JP2008169091A - Carbon nanotube coated uniformly with ultrathin nanoprecision polypyrrole layer - Google Patents

Carbon nanotube coated uniformly with ultrathin nanoprecision polypyrrole layer Download PDF

Info

Publication number
JP2008169091A
JP2008169091A JP2007004956A JP2007004956A JP2008169091A JP 2008169091 A JP2008169091 A JP 2008169091A JP 2007004956 A JP2007004956 A JP 2007004956A JP 2007004956 A JP2007004956 A JP 2007004956A JP 2008169091 A JP2008169091 A JP 2008169091A
Authority
JP
Japan
Prior art keywords
polypyrrole
carbon nanotubes
coated
carbon nanotube
ultrathin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007004956A
Other languages
Japanese (ja)
Other versions
JP5224434B2 (en
Inventor
Pumera Martin
プメラ マーチン
Xinsheng Peng
ペン シンシェン
Sho To
捷 唐
Izumi Ichinose
泉 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007004956A priority Critical patent/JP5224434B2/en
Publication of JP2008169091A publication Critical patent/JP2008169091A/en
Application granted granted Critical
Publication of JP5224434B2 publication Critical patent/JP5224434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube coated uniformly with ultrathin nanoprecision polypyrrole layers, as well as a fabrication method for the above polypyrrole-coated nanotubes. <P>SOLUTION: Carbon nanotubes coated uniformly with ultrathin nanoprecision polypyrrole layers is produced via the following steps: (i) Carbon nanotubes are functionalized in concentrated nitric acid under elevated temperature condition; (ii) The obtained functionalized carbon nanotubes (CNTox) are dispersed in purified water to make defined concentration of them; (iii) Pyrrole solution in 2-propanol is added to reach defined pyrrole concentration followed by the addition of persulfate salt, and then the reaction mixture is mixed; (iv) The obtained individual polypyrrole coated carbon nanotubes (solids) are separated and dried. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ナノバイオセンサ、ナノエレクトロニクス・デバイス、電池、等々の分野で有益に使用されるであろう「ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブ」に関するものである。本発明は、また、このナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブの製造方法にも関する。   The present invention relates to “carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin films” that may be beneficially used in the fields of nanobiosensors, nanoelectronic devices, batteries, and the like. The present invention also relates to a method for producing carbon nanotubes uniformly coated with the nano-precision polypyrrole ultrathin film.

カーボンナノチューブとポリマーに基づく複合材料は、これら複合材料を構成する各要素よりも優れた特性をもつ進化した機能性材料を創出すると期待される理由から、多くの興味が持たれてきた(M.J.Panhuis, 2006; C.Downs et al, 1999)。カーボンナノチューブ/ポリマー複合材料は、ポリマーの導電性を改善し、それらの強靭性を増強させ、あるいはバイオ分子を固定化するために調製されてきた(A.Merkoci et al, 2005)。支えなしに立つ個々の非導電性ポリマの鞘でコートされたカーボンナノチューブは、AFM絶縁チップとして(M.J.Esplandiu et al, 2004)、ナノ電極(J.K.Champbell et al, 1999)として、あるいはナノエレクトロニクス・デバイス用ナノワイヤ(A.Star et al, 2003; G.B.Blanchet et al, 2004)として用いられてきた。   Composite materials based on carbon nanotubes and polymers have received a lot of interest because they are expected to create advanced functional materials with properties superior to the components that make up these composite materials (MJPanhuis , 2006; C. Downs et al, 1999). Carbon nanotube / polymer composites have been prepared to improve the conductivity of polymers, enhance their toughness, or immobilize biomolecules (A.Merkoci et al, 2005). Carbon nanotubes coated with freestanding individual non-conductive polymer sheaths can be used as AFM insulating tips (MJEsplandiu et al, 2004), as nanoelectrodes (JKChampbell et al, 1999), or as nanoelectronic devices Nanowires (A. Star et al, 2003; GBBlanchet et al, 2004) have been used.

特に興味深いのは、ポリピロール、ポリアニリンあるいはポリチオフェンのような導電性機能を有するポリマーと複合させたカーボンナノチューブ(CNT)の性質である(M.J.Panhuis, 2006)。カーボンナノチューブを導電性ポリマーによって化学的又は電気化学的に被覆する研究は、いくつかのグループで検討されてきたけれども、支えなしに立つ個々のカーボンナノチューブをポリマーでナノサイズに精確に均一厚みに被覆することは、未だ達成されていない魅力的な課題として残されてきた。何故ならば、結合させるポリマーの凝集を制御することは容易ではなく、また、そのポリマー鎖は不規則的なナノ粒子又は沈殿物として堆積しやすいからである。カーボンナノチューブはしばしばポリピロールの凝集物に取り込まれることがあり(J.Wang et al, 2005)、あるいは、50nm(非特許文献1、2参照)から80nm(J.Fan et al, 1999; J.H.Chen et al, 2001; J.H.Chen et al, 2002)の厚み範囲の非均一のポリマー層で被覆されることがあり、また、ポリマー構造の中にしばしば一以上のカーボンナノチューブ(前記非特許文献2参照)が包み込まれることもあり、更には、径が約50nmのポリピロールナノ粒子で被覆されることもある(Y.Yu et al, 2005; T.-M. Wu et al, 2006)からである。
しかし、ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブを製造する方法は未だ知られていない。
Of particular interest is the nature of carbon nanotubes (CNTs) complexed with polymers with conductive function such as polypyrrole, polyaniline or polythiophene (MJPanhuis, 2006). Although studies of chemically or electrochemically coating carbon nanotubes with conducting polymers have been studied by several groups, individual carbon nanotubes that stand unsupported can be coated with a polymer to a nano-size precisely and uniformly in thickness. To do has been left as an attractive challenge that has not yet been achieved. This is because it is not easy to control the aggregation of the polymer to be bonded, and the polymer chains are likely to deposit as irregular nanoparticles or precipitates. Carbon nanotubes are often incorporated into polypyrrole aggregates (J. Wang et al, 2005), or 50 nm (see Non-Patent Documents 1 and 2) to 80 nm (J. Fan et al, 1999; JHChen et al , 2001; JHChen et al, 2002) and may be coated with a non-uniform polymer layer in the thickness range, and often contain one or more carbon nanotubes (see Non-Patent Document 2) in the polymer structure. In some cases, it may be coated with polypyrrole nanoparticles having a diameter of about 50 nm (Y. Yu et al, 2005; T.-M. Wu et al, 2006).
However, a method for producing carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film is not yet known.

G.Z.Chen et al;Adv.Mater. 2000, 12, 522G. Z. Chen et al; Adv. Mater. 2000, 12, 522 M.Hughes et al;Adv.Mater. 2002, 14, 382M.M. Hughes et al; Adv. Mater. 2002, 14, 382

本発明の目的は、ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブを提供することであり、また、そのようなポリピロール層で被覆されているカーボンナノチューブの製造方法を提供することである。   An object of the present invention is to provide a carbon nanotube uniformly coated with a nano-precision polypyrrole ultrathin film, and also to provide a method for producing a carbon nanotube coated with such a polypyrrole layer. is there.

〔発明の概要〕
上記目的を達成するため、本発明者らは前駆体(モノマー)としてピロールを用いてカーボンナノチューブを被覆することを試みた。幅広い濃度のピロールと幾つかの機能化カーボンナノチューブを試み、そして、ピロールの濃度は非常に低い濃度(mMのレベル)にするべきであることを掴んで、本発明を完成するに至った。
[Summary of the Invention]
In order to achieve the above object, the present inventors tried to coat carbon nanotubes using pyrrole as a precursor (monomer). A wide range of concentrations of pyrrole and some functionalized carbon nanotubes were tried, and the pyrrole concentration should be very low (in the order of mM) to complete the present invention.

第一に、本発明は、ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブを提供する。   First, the present invention provides a carbon nanotube uniformly coated with a nano-precision polypyrrole ultrathin film.

第二に、本発明は、上記ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブの製造方法であって、次の工程を含むものである。
(i)カーボンナノチューブを濃硝酸中、高温条件下に処理して機能化する;
(ii)得られた機能化カーボンナノチューブ(CNTox)を所定濃度となるように精製水に分散する。
(iii)2−プロパノールに溶かしたピロールを、所定のピロール濃度に達するまで加え、続いて過硫酸塩を加え、これを混合する;
(iv)得られた個々のポリピロール被覆カーボンナノチューブ(固体)を分離し、乾燥する。
Secondly, the present invention is a method for producing a carbon nanotube uniformly coated with the nano-precision polypyrrole ultrathin film, and includes the following steps.
(I) functionalizing carbon nanotubes by treating them in concentrated nitric acid under high temperature conditions;
(Ii) The obtained functionalized carbon nanotube (CNTox) is dispersed in purified water so as to have a predetermined concentration.
(Iii) Add pyrrole dissolved in 2-propanol until a predetermined pyrrole concentration is reached, then add persulfate and mix it;
(Iv) The obtained individual polypyrrole-coated carbon nanotubes (solid) are separated and dried.

<略語>
略語は、本明細書では、次の意味をもつ。
・CNT:カーボンナノチューブ
・CNTox:酸化型(機能化)カーボンナノチューブ
・SWCNT:単層(single−walled)カーボンナノチューブ
・MWCNT:多層(multiwalled)カーボンナノチューブ
・MWCNTox:酸化型(機能化)多層(multiwalled)カーボンナノチューブ
・Py:ピロール
・PPy:ポリピロール
<Abbreviation>
Abbreviations have the following meanings herein.
・ CNT: Carbon nanotube
CNTox: oxidized (functionalized) carbon nanotubes SWCNT: single-walled carbon nanotubes MWCNT: multiwalled carbon nanotubes MWCNTox: oxidized (functionalized) multiwalled carbon nanotubes Py: Pyrrole / PPy: Polypyrrole

本発明の、ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブは、ナノエレクトロニクス・デバイスに扉を開くものである。
本発明の製造方法は、簡単で、(被覆層の厚みを)変えられる化学的方法である。それゆえ、これにより、ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブを容易に製造できる。
The carbon nanotubes of the present invention uniformly coated with nano-precision polypyrrole ultrathin films open the door to nanoelectronic devices.
The production method of the present invention is a chemical method that is simple and can change the thickness of the coating layer. Therefore, this makes it possible to easily produce carbon nanotubes that are uniformly coated with nano-precision polypyrrole ultrathin films.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

〔発明の更に詳しい説明〕
次に、添付図面を参照しながら、本発明を更に詳しく説明する。
図1は、カーボンナノチューブの上にポリピロール超薄膜を均一に被覆する模式図を示す。
この方法で用いるカーボンナノチューブは、炭素の異型(allotype)の一つである。これは、その直径が2nm〜100nmの柱状分子の形態を有しており、グラファイト・シートを丸めた形状をしている。カーボンナノチューブとして、単層カーボンナノチューブも多層カーボンナノチューブもいずれも使用できるが、好ましくは多層カーボンナノチューブである。
この方法の工程(i)における「機能化する(させる)」とは、カーボンナノチューブの外側のグラファイト・シートにカルボキシル基を導入することを意味する。
この方法の工程(i)における「高温」とは、70℃ないしは90℃の範囲中の一定温度に維持することを意味する。また、その高温処理は反応が終わるまで、例えば、12〜36h行なわれる。
この方法の工程(ii)における「CNToxの所定濃度」とは、0.1−1.0mg/mLの濃度を意味する。
この方法の工程(iii)における「所定のピロール濃度」とは、ピロールを5mMと25mM(この濃度は最終ポリピロール被覆層の要求厚みに依存するが)の間にある一定濃度に維持すること意味する。
<その他>
2−プロパノールを用いる理由は、前駆体のピロール溶液を安定に維持するためである。過硫酸塩を用いる理由は、過硫酸塩がピロールのラジカル・ポリメリゼーションを開始させるからである。
[Detailed description of the invention]
Next, the present invention will be described in more detail with reference to the accompanying drawings.
FIG. 1 shows a schematic view of uniformly coating a polypyrrole ultrathin film on a carbon nanotube.
The carbon nanotube used in this method is one of carbon allotypes. This has a form of a columnar molecule having a diameter of 2 nm to 100 nm, and is formed by rounding a graphite sheet. As the carbon nanotube, both single-walled carbon nanotubes and multi-walled carbon nanotubes can be used, but multi-walled carbon nanotubes are preferable.
“Functionalize” in step (i) of this method means introducing a carboxyl group into the graphite sheet outside the carbon nanotube.
“High temperature” in step (i) of this method means maintaining at a constant temperature in the range of 70 ° C. or 90 ° C. Further, the high temperature treatment is performed, for example, for 12 to 36 hours until the reaction is completed.
The “predetermined concentration of CNTox” in step (ii) of this method means a concentration of 0.1 to 1.0 mg / mL.
“Predetermined pyrrole concentration” in step (iii) of this method means that pyrrole is maintained at a constant concentration between 5 mM and 25 mM (although this concentration depends on the required thickness of the final polypyrrole coating). .
<Others>
The reason for using 2-propanol is to keep the precursor pyrrole solution stable. The reason for using persulfate is that persulfate initiates radical polymerization of pyrrole.

本発明によれば、ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブを得ることができる。
ここで、「ナノ精度のポリピロール超薄膜で均一に」とは、通常、5nmないしは20nm(好ましくは7nmないしは14nmであり、これはピロールモノマーの厚みが0.43nmであることを考慮すると、16分子ないしは32分子に相当するピロールモノマーが積み重なった厚み)の範囲の中の所定厚み(これはピロール前駆体の濃度に依存するが)でその偏差が1nm以下、又は変動係数が20%以下(好ましくは16%以下、更に好ましくは11%以下)の連続的なポリピロール層を意味する。
According to the present invention, it is possible to obtain carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin films.
Here, “uniformly with nano-precision polypyrrole ultrathin film” usually means 5 nm to 20 nm (preferably 7 nm to 14 nm, which is 16 molecules considering the thickness of the pyrrole monomer is 0.43 nm. Or a predetermined thickness within the range of pyrrole monomers corresponding to 32 molecules (which depends on the concentration of the pyrrole precursor), the deviation is 1 nm or less, or the variation coefficient is 20% or less (preferably 16% or less, more preferably 11% or less) means a continuous polypyrrole layer.

実施例1 ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブの調製
(1)調製方法
コーティング:多層カーボンナノチューブは、濃硝酸(6M)中、80℃で、24h処理し、機能化した。引き続いて、酸/多層CNT混合物は蒸留水で洗浄し、水溶液が中性pHとなるまで数回、遠沈した。引き続き、カルボキシル基含有の機能化された多層カーボンナノチューブ(MWCNTox)を孔径0.2μmのメンブランフィルター(Nuclepore Track-Etch Membrane, Whatman, UK)に掛け、室温で乾燥させた。ポリピロールを被覆する工程では、MWCNToxを蒸留水中に0.5mg/mLの濃度となるように分散させ(典型的には、MWCNToxの2gを蒸留水4mLに分散させ)、つづいて超音波処理を5分間行なった。引き続いて、ピロールの2−プロパノール溶液を加えピロール最終濃度を所定濃度(典型的には10mMで、2−プロパノールに溶かした451mMピロール保存溶液を100μL加えることが必要。)とし、更に過硫酸アンモニウム(典型的には、10mM過硫酸アンモニウム保存水溶液410μL)を加えた。この混合物を、マグネチックスターラ(550rpm)を用いて24hかき混ぜ、最後に、孔径0.2μmのNucleporeメンブランフィルターに掛け、蒸留水で洗い、室温で乾燥した。
Example 1 Preparation of carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film (1) Preparation method Coating: Multi-walled carbon nanotubes were treated in concentrated nitric acid (6M) at 80 ° C. for 24 h to be functionalized . Subsequently, the acid / multilayer CNT mixture was washed with distilled water and spun down several times until the aqueous solution had a neutral pH. Subsequently, the functionalized multi-wall carbon nanotubes (MWCNTox) containing carboxyl groups were passed through a membrane filter (Nuclepore Track-Etch Membrane, Whatman, UK) having a pore size of 0.2 μm and dried at room temperature. In the step of coating polypyrrole, MWCNTox is dispersed in distilled water to a concentration of 0.5 mg / mL (typically 2 g of MWCNTox is dispersed in 4 mL of distilled water), followed by ultrasonic treatment. For a minute. Subsequently, a 2-propanol solution of pyrrole is added to give a final pyrrole concentration (typically 10 mM, and it is necessary to add 100 μL of a 451 mM pyrrole stock solution dissolved in 2-propanol), and ammonium persulfate (typically Specifically, 10 mM ammonium persulfate stock aqueous solution 410 μL) was added. This mixture was stirred for 24 h using a magnetic stirrer (550 rpm), finally passed through a Nuclepore membrane filter with a pore size of 0.2 μm, washed with distilled water, and dried at room temperature.

(2)特性評価
得られたナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブは、次の手法、すなわち、透過型電子顕微鏡、走査型電子顕微鏡、ラーマン分光法、X線光電子分光法、電子エネルギー損失分光法及びエレクトロケミストリーを用いて、特性評価をした。
(2) Characteristic evaluation The carbon nanotubes uniformly coated with the obtained nano-precision polypyrrole ultrathin film are obtained by the following methods: transmission electron microscope, scanning electron microscope, Raman spectroscopy, X-ray photoelectron spectroscopy. Characterization was performed using electron energy loss spectroscopy and electrochemistry.

(a)電子エネルギー損失分光法及びエレクトロケミストリー
PPy/MWCNTの各々の元素組成は、電子エネルギー損失スペクトロスコピー(EELS)によって分析した。π(283.8eV)及びσ(295.5eV)ピークが、C−K殻イオニゼーション・エッジの近くではっきりと見られた。πピークは、炭素原子がspハイブリダイズドであり、そのカーボンチューブが主として六角形のグラファイト層から成ることを示している。我々はまた、401eVでのイオニゼーション・エッジを観察したが、これはポリピロール被覆に存在する窒素原子に特徴的なKエッジに対応するものである。
(A) Electron energy loss spectroscopy and electrochemistry
The elemental composition of each PPy / MWCNT was analyzed by electron energy loss spectroscopy (EELS). The π * (283.8 eV) and σ * (295.5 eV) peaks were clearly seen near the CK shell ionization edge. The π * peak indicates that the carbon atom is sp 2 hybridized and that the carbon tube consists mainly of a hexagonal graphite layer. We also observed an ionization edge at 401 eV, which corresponds to the K edge characteristic of nitrogen atoms present in the polypyrrole coating.

(b)X線光電子分光法
サンプル全体についてMWCNTのポリピロール被覆の存在を確かめ、その定量を行なうために、PPy/MWCNT及び(機能化)MWCNToxについてX線光電子分光法(XPS)測定を行なった。被覆されたPPy/MWCNT及び(機能化)MWCNToxについての広範なXPSスキャンに基づくX線光電子スペクトルの積分による元素分析は、炭素が94.6%、窒素が5.4%であることを示している。
(B) X-ray photoelectron spectroscopy
X-ray photoelectron spectroscopy (XPS) measurements were performed on PPy / MWCNT and (functionalized) MWCNTox to confirm the presence of MWCNT polypyrrole coating on the entire sample and to quantify it. Elemental analysis by integration of X-ray photoelectron spectra based on extensive XPS scans for coated PPy / MWCNT and (functionalized) MWCNTox shows 94.6% carbon and 5.4% nitrogen Yes.

(c)ラーマン分光法
被覆されたポリピロールの存在を更に確認するために、ナノ被覆PPy/MWCNTについての約1350cm−1付近の幅広いピークのラーマン・スペクトルを示すが、これはポリピロール環の1330cm−1及び1370cm−1の伸縮を反映しているものである。
(C) Raman spectroscopy To further confirm the presence of the coated polypyrrole, a broad peak Raman spectrum around 1350 cm −1 for nanocoated PPy / MWCNT is shown, which is 1330 cm −1 of the polypyrrole ring. And 1370 cm −1 of the expansion and contraction.

(d)透過型電子顕微鏡
ピロール前駆体の濃度が10mMであったときに、形成されたポリピロール層は均一厚み7.4nm(厚みの変動係数は11%)であり、サンプル中に観察されたMWCNTは全てポリピロール超薄膜の鞘で覆われていた。図2は、均一厚みのポリピロール超薄膜で被覆されたカーボンナノチューブのTEM写真である。
(D) Transmission electron microscope When the concentration of the pyrrole precursor was 10 mM, the formed polypyrrole layer had a uniform thickness of 7.4 nm (thickness variation coefficient of 11%), and the MWCNT observed in the sample All were covered with an ultra-thin polypyrrole sheath. FIG. 2 is a TEM photograph of carbon nanotubes coated with an ultrathin polypyrrole film having a uniform thickness.

(e)エレクトロケミストリー
PPy/MWCNTナノワイヤの電気化学的挙動を観察するために、PPy/MWCNT及び(機能化)MWCNToxの膜電極についてのサイクリック・ボルタモグラムを1M塩化ナトリウム中で記録した。PPy/MWCNTナノワイヤで改変した電極の電気化学的挙動は、(機能化)MWCNToxで被覆した電極の挙動とは著しく異なっている。PPy/MWCNTナノワイヤ膜のボルタモグラムは、ポリピロール超薄膜で被覆されたMWCNTへのCl取込みと組み合わさって、+8mVの電位で鋭い酸化ピークを示している(機能化MWCNTox膜は、このような応答がないことに注意)。酸化に対するこの鋭い応答は、MWCNTのポリピロール超薄膜の被覆において迅速かつよく分かった物質移動に帰することができる。MWCNTのポリピロール被覆に関し更に情報を得るために、我々はMWCNTox及びPPy/MWCNTナノワイヤで改変した電極のキャパシタンスを計算した。これは、+0.40V(銀/塩化銀電極に対し)の電圧で記録された電流を、50mMリン酸緩衝液(pHが7.4;スキャン範囲が毎秒約200mV〜1100mV)中におけるサイクリック・ボルタメトリー実験のあいだに、スキャン速度を変化(毎秒25mV〜200mVの範囲)させ、その結果をプロットすることで測定した。これらのプロットはいずれの場合も直線的であり、そのことは基準電流は静電容量の充電/放電の電流に直接的に呼応していることを示している。機能化MWCNTox及びPPy/MWCNT膜の表面特異的キャパシタンスは、各々、1.92μFmm−2及び1.53μFmm−2(一方、むき出しGC電極のキャパシタンスは1.31μFmm−2であった)であり、これは1M塩化ナトリウム溶液における機能化MWCNT及びPPy/MWCNT膜のボルタメトリック挙動と整合している。
(E) Electrochemistry
To observe the electrochemical behavior of PPy / MWCNT nanowires, cyclic voltammograms for PPy / MWCNT and (functionalized) MWCNTox membrane electrodes were recorded in 1M sodium chloride. The electrochemical behavior of electrodes modified with PPy / MWCNT nanowires is significantly different from that of electrodes functionalized with (functionalized) MWCNTox. The voltammograms of PPy / MWCNT nanowire films show a sharp oxidation peak at a potential of +8 mV combined with Cl - uptake into MWCNTs coated with ultrathin polypyrrole films (functionalized MWCNTox films exhibit such a response. Note that there is no). This sharp response to oxidation can be attributed to rapid and well-known mass transfer in the coating of MWCNT polypyrrole ultrathin films. To obtain more information about the polypyrrole coating of MWCNT, we calculated the capacitance of the electrode modified with MWCNTox and PPy / MWCNT nanowires. This is because the current recorded at a voltage of +0.40 V (relative to the silver / silver chloride electrode) is cyclically measured in a 50 mM phosphate buffer (pH 7.4; scan range about 200 mV to 1100 mV per second). During the voltammetry experiment, the scan speed was varied (range 25 mV to 200 mV per second) and the results were plotted. These plots are linear in each case, which indicates that the reference current is directly responsive to the capacitance charge / discharge current. The surface specific capacitances of the functionalized MWCNTox and PPy / MWCNT films are 1.92 μFmm −2 and 1.53 μFmm −2 (while the capacitance of the bare GC electrode was 1.31 μFmm −2 ), respectively. Is consistent with the voltammetric behavior of functionalized MWCNT and PPy / MWCNT films in 1M sodium chloride solution.

次に、我々はPPy/MWCNTナノワイヤの電気化学的性状に及ぼすポリピロールのナノ被覆の影響を検討した。フェリシアナイドが機能化MWCNToxに対してもPPy/MWCNTナノワイヤ膜に対しても可逆的応答を示した一方で、PPy/MWCNTナノワイヤ膜では、より鋭いピーク及びより低いΔEpが観察された(ΔEpはPPy/MWCNTナノワイヤ膜で464mV、機能化MWCNTox膜で502mV)。NADHに対するサイクリック・ボルタメトリック実験によれば、機能化MWCNTox膜に比べPPy/MWCNTナノワイヤ膜のほうが、このNADH分子の酸化に対する電気化学的反応性が改善されることを示している(酸化ピーク電位は、各々、684mV及び710mVであり、酸化ピーク電流は、各々、29.1μA及び26.5μAである)。過酸化水素に対するサイクリック・ボルタメトリック応答によれば、機能化MWCNToxでは過酸化水素の酸化が+650mVで開始するが、一方、PPy/MWCNTでは過酸化水素の酸化がこれよりも低い+500mVで開始することを示している。これらの結果は、ポリピロールナノ被覆MWCNTは、裸の機能化MWCNToxに比べて改善された電気化学的性状を有することを示すものである。したがって、今後、このナノ構造のポリピロール層被覆MWCNTは電気化学的センサー等として、非常に有望な特徴を有する材料となるであろう。   Next, we investigated the effect of polypyrrole nano-coating on the electrochemical properties of PPy / MWCNT nanowires. While ferricyanide showed a reversible response to both functionalized MWCNTox and PPy / MWCNT nanowire films, sharper peaks and lower ΔEp were observed in PPy / MWCNT nanowire films (ΔEp is 464 mV for PPy / MWCNT nanowire membranes and 502 mV for functionalized MWCNTox membranes). Cyclic voltammetric experiments on NADH show that the PPy / MWCNT nanowire film has improved electrochemical reactivity to oxidation of this NADH molecule compared to the functionalized MWCNTox film (oxidation peak potential). Are 684 mV and 710 mV, respectively, and the oxidation peak currents are 29.1 μA and 26.5 μA, respectively). According to the cyclic voltammetric response to hydrogen peroxide, functionalized MWCNTox begins to oxidize hydrogen peroxide at +650 mV, whereas PPy / MWCNT begins to oxidize hydrogen peroxide at +500 mV, which is lower than this. It is shown that. These results indicate that polypyrrole nanocoated MWCNTs have improved electrochemical properties compared to bare functionalized MWCNTox. Therefore, in the future, this nano-structured polypyrrole layer-coated MWCNT will be a material having very promising characteristics as an electrochemical sensor or the like.

実施例2 ピロール濃度とポリピロール層の厚みとの関係
ピロール濃度を10mM、15mM及び20mMに変化させたほかは、実施例1と同様にして、ポリピロール被覆カーボンナノチューブを調製した。得られたポリピロール被覆カーボンナノチューブのTEM観察結果を表1にまとめた。
Example 2 Relationship between the pyrrole concentration and the thickness of the polypyrrole layer Polypyrrole-coated carbon nanotubes were prepared in the same manner as in Example 1 except that the pyrrole concentration was changed to 10 mM, 15 mM, and 20 mM. Table 1 summarizes the TEM observation results of the obtained polypyrrole-coated carbon nanotubes.

カーボンナノチューブの上にポリピロール超薄膜を均一に被覆する模式図。The schematic diagram which coat | covers a polypyrrole ultra-thin film uniformly on a carbon nanotube. ポリピロール超薄膜が均一に被覆されたカーボンナノチューブのTEM写真。左から、(A)PPy/CNT複合体の模式図、(B)ポリピロール層が被覆されたカーボンナノチューブ、(C)カーボンナノチューブの側面のポリピロール層部分(四角で囲った部分)の拡大図。A TEM photograph of a carbon nanotube uniformly coated with an ultra thin polypyrrole film. From left, (A) Schematic diagram of PPy / CNT composite, (B) Carbon nanotube coated with polypyrrole layer, (C) Enlarged view of polypyrrole layer portion (portion surrounded by square) on the side of carbon nanotube.

Claims (3)

ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブ。 Carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film. 請求項1のカーボンナノチューブであって、ポリピロール層の厚みは5nm〜20nmであり、その厚みバラツキは変動係数で表すときに20%以下である、カーボンナノチューブ。 2. The carbon nanotube according to claim 1, wherein the thickness of the polypyrrole layer is 5 nm to 20 nm, and the thickness variation is 20% or less when expressed by a coefficient of variation. 上記ナノ精度のポリピロール超薄膜で均一に被覆されているカーボンナノチューブの製造方法であって、次の工程を含む製造方法。
(i)カーボンナノチューブを濃硝酸中、高温条件下に処理して機能化する;
(ii)得られた機能化カーボンナノチューブ(CNTox)を所定濃度となるように精製水に分散する。
(iii)2−プロパノールに溶かしたピロールを、所定のピロール濃度に達するまで加え、続いて過硫酸塩を加え、これを混合する;
(iv)得られた個々のポリピロール被覆カーボンナノチューブ(固体)を分離し、乾燥する。
A method for producing a carbon nanotube uniformly coated with the above-described nano-precision polypyrrole ultrathin film, comprising the following steps.
(I) functionalizing carbon nanotubes by treating them in concentrated nitric acid under high temperature conditions;
(Ii) The obtained functionalized carbon nanotube (CNTox) is dispersed in purified water so as to have a predetermined concentration.
(Iii) Add pyrrole dissolved in 2-propanol until a predetermined pyrrole concentration is reached, then add persulfate and mix it;
(Iv) The obtained individual polypyrrole-coated carbon nanotubes (solid) are separated and dried.
JP2007004956A 2007-01-12 2007-01-12 Carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film Active JP5224434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004956A JP5224434B2 (en) 2007-01-12 2007-01-12 Carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004956A JP5224434B2 (en) 2007-01-12 2007-01-12 Carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film

Publications (2)

Publication Number Publication Date
JP2008169091A true JP2008169091A (en) 2008-07-24
JP5224434B2 JP5224434B2 (en) 2013-07-03

Family

ID=39697543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004956A Active JP5224434B2 (en) 2007-01-12 2007-01-12 Carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film

Country Status (1)

Country Link
JP (1) JP5224434B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196969A (en) * 2013-04-08 2013-07-10 天津大学 Method for dispersing carbon nanotubes by aspartame, and application electrode
CN103399052A (en) * 2013-08-02 2013-11-20 嘉兴学院 Molecularly imprinted electrochemical sensor and preparation method thereof
JP2014101234A (en) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp Surface-treated carbon nanotube
JP2014101233A (en) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp Surface-treated carbon nanotube
CN110452420A (en) * 2019-08-26 2019-11-15 徐州杰卡诺智能科技有限公司 A kind of carbon nano tube surface method of modifying and the method for preparing composite plastic using it
CN113228352A (en) * 2019-05-31 2021-08-06 株式会社Lg化学 Carbon having polymer layer containing redox functional group formed thereon, and sulfur-carbon composite and lithium secondary battery comprising the same
CN114293365A (en) * 2021-09-09 2022-04-08 深圳大学 Preparation method of wet-voltage power generation material and wet-voltage power generation material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032071A1 (en) * 2006-09-13 2008-03-20 University Of Nottingham Polymer - carbon nanotube composites

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032071A1 (en) * 2006-09-13 2008-03-20 University Of Nottingham Polymer - carbon nanotube composites

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012041732; WU,T. et al: 'Synthesis, Characterization, and Electrical Properties of Polypyrrole/Multiwalled Carbon Nanotube Co' Journal of Polymer Science. Part A. Polymer Chemistry Vol.44, 20061101, p.6449-6457 *
JPN6012041734; CHEN,G.Z. et al: 'Carbon Nanotube and Polypyrrole Composites: Coating and Doping.' ADVANCED MATERIALS Vol.12, No.7, 2000, p.522-526 *
JPN6012041735; JANG,J. et al: 'A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerizatio' Chemical Communications No.7, 2004, p.882-883 *
JPN6012041737; ZHANG,X. et al: 'Single-Walled Carbon Nanotube-Based Coaxial Nanowires: Synthesis, Characterization, and Electrical P' Journal of Physical Chemistry B Vol.109, No.3, 2005, p.1101-1107 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101234A (en) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp Surface-treated carbon nanotube
JP2014101233A (en) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp Surface-treated carbon nanotube
CN103196969A (en) * 2013-04-08 2013-07-10 天津大学 Method for dispersing carbon nanotubes by aspartame, and application electrode
CN103399052A (en) * 2013-08-02 2013-11-20 嘉兴学院 Molecularly imprinted electrochemical sensor and preparation method thereof
CN103399052B (en) * 2013-08-02 2016-07-06 嘉兴学院 Molecular imprinting electrochemical sensor and preparation method thereof
CN113228352A (en) * 2019-05-31 2021-08-06 株式会社Lg化学 Carbon having polymer layer containing redox functional group formed thereon, and sulfur-carbon composite and lithium secondary battery comprising the same
EP3902053A4 (en) * 2019-05-31 2022-02-23 LG Chem, Ltd. Carbon having redox functional group-containing polymer layer formed thereon, and sulfur-carbon composite and lithium secondary battery including same
CN110452420A (en) * 2019-08-26 2019-11-15 徐州杰卡诺智能科技有限公司 A kind of carbon nano tube surface method of modifying and the method for preparing composite plastic using it
CN114293365A (en) * 2021-09-09 2022-04-08 深圳大学 Preparation method of wet-voltage power generation material and wet-voltage power generation material
CN114293365B (en) * 2021-09-09 2023-06-16 深圳大学 Preparation method of wet-voltage power generation material and wet-voltage power generation material

Also Published As

Publication number Publication date
JP5224434B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
He et al. A promising sensing platform toward dopamine using MnO2 nanowires/electro-reduced graphene oxide composites
Lorestani et al. One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor
Dağcı et al. Preparation of free-standing and flexible graphene/Ag nanoparticles/poly (pyronin Y) hybrid paper electrode for amperometric determination of nitrite
Nia et al. A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers–silver nanoparticles decorated reduced graphene oxide nano composites
Srivastava et al. Functionalized multilayered graphene platform for urea sensor
Nia et al. Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor
Karuwan et al. Inkjet-printed graphene-poly (3, 4-ethylenedioxythiophene): poly (styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol
Xiao et al. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors
Mani et al. Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite
JP5224434B2 (en) Carbon nanotubes uniformly coated with nano-precision polypyrrole ultrathin film
Lavanya et al. High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform
Zhu et al. Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor
Nguyen et al. Development of label-free electrochemical lactose biosensor based on graphene/poly (1, 5-diaminonaphthalene) film
Li et al. Facile synthesis of 3D porous nitrogen-doped graphene as an efficient electrocatalyst for adenine sensing
Azri et al. Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development
Shervedani et al. Novel graphene-gold hybrid nanostructures constructed via sulfur modified graphene: Preparation and characterization by surface and electrochemical techniques
Ramachandran et al. Physiological level and selective electrochemical sensing of dopamine by a solution processable graphene and its enhanced sensing property in general
Hu et al. Carbon nanomaterials for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid: from one-dimensional to the quasi one-dimensional
Huang et al. Polypyrrole-hemin-reduce graphene oxide: rapid synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide
Pan et al. Hierarchical hybrid film of MnO2 nanoparticles/multi-walled fullerene nanotubes–graphene for highly selective sensing of hydrogen peroxide
Yeh et al. Electrochemical sensors for sulfamethoxazole detection based on graphene oxide/graphene layered composite on indium tin oxide substrate
Kathiresan et al. A simple one-step electrochemical deposition of bioinspired nanocomposite for the non-enzymatic detection of dopamine
Tran et al. Electrosynthesis of electrochemically reduced graphene oxide/polyaniline nanowire/silver nanoflower nanocomposite for development of a highly sensitive electrochemical DNA sensor
Adekunle et al. Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers
Jin et al. Fabrication of multiwalled carbon nanotubes/polypyrrole/Prussian blue ternary composite nanofibers and their application for enzymeless hydrogen peroxide detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5224434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250