JP2008167548A - Piezoelectric actuator - Google Patents

Piezoelectric actuator Download PDF

Info

Publication number
JP2008167548A
JP2008167548A JP2006352850A JP2006352850A JP2008167548A JP 2008167548 A JP2008167548 A JP 2008167548A JP 2006352850 A JP2006352850 A JP 2006352850A JP 2006352850 A JP2006352850 A JP 2006352850A JP 2008167548 A JP2008167548 A JP 2008167548A
Authority
JP
Japan
Prior art keywords
displacement
piezoelectric actuator
piezoelectric element
transmitting member
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006352850A
Other languages
Japanese (ja)
Inventor
Hidekazu Hattori
秀和 服部
Naoyuki Kawazoe
尚幸 川添
Yutaka Yamada
山田  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006352850A priority Critical patent/JP2008167548A/en
Priority to DE200710055913 priority patent/DE102007055913A1/en
Publication of JP2008167548A publication Critical patent/JP2008167548A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric actuator excellent in durability and reliability, to prevent crack, breakage, and the like in a displacement transmission member and maintain displacement characteristics even after a long-term use. <P>SOLUTION: The piezoelectric actuator 1 includes: a housing case 2 having a cylindrical barrel portion 21 housing a piezoelectric element 10 and a driving member 22 closing one end of the barrel portion 21; and a displacement transmission member 19 that is provided between the piezoelectric element 10 and the driving member 22 and transmits driving force from the piezoelectric element 10 to the driving member 22. The driving member 22 has a flat contact receiving surface 221, and a flat end face 191 of the displacement transmission member 19 is abutted against the contact receiving surface 221. The end face 191 of the displacement transmission member 19 has a chamfered portion 194 obtained by chamfering its peripheral end portion 192, and the chamfered amount C of the chamfered portion 194 is 0.1 to 0.8 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、積層型の圧電素子を利用してなる圧電アクチュエータに関する。   The present invention relates to a piezoelectric actuator using a laminated piezoelectric element.

近年、自動車の燃費、排気ガス等の対策の面から、圧電アクチュエータを用いた自動車の燃料噴射用インジェクタの開発が進められている。
上記圧電アクチュエータは、例えば、積層型の圧電素子を収納してなる筒状の胴部と、その胴部の一方の端部を閉塞する駆動部材とを備えた収納ケースを有し、圧電素子と駆動部材との間に、圧電素子の圧電変位による駆動力を駆動部材に伝達する変位伝達部材を設けた構成のものがある(特許文献1参照)。
2. Description of the Related Art In recent years, fuel injectors for automobiles using piezoelectric actuators have been developed from the viewpoint of measures such as automobile fuel consumption and exhaust gas.
The piezoelectric actuator includes, for example, a storage case including a cylindrical body portion that houses a stacked piezoelectric element, and a drive member that closes one end of the body portion, There is a configuration in which a displacement transmitting member that transmits a driving force generated by piezoelectric displacement of a piezoelectric element to the driving member is provided between the driving member (see Patent Document 1).

このような圧電アクチュエータは、通常、変位を効率よく伝達するために、駆動部材と変位伝達部材との互いの平坦な面を当接させ、両者を接触させている。
しかしながら、上記両者の互いの平坦な面が平行な状態で接触している場合は問題ないが、位置ずれ等により平行な状態で接触していない場合には、変位伝達部材に不具合が生じる。すなわち、変位伝達部材から駆動部材への変位伝達の際に、変位伝達部材における駆動部材との接触面において、応力集中が生じる。特に、その接触面の外周端部が直角又は鋭角である場合には、その外周端部が主として駆動部材と接触して変位が伝達されるため、その部分に応力集中が生じる。これにより、圧電素子の繰り返しの駆動によって、変位伝達部材に割れ・破損等の不具合が生じる。
In such a piezoelectric actuator, normally, in order to transmit displacement efficiently, the flat surfaces of the driving member and the displacement transmitting member are brought into contact with each other, and both are brought into contact with each other.
However, there is no problem when the two flat surfaces are in contact with each other in a parallel state, but when the contacts are not in a parallel state due to misalignment or the like, a problem occurs in the displacement transmission member. That is, when the displacement is transmitted from the displacement transmitting member to the driving member, stress concentration occurs on the contact surface of the displacement transmitting member with the driving member. In particular, when the outer peripheral end portion of the contact surface is a right angle or an acute angle, the outer peripheral end portion mainly comes into contact with the drive member and displacement is transmitted, so that stress concentration occurs in that portion. As a result, problems such as cracking and breakage occur in the displacement transmitting member due to repeated driving of the piezoelectric element.

このようなことから、長期間の使用においても変位伝達部材の割れ・破損等の発生を抑制することができ、変位特性を維持することができる、耐久性・信頼性に優れた圧電アクチュエータが望まれている。   For this reason, there is a demand for a piezoelectric actuator with excellent durability and reliability that can suppress the occurrence of cracking or breakage of the displacement transmission member even during long-term use and maintain the displacement characteristics. It is rare.

特開2003−97418号公報JP 2003-97418 A

本発明は、かかる従来の問題点に鑑みてなされたもので、長期間の使用においても変位伝達部材の割れ・破損等の発生を抑制することができ、変位特性を維持することができる、耐久性・信頼性に優れた圧電アクチュエータを提供しようとするものである。   The present invention has been made in view of such conventional problems, and can suppress the occurrence of cracks and breakage of the displacement transmission member even during long-term use, and can maintain the displacement characteristics. It is intended to provide a piezoelectric actuator with excellent performance and reliability.

本発明は、積層型の圧電素子を収納してなる筒状の胴部と、該胴部の一方の端部を閉塞する駆動部材とを備えた収納ケースと、上記圧電素子と上記駆動部材との間に設けられ上記圧電素子の駆動力を上記駆動部材に伝達する変位伝達部材とを有する圧電アクチュエータにおいて、
上記駆動部材は、平坦な当接受面を有し、上記変位伝達部材の平坦な先端面を上記当接受面に当接させており、
上記変位伝達部材の上記先端面は、その外周端部に面取り部を有し、該面取り部の面取り量は、0.1〜0.8mmであることを特徴とする圧電アクチュエータにある(請求項1)。
The present invention includes a storage case including a cylindrical body portion that houses a laminated piezoelectric element, a drive member that closes one end of the body portion, the piezoelectric element, and the drive member. A piezoelectric actuator having a displacement transmitting member provided between the displacement transmitting member and transmitting the driving force of the piezoelectric element to the driving member;
The drive member has a flat contact receiving surface, and a flat distal end surface of the displacement transmitting member is in contact with the contact receiving surface,
The distal end surface of the displacement transmitting member has a chamfered portion at an outer peripheral end portion thereof, and a chamfering amount of the chamfered portion is 0.1 to 0.8 mm. 1).

本発明の圧電アクチュエータは、上記駆動部材の上記当接受面と上記変位伝達部材の上記先端面とを当接させている。つまり、上記駆動部材と上記変位伝達部材とは、互いの平坦な面同士により当接している。そして、上記変位伝達部材の上記先端面は、その外周端部に面取り部を有している。そのため、上記変位伝達部材に割れ・破損等の不具合が生じることを抑制することができる。   In the piezoelectric actuator of the present invention, the contact receiving surface of the drive member and the tip end surface of the displacement transmitting member are in contact with each other. That is, the drive member and the displacement transmission member are in contact with each other by their flat surfaces. And the said front end surface of the said displacement transmission member has a chamfering part in the outer peripheral edge part. Therefore, it is possible to suppress the occurrence of problems such as cracks and breakage in the displacement transmission member.

すなわち、本発明では、上記圧電素子の圧電変位による駆動力を上記変位伝達部材から上記駆動部材へと伝達する面となる上記先端面の外周端部に、その部分を面取りしてなる上記面取り部が設けてある。そのため、例えば上記当接受面と上記先端面とが位置ずれ等により平行な状態で接触してない場合でも、上記先端面が面取りされていない従来に比べて、変位伝達の際に上記先端面の外周端部に集中する応力が分散される。これにより、上記変位伝達部材の上記先端面における応力集中を抑制することができる。そして、長期間の使用においても、上記変位伝達部材に割れ・破損等の不具合が生じることを抑制することができる。   That is, in the present invention, the chamfered portion is formed by chamfering the outer peripheral end portion of the tip end surface, which is a surface for transmitting the driving force due to the piezoelectric displacement of the piezoelectric element from the displacement transmitting member to the driving member. Is provided. Therefore, for example, even when the contact receiving surface and the tip surface are not in contact in a parallel state due to a positional deviation or the like, the tip surface is not subjected to chamfering as compared with the conventional case where the tip surface is not chamfered. Stress concentrated on the outer peripheral edge is dispersed. Thereby, the stress concentration in the said front end surface of the said displacement transmission member can be suppressed. And even if it is used for a long time, it can suppress that malfunctions, such as a crack and breakage, arise in the said displacement transmission member.

さらに、本発明では、上記面取り部の面取り量を0.1〜0.8mmの範囲としている。上記面取り量を上記の範囲とすることにより、上記圧電素子から上記変位伝達部材を介して上記駆動部材に伝達される変位伝達量等の変位特性を充分に確保しながら、上記の効果を得ることができる。   Furthermore, in the present invention, the chamfering amount of the chamfered portion is in the range of 0.1 to 0.8 mm. By obtaining the chamfering amount within the above range, the above effect can be obtained while sufficiently securing displacement characteristics such as a displacement transmission amount transmitted from the piezoelectric element to the drive member via the displacement transmission member. Can do.

このように、本発明の圧電アクチュエータは、長期間の使用においても変位伝達部材の割れ・破損等の発生を抑制することができ、変位特性を維持することができる、耐久性・信頼性に優れたものとなる。   As described above, the piezoelectric actuator of the present invention can suppress the occurrence of cracking / breakage of the displacement transmitting member even during long-term use, and can maintain the displacement characteristics, and has excellent durability and reliability. It will be.

本発明においては、上記面取り部の面取り量が0.1mm未満の場合には、上記変位伝達部材の上記先端面における応力集中を抑制するという効果を充分に得ることができないおそれがある。特に、上記圧電素子の変位による駆動力が大きくなればなるほど、その傾向は顕著となる。一方、0.8mmを超える場合には、変位伝達量を充分に得ることができないおそれがある。
なお、ここでいう面取り量とは、上記変位伝達部材の上記先端面において、面取りする前の外周端から面取りした後の外周端までの距離である。
In the present invention, when the chamfering amount of the chamfered portion is less than 0.1 mm, there is a possibility that the effect of suppressing the stress concentration on the distal end surface of the displacement transmitting member cannot be sufficiently obtained. In particular, the tendency becomes more prominent as the driving force due to the displacement of the piezoelectric element increases. On the other hand, when it exceeds 0.8 mm, there is a possibility that a sufficient displacement transmission amount cannot be obtained.
The chamfering amount here is the distance from the outer peripheral end before chamfering to the outer peripheral end after chamfering on the distal end surface of the displacement transmitting member.

また、上記面取り部は、上記変位伝達部材の上記先端面における外周端部の角部の角度が90°超え180°未満となるように面取りしてなる構成とすることができる(請求項2)。
この場合には、上記変位伝達部材の上記先端面における応力集中を抑制するという効果を有効に発揮することができる。
なお、上記構成の場合には、上記角部の角度が上記範囲となるように、例えば上記面取り部を傾斜平面状に設けることができる。
Further, the chamfered portion may be configured to be chamfered so that the angle of the outer peripheral end portion of the distal end surface of the displacement transmitting member is greater than 90 ° and less than 180 ° (Claim 2). .
In this case, the effect of suppressing the stress concentration on the distal end surface of the displacement transmitting member can be effectively exhibited.
In addition, in the case of the said structure, the said chamfering part can be provided in inclination flat form so that the angle of the said corner | angular part may become the said range, for example.

また、上記面取り部は、上記変位伝達部材の先端面における外周端部を一定の曲率を有するR形状に面取りしてなる構成とすることもできる(請求項3)。すなわち、上記面取り部を一定の曲率を有する曲面状に設けることもできる。
上記面取り部をR形状とした場合でも、上記変位伝達部材の上記先端面における応力集中を抑制するという効果を充分に得ることができる。
Further, the chamfered portion may be configured by chamfering an outer peripheral end portion of the distal end surface of the displacement transmitting member into an R shape having a certain curvature (Claim 3). That is, the chamfered portion can be provided in a curved shape having a certain curvature.
Even when the chamfered portion has an R shape, the effect of suppressing the stress concentration on the distal end surface of the displacement transmitting member can be sufficiently obtained.

また、上記変位伝達部材は、セラミックよりなることが好ましい(請求項4)。特に、上記変位伝達部材は、アルミナよりなることが好ましい(請求項5)。
この場合には、ヤング率が高いことにより、上記圧電素子から上記変位伝達部材を介して上記駆動部材に伝達される変位のロスを小さくすることができる。
The displacement transmitting member is preferably made of ceramic. In particular, the displacement transmitting member is preferably made of alumina.
In this case, since the Young's modulus is high, the loss of displacement transmitted from the piezoelectric element to the drive member via the displacement transmission member can be reduced.

また、上記収納ケースの上記胴部は、上記圧電素子の駆動に応じて軸方向に弾性的に伸縮可能な伸縮部を有する構成とすることができる(請求項6)。
この場合には、上記伸縮部としてベローズ等を用いたベローズ型の圧電アクチュエータとすることができる。もちろん、このような構成とした場合でも、上記変位伝達部材の上記先端面における応力集中を抑制するという効果を充分に得ることができる。
In addition, the body portion of the storage case may include a stretchable portion that can be elastically stretched in the axial direction according to the driving of the piezoelectric element.
In this case, a bellows-type piezoelectric actuator using a bellows or the like as the expansion / contraction part can be obtained. Of course, even in such a configuration, it is possible to sufficiently obtain the effect of suppressing stress concentration on the distal end surface of the displacement transmitting member.

また、上記収納ケースにおける上記胴部と上記駆動部材との間には、上記圧電素子の駆動に応じて弾性的に変形可能なダイヤフラム膜部を有する構成とすることができる(請求項7)。
この場合には、ダイヤフラム型の圧電アクチュエータとすることができる。もちろん、このような構成とした場合でも、上記変位伝達部材の上記先端面における応力集中を抑制するという効果を充分に得ることができる。
Moreover, it can be set as the structure which has a diaphragm film | membrane part which can be elastically deformed according to the drive of the said piezoelectric element between the said trunk | drum and the said drive member in the said storage case.
In this case, a diaphragm type piezoelectric actuator can be obtained. Of course, even in such a configuration, it is possible to sufficiently obtain the effect of suppressing stress concentration on the distal end surface of the displacement transmitting member.

また、上記圧電アクチュエータは、内燃機関の燃料噴射用のインジェクタに内蔵するアクチュエータであることが好ましい(請求項8)。
上記インジェクタは、高温高湿という過酷な条件下で使用される。そのため、上記の優れた圧電アクチュエータを用いることにより、耐久性・信頼性を向上させることができ、インジェクタ全体の性能向上を図ることができる。
The piezoelectric actuator is preferably an actuator built in an injector for fuel injection of an internal combustion engine.
The injector is used under severe conditions of high temperature and high humidity. Therefore, durability and reliability can be improved by using the excellent piezoelectric actuator described above, and the performance of the entire injector can be improved.

(実施例1)
本発明の実施例にかかる圧電アクチュエータについて、図を用いて説明する。
本例の圧電アクチュエータ1は、図1に示すごとく、積層型の圧電素子10を収納してなる筒状の胴部21と、該胴部21の一方の端部を閉塞する駆動部材22とを備えた収納ケース2と、圧電素子10と駆動部材22との間に設けられ圧電素子10の駆動力を駆動部材22に伝達する変位伝達部材19とを有する。
駆動部材22は、平坦な当接受面221を有し、変位伝達部材19の平坦な先端面191を当接受面221に当接させている。そして、変位伝達部材19の先端面191は、その外周端部192に面取り部194を有し、該面取り部194の面取り量Cは、0.1〜0.8mmの範囲内である。
以下、これを詳説する。
(Example 1)
A piezoelectric actuator according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the piezoelectric actuator 1 of this example includes a cylindrical body portion 21 that houses a stacked piezoelectric element 10 and a drive member 22 that closes one end of the body portion 21. The storage case 2 is provided, and a displacement transmission member 19 is provided between the piezoelectric element 10 and the driving member 22 and transmits the driving force of the piezoelectric element 10 to the driving member 22.
The drive member 22 has a flat contact receiving surface 221, and the flat distal end surface 191 of the displacement transmitting member 19 is in contact with the contact receiving surface 221. The distal end surface 191 of the displacement transmitting member 19 has a chamfered portion 194 at the outer peripheral end 192, and the chamfered amount C of the chamfered portion 194 is in the range of 0.1 to 0.8 mm.
This will be described in detail below.

図1に示すごとく、積層型の圧電素子10は、圧電層12と内部電極層13とを交互に積層してなるセラミック積層体11を有している。セラミック積層体11は、断面四角形状を呈しており、セラミック積層体11の外周面には、相互に対面する一対の側面電極形成面111、112が形成されている。
なお、圧電層12は、ジルコン酸チタン酸鉛(PZT)よりなる圧電セラミックスにより構成されている。また、内部電極層13は、Ag/Pd合金により構成されている。
As shown in FIG. 1, the multilayer piezoelectric element 10 has a ceramic laminate 11 in which piezoelectric layers 12 and internal electrode layers 13 are alternately laminated. The ceramic laminate 11 has a rectangular cross section, and a pair of side electrode forming surfaces 111 and 112 facing each other are formed on the outer peripheral surface of the ceramic laminate 11.
The piezoelectric layer 12 is made of a piezoelectric ceramic made of lead zirconate titanate (PZT). The internal electrode layer 13 is made of an Ag / Pd alloy.

また、セラミック積層体11の側面電極形成面111、112には、Agペーストを焼き付けてなる焼付け銀上に、Agフィラーをエポキシ樹脂中に含有させてなる導電性接着剤を介して側面電極板16を接合した側面電極14が設けられている。
なお、側面電極板16としては、金属板を加工したメッシュ状のエキスパンドメタルを用いた。
Further, the side electrode plate 16 is formed on the side electrode forming surfaces 111 and 112 of the ceramic laminate 11 via a conductive adhesive in which an Ag filler is contained in an epoxy resin on a baked silver obtained by baking an Ag paste. The side electrode 14 which joined is provided.
In addition, as the side electrode plate 16, a mesh-like expanded metal obtained by processing a metal plate was used.

また、各側面電極14は、セラミック積層体11の積層方向の一層おきの内部電極層13と電気的に接続しており、かつ、一方の側面電極14と電気的に接続している内部電極層13は、他方の側面電極14に対して電気的に絶縁した状態となっている。つまり、本例のセラミック積層体11は、いわゆる部分電極構造を有している。
また、セラミック積層体11の外周面全体は、絶縁性を有するシリコーン樹脂よりなるモールド材(図示略)によって覆われている。
In addition, each side electrode 14 is electrically connected to every other internal electrode layer 13 in the stacking direction of the ceramic laminate 11 and is electrically connected to one side electrode 14. 13 is electrically insulated from the other side electrode 14. That is, the ceramic laminate 11 of this example has a so-called partial electrode structure.
The entire outer peripheral surface of the ceramic laminate 11 is covered with a molding material (not shown) made of an insulating silicone resin.

また、同図に示すごとく、セラミック積層体11の積層方向の一方の端面には、ハーメチックシールよりなる接続部材18が接合されている。接続部材18は、側面電極14を外部へと導く外部電極20を有しており、側面電極14と外部電極20とは、レーザー溶接により接合されている。
また、セラミック積層体11のもう一方の端面には、アルミナよりなり、圧電素子10の圧電変位による駆動力を収納ケース2の駆動部材22に伝達するための変位伝達部材19が設けられている。変位伝達部材19は、駆動部材22に当接している。
As shown in the figure, a connecting member 18 made of a hermetic seal is joined to one end face of the ceramic laminate 11 in the lamination direction. The connecting member 18 has an external electrode 20 that guides the side electrode 14 to the outside, and the side electrode 14 and the external electrode 20 are joined by laser welding.
The other end face of the ceramic laminate 11 is provided with a displacement transmission member 19 made of alumina and for transmitting the driving force generated by the piezoelectric displacement of the piezoelectric element 10 to the driving member 22 of the storage case 2. The displacement transmission member 19 is in contact with the drive member 22.

また、同図に示すごとく、金属製の収納ケース2は、略円筒状を呈する胴部21と底部を構成する駆動部材22とを有している。胴部21と駆動部材22とは、レーザー溶接により接合されている。
また、胴部21の駆動部材22側の端部には、圧電素子10の駆動に応じて軸方向に伸縮可能な伸縮部211が設けられている。この伸縮部211は、大径と小径とを交互に有する金属ベローズである。
Moreover, as shown in the figure, the metal storage case 2 has a barrel portion 21 that has a substantially cylindrical shape and a drive member 22 that constitutes the bottom portion. The trunk | drum 21 and the drive member 22 are joined by laser welding.
In addition, at the end of the body portion 21 on the drive member 22 side, an expansion / contraction portion 211 that can be expanded and contracted in the axial direction according to the driving of the piezoelectric element 10 is provided. The stretchable portion 211 is a metal bellows having a large diameter and a small diameter alternately.

また、収納ケース2の開口端部201は、接続部材18によって封止されており、収納ケース2内は密閉された状態となっている。収納ケース2の開口端部201と接続部材18とは、レーザー溶接により接合されている。   Moreover, the opening end 201 of the storage case 2 is sealed by the connecting member 18, and the storage case 2 is sealed. The opening end 201 of the storage case 2 and the connection member 18 are joined by laser welding.

ここで、当接している駆動部材22及び変位伝達部材19について、詳しく説明する。
図1に示すごとく、変位伝達部材19は、平坦な先端面191を有している。一方、駆動部材22も、平坦な当接受面221を有している。そして、変位伝達部材19と駆動部材22とは、先端面191と当接受面221とを当接させることにより、接触した状態を保っている。
Here, the drive member 22 and the displacement transmission member 19 that are in contact with each other will be described in detail.
As shown in FIG. 1, the displacement transmission member 19 has a flat front end surface 191. On the other hand, the drive member 22 also has a flat contact receiving surface 221. And the displacement transmission member 19 and the drive member 22 are maintaining the contact state by making the front end surface 191 and the contact receiving surface 221 contact.

また、図2(a)、(b)に示すごとく、変位伝達部材19の先端面191における外周端部192は、面取りがされており、その面取りされた部分に面取り部194が形成されている。面取り部194は、変位伝達部材19の外周角部195から先端面191の角部193にかけて、全周に渡って傾斜平面状に設けられている。   Further, as shown in FIGS. 2A and 2B, the outer peripheral end 192 of the distal end surface 191 of the displacement transmitting member 19 is chamfered, and a chamfered portion 194 is formed in the chamfered portion. . The chamfered portion 194 is provided in an inclined flat shape over the entire circumference from the outer peripheral corner portion 195 of the displacement transmitting member 19 to the corner portion 193 of the distal end surface 191.

また、図2(b)に示すごとく、変位伝達部材19の断面形状は、直径6mmの円形を呈しており、その先端面191も直径5mmの円形を呈している。そして、本例の面取り量Cは0.5mmである。また、先端面191の外周端部192の角部193の角度αは135°である。   Further, as shown in FIG. 2B, the cross-sectional shape of the displacement transmitting member 19 has a circular shape with a diameter of 6 mm, and the tip end surface 191 also has a circular shape with a diameter of 5 mm. The chamfering amount C in this example is 0.5 mm. In addition, the angle α of the corner portion 193 of the outer peripheral end 192 of the front end surface 191 is 135 °.

なお、ここでいう面取り量Cとは、変位伝達部材19の外周端から先端面191の外周端までの径方向の距離である。本例では、変位伝達部材19の外周角部195から先端面191の角部193までの径方向の距離となる。また、軸方向の面取り量も径方向の面取り量Cと同じ0.5mmである。
また、変位伝達部材19の断面形状は、四角形、八角形等の種々の形状を採用することができる。
The chamfering amount C here is a radial distance from the outer peripheral end of the displacement transmitting member 19 to the outer peripheral end of the distal end surface 191. In this example, the distance in the radial direction is from the outer peripheral corner portion 195 of the displacement transmitting member 19 to the corner portion 193 of the distal end surface 191. The chamfering amount in the axial direction is also 0.5 mm, which is the same as the chamfering amount C in the radial direction.
Further, as the cross-sectional shape of the displacement transmitting member 19, various shapes such as a quadrangle and an octagon can be adopted.

次に、圧電アクチュエータ1の製造方法について簡単に説明する。
まず、圧電材料となるジルコン酸チタン酸鉛(PZT)よりなるセラミック原料粉末を準備し、溶剤、バインダー、可塑剤、分散剤等を加えてスラリーを作製する。そして、ドクターブレード法により、上記スラリーをキャリアフィルム上に塗布し、一定厚みのグリーンシートを成形する。なお、グリーンシートの成形方法としては、本例で用いたドクターブレード法以外にも、押出成形法やその他種々の方法を用いることができる。
Next, a method for manufacturing the piezoelectric actuator 1 will be briefly described.
First, a ceramic raw material powder made of lead zirconate titanate (PZT) serving as a piezoelectric material is prepared, and a slurry is prepared by adding a solvent, a binder, a plasticizer, a dispersant, and the like. And the said slurry is apply | coated on a carrier film with a doctor blade method, and the green sheet of fixed thickness is shape | molded. In addition to the doctor blade method used in this example, an extrusion molding method and various other methods can be used as the green sheet molding method.

次いで、図3に示すごとく、グリーンシート120上に、予め内部電極層13を形成する部分に電極材料130を塗布しておき、そのグリーンシート120から所望の大きさのシート片100を切り出す。シート片100には、電極材料130を塗布していない控え部131が形成されている。なお、電極材料130としては、Ag/Pd合金ペーストを用いた。   Next, as shown in FIG. 3, an electrode material 130 is applied in advance to a portion where the internal electrode layer 13 is formed on the green sheet 120, and a sheet piece 100 having a desired size is cut out from the green sheet 120. The sheet piece 100 is formed with a holding portion 131 to which the electrode material 130 is not applied. As the electrode material 130, an Ag / Pd alloy paste was used.

次いで、図4に示すごとく、シート片100を積層し、中間積層体110を形成する。このとき、シート片100に形成された控え部131の位置が交互となるように、シート片100を積層する。
そして、形成した中間積層体110を脱脂した後、焼成を行う。これにより、圧電層12と内部電極層13とを交互に積層してなるセラミック積層体11を形成する。
Next, as shown in FIG. 4, the sheet pieces 100 are laminated to form an intermediate laminate 110. At this time, the sheet pieces 100 are stacked so that the positions of the holding portions 131 formed on the sheet pieces 100 are alternated.
And after baking the formed intermediate laminated body 110, it bakes. Thereby, the ceramic laminated body 11 formed by alternately laminating the piezoelectric layers 12 and the internal electrode layers 13 is formed.

次いで。セラミック積層体11の側面電極形成面111、112上に、Agペーストを塗布する。そして、塗布したAgペーストを焼き付け、焼付け銀を形成する。そして、この焼付け銀上に、導電性接着剤を塗布して側面電極板16を配置する。その後、導電性接着剤を加熱硬化させ、側面電極板16を接合する。これにより、側面電極形成面111、112に、側面電極14を形成する。   Then. Ag paste is applied on the side electrode forming surfaces 111 and 112 of the ceramic laminate 11. Then, the applied Ag paste is baked to form baked silver. Then, the side electrode plate 16 is disposed on the baked silver by applying a conductive adhesive. Thereafter, the conductive adhesive is heated and cured, and the side electrode plate 16 is joined. Thereby, the side electrode 14 is formed on the side electrode forming surfaces 111 and 112.

次いで、セラミック積層体11の積層方向の一方の端面にハーメチックシールよりなる接続部材18を接合し、もう一方の端面にアルミナよりなる変位伝達部材19を接合する。このとき、側面電極14と接合部材18が有している外部電極20とをレーザー溶接にて接合する。
そして、セラミック積層体11の両端面に接続部材18及び変位伝達部材19を接合してなる圧電素子10を、胴部21と駆動部材22とをレーザー溶接により接合した収納ケース2の開口端部201から収納する。このとき、収納ケース2の駆動部材22の当接受面221と変位伝達部材19の先端面191とを当接させた状態とする。
Next, a connection member 18 made of a hermetic seal is joined to one end face of the ceramic laminate 11 in the lamination direction, and a displacement transmission member 19 made of alumina is joined to the other end face. At this time, the side electrode 14 and the external electrode 20 which the joining member 18 has are joined by laser welding.
And the opening end 201 of the storage case 2 which joined the piezoelectric element 10 which joined the connection member 18 and the displacement transmission member 19 to the both end surfaces of the ceramic laminated body 11, and the trunk | drum 21 and the drive member 22 by laser welding. Store from. At this time, the contact receiving surface 221 of the drive member 22 of the storage case 2 and the distal end surface 191 of the displacement transmitting member 19 are in contact with each other.

次いで、収納ケース2の開口端部201と接続部材18とをレーザー溶接することにより接合する。これにより、収納ケース2の開口端部201を接続部材18によって封止し、収納ケース2内を密閉した状態とする。
以上により、図1の圧電アクチュエータ1を作製する。
Next, the opening end 201 of the storage case 2 and the connecting member 18 are joined by laser welding. Thereby, the opening end 201 of the storage case 2 is sealed by the connecting member 18, and the inside of the storage case 2 is sealed.
Thus, the piezoelectric actuator 1 shown in FIG. 1 is manufactured.

本例の圧電アクチュエータ1における作用効果について説明する。
本例の圧電アクチュエータ1は、駆動部材22の当接受面221と変位伝達部材19の先端面191とを当接させている。つまり、駆動部材22と変位伝達部材19とは、互いの平坦な面同士により当接している。そして、変位伝達部材19の先端面191は、その外周端部192に面取りしてなる面取り部194を有している。そのため、変位伝達部材19に割れ・破損等の不具合が生じることを抑制することができる。
The effect in the piezoelectric actuator 1 of this example is demonstrated.
In the piezoelectric actuator 1 of this example, the contact receiving surface 221 of the driving member 22 and the tip end surface 191 of the displacement transmitting member 19 are in contact. That is, the drive member 22 and the displacement transmission member 19 are in contact with each other by their flat surfaces. The distal end surface 191 of the displacement transmitting member 19 has a chamfered portion 194 formed by chamfering the outer peripheral end portion 192 thereof. Therefore, it is possible to suppress the occurrence of problems such as cracks and breakage in the displacement transmission member 19.

すなわち、本例では、圧電素子10の圧電変位による駆動力を変位伝達部材19から駆動部材22へと伝達する面となる先端面191の外周端部192に、その部分を面取りしてなる面取り部194が設けてある。そのため、例えば当接受面221と先端面191とが位置ずれ等により平行な状態で接触してない場合でも、先端面191の外周端部192が面取りされていない従来に比べて、変位伝達の際に先端面191の外周端部192に集中する応力が分散される。これにより、変位伝達部材19の先端面191における応力集中を抑制することができる。そして、長期間の使用においても、変位伝達部材19に割れ・破損等の不具合が生じることを抑制することができる。   That is, in this example, the chamfered portion is formed by chamfering the outer peripheral end portion 192 of the distal end surface 191 as a surface for transmitting the driving force due to the piezoelectric displacement of the piezoelectric element 10 from the displacement transmitting member 19 to the driving member 22. 194 is provided. For this reason, for example, even when the contact receiving surface 221 and the tip surface 191 are not in contact in parallel due to a positional deviation or the like, compared to the conventional case where the outer peripheral end 192 of the tip surface 191 is not chamfered, the displacement is transmitted. The stress concentrated on the outer peripheral end 192 of the front end surface 191 is dispersed. Thereby, stress concentration on the distal end surface 191 of the displacement transmitting member 19 can be suppressed. And even if it is used for a long time, it can suppress that troubles, such as a crack and breakage, arise in the displacement transmission member 19.

さらに、本例では、面取り部194の面取り量Cを0.1〜0.8mmの範囲としている。面取り量Cを上記の範囲とすることにより、圧電素子10から変位伝達部材19を介して駆動部材22に伝達される変位伝達量等の変位特性を充分に確保しながら、上記の効果を得ることができる。   Furthermore, in this example, the chamfering amount C of the chamfered portion 194 is in the range of 0.1 to 0.8 mm. By setting the chamfering amount C in the above range, the above effect can be obtained while sufficiently securing displacement characteristics such as a displacement transmission amount transmitted from the piezoelectric element 10 to the drive member 22 via the displacement transmission member 19. Can do.

また、本例では、面取り部194は、変位伝達部材19の先端面191における外周端部192の角部193の角度αが90°超え180°未満の範囲内となるように面取りしてなる。そのため、変位伝達部材19の先端面191における応力集中を抑制するという効果を有効に発揮することができる。   Further, in this example, the chamfered portion 194 is chamfered so that the angle α of the corner portion 193 of the outer peripheral end portion 192 on the distal end surface 191 of the displacement transmitting member 19 is in the range of more than 90 ° and less than 180 °. Therefore, the effect of suppressing the stress concentration on the distal end surface 191 of the displacement transmitting member 19 can be effectively exhibited.

このように、本発明の圧電アクチュエータは、長期間の使用においても変位伝達部材の割れ・破損等の発生を抑制することができ、変位特性を維持することができる、耐久性・信頼性に優れたものとなる。   As described above, the piezoelectric actuator of the present invention can suppress the occurrence of cracking / breakage of the displacement transmitting member even during long-term use, and can maintain the displacement characteristics, and has excellent durability and reliability. It will be.

また、本例では、変位伝達部材19の先端面191における面取り部194は、図5(a)、(b)に示すごとく、面取り量Cや角部193の角度αを変化させることにより、様々な形態とすることができる。
また、面取り部194は、図6(a)、(b)に示すごとく、一定の曲率を有するR形状とすることもできる。
Further, in this example, the chamfered portion 194 on the distal end surface 191 of the displacement transmitting member 19 can be variously changed by changing the chamfering amount C and the angle α of the corner portion 193 as shown in FIGS. It can be made into a form.
Further, as shown in FIGS. 6A and 6B, the chamfered portion 194 can be formed in an R shape having a certain curvature.

また、本例の圧電アクチュエータ1は、圧電素子10の駆動に応じて伸縮可能な金属ベローズよりなる伸縮部23を設けたベローズ型の圧電アクチュエータであるが、図7に示すごとく、収納ケース2における胴部21と駆動部材22との間に圧電素子10の駆動に応じて弾性的に変形可能であるダイヤフラム膜部29を設けたダイヤフラム型の圧電アクチュエータを採用することもできる。この場合にも、上記と同様の効果を得ることができる。   The piezoelectric actuator 1 of this example is a bellows type piezoelectric actuator provided with an expansion / contraction portion 23 made of a metal bellows that can expand and contract according to the driving of the piezoelectric element 10, but as shown in FIG. A diaphragm type piezoelectric actuator in which a diaphragm film portion 29 that can be elastically deformed in accordance with the driving of the piezoelectric element 10 between the body portion 21 and the driving member 22 may be employed. In this case, the same effect as described above can be obtained.

(実施例2)
本例は、変位伝達部材の面取り量と耐荷重との関係について評価した例である。
本例では、変位伝達部材の面取り量を0〜1.5mmの範囲で変化させたものを準備し、それぞれについて耐荷重を測定した。なお、変位伝達部材としては、実施例1と同材質のものを用いた。
(Example 2)
In this example, the relationship between the chamfering amount of the displacement transmitting member and the load resistance is evaluated.
In this example, what changed the chamfering amount of the displacement transmission member in the range of 0-1.5 mm was prepared, and load resistance was measured about each. In addition, as a displacement transmission member, the same material as Example 1 was used.

変位伝達部材の耐荷重を測定するに当たっては、図8に示すごとく、6mm×6mm×18mmの大きさの変位伝達部材19を準備し、所望の面取り量Cとなるように面取り加工した。次いで、駆動部材22及び胴部21の伸縮部211のみで構成された収納ケース2に変位伝達部材19を収納し、駆動部材22と変位伝達部材19とを当接させた。このとき、駆動部材22の下にシム31を挟み、当接受面221と先端面191との間に2°の傾斜角を設けた。そして、変位伝達部材19に対して軸方向に荷重Fを加えていき、変位伝達部材19に割れ・破損が発生した時点における荷重F(耐荷重)を測定した。   In measuring the load resistance of the displacement transmitting member, as shown in FIG. 8, a displacement transmitting member 19 having a size of 6 mm × 6 mm × 18 mm was prepared and chamfered so as to have a desired chamfering amount C. Next, the displacement transmission member 19 was accommodated in the storage case 2 constituted only by the drive member 22 and the expansion / contraction part 211 of the trunk portion 21, and the drive member 22 and the displacement transmission member 19 were brought into contact with each other. At this time, the shim 31 was sandwiched under the driving member 22, and an inclination angle of 2 ° was provided between the contact receiving surface 221 and the tip surface 191. Then, a load F was applied to the displacement transmission member 19 in the axial direction, and a load F (load resistance) at the time when the displacement transmission member 19 was cracked or damaged was measured.

次に、測定結果を図9に示す。同図は、縦軸に耐荷重F(kN)、横軸に面取り量C(mm)をとったものである。また、割れ・破損が発生したものを×印、発生しなかったものを○印で表している。
同図から知られるように、面取り量Cが大きくなるほど、変位伝達部材19に割れ・破損が発生し難くなる。その効果は、面取り量Cが0.1mm以上において特に顕著に表れる。したがって、変位伝達部材19の面取り量Cは、0.1mm以上であることが好ましいことがわかる。
Next, the measurement results are shown in FIG. In the figure, the vertical axis represents the load resistance F (kN) and the horizontal axis represents the chamfering amount C (mm). In addition, the case where cracks or breakage occurred is indicated by X, and the case where no breakage or breakage occurred is indicated by ○.
As can be seen from the figure, as the chamfering amount C increases, the displacement transmitting member 19 is less likely to be cracked or damaged. The effect is particularly prominent when the chamfering amount C is 0.1 mm or more. Therefore, it can be seen that the chamfering amount C of the displacement transmitting member 19 is preferably 0.1 mm or more.

(実施例3)
本例は、変位伝達部材の面取り量と変位ロス量との関係について評価した例である。
本例では、変位伝達部材の面取り量を0〜2mmの範囲で変化させた場合の変位ロス量を計算によって求めた。なお、変位伝達部材としては、実施例1と同材質とした。
(Example 3)
In this example, the relationship between the chamfering amount of the displacement transmitting member and the displacement loss amount is evaluated.
In this example, the displacement loss amount when the chamfering amount of the displacement transmitting member is changed in the range of 0 to 2 mm was obtained by calculation. The displacement transmitting member is the same material as in Example 1.

変位伝達部材の変位ロス量を算出するに当たっては、図10(a)に示すごとく、面取り量Cの面取り部194を有する6×6×18mmの大きさの変位伝達部材19の形状を図10(b)に示すような形状に簡易モデル化し、径の大きい部分を大径部19A(断面積SA)、径の小さい部分を小径部19B(断面積SB)とした。   In calculating the displacement loss amount of the displacement transmitting member, as shown in FIG. 10A, the shape of the 6 × 6 × 18 mm displacement transmitting member 19 having the chamfered portion 194 with the chamfering amount C is shown in FIG. The model as shown in b) was simplified and the large diameter portion was designated as the large diameter portion 19A (cross sectional area SA), and the small diameter portion was designated as the small diameter portion 19B (cross sectional area SB).

ここで、変位伝達部材19に対して軸方向に荷重Fが加えられた時の大径部19A及び小径部19Bの歪み量εA、εBをフックの法則(歪みε=応力σ/ヤング率E)を用いて下記式(1)、(2)により算出した。そして、大径部19A及び小径部19Bの歪み量εA、εBの合計である合計歪み量εΣを下記式(3)により求め、これを変位ロス量とした。なお、印加する荷重Fは500N、ヤング率Eは360000MPa(アルミナ)である。
変位伝達部材19Aの歪み量:εB=(荷重F/断面積SA)/(ヤング率E))×(全長L−面取り量C) ・・・(1)
変位伝達部材19Bの歪み量:εB=(荷重F/断面積SB)/(ヤング率E))×(全長L−面取り量C) ・・・(2)
変位伝達部材19全体の歪み量:εΣ=εA+εB ・・・(3)
Here, the strain amounts εA and εB of the large-diameter portion 19A and the small-diameter portion 19B when the load F is applied in the axial direction to the displacement transmission member 19 are Hook's law (strain ε = stress σ / Young's modulus E). Was calculated by the following formulas (1) and (2). Then, the total strain amount εΣ, which is the sum of the strain amounts εA and εB of the large diameter portion 19A and the small diameter portion 19B, is obtained by the following equation (3), and this is used as the displacement loss amount. The applied load F is 500 N, and the Young's modulus E is 360000 MPa (alumina).
Distortion amount of the displacement transmission member 19A: εB = (load F / cross-sectional area SA) / (Young's modulus E)) × (full length L−chamfering amount C) (1)
Distortion amount of the displacement transmitting member 19B: εB = (Load F / Cross sectional area SB) / (Young's modulus E)) × (Total length L−Chamfering amount C) (2)
Distortion amount of the displacement transmission member 19 as a whole: εΣ = εA + εB (3)

次に、算出結果を図11に示す。同図は、縦軸に変位ロス量(mm)、横軸に面取り量C(mm)をとったものである。
同図から知られるように、面取り量Cが大きくなるほど、変位ロス量が少しずつ大きくなる。これは、変位伝達量が変位伝達部材19の断面積の大きさに関係しているからである。すなわち、面取り量Cが大きくなるほど、変位伝達部材19の断面積が小さくなる。これにより、変位伝達量が小さくなり、変位ロス量が大きくなる。特に、面取り量Cが0.8mmを超えたあたりから変位ロス量が大きくなり、充分な変位特性を得られなくなるおそれがある。したがって、変位伝達部材19の面取り量Cは、0.8mm以下であることが好ましいことがわかる。
Next, a calculation result is shown in FIG. In this figure, the vertical axis represents the displacement loss amount (mm), and the horizontal axis represents the chamfering amount C (mm).
As can be seen from the figure, the amount of displacement loss increases gradually as the chamfer amount C increases. This is because the displacement transmission amount is related to the size of the cross-sectional area of the displacement transmission member 19. That is, as the chamfering amount C increases, the cross-sectional area of the displacement transmission member 19 decreases. As a result, the displacement transmission amount is reduced and the displacement loss amount is increased. In particular, the amount of displacement loss increases when the chamfering amount C exceeds 0.8 mm, and there is a possibility that sufficient displacement characteristics cannot be obtained. Therefore, it can be seen that the chamfering amount C of the displacement transmitting member 19 is preferably 0.8 mm or less.

(実施例4)
本例は、実施例1の圧電アクチュエータ1をインジェクタ6に用いた例である。
本例のインジェクタ6は、図12に示すごとく、ディーゼルエンジンのコモンレール噴射システムに適用したものである。
このインジェクタ6は、同図に示すごとく、駆動部としての圧電アクチュエータ1が収容される上部ハウジング62と、その下端に固定され、内部に噴射ノズル部64が形成される下部ハウジング63を有している。
Example 4
In this example, the piezoelectric actuator 1 of the first embodiment is used for an injector 6.
The injector 6 of this example is applied to a common rail injection system of a diesel engine as shown in FIG.
As shown in the figure, the injector 6 includes an upper housing 62 in which the piezoelectric actuator 1 serving as a drive unit is accommodated, and a lower housing 63 that is fixed to the lower end of the injector 6 and in which an injection nozzle portion 64 is formed. Yes.

上部ハウジング62は略円柱状で、中心軸に対し偏心する縦穴621内に、積層型圧電素子1が挿通固定されている。
縦穴621の側方には、高圧燃料通路622が平行に設けられ、その上端部は、上部ハウジング62上側部に突出する燃料導入管623内を経て外部のコモンレール(図示略)に連通している。
The upper housing 62 is substantially cylindrical, and the laminated piezoelectric element 1 is inserted and fixed in a vertical hole 621 that is eccentric with respect to the central axis.
A high-pressure fuel passage 622 is provided in parallel to the side of the vertical hole 621, and an upper end portion thereof communicates with an external common rail (not shown) through a fuel introduction pipe 623 protruding to the upper side of the upper housing 62. .

上部ハウジング62上側部には、また、ドレーン通路624に連通する燃料導出管625が突設し、燃料導出管625から流出する燃料は、燃料タンク(図示略)へ戻される。
ドレーン通路624は、縦穴621と駆動部となる圧電アクチュエータ1との間の隙間60を経由し、さらに、この隙間60から上下ハウジング62、63内を下方に延びる図示しない通路によって後述する3方弁651に連通してしる。
A fuel lead-out pipe 625 communicating with the drain passage 624 protrudes from the upper portion of the upper housing 62, and the fuel flowing out from the fuel lead-out pipe 625 is returned to a fuel tank (not shown).
The drain passage 624 passes through a gap 60 between the vertical hole 621 and the piezoelectric actuator 1 serving as a drive unit, and further, a three-way valve, which will be described later, by a passage (not shown) extending downward from the gap 60 in the upper and lower housings 62 and 63. It communicates with 651.

噴射ノズル部64は、ピストンボデー631内を上下方向に摺動するノズルニードル641と、ノズルニードル641によって開閉されて燃料溜まり642から供給される高圧燃料をエンジンの各気筒に噴射する噴孔643を備えている。燃料溜まり642は、ノズルニードル641の中間部周りに設けられ、上記高圧燃料通路622の下端部がここに開口している。ノズルニードル641は、燃料溜まり642から開弁方向の燃料圧を受けるとともに、上端面に面して設けた背圧室644から閉弁方向の燃料圧を受けており、背圧室644の圧力が降下すると、ノズルニードル641がリフトして、噴孔643が開放され、燃料噴射がなされる。   The injection nozzle section 64 has a nozzle needle 641 that slides in the vertical direction in the piston body 631, and an injection hole 643 that is opened and closed by the nozzle needle 641 and injects high-pressure fuel supplied from a fuel reservoir 642 into each cylinder of the engine. I have. The fuel reservoir 642 is provided around the middle portion of the nozzle needle 641, and the lower end portion of the high-pressure fuel passage 622 is opened here. The nozzle needle 641 receives the fuel pressure in the valve opening direction from the fuel reservoir 642 and receives the fuel pressure in the valve closing direction from the back pressure chamber 644 provided facing the upper end surface, and the pressure in the back pressure chamber 644 is reduced. When lowered, the nozzle needle 641 is lifted, the nozzle hole 643 is opened, and fuel is injected.

背圧室644の圧力は3方弁651によって増減される。3方弁651は、背圧室644と高圧燃料通路622、またはドレーン通路624と選択的に連通させる構成である。ここでは、高圧燃料通路622またはドレーン通路624へ連通するポートを開閉するボール状の弁体を有している。この弁体は、上記駆動部1により、その下方に配設される大径ピストン652、油圧室653、小径ピストン654を介して、駆動される。   The pressure in the back pressure chamber 644 is increased or decreased by the three-way valve 651. The three-way valve 651 is configured to selectively communicate with the back pressure chamber 644 and the high pressure fuel passage 622 or the drain passage 624. Here, a ball-shaped valve body that opens and closes a port communicating with the high-pressure fuel passage 622 or the drain passage 624 is provided. The valve body is driven by the drive unit 1 through a large-diameter piston 652, a hydraulic chamber 653, and a small-diameter piston 654 disposed below the valve body.

そして、本例においては、上記構成のインジェクタ6における駆動源として、実施例1の圧電アクチュエータ1を用いている。この圧電アクチュエータ1は、上記のごとく、優れた耐久性及び信頼性を有するものである。そのため、インジェクタ6全体の性能向上を図ることができる。   In this example, the piezoelectric actuator 1 of Example 1 is used as a drive source in the injector 6 having the above-described configuration. As described above, the piezoelectric actuator 1 has excellent durability and reliability. Therefore, the performance of the injector 6 as a whole can be improved.

実施例1における、圧電アクチュエータの構造を示す説明図。FIG. 3 is an explanatory diagram illustrating a structure of a piezoelectric actuator in the first embodiment. 実施例1における、(a)変位伝達部材の先端部分の説明図、(b)先端面を示す説明図。In Example 1, (a) Explanatory drawing of the front-end | tip part of a displacement transmission member, (b) Explanatory drawing which shows a front-end | tip surface. 実施例1における、シートを積層する工程を示す説明図。FIG. 3 is an explanatory diagram illustrating a process of laminating sheets in Example 1. 実施例1における、中間積層体(セラミック積層体)を示す説明図。FIG. 3 is an explanatory view showing an intermediate laminate (ceramic laminate) in Example 1. 実施例1における、(a)、(b)面取り部のその他の形状の例を示す説明図。Explanatory drawing which shows the example of the other shape of (a), (b) chamfering part in Example 1. FIG. 実施例1における、(a)、(b)面取り部のその他の形状の例を示す説明図。Explanatory drawing which shows the example of the other shape of (a), (b) chamfering part in Example 1. FIG. 実施例1における、ダイヤフラム型の圧電アクチュエータの構造を示す説明図。FIG. 3 is an explanatory diagram illustrating a structure of a diaphragm type piezoelectric actuator in the first embodiment. 実施例2における、変位伝達部材の耐荷重の測定方法を示す説明図。Explanatory drawing which shows the measuring method of the load resistance of the displacement transmission member in Example 2. FIG. 実施例2における、面取り量と耐荷重との関係を示す説明図。Explanatory drawing which shows the relationship between the amount of chamfering and load resistance in Example 2. FIG. 実施例3における、変位伝達部材の変位ロス量の測定方法を示す説明図。Explanatory drawing which shows the measuring method of the displacement loss amount of the displacement transmission member in Example 3. FIG. 実施例3における、面取り量と変位ロス量との関係を示す説明図。Explanatory drawing which shows the relationship between the amount of chamfering and the amount of displacement loss in Example 3. FIG. 実施例4における、インジェクタの構造を示す説明図。Explanatory drawing which shows the structure of the injector in Example 4. FIG.

符号の説明Explanation of symbols

1 圧電アクチュエータ
10 圧電素子
19 変位伝達部材
191 先端面
192 外周端部
194 面取り部
2 収納ケース
21 胴部
22 駆動部材
221 当接受面
DESCRIPTION OF SYMBOLS 1 Piezoelectric actuator 10 Piezoelectric element 19 Displacement transmission member 191 Tip end surface 192 Outer peripheral end 194 Chamfer 2 Storage case 21 Body 22 Drive member 221 Contact receiving surface

Claims (8)

積層型の圧電素子を収納してなる筒状の胴部と、該胴部の一方の端部を閉塞する駆動部材とを備えた収納ケースと、上記圧電素子と上記駆動部材との間に設けられ上記圧電素子の駆動力を上記駆動部材に伝達する変位伝達部材とを有する圧電アクチュエータにおいて、
上記駆動部材は、平坦な当接受面を有し、上記変位伝達部材の平坦な先端面を上記当接受面に当接させており、
上記変位伝達部材の上記先端面は、その外周端部に面取り部を有し、該面取り部の面取り量は、0.1〜0.8mmであることを特徴とする圧電アクチュエータ。
Provided between the piezoelectric element and the drive member, a storage case having a cylindrical barrel portion that houses the laminated piezoelectric element, and a drive member that closes one end of the barrel portion. A piezoelectric actuator having a displacement transmitting member that transmits a driving force of the piezoelectric element to the driving member;
The drive member has a flat contact receiving surface, and a flat distal end surface of the displacement transmitting member is in contact with the contact receiving surface,
The piezoelectric actuator according to claim 1, wherein the distal end surface of the displacement transmitting member has a chamfered portion at an outer peripheral end thereof, and a chamfering amount of the chamfered portion is 0.1 to 0.8 mm.
請求項1において、上記面取り部は、上記変位伝達部材の上記先端面における外周端部の角部の角度が90°超え180°未満となるように面取りしてなることを特徴とする圧電アクチュエータ。   2. The piezoelectric actuator according to claim 1, wherein the chamfered portion is chamfered so that an angle of an outer peripheral end portion of the distal end surface of the displacement transmitting member is greater than 90 ° and less than 180 °. 請求項1において、上記面取り部は、上記変位伝達部材の上記先端面における外周端部を一定の曲率を有するR形状に面取りしてなることを特徴とする圧電アクチュエータ。   2. The piezoelectric actuator according to claim 1, wherein the chamfered portion is formed by chamfering an outer peripheral end portion of the distal end surface of the displacement transmitting member into an R shape having a certain curvature. 請求項1〜3のいずれか1項において、上記変位伝達部材は、セラミックよりなることを特徴とする圧電アクチュエータ。   The piezoelectric actuator according to claim 1, wherein the displacement transmission member is made of ceramic. 請求項4において、上記変位伝達部材は、アルミナよりなることを特徴とする圧電アクチュエータ。   5. The piezoelectric actuator according to claim 4, wherein the displacement transmission member is made of alumina. 請求項1〜5のいずれか1項において、上記収納ケースの上記胴部は、上記圧電素子の駆動に応じて軸方向に弾性的に伸縮可能な伸縮部を有することを特徴とする圧電アクチュエータ。   6. The piezoelectric actuator according to claim 1, wherein the body portion of the storage case includes an expansion / contraction portion that can elastically expand and contract in an axial direction in accordance with driving of the piezoelectric element. 請求項1〜6のいずれか1項において、上記収納ケースの上記胴部と上記駆動部材との間には、上記圧電素子の駆動に応じて弾性的に変形可能なダイヤフラム膜部を有することを特徴とする圧電アクチュエータ。   7. The diaphragm film part according to claim 1, further comprising a diaphragm film part that is elastically deformable in accordance with driving of the piezoelectric element between the trunk part of the storage case and the driving member. A characteristic piezoelectric actuator. 請求項1〜7のいずれか1項において、上記圧電アクチュエータは、内燃機関の燃料噴射用のインジェクタに内蔵するアクチュエータであることを特徴とする圧電アクチュエータ。   The piezoelectric actuator according to claim 1, wherein the piezoelectric actuator is an actuator built in an injector for fuel injection of an internal combustion engine.
JP2006352850A 2006-12-27 2006-12-27 Piezoelectric actuator Pending JP2008167548A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006352850A JP2008167548A (en) 2006-12-27 2006-12-27 Piezoelectric actuator
DE200710055913 DE102007055913A1 (en) 2006-12-27 2007-12-21 Piezo electric actuating device for fuel injection device for motor vehicles, has transmission element with chamfer or rounding and chamfer of rounding is formed along outer edge of surface finish of transmission element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352850A JP2008167548A (en) 2006-12-27 2006-12-27 Piezoelectric actuator

Publications (1)

Publication Number Publication Date
JP2008167548A true JP2008167548A (en) 2008-07-17

Family

ID=39587462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352850A Pending JP2008167548A (en) 2006-12-27 2006-12-27 Piezoelectric actuator

Country Status (2)

Country Link
JP (1) JP2008167548A (en)
DE (1) DE102007055913A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034269A (en) * 2008-07-29 2010-02-12 Kyocera Corp Multilayer piezoelectric element and vibrator
JP2012182164A (en) * 2011-02-28 2012-09-20 Kyocera Corp Multilayer piezoelectric element and piezoelectric actuator including the same, injector and fuel injection system
JP5465337B2 (en) * 2010-10-28 2014-04-09 京セラ株式会社 Multilayer piezoelectric element, injection device using the same, and fuel injection system
WO2016124941A1 (en) * 2015-02-05 2016-08-11 Ionix Advanced Technologies Ltd Piezoelectric transducers
JP2017066955A (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 Flow control valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106656A (en) * 1993-09-30 1995-04-21 Nec Corp Piezoelectric actuator and manufacture thereof
JP2000161175A (en) * 1998-11-26 2000-06-13 Hitachi Ltd Injector and fuel injection system
JP2004297042A (en) * 2003-03-13 2004-10-21 Denso Corp Piezoelectric actuator, its manufacturing method, and injector
JP2004304996A (en) * 2003-03-17 2004-10-28 Denso Corp Piezoelectric actuator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097418A (en) 2001-07-18 2003-04-03 Denso Corp Displacement transmission structure of piezoelectric body element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106656A (en) * 1993-09-30 1995-04-21 Nec Corp Piezoelectric actuator and manufacture thereof
JP2000161175A (en) * 1998-11-26 2000-06-13 Hitachi Ltd Injector and fuel injection system
JP2004297042A (en) * 2003-03-13 2004-10-21 Denso Corp Piezoelectric actuator, its manufacturing method, and injector
JP2004304996A (en) * 2003-03-17 2004-10-28 Denso Corp Piezoelectric actuator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034269A (en) * 2008-07-29 2010-02-12 Kyocera Corp Multilayer piezoelectric element and vibrator
JP5465337B2 (en) * 2010-10-28 2014-04-09 京セラ株式会社 Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP2012182164A (en) * 2011-02-28 2012-09-20 Kyocera Corp Multilayer piezoelectric element and piezoelectric actuator including the same, injector and fuel injection system
WO2016124941A1 (en) * 2015-02-05 2016-08-11 Ionix Advanced Technologies Ltd Piezoelectric transducers
US10730074B2 (en) 2015-02-05 2020-08-04 Ionix Advanced Technologies Ltd Piezoelectric transducers
JP2017066955A (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 Flow control valve

Also Published As

Publication number Publication date
DE102007055913A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US6731048B2 (en) Piezoelectric actuator with insulating member separate from piezoelectric device
US7288875B2 (en) Laminated piezoelectric element and its manufacturing method
US6874475B2 (en) Structure of fuel injector using piezoelectric actuator
US20070164638A1 (en) Laminate-type piezoelectric element and method of producing the same
JP2008167548A (en) Piezoelectric actuator
JP2008041983A (en) Piezoelectric actuator
JP5409772B2 (en) Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP4325161B2 (en) Multilayer piezoelectric element, method of manufacturing the same, and injector
US20110168806A1 (en) Multi-Layer Piezoelectric Element, and Injection Device and Fuel Injection System Using the Same
JP2005101207A (en) Laminated piezoelectric element and its manufacturing method, and injection device
JP2007281256A (en) Piezoelectric actuator and its manufacturing method
JP5326376B2 (en) Piezoelectric actuator and manufacturing method thereof
JP4479271B2 (en) Multilayer piezoelectric element
JP5101630B2 (en) Multilayer piezoelectric element, method for manufacturing the same, injection device, and fuel injection system
JP5398543B2 (en) Multilayer piezoelectric element, method for manufacturing the same, injection device, and fuel injection system
JP2003197991A (en) Laminated type piezoelectric element and jetting device
JP2006210423A (en) Stacked piezoelectric element and manufacturing method thereof
JP4048967B2 (en) Piezoelectric actuator and fuel injection device for internal combustion engine
JP4983405B2 (en) Piezoelectric actuator and manufacturing method thereof
JP2009540778A (en) Piezoelectric actuator
JP5176678B2 (en) Piezoelectric actuator and manufacturing method thereof
JP2008141863A (en) Piezoelectric actuator
JP2015012085A (en) Piezoelectric actuator
JP6284120B2 (en) Piezoelectric actuator
US9453487B2 (en) Piezoelectric component and method for producing a piezoelectric component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228