JP2008167695A - Cell culture substrate - Google Patents

Cell culture substrate Download PDF

Info

Publication number
JP2008167695A
JP2008167695A JP2007004046A JP2007004046A JP2008167695A JP 2008167695 A JP2008167695 A JP 2008167695A JP 2007004046 A JP2007004046 A JP 2007004046A JP 2007004046 A JP2007004046 A JP 2007004046A JP 2008167695 A JP2008167695 A JP 2008167695A
Authority
JP
Japan
Prior art keywords
substrate
peptide
cell
cells
cell adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007004046A
Other languages
Japanese (ja)
Other versions
JP4682364B2 (en
Inventor
Arinori Omuro
有紀 大室
Yoshiro Tatsu
吉郎 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007004046A priority Critical patent/JP4682364B2/en
Publication of JP2008167695A publication Critical patent/JP2008167695A/en
Application granted granted Critical
Publication of JP4682364B2 publication Critical patent/JP4682364B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a cell culture substrate that has a quick specific cellular adhesiveness via cell adhesion molecules, immediately after irradiation that is specific to an irradiated part by light irradiation. <P>SOLUTION: The cell culture substrate is obtained by bonding a caged peptide, in which a photodissociating protective group is introduced into a cell adhesive peptide part, to a substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、任意のパターンないし特定の位置ないし特定のタイミングで細胞を接着させることが可能な細胞培養基板および細胞培養方法に関する。   The present invention relates to a cell culture substrate and a cell culture method capable of adhering cells in an arbitrary pattern, a specific position, or a specific timing.

周囲の細胞との関係における細胞内・細胞外シグナル伝達についての基礎研究から、近年、急速に伸展する細胞治療などの再生医療分野・評価系として細胞アレイを用いる創薬や環境分析など応用研究までにおいて、個々の細胞をきめ細かく操作・分析する手法へのニーズが高まっており、細胞を任意の部位あるいは時間で培養する、いわゆるパターン培養技術が求められている。   From basic research on intracellular and extracellular signal transduction in relation to surrounding cells, to applied research such as drug discovery and environmental analysis using cell arrays as an evaluation system in the field of regenerative medicine such as rapidly expanding cell therapy in recent years However, there is an increasing need for a technique for finely manipulating and analyzing individual cells, and so-called pattern culture techniques for culturing cells at an arbitrary site or time are required.

パターン培養の方法としては、細胞の細胞接着因子が結合できるフィブロネクチンを基板上に任意の部位に固定化するマイクロプリントを始めとして(非特許文献1)、光、熱、電気をトリガーとしたパターン培養の技術が開発されている。マイクロプリント法は、細胞接着領域を決定してから基板上で細胞を培養する手順を踏むため、培養中の制御ができず、時間分解能を持たない。また、温度応答性高分子膜(特許文献1,2、非特許文献
2−4)を用いて細胞接着性を制御する方法では、部位特異的な制御が困難である。電気
化学活性のある単分子膜(非特許文献5−7)を利用する方法では、細胞接着因子のリガンドとの結合性を直接制御していないため、非特異的な接着を完全には除外できない。
Pattern culture methods include microprints that immobilize fibronectin, which can bind cell adhesion factors of cells, at any site on the substrate (Non-patent Document 1), and pattern culture using light, heat, and electricity as a trigger. Technology has been developed. In the microprint method, since the procedure for culturing cells on a substrate after determining the cell adhesion region is taken, control during culturing cannot be performed and time resolution is not provided. Moreover, site-specific control is difficult in the method of controlling cell adhesion using a temperature-responsive polymer membrane (Patent Documents 1 and 2 and Non-Patent Documents 2-4). In the method using a monomolecular film having electrochemical activity (Non-patent Documents 5-7), the binding property of the cell adhesion factor to the ligand is not directly controlled, and therefore, nonspecific adhesion cannot be completely excluded. .

一方、光などをトリガーとして、時空間分解能を持って調節が可能なパターン培養技術
(特許文献3−5、非特許文献8−14)についても開発が進んでいるが、個々の技術につ
いて、以下のような問題点が残っている。
1) 光照射による基板の親水性等の物理化学的性質の変化により、タンパク吸着やそれに
後続して起こる細胞接着性を制御する方法(特許文献3−5、非特許文献8−10)では
、細胞接着因子のリガンドとの結合性を直接制御していないため、非特異的な接着を完全には除外できない。
2) 細胞接着因子のリガンドであるペプチドをアゾベンゼン色素を介して基板に固定化す
る方法(非特許文献13)では、アゾベンゼンの光異性化によるわずかな長さの差の違いで制御するため、完全に細胞接着性の制御ができない。
3)細胞接着因子のリガンドを結合したい部位に光照射し、光照射部位にリガンドのペプ
チドを反応させ固定化し、細胞接着を制御する方法(非特許文献11−12)では、前述のマイクロコンタクトプリントと同様に、細胞存在下の培養実験中に光制御することができない。
W02002/010349 特開平11-349643 特開平3-7577 特開2006-6214 特開2005-210936 Chen et al. Science 276, 1425-8 Stile et al. Biomacromalecules2, 185-94 (2001) Yamato et al. Tissue Engineering 7, 473-80 (2001) Yamato et al. Biomaterials 23, 561-7 (2002) Harimoto et al. Journal of Biomedical Materials Research 62, 464-70 (2002) Yousaf et al. Proc Natl. Acad. Sci. USA 98, 5992-6 (2001) Yeo et al. J.Amer. Chem. Soc. 125, 14994-5 (2003) Nakayama et al. Macromolecules 29, 8622-30 (1996) Nakanishi et al. J.Am.Chem.Soc. 126, 16314-5 (2004) Edahiro et al. Biomolecules 6, 970-4 (2005) Luo et al. Nature Materials 3, 249-53 (2004) Luo et al. Biomalecules 5, 2315-23 (2004) Auernheimer et al. J.Am.Chem.Soc. 127, 163107-10 (2005)
On the other hand, pattern culture technology that can be adjusted with spatio-temporal resolution using light as a trigger
Development is also progressing for (Patent Documents 3-5, Non-Patent Documents 8-14), but the following problems remain for individual technologies.
1) Methods for controlling protein adsorption and subsequent cell adhesion by changing the physicochemical properties such as hydrophilicity of the substrate by light irradiation (Patent Documents 3-5 and Non-Patent Documents 8-10) Non-specific adhesion cannot be ruled out completely because the binding of the cell adhesion factor to the ligand is not directly controlled.
2) In the method of immobilizing peptides, which are ligands for cell adhesion factors, on the substrate via an azobenzene dye (Non-patent Document 13), the control is based on a slight difference in length due to photoisomerization of azobenzene, which is completely Cell adhesion cannot be controlled.
3) In the method for controlling cell adhesion by irradiating the site to which the ligand of the cell adhesion factor is to be bound, reacting and immobilizing the peptide of the ligand to the irradiated site (Non-patent Documents 11-12), the above-mentioned microcontact print Like, it cannot be light-controlled during culture experiments in the presence of cells.
W02002 / 010349 JP 11-349643 A JP 3-7577 JP2006-6214 JP2005-210936 Chen et al. Science 276, 1425-8 Stile et al. Biomacromalecules2, 185-94 (2001) Yamato et al. Tissue Engineering 7, 473-80 (2001) Yamato et al. Biomaterials 23, 561-7 (2002) Harimoto et al. Journal of Biomedical Materials Research 62, 464-70 (2002) Yousaf et al. Proc Natl. Acad. Sci. USA 98, 5992-6 (2001) Yeo et al. J. Amer. Chem. Soc. 125, 14994-5 (2003) Nakayama et al. Macromolecules 29, 8622-30 (1996) Nakanishi et al. J. Am. Chem. Soc. 126, 16314-5 (2004) Edahiro et al. Biomolecules 6, 970-4 (2005) Luo et al. Nature Materials 3, 249-53 (2004) Luo et al. Biomalecules 5, 2315-23 (2004) Auernheimer et al. J. Am. Chem. Soc. 127, 163107-10 (2005)

そこで本発明は、細胞培養前、または細胞培養下の両条件において、光照射によって、照射部位特異的に、照射直後に速やかに細胞接着分子を介した特異的な細胞接着性を持つ基板を作成することを目的とする。   Therefore, the present invention creates a substrate having specific cell adhesion properties via cell adhesion molecules immediately after irradiation in a specific manner by irradiation with light under both conditions before or under cell culture. The purpose is to do.

本発明は、以下の細胞培養基板および細胞培養方法を提供するものである。
1. 光解離性保護基を細胞接着ペプチド部分に導入したケージドペプチドを基板上に結合してなる、細胞培養基板。
2. 細胞接着ペプチドがRGDである、項1に記載の細胞培養基板。
3. 光解離性保護基がRGDのGのアミノ基に導入されたN-2-ニトロベンジル基であ
る、項2に記載の細胞培養基板。
4. 項1,2または3の細胞培養基板に、特定のタイミングおよび/または特定のパターンで光照射して光解離性保護基を除去し、細胞接着ペプチド部分を基板上において、特定のタイミングおよび/または特定のパターンで形成し、該基板上で細胞を培養することを特徴とする、細胞培養基板上に特定のパターンでおよび/または特定のタイミングで細胞を接着させた状態で細胞を培養する方法。
The present invention provides the following cell culture substrate and cell culture method.
1. A cell culture substrate obtained by binding a caged peptide having a photolabile protecting group introduced into a cell adhesion peptide portion onto the substrate.
2. Item 2. The cell culture substrate according to Item 1, wherein the cell adhesion peptide is RGD.
3. Item 3. The cell culture substrate according to Item 2, wherein the photolabile protecting group is an N-2-nitrobenzyl group introduced into the amino group of G of RGD.
4). The cell culture substrate of Item 1, 2, or 3 is irradiated with light at a specific timing and / or in a specific pattern to remove the photolabile protecting group, and the cell adhesion peptide portion is placed on the substrate at a specific timing and / or A method for culturing cells in a state where cells are adhered in a specific pattern and / or at a specific timing on a cell culture substrate, wherein the cells are formed in a specific pattern and cultured on the substrate.

本発明の細胞接着基板は、細胞接着ペプチド部分に光解離性保護基を導入しているため、光照射前では、該基板上で細胞を培養しても細胞はほとんど基板に接着することができないが、基板上の特定の位置、特定のパターンないし特定のタイミングで光を照射することにより、照射した位置にのみ細胞接着ペプチドを露出させることができ、ここに細胞を接着させることができる。したがって、細胞の接着パターンないし接着のタイミングを非常に精密に制御することができる。また、光照射と各種の細胞の接着を繰り返すことで、細胞播種後に細胞を増殖させる領域を任意の2次元パターンで決めることができるため、細胞相互間の関係を調べることもできる。   In the cell adhesion substrate of the present invention, since a photolabile protecting group is introduced into the cell adhesion peptide portion, the cells hardly adhere to the substrate even if the cells are cultured on the substrate before light irradiation. However, by irradiating light at a specific position, a specific pattern or at a specific timing on the substrate, the cell adhesion peptide can be exposed only at the irradiated position, and the cells can be adhered thereto. Therefore, the cell adhesion pattern or the timing of adhesion can be controlled very precisely. In addition, by repeating light irradiation and adhesion of various cells, it is possible to determine a region in which cells are to be proliferated after cell seeding with an arbitrary two-dimensional pattern, so that the relationship between cells can be examined.

本発明の細胞培養基板へのケージドペプチドの導入は、例えばCys残基のチオール基を
介して行うことができる。チオール基を介してケージドペプチドを固定化するに際しては、予め基板表面にアミノ基を導入させて、N-ヒドロキシスクシンイミド(NHS)基とマレイミド(MAL)基を有するヘテロ二官能型架橋剤を用いてマレイミド表面を形成させ、このMAL基とCys残基のチオール基を反応させることにより好ましく実施することが
できる。基板上にアミノ基を導入する手段は特に限定されず、基板表面に分子を整列させる自己組織化表面の手法、反応試薬を用いて導入する方法、官能基を有する物質(例えば
、ポリ-L-リジン)を基板上にコーティングする方法などが挙げられる。また、基板表面
上に導入された官能基に対し架橋剤を反応させてアミノ基を導入する方法を用いてもよい。
Introduction of the caged peptide into the cell culture substrate of the present invention can be performed, for example, via a thiol group of a Cys residue. When immobilizing a caged peptide via a thiol group, an amino group is introduced into the substrate surface in advance, and a heterobifunctional crosslinking agent having an N-hydroxysuccinimide (NHS) group and a maleimide (MAL) group is used. It can be preferably carried out by forming a maleimide surface and reacting this MAL group with the thiol group of the Cys residue. The means for introducing an amino group on the substrate is not particularly limited, and a self-organized surface method for aligning molecules on the substrate surface, a method for introducing using a reaction reagent, a substance having a functional group (for example, poly-L- And a method of coating lysine) on the substrate. Moreover, you may use the method of making a crosslinking agent react with the functional group introduce | transduced on the substrate surface, and introduce | transducing an amino group.

ヘテロ二官能型架橋剤としては、種々市販されているものもあり、特に限定されるものではないが、例えばN−(4−マレイミドブチリルオキシ)スクシンイミド(GMBS)
、N−(6−マレイミドカプロイルオキシ)スクシンイミド(EMCS)、N−(8−マレイミドカプリルオキシ)スクシンイミド(HMCS)、N−(11−マレイミドウンデカノイルオキシ)スクシンイミド(KMUS)、N−((4−(2−マレイミドエトキシ)スクシニル)オキシ)スクシンイミド(MESS)、N−(4−マレイミドブチリルオキシ)スルホスクシンイミドナトリウム塩(スルホ−GMBS)、N−(6−マレイミドカプロイルオキシ)スルホスクシンイミドナトリウム塩(スルホ−EMCS)、N−(8−マレイミドカプリルオキシ)スルホスクシンイミドナトリウム塩(スルホ−HMCS)などが挙げられる。また、PEG(ポリエチレングリコール)のような高分子の末端にスクシンイミド(NHS)基とマレイミド(MAL)基を有するものもヘテロ二官能型架橋剤として用いることができる。
There are various commercially available heterobifunctional crosslinking agents and are not particularly limited. For example, N- (4-maleimidobutyryloxy) succinimide (GMBS)
N- (6-maleimidocaproyloxy) succinimide (EMCS), N- (8-maleimidocapryloxy) succinimide (HMCS), N- (11-maleimidoundecanoyloxy) succinimide (KMUS), N-(( 4- (2-maleimidoethoxy) succinyl) oxy) succinimide (MESS), N- (4-maleimidobutyryloxy) sulfosuccinimide sodium salt (sulfo-GMBS), N- (6-maleimidocaproyloxy) sulfosuccinimide sodium Salt (sulfo-EMCS), N- (8-maleimidocapryloxy) sulfosuccinimide sodium salt (sulfo-HMCS) and the like. Moreover, what has a succinimide (NHS) group and a maleimide (MAL) group in the terminal of polymer | macromolecule like PEG (polyethylene glycol) can also be used as a heterobifunctional type crosslinking agent.

本発明のケージドペプチドは、細胞接着ペプチドを1または2以上(好ましくは1つ)含む。細胞接着ペプチドとしては、RGD、REDV、P15(GTPGPQGIAGQRGVV;配列番号1)、C/H−V(WQPPRARI;配列番号2),YIGSR(配列番号3)、SIKVAV(配列番号4)、F−9(RYVVLPRPVCFEKGMNYTVR;配列番号5),HEP−III(GEFYFDLRLKGDK;配列番号6などが挙げられ、好ましくはRGDが挙げられる。   The caged peptide of the present invention contains one or more (preferably one) cell adhesion peptides. Cell adhesion peptides include RGD, REDV, P15 (GTPGPQGIAGQRGVV; SEQ ID NO: 1), C / HV (WQPPPARI; SEQ ID NO: 2), YIGSR (SEQ ID NO: 3), SIKVAV (SEQ ID NO: 4), F-9 ( RYVVLPPVCFGGMNYTVR; SEQ ID NO: 5), HEP-III (GEFYFDLRLKGGDK; SEQ ID NO: 6 and the like are preferable, and RGD is preferable.

ケージドペプチドは、アミノ酸数が3〜30個程度、好ましくは4〜20個程度である。ケージドペプチド中に含まれる細胞接着ペプチドは、基板から遠い位置(少なくとも基
板から2アミノ酸以上、好ましくは3アミノ酸以上、より好ましくは5アミノ酸以上離れた位置)にあるのが細胞との接着性の点で好ましい。
The caged peptide has about 3 to 30 amino acids, preferably about 4 to 20 amino acids. The cell adhesion peptide contained in the caged peptide is located at a position far from the substrate (at least 2 amino acids or more, preferably 3 amino acids or more, more preferably 5 amino acids or more away from the substrate) in terms of adhesion to cells. Is preferable.

光解離性保護基は、紫外線照射により切断されるものであれば特に限定されないが、例えば下記式(II)   The photolabile protecting group is not particularly limited as long as it is cleaved by irradiation with ultraviolet rays. For example, the following formula (II)

Figure 2008167695
〔式中、R1、R2、R3は、同一又は異なって水素原子、低級アルキル基、低級アルコキ
シ基、アミノ基、ハロゲン原子、水酸基またはシアノ基を示すか、あるいはR1、R2及びR3のいずれか2つが一緒になってメチレンジオキシ基を示す。Rは、水素原子又はメチ
ル基を示す。〕で表される
基が挙げられる。
Figure 2008167695
[Wherein R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, an amino group, a halogen atom, a hydroxyl group or a cyano group, or R 1 , R 2 and Any two of R 3 together represent a methylenedioxy group. R represents a hydrogen atom or a methyl group. The group represented by this is mentioned.

式(I)において、R1、R2、R3で表される低級アルキル基としては、メチル、エチ
ル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチルなどの炭素数1〜4の直鎖又は分枝を有するアルキル基が挙げられる。
In the formula (I), examples of the lower alkyl group represented by R 1 , R 2 , and R 3 include carbon such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl. The alkyl group which has a linear or branched number 1-4 is mentioned.

低級アルコキシ基としては、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシなどの炭素数1〜4の直鎖又は分枝を有するアルコキシ基が挙げられる。   Examples of the lower alkoxy group include linear or branched alkoxy groups having 1 to 4 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy and the like. .

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

好ましい式(II)の基は、R1、R2、R3は、いずれか2つが水素原子で、残りの1つ
が水素原子、低級アルキル基または低級アルコキシ基で、Rが水素原子で表される基である。
In the preferred group of formula (II), any one of R 1 , R 2 and R 3 is a hydrogen atom, the remaining one is a hydrogen atom, a lower alkyl group or a lower alkoxy group, and R is a hydrogen atom. It is a group.

光解離性保護基は、紫外線照射により除去される。照射される紫外線としては、光解離性保護基を除去できる限り特に限定されず、通常の紫外線ランプなどが用いられる。紫外線照射の条件は特に限定されないが、例えばTLC検出用の紫外線ハンドランプ(トプコン製、PU-2)で1時間程度処理すればよい。   The photolabile protecting group is removed by ultraviolet irradiation. The ultraviolet ray to be irradiated is not particularly limited as long as the photolabile protecting group can be removed, and an ordinary ultraviolet lamp or the like is used. Although the conditions for ultraviolet irradiation are not particularly limited, for example, it may be processed for about 1 hour with an ultraviolet hand lamp for detection of TLC (Topcon, PU-2).

光解離性保護基を主鎖に導入した本発明のケージドペプチドは、下記式(I)の光解離性
保護基を有するジペプチドを合成し、次いで式(I) で表されるN保護ジペプチド化合物を、固相合成においてN保護アミノ酸の代わりに使用することにより得ることができる。
式(I)
The caged peptide of the present invention in which a photolabile protecting group is introduced into the main chain, a dipeptide having a photolabile protecting group of the following formula (I) is synthesized, and then an N-protected dipeptide compound represented by the formula (I) is synthesized. Can be obtained by using in place of N-protected amino acids in solid phase synthesis.
Formula (I)

Figure 2008167695
(式中、Rはアミノ基の保護基を示す。AはPro以外のペプチドを構成するαアミノ酸の側鎖を示す。Bはαアミノ酸の側鎖を示す。Rは光解離性保護基を示す。)。
光解離性保護基を側鎖に有するケージドペプチドは、N保護アミノ酸の代わりに光解離性保護基を側鎖に有するN保護アミノ酸を使用して、固相合成法により製造することができる。
Figure 2008167695
(In the formula, R 1 represents a protecting group for an amino group. A represents a side chain of an α-amino acid constituting a peptide other than Pro. B represents a side chain of an α-amino acid. R a represents a photolabile protecting group. Is shown.)
A caged peptide having a photolabile protecting group in the side chain can be produced by a solid phase synthesis method using an N-protected amino acid having a photolabile protecting group in the side chain instead of the N-protected amino acid.

式(I)のジペプチドの合成は、αアミノ基に光解離性保護基を有するアミノ酸(Aaa
)とN保護アミノ酸(Baa)の酸フッ化物を反応させて、目的とする一般式(I)のジペプチドを合成することができる。反応は、光解離性保護基が結合したAaa1モルに対し、N保護−Baa−Fを1モルから過剰量使用し、0℃〜100℃程度の温度下に1分から24時間程度反応させることにより、有利に進行する。
The synthesis of the dipeptide of formula (I) involves the amino acid (Aaa having a photolabile protecting group at the α-amino group.
) And an N-protected amino acid (Baa) acid fluoride can be reacted to synthesize the desired dipeptide of general formula (I). The reaction is performed by using N-protection-Baa-F in an excess amount from 1 mole to 1 mole of Aaa to which a photolabile protecting group is bonded, and reacting at a temperature of about 0 ° C. to 100 ° C. for about 1 minute to 24 hours. , Proceed advantageously.

ケージドペプチドの光解離性保護基の数は、ケージドペプチドの細胞接着活性が実質的に消失する限り特に限定されないが、例えば、1〜3個、好ましくは1〜2個、特に1個である。   The number of photolabile protecting groups of the caged peptide is not particularly limited as long as the cell adhesion activity of the caged peptide is substantially lost, but is, for example, 1 to 3, preferably 1 to 2, particularly 1.

本発明のケージドペプチドは、細胞接着ペプチド部分に光解離性保護基が結合して、その細胞接着活性が実質的に消失し、かつ、光照射により光解離性保護基が脱離した場合に細胞接着ペプチドの活性が回復するものをいう。   The caged peptide of the present invention has a function in which the cell-dissociating protecting group is bound to the cell adhesion peptide portion, the cell adhesion activity is substantially lost, and the cell is released when the photo-dissociable protecting group is detached by light irradiation. This means that the activity of the adhesion peptide is restored.

一般式(I)において、「A」で表される基としては、Gly、Ala、Ser、Thr、Tyr、Phe、Trp、Asp、Glu、Met、Cys、Leu、Ile、Val、Lys、Arg、His、Asn、Gln、Orn(オルニチン)などのPro以外の天然アミノ酸の側鎖が挙げられ、「B」で表される基としては、Ala、Ser、Thr、Tyr、Phe、Trp、Asp、Glu、Met、Cys、Leu、Ile、Val、Lys、Arg、His、Asn、Gln、Gly、Pro、Orn(オルニチン)の側鎖が挙げられる。なお、A, Bで表されるアミノ酸の側鎖がNH2、SH、イミダゾリル、グアニジノ、OH、COOH)などの官能基を有する場合に
は、必要に応じてペプチド合成(特に固相合成)で通常使用される保護基で必要に応じて保護される。
In the general formula (I), the group represented by “A” includes Gly, Ala, Ser, Thr, Tyr, Phe, Trp, Asp, Glu, Met, Cys, Leu, Ile, Val, Lys, Arg, Examples include side chains of natural amino acids other than Pro, such as His, Asn, Gln, Orn (Ornithine), and groups represented by “B” include Ala, Ser, Thr, Tyr, Phe, Trp, Asp, Glu , Met, Cys, Leu, Ile, Val, Lys, Arg, His, Asn, Gln, Gly, Pro, and Orn (ornithine) side chains. In addition, when the side chain of the amino acid represented by A, B has a functional group such as NH 2 , SH, imidazolyl, guanidino, OH, COOH), peptide synthesis (especially solid phase synthesis) may be performed as necessary. Protected as necessary with commonly used protecting groups.

固相合成の樹脂としては、ポリスチレンージ ビニルベンゼン共重合体などの公知の樹
脂を広く使用することができる。
As the resin for solid phase synthesis, known resins such as polystyrene-divinylbenzene copolymer can be widely used.

また、ペプチド鎖の伸長、保護基の除去、樹脂からのペプチドの切断などは、常法に従い実施することができる。   In addition, peptide chain elongation, protecting group removal, peptide cleavage from the resin, and the like can be performed according to conventional methods.

本発明の細胞培養基板の材質は、非特異的な細胞の接着が起こらない限り特に限定されず、例えばガラス、プラスチック、金属、セラミックなどが挙げられ、好ましくはガラス、プラスチックが挙げられる。   The material of the cell culture substrate of the present invention is not particularly limited as long as nonspecific cell adhesion does not occur, and examples thereof include glass, plastic, metal, ceramic and the like, preferably glass and plastic.

細胞培養基板上における光解離性保護基を除去したパターンの形成は、特に限定されず公知の方法が広く使用されるが、例えば特定のパターンを有するマスクを介して基板上の特定の位置/領域に特定のタイミングで光を照射するなどの光リソグラフィー技術を用い
て実施することができる。特定のタイミングとしては、ある生理活性物質の添加前ないし添加後、時計遺伝子の特定の周期、特定の細胞周期、細胞の分化、遊走などが挙げられる。
Formation of the pattern from which the photolabile protecting group is removed on the cell culture substrate is not particularly limited, and a known method is widely used. For example, a specific position / region on the substrate through a mask having a specific pattern It can be carried out using an optical lithography technique such as irradiating light at a specific timing. The specific timing includes a specific cycle of a clock gene, a specific cell cycle, cell differentiation, migration, etc. before or after the addition of a physiologically active substance.

該基板上で培養される細胞の種類、培養条件は特に限定されず、従来公知の細胞および培養条件を広く用いることができる。   There are no particular limitations on the type and culture conditions of the cells cultured on the substrate, and conventionally known cells and culture conditions can be widely used.

以下、本発明を実施例および参考例を用いてより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。
(参考例1)固相化用ペプチドの製造
以下の3つのペプチドを、上記の方法に従い製造した。
intact peptide-Cys
配列:Tyr-Ala-Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Cys-amide (配列番号7)
質量分析値、観測値:1369.11、計算値:1369.48
reverse peptide-Cys
配列:Cys-Ser-Ser-Ala-Pro-Ser-Asp-Gly-Arg-Gly-Thr-Val-Ala-Tyr-amide (配列番号8)
質量分析値、観測値:1369.67、計算値:1369.48
caged peptide-Cys
配列:Tyr-Ala-Val-Thr-Gly-Arg-cGly-Asp-Ser-Pro-Ala-Ser-Ser-Cys-amide (配列番号9)質量分析値、観測値:1503.58、計算値:1504.6
ただし、cGlyはN-2-nitrobenzylglycineを示す。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a reference example, it cannot be overemphasized that this invention is not limited to these Examples.
Reference Example 1 Production of Peptide for Immobilization The following three peptides were produced according to the method described above.
intact peptide-Cys
Sequence: Tyr-Ala-Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Cys-amide (SEQ ID NO: 7)
Mass analysis value, observed value: 1369.11, calculated value: 1369.48
reverse peptide-Cys
Sequence: Cys-Ser-Ser-Ala-Pro-Ser-Asp-Gly-Arg-Gly-Thr-Val-Ala-Tyr-amide (SEQ ID NO: 8)
Mass analysis value, observed value: 1369.67, calculated value: 1369.48
caged peptide-Cys
Sequence: Tyr-Ala-Val-Thr-Gly-Arg-cGly-Asp-Ser-Pro-Ala-Ser-Ser-Cys-amide (SEQ ID NO: 9) Mass spectrometry, observed value: 1503.58, calculated value: 1504.6
However, cGly represents N-2-nitrobenzylglycine.

(参考例2)ペプチドの固相化
材料:メチル基とN-ヒドロキシスクシミジル活性化エステルが両端に結合したポリエチレングリコール(以下、m-PEG-NHSと略す:商品名SUNBRIGHT ME-050CS, 日本油脂株式会
社、渋谷、東京)、及び、マレイミドと N-ヒドロキシスクシミジル活性化エステルが両
端に結合したポリエチレングリコール(以下、MA-PEG-NHSと略す:商品名SUNBRIGHT MA-034HS, 日本油脂株式会社、渋谷、東京)を用いた。
(Reference Example 2) Solid phase of peptide Material: Polyethylene glycol in which methyl group and N-hydroxysuccimidyl activated ester are bonded at both ends (hereinafter abbreviated as m-PEG-NHS: trade name SUNBRIGHT ME-050CS, Japan) Yushi Co., Ltd., Shibuya, Tokyo) and polyethylene glycol with maleimide and N-hydroxysuccimidyl activated ester bonded to both ends (hereinafter abbreviated as MA-PEG-NHS: trade name SUNBRIGHT MA-034HS, Nippon Oil & Fats Co., Ltd.) Company, Shibuya, Tokyo).

方法:m-PEG-NHSを25 mg/ml、MA-PEG-NHS を0.25 mg/mlの濃度で溶解したリン酸緩衝生理食塩水(pH7.4、以下、PBSと略す.)を作成し、その150μlを、ポリLレジンでコ
ートしてあるガラスボトムディッシュ(PLL-Coat, 35 mm dish, Hole: 10 mm No.0, Cat.No. D110110, MATSUNAMI, 岸和田、大阪)のガラス上に滴下して、約24時間、4℃で静置し
た後、2mlのPBSで3回洗浄し、m-PEG-NHSとMA-PEG-NHSを100:1の比で固定化した
基板を作成した。
この基板に、1 mg/mlにPBSで溶解したペプチド溶液150μlを滴下して、約24時間、4度で静置した後、2mlのPBSで3回洗浄し、ペプチドを固定化した基板を作成した。
Method: Prepare phosphate buffered saline (pH 7.4, hereinafter abbreviated as PBS) in which m-PEG-NHS is dissolved at a concentration of 25 mg / ml and MA-PEG-NHS is dissolved at a concentration of 0.25 mg / ml. 150 μl of the solution was dropped onto a glass bottom dish (PLL-Coat, 35 mm dish, Hole: 10 mm No.0, Cat.No. D110110, MATSUNAMI, Kishiwada, Osaka) coated with poly-L resin. The plate was allowed to stand at 4 ° C. for about 24 hours and then washed 3 times with 2 ml of PBS to prepare a substrate on which m-PEG-NHS and MA-PEG-NHS were immobilized at a ratio of 100: 1.
To this substrate, 150 μl of a peptide solution dissolved in PBS at 1 mg / ml was added dropwise, allowed to stand at 4 degrees for about 24 hours, and then washed 3 times with 2 ml of PBS to prepare a substrate on which the peptide was immobilized. did.

(参考例3)対照実験
HeLa細胞の培養実験において、m-PEG-NHSとMA-PEG-NHSを固定化させた基板へのペプチド
固相化の有無による影響を調べた(図2)。参考実験2に述べた方法によってポリL-リジ
ン固定化基板(PLL 固定化基板)、ポリエチレングリコール誘導体をさらに固定化した基板(m-PEG-NHSとMA-PEG-NHSを固定化した基板)、細胞接着因子が結合しないペプチドを
さらに固定化した基板(reverse peptide-Cys)、及び、細胞接着因子が結合できるペプ
チドをさらに固定化した基板(intact peptide-Cys)、を調整した。この基板も用い、HeLa細胞の培養を行った。HeLa細胞を2 x 104細胞 / dishの細胞密度で、無血清培地(500 IU/ml ペニシリン、5mg/ml ストレプトマイシンを含んだDelbecco’s modified Eagles medium (Cat.No.12430-047, Invitrogen))内で培養した。培養開始から30分後に基板をPBSで洗浄してから、PBSで希釈した4 % パラホルムアルデヒドを用いて細胞を固定して、微分干渉観察 (Olympus IX70)を行った。
ポリL-リジン固定化基板やポリエチレングリコール誘導体固定化基板、細胞接着因子の結合しないペプチド固定化基板では、ほとんど細胞接着は認められなかった。しかし、細胞接着因子が結合できるペプチド固定化基板では、接着細胞数の著しい増加が観察された(図2)。また、マレイミド基にペプチドを修飾する前の疎水性な部位が含まれる状態の基板(図3、2段目)では、非特異的な細胞接着が観察された。
(Reference Example 3) Control experiment
In the HeLa cell culture experiment, the effect of the presence or absence of immobilization of the peptide on the substrate on which m-PEG-NHS and MA-PEG-NHS were immobilized was examined (Fig. 2). Poly L-lysine-immobilized substrate (PLL-immobilized substrate), a substrate further immobilized with a polyethylene glycol derivative (substrate immobilizing m-PEG-NHS and MA-PEG-NHS) by the method described in Reference Experiment 2, A substrate (reverse peptide-Cys) further immobilized with a peptide to which a cell adhesion factor does not bind and a substrate (intact peptide-Cys) further immobilized with a peptide capable of binding to a cell adhesion factor were prepared. HeLa cells were also cultured using this substrate. HeLa cells at a cell density of 2 x 10 4 cells / dish in serum-free medium (Delbecco's modified Eagles medium (Cat. No. 12430-047, Invitrogen) containing 500 IU / ml penicillin, 5 mg / ml streptomycin) Cultured. After 30 minutes from the start of the culture, the substrate was washed with PBS, and the cells were fixed with 4% paraformaldehyde diluted with PBS, and differential interference observation (Olympus IX70) was performed.
Almost no cell adhesion was observed on the poly-L-lysine-immobilized substrate, the polyethylene glycol derivative-immobilized substrate, and the peptide-immobilized substrate to which no cell adhesion factor was bound. However, a marked increase in the number of adherent cells was observed on the peptide-immobilized substrate to which the cell adhesion factor can bind (FIG. 2). In addition, nonspecific cell adhesion was observed on the substrate in which the maleimide group contained a hydrophobic site before modification of the peptide (FIG. 3, second stage).

また、これらの修飾基板の紫外線照射の影響を調べた。PBSを2ml入れた基板の下方
から、紫外線ランプ(UV-100A型、(株)浜松ホトニクス)を用いて、紫外線(波長365 nm、光強度16 mW/cm2)を4分間照射した。この紫外線照射基板を用いて、上述と同じ方法で培養実験を行ったところ細胞接着への紫外線照射の有意な影響は観察されなかった。
Moreover, the influence of ultraviolet irradiation on these modified substrates was investigated. Ultraviolet rays (wavelength 365 nm, light intensity 16 mW / cm 2 ) were irradiated for 4 minutes from below the substrate containing 2 ml of PBS using an ultraviolet lamp (UV-100A type, Hamamatsu Photonics Co., Ltd.). When this ultraviolet irradiation substrate was used to perform a culture experiment in the same manner as described above, no significant influence of ultraviolet irradiation on cell adhesion was observed.

(実施例1) ケージドペプチドを固定化した基板での細胞培養実験
HeLa細胞の培養実験において、caged peptide-Cysを固相化した基板への接着における紫
外線照射量の影響を調べた。参考実験2に述べた方法でcaged peptide-Cysを固相化した
基板を調整し、この基板にPBSを2ml入れ、基板の下方から、紫外線ランプ(UV-100A型、(株)浜松ホトニクス)を用いて、紫外線(波長365 nm、光強度16 mW/cm2)を0, 0.5,
1, 2, 4分間照射した。この紫外線照射基板も用い、HeLa細胞の培養を行った。HeLa細胞を2 x 104細胞 / dishの細胞密度で、無血清培地(500 IU/ml ペニシリン、5mg/ml スト
レプトマイシンを含んだDelbecco’s modified Eagles medium (Cat.No.12430-047, Invitrogen))内で培養した。培養開始から30分後に基板をPBSで洗浄してから、PBSで希釈し
た4 % パラホルムアルデヒドを用いて細胞を固定して、微分干渉観察 (Olympus IX70)を
行った。
紫外線照射前は、細胞はほとんど接着しなかったが、照射を行った基板上では、照射量依存的に接着細胞数が増加した (図3)。
Example 1 Cell Culture Experiment on Substrate Immobilized with Caged Peptide
In a HeLa cell culture experiment, the effect of UV irradiation on adhesion to a substrate on which caged peptide-Cys was immobilized was examined. Prepare a substrate on which caged peptide-Cys is immobilized by the method described in Reference Experiment 2, add 2 ml of PBS to this substrate, and place an ultraviolet lamp (UV-100A type, Hamamatsu Photonics) from the bottom of the substrate. Using ultraviolet rays (wavelength 365 nm, light intensity 16 mW / cm 2 ) 0, 0.5,
Irradiated for 1, 2, 4 minutes. HeLa cells were also cultured using this ultraviolet irradiation substrate. HeLa cells at a cell density of 2 x 10 4 cells / dish in serum-free medium (Delbecco's modified Eagles medium (Cat. No. 12430-047, Invitrogen) containing 500 IU / ml penicillin, 5 mg / ml streptomycin) Cultured. After 30 minutes from the start of the culture, the substrate was washed with PBS, and the cells were fixed with 4% paraformaldehyde diluted with PBS, and differential interference observation (Olympus IX70) was performed.
Before UV irradiation, the cells hardly adhered, but on the irradiated substrate, the number of adherent cells increased in a dose-dependent manner (Fig. 3).

(実施例2) 部位特異的な細胞培養実験
HeLa細胞の培養実験において、caged peptide-Cysを固相化した基板を用い、部位特異的
な細胞接着制御を行った。参考実験2に述べた方法でcaged peptide-Cysを固相化した基
板を調整し、この基板にPBSを2ml入れ、基板の下に基板半分を遮光するマスクを置き
、基板の下方から、紫外線ランプ(UV-100A型、(株)浜松ホトニクス)を用いて、紫外
線(波長365nm、光強度30 mW/cm2)を2分間照射した。この紫外線照射後の基板を
用い、HeLa細胞を2 x 105細胞 / dishの細胞密度で、無血清培地(500 IU/ml ペニシリン、5mg/ml ストレプトマイシンを含んだDelbecco’s modified Eagles medium (Cat.No.12
430-047, Invitrogen))で培養した。培養開始から30分後に基板をPBSで洗浄してから、PBSで希釈した4 % パラホルムアルデヒドを用いて細胞を固定して、微分干渉観察 (Olympus IX70)を行った。
遮光部位では接着細胞がほとんど観察されなかったが、照射部位では接着細胞が観察され、紫外線照射部位特異的に細胞を接着できることが示された(図4)。
(Example 2) Site-specific cell culture experiment
In a HeLa cell culture experiment, site-specific cell adhesion control was performed using a substrate on which caged peptide-Cys was immobilized. Prepare a substrate on which caged peptide-Cys is immobilized by the method described in Reference Experiment 2, place 2 ml of PBS on this substrate, place a mask that shields half of the substrate under the substrate, and place an ultraviolet lamp from below the substrate. (UV-100A type, Hamamatsu Photonics Co., Ltd.) was used for irradiation for 2 minutes with ultraviolet rays (wavelength 365 nm, light intensity 30 mW / cm 2 ). Using this UV-irradiated substrate, HeLa cells were cultured at a cell density of 2 x 10 5 cells / dish at a serum-free medium (Delbecco's modified Eagles medium (Cat. No. 5 containing 500 IU / ml penicillin, 5 mg / ml streptomycin). 12
430-047, Invitrogen)). After 30 minutes from the start of the culture, the substrate was washed with PBS, and the cells were fixed with 4% paraformaldehyde diluted with PBS, and differential interference observation (Olympus IX70) was performed.
Almost no adherent cells were observed at the light-shielded site, but adherent cells were observed at the irradiated site, indicating that cells can adhere specifically to the UV-irradiated site (FIG. 4).

(実施例3) 細胞培養中に光照射することによる部位特異的な細胞培養実験
HeLa細胞の培養実験において、caged peptide-Cysを固相化した基板を用い、部位特異的
な細胞接着制御を行った。参考実験2に述べた方法でcaged peptide-Cysを固相化した基
板を調整し、この基板を用い、HeLa細胞を2 x 105細胞 / dishの細胞密度で、無血清培地(500 IU/ml ペニシリン、5mg/ml ストレプトマイシンを含んだDelbecco’s modified Eagles medium (Cat.No.12430-047, Invitrogen))で培養した。培養開始から20分後に、
基板の下に基板半分を遮光するマスクを置き、基板の下方から、紫外線ランプ(UV-100A
型、(株)浜松ホトニクス)を用いて、紫外線(波長365nm、光強度38.5 mW/cm2
を2分間照射した。その後、さらに20分間培養した後に、基板をPBSで洗浄してから、PBSで希釈した4 % パラホルムアルデヒドを用いて細胞を固定して、微分干渉観察 (Olympus IX70)を行った。
遮光部位では接着細胞がほとんど観察されなかったが、照射部位では接着細胞が観察された (図5)。
(実施例4)光照射によって細胞接着を誘導させる細胞培養実験
HeLa細胞の培養実験において、caged peptide-Cysを固相化した基板を用い、光照射時期
特異的な細胞接着制御を行った。参考実験2に述べた方法でcaged peptide-Cysを固相化
した基板を調整し、この基板を用い、HeLa細胞を4 x 105細胞 / dishの細胞密度で、無血清培地(500 IU/ml ペニシリン、5mg/ml ストレプトマイシン、25mM HEPES (pH7.4)を
含んだDelbecco’s modified Eagles medium (Sigma-Aldrich D2902)で培養した。培養は、37度に保った顕微鏡ステージチャンバー内で行い、30秒ごとに微分干渉像を撮影した。培養開始から約15分後に、基板の上方から、紫外線ランプ(UV-100A型、(株)浜松ホ
トニクス)を用いて、紫外線(波長365nm、光強度33 mW/cm2)を2分間照射した。
培養を開始して紫外光照射直前まで細胞は球状であったが、紫外光照射直後から、基盤のRGDフラグメント部位と細胞膜上のインテグリンとの結合開始に起因する急速な細胞の伸
展が観察された(図6左列)。しかし、光照射しない場合、約1時間経過しても細胞は球
状のままであった((図6右列)。この実験から、caged peptide-Cysを固相化した基板
を用いれば、任意のタイミングで、細胞の基盤への接着を開始できることが示された。
(Example 3) Site-specific cell culture experiment by irradiating light during cell culture
In a HeLa cell culture experiment, site-specific cell adhesion control was performed using a substrate on which caged peptide-Cys was immobilized. Prepare a substrate with caged peptide-Cys immobilized by the method described in Reference Experiment 2, and use this substrate to prepare HeLa cells at a cell density of 2 x 10 5 cells / dish and serum-free medium (500 IU / ml Cultured in Delbecco's modified Eagles medium (Cat. No. 12430-047, Invitrogen)) containing penicillin and 5 mg / ml streptomycin. 20 minutes after the start of culture,
A mask that shields half of the substrate is placed under the substrate, and an ultraviolet lamp (UV-100A) is placed under the substrate.
Type, Hamamatsu Photonics Co., Ltd.), ultraviolet light (wavelength 365 nm, light intensity 38.5 mW / cm 2 )
Was irradiated for 2 minutes. Then, after further culturing for 20 minutes, the substrate was washed with PBS, then fixed with 4% paraformaldehyde diluted with PBS, and differential interference observation (Olympus IX70) was performed.
Almost no adherent cells were observed at the light-shielded site, but adherent cells were observed at the irradiated site (Fig. 5).
(Example 4) Cell culture experiment in which cell adhesion is induced by light irradiation
In a HeLa cell culture experiment, a cell adhesion control specific to the light irradiation time was performed using a substrate on which caged peptide-Cys was immobilized. Prepare a substrate on which caged peptide-Cys is immobilized by the method described in Reference Experiment 2, and use this substrate to prepare HeLa cells at a cell density of 4 x 10 5 cells / dish and serum-free medium (500 IU / ml The cells were cultured in Delbecco's modified Eagles medium (Sigma-Aldrich D2902) containing penicillin, 5 mg / ml streptomycin, 25 mM HEPES (pH 7.4), and cultured in a microscope stage chamber maintained at 37 degrees every 30 seconds. About 15 minutes after the start of culture, UV light (wavelength 365 nm, light intensity 33 mW / cm 2 ) was used from above the substrate using an ultraviolet lamp (UV-100A type, Hamamatsu Photonics). ) For 2 minutes.
The cells were spherical until the start of the culture and immediately before the irradiation with ultraviolet light, but immediately after the irradiation with ultraviolet light, rapid cell expansion was observed due to the initiation of binding between the base RGD fragment site and the integrin on the cell membrane. (Left column in FIG. 6). However, in the case of no light irradiation, the cells remained spherical even after about 1 hour ((right column in FIG. 6). From this experiment, if a substrate on which caged peptide-Cys is immobilized is used, any cell can be obtained. It was shown that at the timing, cell attachment to the substrate can be initiated.

結論
(i)参考実験3から、無血清培地において、細胞接着因子を介した特異的な接着には、細
胞接着因子のリガンドとなる物質が固定化してある基板が必要であることが示された。
(ii)実施例1,2,3から、ケージドペプチドを用いれば、細胞接着因子を介した特異的な細胞接着を紫外線照射によって制御し得る基板を調整できることが示された。
(iii)RGDを含むペプチドはインテグリンの結合配列であり、細胞間・細胞内シグナル伝達、細胞接着に関与することから、細胞生物学や生体適合材料においての研究が古くから行われている。このcaged peptideの固相化を可能にしたことによって、光照射によって部
位特異的および時間特異的、無侵襲に、光リソグラフィー等による細胞のパターン培養を行えることから、細胞や組織におけるインテグリンを介した作用機序を解明するための研究開発用試薬としての利用や、生体適合材料開発のために産業上有用であると考えられる。
(iv)このパターン培養法では、細胞接着に関与するリガンド自身を不活性化しており、RGD以外の細胞接着に関与するペプチド配列をケージド化によっても、同様な細胞接着制御
が可能である。
(v)ペプチドの固定化基板作成は、ポリLリジン固定化基板やポリエチレングリコール誘
導体によらず、ケージドペプチドを固定化する他の方法により可能である。
Conclusion
(i) From Reference Experiment 3, it was shown that a substrate on which a substance serving as a ligand of a cell adhesion factor is immobilized is necessary for specific adhesion via a cell adhesion factor in a serum-free medium.
(ii) From Examples 1, 2, and 3, it was shown that the use of caged peptides makes it possible to adjust a substrate that can control specific cell adhesion via cell adhesion factors by ultraviolet irradiation.
(iii) Peptides containing RGD are integrin binding sequences and are involved in intercellular / intracellular signal transduction and cell adhesion, and thus have been studied for a long time in cell biology and biocompatible materials. Since this caged peptide can be solid-phased, it is possible to perform cell pattern culture by photolithography, etc. in a site-specific, time-specific, and non-invasive manner by light irradiation. It is considered industrially useful for use as a research and development reagent for elucidating the mechanism of action, and for the development of biocompatible materials.
(iv) In this pattern culture method, the ligand itself involved in cell adhesion is inactivated, and the same cell adhesion control can be performed by caged peptide sequences involved in cell adhesion other than RGD.
(v) Preparation of a peptide-immobilized substrate is possible by other methods of immobilizing caged peptides, regardless of poly-L-lysine-immobilized substrates or polyethylene glycol derivatives.

参考実験3、実施例1,2における基板作成と細胞接着の光制御実験のスキーム。ポリLリジン(PLL)をコートしてある培養基板へ(i)、マレイミドとスクシミジルエステルを持つ二架橋性のポリエチレングリコールを反応させ(ii)、次にペプチドを反応させて、ペプチドをコートした(iii)。細胞を付着させたい部位に光照射すれば、細胞が接着する(iv)。Scheme of substrate control and light control experiment of cell adhesion in Reference Experiment 3 and Examples 1 and 2. A culture substrate coated with poly-L-lysine (PLL) (i) is reacted with maleimide and a bi-crosslinkable polyethylene glycol with succimidyl ester (ii), and then the peptide is reacted to coat the peptide. (Iii). When light is irradiated to the site where the cells are to be attached, the cells adhere (iv). (参考実験3)各種基板へのHeLa細胞の接着Scale bar = 200 μm(Reference Experiment 3) Adhesion of HeLa cells to various substrates Scale bar = 200 μm (実施例1)紫外線照射時間依存的にcaged peptide-Cys固相化基板に接着するHeLa細胞数が増加した。Scale bar = 200 μm(Example 1) The number of HeLa cells adhering to the caged peptide-Cys solid-phase substrate increased in an ultraviolet irradiation time-dependent manner. Scale bar = 200 μm (実施例2)Caged peptide-Cys固相化基板の右半面のみに紫外線照射後、HeLa細胞を基板上で培養した結果、紫外線照射を行った部位のみにHeLa細胞が接着した。Scale bar = 200 μm(Example 2) As a result of culturing HeLa cells on the substrate after ultraviolet irradiation only on the right half of the caged peptide-Cys solid-phase substrate, HeLa cells adhered only to the site irradiated with ultraviolet rays. Scale bar = 200 μm (実施例3)HeLa細胞を20分間、Caged peptide-Cys固相化基板上で培養後、基板の左半面のみに紫外線照射を行った。さらに20分間HeLa細胞を基板上で培養した結果、紫外線照射を行った部位のみにHeLa細胞が接着した。Scale bar=200 μm(Example 3) HeLa cells were cultured on a caged peptide-Cys solid-phase substrate for 20 minutes, and then only the left half of the substrate was irradiated with ultraviolet rays. As a result of further culturing the HeLa cells on the substrate for 20 minutes, the HeLa cells adhered only to the site irradiated with ultraviolet rays. Scale bar = 200 μm 微分干渉顕微鏡下において、HeLa細胞をCaged peptide-Cys固相化基板上で培養を行った。光照射を行わなかった場合ほとんど細胞接着が起こらないが(右一連の写真)、光照射を行うことによって、速やかに細胞接着が誘導されることが観察された(左一連の写真)。Scale bar=50 μmUnder a differential interference microscope, HeLa cells were cultured on a caged peptide-Cys solid phase substrate. When light irradiation was not performed, cell adhesion hardly occurred (right series of photographs), but it was observed that cell irradiation was rapidly induced by light irradiation (left series of photographs). Scale bar = 50 μm

Claims (4)

光解離性保護基を細胞接着ペプチド部分に導入したケージドペプチドを基板上に結合してなる、細胞培養基板。 A cell culture substrate obtained by binding a caged peptide having a photolabile protecting group introduced into a cell adhesion peptide portion onto the substrate. 細胞接着ペプチドがRGDである、請求項1に記載の細胞培養基板。 The cell culture substrate according to claim 1, wherein the cell adhesion peptide is RGD. 光解離性保護基がRGDのGのアミノ基に導入されたN-2-ニトロベンジル基である、請
求項2に記載の細胞培養基板。
The cell culture substrate according to claim 2, wherein the photolabile protecting group is an N-2-nitrobenzyl group introduced into the amino group of G of RGD.
請求項1,2または3の細胞培養基板に、特定のタイミングおよび/または特定のパターンで光照射して光解離性保護基を除去し、細胞接着ペプチド部分を基板上において、特定のタイミングおよび/または特定のパターンで形成し、該基板上で細胞を培養することを特徴とする、細胞培養基板上に特定のパターンでおよび/または特定のタイミングで細胞を接着させた状態で細胞を培養する方法。 4. The cell culture substrate of claim 1, 2 or 3 is irradiated with light at a specific timing and / or in a specific pattern to remove the photolabile protecting group, and the cell adhesion peptide portion is placed on the substrate at a specific timing and / or Alternatively, a method of culturing cells in a specific pattern and / or at a specific timing on a cell culture substrate, wherein the cells are formed in a specific pattern and cultured on the substrate .
JP2007004046A 2007-01-12 2007-01-12 Cell culture substrate Expired - Fee Related JP4682364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004046A JP4682364B2 (en) 2007-01-12 2007-01-12 Cell culture substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004046A JP4682364B2 (en) 2007-01-12 2007-01-12 Cell culture substrate

Publications (2)

Publication Number Publication Date
JP2008167695A true JP2008167695A (en) 2008-07-24
JP4682364B2 JP4682364B2 (en) 2011-05-11

Family

ID=39696378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004046A Expired - Fee Related JP4682364B2 (en) 2007-01-12 2007-01-12 Cell culture substrate

Country Status (1)

Country Link
JP (1) JP4682364B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058721A1 (en) * 2009-11-13 2011-05-19 株式会社 日立ハイテクノロジーズ Substrate with photo-controllable cell adhesion property, method for analyzing and fractionating cells, and device for analysis and fractionation of cells
JP2012120443A (en) * 2010-12-06 2012-06-28 Dainippon Printing Co Ltd Cell culture substrate
WO2012132551A1 (en) 2011-03-30 2012-10-04 国立大学法人東京大学 Cell-adhesive photocontrollable base material
WO2012141202A1 (en) 2011-04-11 2012-10-18 学校法人東邦大学 Cell-adhering light-controllable substrate
JP2018113928A (en) * 2017-01-19 2018-07-26 国立大学法人 筑波大学 Contact type materials with biological substance in which surface thereof is modified by biocompatible polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678760A (en) * 1992-09-03 1994-03-22 Kurabo Ind Ltd Method for serum-free culturing of adhesive animal cell and its culture apparatus
JP2006006214A (en) * 2004-06-25 2006-01-12 Institute Of Physical & Chemical Research Method for producing substrate having immobilized cell and substrate
JP2006262740A (en) * 2005-03-23 2006-10-05 Toyo Glass Co Ltd Cell colonization and proliferation substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678760A (en) * 1992-09-03 1994-03-22 Kurabo Ind Ltd Method for serum-free culturing of adhesive animal cell and its culture apparatus
JP2006006214A (en) * 2004-06-25 2006-01-12 Institute Of Physical & Chemical Research Method for producing substrate having immobilized cell and substrate
JP2006262740A (en) * 2005-03-23 2006-10-05 Toyo Glass Co Ltd Cell colonization and proliferation substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058721A1 (en) * 2009-11-13 2011-05-19 株式会社 日立ハイテクノロジーズ Substrate with photo-controllable cell adhesion property, method for analyzing and fractionating cells, and device for analysis and fractionation of cells
JP2012120443A (en) * 2010-12-06 2012-06-28 Dainippon Printing Co Ltd Cell culture substrate
WO2012132551A1 (en) 2011-03-30 2012-10-04 国立大学法人東京大学 Cell-adhesive photocontrollable base material
JP2012210158A (en) * 2011-03-30 2012-11-01 Univ Of Tokyo Cell-adhesive photocontrollable base material
WO2012141202A1 (en) 2011-04-11 2012-10-18 学校法人東邦大学 Cell-adhering light-controllable substrate
JP2018113928A (en) * 2017-01-19 2018-07-26 国立大学法人 筑波大学 Contact type materials with biological substance in which surface thereof is modified by biocompatible polymer

Also Published As

Publication number Publication date
JP4682364B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN101528876B (en) Polymeric coatings and methods for forming them
Das et al. Chemical cross-linking in biology
Wirkner et al. Triggered cell release from materials using bioadhesive photocleavable linkers
JP2020169170A (en) Cell membrane penetrating peptides and methods of making and using thereof
JP4682364B2 (en) Cell culture substrate
US10363340B2 (en) Poly(oligoethylene glycol methacrylate) hydrogel compositions, and methods of use thereof
Dif et al. Small and stable peptidic PEGylated quantum dots to target polyhistidine-tagged proteins with controlled stoichiometry
Thoma et al. Versatile functionalization of polylysine: synthesis, characterization, and use of neoglycoconjugates
KR20130087369A (en) Amphiphilic linear peptide/peptoid and hydrogel comprising the same
Tsai et al. Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering
US8137925B2 (en) Methods and compositions for protein labeling using lipoic acid ligases
WO2008145609A1 (en) Method of making covalent conjugates with his-tagged proteins
US10711037B2 (en) Chemical and biochemical adducts as biomarkers for organophosphate exposure
US11779646B2 (en) Dynamic user-programmable materials including stimuli-responsive proteins
Moulton et al. Site-specific reversible protein and peptide modification: transglutaminase-catalyzed glutamine conjugation and bioorthogonal light-mediated removal
WO2007071874A2 (en) Novel compounds which interact with pea-15
EP1328546B1 (en) Cyclic peptides, method for preparing same and use as angiogenesis inhibitor or activator
Nonaka et al. Revisiting PFA-mediated tissue fixation chemistry: FixEL enables trapping of small molecules in the brain to visualize their distribution changes
US20230152306A1 (en) Nanoparticles for sensing use and production method for same
Luescher et al. Photoaffinity labeling of the T cell receptor on cloned cytotoxic T lymphocytes by covalent photoreactive ligand.
US20100216969A1 (en) Immobilisation of polypeptides by irradiation
Molakaseema et al. Simple and Rapid Synthesis of Branched Peptides through Microwave-Assisted On-Bead Ligation
EP2403829A1 (en) Cross-linking agents
WO2022140269A1 (en) Photopatterned biomolecule immobilization to guide 3d cell fate in natural protein-based hydrogels
FR3024547A1 (en) PROCESS FOR PRODUCING A CAPTURE PHASE FOR DETECTION OF A BIOLOGICAL TARGET, METHODS AND DETECTION KITS THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4682364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees