transmission means Wireless transmission means connected to the wireless transmission means at the outer wall of the pressure vessel, penetrating to the inside of the pressure vessel, and transmitting to the inside of the pressure vessel, microwave transmission to the inside of the pressure vessel, connected to the cable transmission means, Antenna means for projecting microwaves onto the water surface inside the pressure vessel and receiving reflected microwaves; and wirelessly transmitting reflected microwaves received by the antenna means and transmitted to the outside of the pressure vessel by the cable transmission means After being transmitted wirelessly by the means and transmitted to the waveguide transmission means, the waveguide branching means for branching and guiding and guided by the waveguide branching means Detection means for detecting the elevation microwave, sensed reflected microwave reactor water level measuring device, characterized in that it comprises a water level calculation means for calculating calculates the water level inside the pressure vessel from. 前記無線伝送手段に代えて導波伝送手段を備えていることを特徴とする請求項1に記載の原子炉水位の測定装置。   The reactor water level measuring device according to claim 1, further comprising a waveguide transmission unit instead of the wireless transmission unit. 前記水位演算手段は、検知された反射マイクロ波の強度と時間の関係から圧力容器の内部の水位を演算することを特徴とする請求項1または2に記載の原子炉水位の測定装置。   The reactor water level measuring device according to claim 1 or 2, wherein the water level calculating means calculates the water level inside the pressure vessel from the relationship between the intensity of the detected reflected microwave and time. 原子炉内の水面に浮いてマイクロ波を反射する反射手段を備えていることを特徴とする請求項1ないし3のいずれかに記載の原子炉水位の測定装置。   The reactor water level measuring device according to any one of claims 1 to 3, further comprising reflecting means that floats on a water surface in the nuclear reactor and reflects microwaves. 原子炉内の構造物の一部または複数以上の部分に取り付けられマイクロ波を反射する反射手段を備えていることを特徴とする請求項1ないし4のいずれかに記載の原子炉水位の測定装置。   The reactor water level measuring device according to any one of claims 1 to 4, further comprising reflection means attached to a part or a plurality of parts of the structure in the nuclear reactor to reflect microwaves. . 前記アンテナ手段に代えて、圧力容器の内部の水に一部浸漬されマイクロ波を導波送受信する導波送受信手段を備えていることを特徴とする請求項1ないし3のいずれかに記載の原子炉水位の測定装置。   The atom according to any one of claims 1 to 3, further comprising: a waveguide transmission / reception unit that transmits and receives a microwave by being partially immersed in water inside the pressure vessel, instead of the antenna unit. Reactor water level measuring device. 前記水位演算手段による水位の演算結果を無線で情報伝送する情報無線伝送手段を備えていることを特徴とする請求項1ないし6のいずれかに記載の原子炉水位の測定装置。   7. The reactor water level measuring device according to claim 1, further comprising information wireless transmission means for wirelessly transmitting information on a water level calculation result by the water level calculation means. 前記マイクロ波源および前記検知手段および前記水位演算手段の少なくともいずれか1つを無線で遠隔操作する無線操作手段を備えていることを特徴とする請求項1ないし7のいずれかに記載の原子炉水位の測定装置。   The reactor water level according to any one of claims 1 to 7, further comprising wireless operation means for remotely operating at least one of the microwave source, the detection means, and the water level calculation means wirelessly. Measuring device. 前記情報無線伝送手段および前記無線操作手段の少なくともいずれか1つによる無線伝送を中継する無線中継手段を備えていることを特徴とする請求項7または8に記載の原子炉水位の測定装置。   The reactor water level measuring device according to claim 7 or 8, further comprising: a wireless relay unit that relays wireless transmission by at least one of the information wireless transmission unit and the wireless operation unit. 前記情報無線伝送手段および前記無線操作手段による無線伝送の一部または全てを有線で伝送する有線中継手段を備えていることを特徴とする請求項7または8に記載の原子炉水位の測定装置。   The reactor water level measuring device according to claim 7 or 8, further comprising a wired relay unit that transmits part or all of the wireless transmission by the information wireless transmission unit and the wireless operation unit by wire. 原子炉の圧力容器の外部に設けられたマイクロ波源によって発生したマイクロ波を圧力容器内に導入して圧力容器内に貯留された水の水面に投射し、反射マイクロ波の強度と時間の関係または共振周波数から前記水の水位を求めることを特徴とする原子炉水位の測定方法。   The microwave generated by the microwave source provided outside the reactor pressure vessel is introduced into the pressure vessel and projected onto the water surface stored in the pressure vessel, and the relationship between the intensity of reflected microwave and time or A method for measuring a reactor water level, wherein the water level is determined from a resonance frequency.
JP2007002434A 2007-01-10 2007-01-10 Reactor water level measuring device Expired - Fee Related JP4945250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002434A JP4945250B2 (en) 2007-01-10 2007-01-10 Reactor water level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002434A JP4945250B2 (en) 2007-01-10 2007-01-10 Reactor water level measuring device

Publications (2)

Publication Number Publication Date
JP2008170223A true JP2008170223A (en) 2008-07-24
JP4945250B2 JP4945250B2 (en) 2012-06-06

Family

ID=39698468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002434A Expired - Fee Related JP4945250B2 (en) 2007-01-10 2007-01-10 Reactor water level measuring device

Country Status (1)

Country Link
JP (1) JP4945250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094737A1 (en) 2011-12-22 2013-06-27 株式会社東芝 Atomic reactor state monitoring device and monitoring method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168325A (en) * 1990-11-01 1992-06-16 Furukawa Electric Co Ltd:The Liquid level meter
JPH05256940A (en) * 1992-03-13 1993-10-08 Furuno Electric Co Ltd Monitoring apparatus of storing tank
JP2002214022A (en) * 2000-12-01 2002-07-31 Krohne Messtech Gmbh & Co Kg Level measuring instrument
JP2004150952A (en) * 2002-10-30 2004-05-27 Osaka Gas Co Ltd Liquid level gage and replacement method therefor
JP2005249453A (en) * 2004-03-02 2005-09-15 Forugu:Kk Water level measuring device
JP2005529317A (en) * 2002-05-07 2005-09-29 フラマトム アンプ ゲゼルシャフト ミット ベシュレンクテル ハフツング A method for determining the position characteristics of a boundary layer of media stored in a container.
JP2005337825A (en) * 2004-05-26 2005-12-08 Japan Radio Co Ltd Apparatus and method for measuring water level utilizing radiowave
JP2006060287A (en) * 2004-08-17 2006-03-02 Ikegami Tsushinki Co Ltd Radio transmission system and fpu receiver
JP2006214609A (en) * 2005-02-01 2006-08-17 Nippon Steel Corp Antenna for microwave and microwave level meter
WO2006110329A2 (en) * 2005-04-07 2006-10-19 Rosemount Inc. Tank seal for guided wave radar level measurement

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168325A (en) * 1990-11-01 1992-06-16 Furukawa Electric Co Ltd:The Liquid level meter
JPH05256940A (en) * 1992-03-13 1993-10-08 Furuno Electric Co Ltd Monitoring apparatus of storing tank
JP2002214022A (en) * 2000-12-01 2002-07-31 Krohne Messtech Gmbh & Co Kg Level measuring instrument
JP2005529317A (en) * 2002-05-07 2005-09-29 フラマトム アンプ ゲゼルシャフト ミット ベシュレンクテル ハフツング A method for determining the position characteristics of a boundary layer of media stored in a container.
JP2004150952A (en) * 2002-10-30 2004-05-27 Osaka Gas Co Ltd Liquid level gage and replacement method therefor
JP2005249453A (en) * 2004-03-02 2005-09-15 Forugu:Kk Water level measuring device
JP2005337825A (en) * 2004-05-26 2005-12-08 Japan Radio Co Ltd Apparatus and method for measuring water level utilizing radiowave
JP2006060287A (en) * 2004-08-17 2006-03-02 Ikegami Tsushinki Co Ltd Radio transmission system and fpu receiver
JP2006214609A (en) * 2005-02-01 2006-08-17 Nippon Steel Corp Antenna for microwave and microwave level meter
WO2006110329A2 (en) * 2005-04-07 2006-10-19 Rosemount Inc. Tank seal for guided wave radar level measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094737A1 (en) 2011-12-22 2013-06-27 株式会社東芝 Atomic reactor state monitoring device and monitoring method thereof

Also Published As

Publication number Publication date
JP4945250B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
EP2729990B1 (en) Multi-channel radar level gauge
US10001398B2 (en) Fill-level measuring device and apparatus for determining the dielectric constant
EP2667163B1 (en) Guided wave radar level gauge with improved sealing arrangement
US9110165B2 (en) Measuring device of process automation technology for ascertaining and monitoring a chemical or physical process variable in a high temperature process in a container
EP2929303B1 (en) Probe spacing element
US20100090883A1 (en) Apparatus for determining and/or monitoring the level of a medium
EP2901111B1 (en) Guided wave radar level gauge system with dielectric constant compensation through multi-frequency propagation
JP2020523571A (en) Microwave horn antenna-based transducer system for CUI inspection without removing insulation
US8955390B2 (en) Vortex flow meter
US20080150789A1 (en) Radar level gauge system
JP4945250B2 (en) Reactor water level measuring device
JP2011221025A (en) Method and device for measuring liquid density
JP2009271056A (en) Device for measuring water level of nuclear reactor and method for measuring water level of nuclear reactor
KR20210083329A (en) cryogenic fuel tank
KR102063136B1 (en) Smart level meter with removed measurement dead band
JP5099475B2 (en) Abnormality diagnosis device for high power millimeter wave transmission system
CN216159650U (en) Grate cooler stock layer thickness distribution measuring system and grate cooler control system
EP0438880A2 (en) Apparatus and method for monitoring temperature of a fluid flowing in a pipe
US20170370760A1 (en) Radar level gauge system with modular propagation device
JP5347485B2 (en) Bulging detector
ES2977963T3 (en) Device and method for measuring a liquid level in an apparatus
US11709087B2 (en) Self-calibrating optical device for the contactless measurement of the level of a liquid
KR101004022B1 (en) Dual ultrasonic waveguide sensor device and inspection method
Hall 17. RADAR LEVEL MEASUREMENT.
JPH04168325A (en) Liquid level meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R151 Written notification of patent or utility model registration

Ref document number: 4945250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees