JP2008165066A - Projection type image projection device - Google Patents

Projection type image projection device Download PDF

Info

Publication number
JP2008165066A
JP2008165066A JP2006356424A JP2006356424A JP2008165066A JP 2008165066 A JP2008165066 A JP 2008165066A JP 2006356424 A JP2006356424 A JP 2006356424A JP 2006356424 A JP2006356424 A JP 2006356424A JP 2008165066 A JP2008165066 A JP 2008165066A
Authority
JP
Japan
Prior art keywords
polarization
light
polarization separation
projection
type image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006356424A
Other languages
Japanese (ja)
Inventor
Hiromitsu Takenaka
博満 竹中
Mitsuhiro Togashi
光宏 富樫
Katsutoshi Sasaki
勝利 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2006356424A priority Critical patent/JP2008165066A/en
Priority to KR1020070025141A priority patent/KR100833246B1/en
Priority to US11/859,275 priority patent/US20080158511A1/en
Priority to CNA2007101669959A priority patent/CN101211016A/en
Publication of JP2008165066A publication Critical patent/JP2008165066A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3197Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using light modulating optical valves

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projection type image projection device having a polarization separation means, in which light quantity loss in the polarization separation means can be reduced. <P>SOLUTION: The projection type image projection device 100 spatially modulates linearly polarized illumination light in a reflection type image display element 5 and projects the modulated light as reflection light exhibiting an image. The image projection device 100 includes: a polarization separation element 2 which transmits or reflects illumination light and reflection light reflected by a display surface 5a of the reflection type image display element 5 depending on the polarization direction; and a polarization direction rotating means 4 which is positioned between the polarization separation element 2 and the reflection type image display element 5 and rotates the polarization direction of reciprocally transmitted light by 90° around the optical axis, wherein the direction of bisecting an angle formed between the axial principal ray of the illumination light which is transmitted by a polarization separation surface 2a of the polarization separation element 2 and is made incident on the display surface 5a and the axial principal ray of reflection light reflected by the display surface 5a is caused to substantially match the direction of the optical axis of the polarization direction rotating means 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、投射型画像投影装置に関する。   The present invention relates to a projection type image projection apparatus.

従来、反射型画像表示素子、例えば、DMD(Digital Micro mirror Device)などのデバイスを用いた投射型画像投影装置では、Fナンバーの大きな照明光を反射型画像表示素子に対して浅い入射角で入射させる必要があるため、照明光の光路と反射型表示素子からの反射光の光路とを分離する光路分離手段を反射型表示素子の近傍に配置するものが知られている。
例えば、特許文献1には、このような光路分離手段として、DMDに入射される光束とDMDから出射される光束とを分離するための偏光分離面を有する偏光分離プリズムと、この偏光分離面とDMDとの間に偏光方向を回転させるための偏光方向回転手段とを備えるプロジェクタ用光学系およびこれを用いたプロジェクタ装置(投射型画像投影装置)が記載されている。
特開2004−101826号公報
Conventionally, in a projection type image projection apparatus using a reflective image display element, for example, a device such as a DMD (Digital Micromirror Device), illumination light having a large F number is incident on the reflective image display element at a shallow incident angle. Therefore, it is known that an optical path separating means for separating the optical path of illumination light and the optical path of reflected light from the reflective display element is disposed in the vicinity of the reflective display element.
For example, Patent Document 1 discloses, as such an optical path separation means, a polarization separation prism having a polarization separation surface for separating a light beam incident on the DMD and a light beam emitted from the DMD, and the polarization separation surface. An optical system for a projector provided with a polarization direction rotating means for rotating the polarization direction between the DMD and a projector apparatus (projection-type image projection apparatus) using the same is described.
JP 2004-101826 A

しかしながら、上記のような従来の投射型画像投影装置には、以下のような問題があった。
特許文献1に記載の技術では、偏光分離プリズムを用いている。そのため偏光分離面は、例えば誘電体多層膜などによって、1つの入射面を基準入射面として、この基準入射面のs偏光成分を最大限に透過(反射)し、p偏光成分を最大限に反射(透過)するような反射透過率特性が付与されている。
そして、基準入射面と交差する入射面に入射光が入射すると、s偏光成分とp偏光成分とが混在するため、偏光分離特性が悪化する。
さらに、このような入射面で入射する光では、偏光分離面で反射されると光の偏光方向が光の光軸まわりに回転する。そしてDMDで反射されて偏光方向回転手段を透過すると、この変化した偏光方向に対してさらに光軸まわりに90°回転される。
このため、DMDによる光線の反射方向が、入射方向と同方向であれば、偏光分離面で反射された光と偏光方向に対して光軸まわりに90°回転しているので、光量損失なく透過されるが、DMDの反射面に対する入射角が0°でない場合には、偏光分離面の再入射位置で効率的に透過される偏光方向と異なる偏光方向となり光量損失が発生する。
したがって、特許文献1の構成では、照明光の軸上主光線、および照明光と投写光との光軸を含む平面内では、偏光分離面で効率的に光路が分離されるが、これ以外の光線では、偏光分離面に対する入射時および透過時に光量損失を発生させるという問題がある。
However, the conventional projection type image projection apparatus as described above has the following problems.
In the technique described in Patent Document 1, a polarization separation prism is used. For this reason, the polarization separation surface, for example, a dielectric multilayer film, uses one incident surface as a reference incident surface, transmits (reflects) the s-polarized component of this reference incident surface to the maximum, and reflects the p-polarized component to the maximum. Reflective transmittance characteristics are imparted (transmitted).
When incident light is incident on an incident surface that intersects with the reference incident surface, the s-polarized component and the p-polarized component are mixed, so that the polarization separation characteristic is deteriorated.
Further, when the light incident on such an incident surface is reflected by the polarization separation surface, the polarization direction of the light rotates around the optical axis of the light. When reflected by the DMD and transmitted through the polarization direction rotating means, it is further rotated by 90 ° around the optical axis with respect to the changed polarization direction.
For this reason, if the reflection direction of the light beam by the DMD is the same as the incident direction, the light is reflected by the polarization separation surface and rotated by 90 ° around the optical axis with respect to the polarization direction, and thus transmitted without loss of light amount. However, when the incident angle with respect to the reflection surface of the DMD is not 0 °, the polarization direction is different from the polarization direction that is efficiently transmitted at the re-incidence position of the polarization separation surface, and a light amount loss occurs.
Therefore, in the configuration of Patent Document 1, the optical path is efficiently separated by the polarization separation plane in the plane including the axial principal ray of the illumination light and the optical axis of the illumination light and the projection light. The light beam has a problem of causing a light amount loss when incident on and transmitted through the polarization separation surface.

本発明は、上記のような問題に鑑みてなされたものであり、偏光分離手段を備える投射型画像投影装置において、偏光分離手段における光量損失を低減することができる投射型画像投影装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a projection type image projection apparatus capable of reducing a light amount loss in the polarization separation unit in the projection type image projection apparatus including the polarization separation unit. For the purpose.

上記の課題を解決するために、本発明の投射型画像投影装置は、直線偏光された照明光を反射型画像表示素子において空間変調し、画像を表す反射光として投影するようになされた投射型画像投影装置であって、前記照明光と前記反射型画像表示素子の表示面で反射された前記反射光とを、偏光分離面にて偏光方向に応じて透過又は反射させる偏光分離手段と、前記偏光分離手段と前記反射型画像表示素子との間に位置決めされ、往復透過する光の偏光方向を光軸まわりに90°回転する偏光方向回転手段とを備え、前記偏光分離手段の前記偏光分離面を透過して前記反射型画像表示素子の前記表示面に入射される前記照明光の軸上主光線と、当該表示面で反射される前記反射光の軸上主光線とでなす角度を2等分する方向と、前記偏光方向回転手段の前記光軸の方向とをほぼ一致させるように、前記偏光分離手段及び前記偏光方向回転手段を前記反射型画像表示素子に対して配置する構成とする。
この発明によれば、直線偏光された照明光を、偏光分離手段の偏光分離方向に合わせて入射する。そして、偏光分離手段を透過又は反射することにより、偏光方向回転手段を介して、反射型画像表示素子の表示面に入射する。この表示面で反射された反射光は、偏光方向回転手段に再入射して、偏光方向が90°回転されるため、偏光分離手段によって偏光分離される。このとき、反射型画像表示素子の表示面に入射される照明光の軸上主光線と表示面で反射される反射光の軸上主光線とでなす角度を2等分する方向と、偏光方向回転手段の光軸の方向とがほぼ一致されているので、偏光分離手段に対する照明光の斜め入射による偏光方向の変化と、偏光分離手段に再入射する反射光の斜め入射による偏光方向の変化とがほぼ対称となるため、それぞれの偏光方向の変化を偏光方向回転手段により低減または除去することた可能となり、その結果、光量損失が低減される。
In order to solve the above-described problems, a projection-type image projection apparatus according to the present invention is a projection-type projection apparatus configured to spatially modulate linearly polarized illumination light in a reflection-type image display element and project it as reflected light representing an image. An image projection apparatus, wherein the illumination light and the reflected light reflected by the display surface of the reflective image display element are transmitted or reflected on a polarization separation surface according to the polarization direction, A polarization direction rotating means that is positioned between the polarization separating means and the reflective image display element and that rotates the polarization direction of the reciprocating light 90 degrees around the optical axis, and the polarization separating surface of the polarization separating means The angle formed by the axial principal ray of the illumination light that is transmitted through and incident on the display surface of the reflective image display element and the axial principal ray of the reflected light reflected by the display surface is 2 etc. Dividing direction and the polarization direction A direction of the optical axis of the rolling means so as to substantially coincide, a configuration of arranging the polarization separating means and said polarization direction rotating means with respect to the reflection type image display device.
According to the present invention, linearly polarized illumination light is incident in accordance with the polarization separation direction of the polarization separation means. Then, the light is incident on the display surface of the reflective image display element via the polarization direction rotating means by being transmitted or reflected by the polarization separating means. The reflected light reflected by the display surface is incident again on the polarization direction rotating means and the polarization direction is rotated by 90 °, and thus is polarized and separated by the polarization separating means. At this time, the direction in which the angle formed by the axial principal ray of the illumination light incident on the display surface of the reflective image display element and the axial principal ray of the reflected light reflected by the display surface is equally divided into two, and the polarization direction Since the direction of the optical axis of the rotating means is substantially the same, the change of the polarization direction due to the oblique incidence of the illumination light to the polarization separation means and the change of the polarization direction due to the oblique incidence of the reflected light re-entering the polarization separation means Is substantially symmetric, so that it becomes possible to reduce or eliminate the change of the respective polarization directions by the polarization direction rotating means, and as a result, the light quantity loss is reduced.

本発明の投射型画像投影装置によれば、偏光分離手段を用いていても、偏光分離手段に対する入射方向による偏光方向の回転の影響を低減または除去することができるので、偏光分離手段における光量損失を低減することができるという効果を奏する。   According to the projection type image projection apparatus of the present invention, even if the polarization separation unit is used, the influence of the rotation of the polarization direction due to the incident direction on the polarization separation unit can be reduced or eliminated. There is an effect that it can be reduced.

以下では、本発明の実施の形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In all the drawings, even if the embodiments are different, the same or corresponding members are denoted by the same reference numerals, and common description is omitted.

[第1の実施形態]
本発明の第1の実施形態に係る投射型画像投影装置について説明する。
図1(a)は、本発明の第1の実施形態に係る投射型画像投影装置の概略構成を示す模式的な正面図である。図1(b)は、図1(a)のA−A断面図である。図2は、本発明の第1の実施形態に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。
なお、便宜上、各図に相対的な方向を参照するため、位置関係がそれぞれ対応したXYZ直交座標系を示した。以下、誤解のおそれがない限り、この座標軸に基づいて方向を参照する(以下の図面も同じ)。
この座標系は、図1(a)において、Z軸が図示右から左に向かって水平に延ばされ、Z軸に直交して図示下側から上側に向かってY軸が延ばされ、紙面奥側から手前側にX軸が延ばされたもので、紙面がYZ平面となっている。
[First Embodiment]
A projection type image projection apparatus according to a first embodiment of the present invention will be described.
FIG. 1A is a schematic front view showing a schematic configuration of a projection type image projection apparatus according to the first embodiment of the present invention. FIG.1 (b) is AA sectional drawing of Fig.1 (a). FIG. 2 is a perspective view showing a schematic configuration of polarization separation means used in the projection type image projection apparatus according to the first embodiment of the present invention.
For convenience, in order to refer to relative directions in each drawing, an XYZ orthogonal coordinate system corresponding to each positional relationship is shown. Hereinafter, unless there is a possibility of misunderstanding, the direction is referred to based on the coordinate axes (the same applies to the following drawings).
In this coordinate system, in FIG. 1A, the Z axis extends horizontally from the right to the left in the figure, the Y axis extends from the lower side to the upper side in the direction orthogonal to the Z axis, The X axis extends from the back side to the near side, and the paper surface is the YZ plane.

本実施形態の投射型画像投影装置100は、例えば、ビデオプロジェクタ、プロジェクションテレビジョンなどの投射型画像投影装置として好適に用いることができるものである。
投射型画像投影装置100の概略構成は、図1に示すように、照明部1、偏光分離素子2、1/4波長板3、偏光方向回転手段4、反射型画像表示素子5、および投影光学系6からなる。
図中の符号7は、投射型画像投影装置100の投影画像を映すスクリーンを示す。スクリーン7は、透過型スクリーン、反射型スクリーンのいずれであってもよい。スクリーン7が透過型スクリーンの場合には、投射型画像投影装置100の筐体(不図示)などに固定され、投射型画像投影装置100とともにリアプロジェクション型の画像投影装置を構成していてもよい。
The projection type image projection apparatus 100 of the present embodiment can be suitably used as a projection type image projection apparatus such as a video projector or a projection television.
As shown in FIG. 1, the schematic configuration of the projection-type image projection apparatus 100 includes an illumination unit 1, a polarization separation element 2, a quarter wavelength plate 3, a polarization direction rotating unit 4, a reflection-type image display element 5, and projection optics. It consists of the system 6.
Reference numeral 7 in the drawing denotes a screen that displays a projection image of the projection type image projector 100. The screen 7 may be a transmissive screen or a reflective screen. When the screen 7 is a transmissive screen, it may be fixed to a housing (not shown) of the projection type image projection apparatus 100 and constitute a rear projection type image projection apparatus together with the projection type image projection apparatus 100. .

照明部1は、光量分布が略均一化され直線偏光された波長λの光束を照明光として出射するものである。
照明部1の配置位置は、図1(a)、図2に示すように、照明部1から出射される光束の軸上主光線である光線Lが、XY平面内で、X軸負方向側からY軸負方向側に向けて斜めに進んで、偏光分離素子2に入射する配置位置とされる。光線Lの偏光方向は、図2に両矢印で示すように光軸に直交しXY平面に平行な方向とされている。光線LがY軸と交差する角度は、光路レイアウトの都合など必要に応じて設定することができるが、反射型画像表示素子5の反射面に対する入射角を小さくするために、浅い角度、例えば、15°以下の浅い角度であることが好ましい。
The illumination unit 1 emits, as illumination light, a light beam having a wavelength λ that has a substantially uniform light amount distribution and is linearly polarized.
Position of the illumination unit 1, as shown in FIG. 1 (a), FIG. 2, light L 1 is an axial principal ray of the light beam emitted from the illumination unit 1, the XY plane, X-axis negative direction It is an arrangement position where the light advances obliquely from the side toward the Y-axis negative direction and enters the polarization separation element 2. The polarization direction of the light beam L 1 is a direction parallel to the XY plane perpendicular to the optical axis as indicated by the double arrow in FIG. Angle light ray L 1 intersects the Y axis, since it can be set as required, such as the convenience of the optical path layout, to reduce the incident angle to the reflection surface of the reflection type image display device 5, a shallow angle, e.g. A shallow angle of 15 ° or less is preferable.

偏光分離素子2は、Y軸に平行な軸PをY軸負方向に進むs偏光光を、Z軸に平行な軸QをZ軸負方向に略100%反射し、軸P、Qの方向に進むp偏光光を略100%透過する、誘電体多層膜で構成された偏光分離面2aを有する偏光分離プリズムである。外形は、本実施形態では直方体とされている。
ここで、軸P、Qの張る平面は、偏光分離面2aでの反射と透過とによる偏光分離特性を規定するための基準入射面を構成している。すなわち、誘電体多層膜で偏光分離面を設計するため、偏光分離の効率を最大化するs偏光とp偏光との偏光方向を規定する。この基準入射面を入射面とする光は、入射角が一定の場合には、基準入射面と交差する面を入射面とする光よりも光量損失が少ない状態で偏光分離される。
The polarization separation element 2 reflects s-polarized light traveling on the axis P parallel to the Y-axis in the negative Y-axis direction, and reflects the axis Q parallel to the Z-axis approximately 100% in the negative Z-axis direction. This is a polarization separation prism having a polarization separation surface 2a made of a dielectric multilayer film that transmits substantially 100% of the p-polarized light going to step (b). In this embodiment, the outer shape is a rectangular parallelepiped.
Here, the plane formed by the axes P and Q constitutes a reference incident surface for defining the polarization separation characteristics by reflection and transmission on the polarization separation surface 2a. That is, in order to design the polarization separation plane with a dielectric multilayer film, the polarization directions of s-polarized light and p-polarized light that maximize the efficiency of polarization separation are defined. When the incident angle is constant, the light having the reference incident surface as the incident surface is polarized and separated with less light loss than the light having the surface intersecting the reference incident surface as the incident surface.

偏光分離面2aと照明部1との間にある第1プリズム面2bは、照明光が偏光分離素子2に入射する界面を構成し、本実施形態ではZX平面に平行な平面からなる。
偏光分離面2aと1/4波長板3との間にある第2プリズム面2cは、偏光分離面2aで反射された光が偏光分離素子2から出射する界面を構成し、本実施形態ではXY平面に平行な平面からなる。
第2プリズム面2cに平行で、偏光分離面2aを第2プリズム面2cとの間に挟む第3プリズム面2dは、偏光分離面2aをZ軸負方向側から透過する光を投影光学系6に出射する界面を構成している。
The first prism surface 2b between the polarization separation surface 2a and the illumination unit 1 constitutes an interface through which illumination light enters the polarization separation element 2, and in the present embodiment, the first prism surface 2b is a plane parallel to the ZX plane.
The second prism surface 2c between the polarization separation surface 2a and the quarter wavelength plate 3 constitutes an interface through which the light reflected by the polarization separation surface 2a is emitted from the polarization separation element 2, and in this embodiment, XY It consists of a plane parallel to the plane.
The third prism surface 2d, which is parallel to the second prism surface 2c and sandwiches the polarization separation surface 2a between the second prism surface 2c, projects light that passes through the polarization separation surface 2a from the Z-axis negative direction side. The interface which radiates | emits to is comprised.

図2において、第1プリズム面2b、第2プリズム面2cにそれぞれ描かれた破線Pは、偏光分離面2aの基準入射面のs偏光方向を参照する便宜のために描かれた仮想線である。
なお、偏光分離素子2の外形が直方体とされているのは、一例であって、本発明にとって本質的なことではない。外形を構成する第1プリズム面2b、第2プリズム面2c、第3プリズム面2dは、必要に応じて互いに適宜の角度で傾斜していてもよい。
また、以下の説明では、説明の簡略化のため、第1プリズム面2b、第2プリズム面2c、第3プリズム面2dなどの界面における屈折は無視して説明する。
In FIG. 2, broken lines P s drawn on the first prism surface 2b and the second prism surface 2c are imaginary lines drawn for convenience to refer to the s-polarization direction of the reference incident surface of the polarization separation surface 2a. is there.
Note that the outer shape of the polarization separation element 2 is a rectangular parallelepiped, which is an example, and is not essential to the present invention. The first prism surface 2b, the second prism surface 2c, and the third prism surface 2d constituting the outer shape may be inclined at an appropriate angle as needed.
Further, in the following description, for simplification of description, refraction at the interfaces of the first prism surface 2b, the second prism surface 2c, the third prism surface 2d, etc. will be ignored.

1/4波長板3は、照明光の波長λに対する1/4波長板であり、主軸Nの方向を偏光分離面2aのs偏光方向に合わせた状態で、第2プリズム面2cのZ軸負方向側にXY平面に略平行に配置されている。
偏光方向回転手段4は、往復透過する光の偏光方向を光軸まわりに90°回転するもので、1/4波長板3に対してZ軸負方向側に略平行に配置されている。すなわち、偏光方向回転手段4の光軸は、軸Qに平行に配置されている。偏光方向回転手段4としては、例えば、液晶などを用いた旋光回転子などの手段を採用することができる。
The quarter-wave plate 3 is a quarter-wave plate with respect to the wavelength λ of the illumination light, and in the state where the direction of the main axis N is matched with the s-polarization direction of the polarization separation surface 2a, the Z-axis negative of the second prism surface 2c. It is arranged substantially parallel to the XY plane on the direction side.
The polarization direction rotating means 4 rotates the polarization direction of the reciprocating light by 90 ° around the optical axis, and is disposed substantially parallel to the negative side of the Z axis with respect to the quarter wavelength plate 3. That is, the optical axis of the polarization direction rotating means 4 is arranged parallel to the axis Q. As the polarization direction rotating means 4, for example, means such as an optical rotator using liquid crystal or the like can be adopted.

反射型画像表示素子5は、表示画素に応じて、表示面5aに2次元格子状に配列された複数の表示要素の反射方向を制御することにより、照明光を空間変調して画像を表示するものである。本実施形態では、表示要素として、画像信号に応じて傾斜角がオン状態とオフ状態との2種類の傾斜角に変化されるマイクロミラー(不図示)を格子状に2次元配列したDMD(Digital Micro mirror Device)を採用している。
本実施形態では、オン状態のマイクロミラーはXY平面内に整列し、オフ状態のマイクロミラーはXY平面に対して傾斜することにより、照明光の反射光が後述する投影光学系6に入射しない方向に反射されるようになっている。
また、オン状態のマイクロミラーの反射面の法線は、偏光分離面2aの基準入射面に平行となっている。そのため、反射型画像表示素子5のオン状態のマイクロミラーに入射する光線は、偏光分離面2aの基準入射面に平行な面に対して面対称に反射されることになる。
The reflective image display element 5 displays an image by spatially modulating the illumination light by controlling the reflection direction of a plurality of display elements arranged in a two-dimensional lattice pattern on the display surface 5a according to the display pixel. Is. In the present embodiment, a DMD (Digital) in which micromirrors (not shown) whose tilt angles are changed to two types of tilt angles, that is, an on state and an off state, are two-dimensionally arranged in a grid pattern as display elements. Micro mirror Device) is used.
In the present embodiment, the on-state micromirrors are aligned in the XY plane, and the off-state micromirrors are inclined with respect to the XY plane, so that the reflected light of the illumination light does not enter the projection optical system 6 described later. It is supposed to be reflected by the.
Further, the normal line of the reflecting surface of the micromirror in the on state is parallel to the reference incident surface of the polarization separation surface 2a. Therefore, the light beam incident on the on-state micromirror of the reflective image display element 5 is reflected in plane symmetry with respect to a plane parallel to the reference incident surface of the polarization separation surface 2a.

なお、図示では、反射型画像表示素子5の表示面5aとオン状態のマイクロミラーの反射面が同一平面となるような位置関係に描いているが、これは一例であってオン状態のマイクロミラーは表示面5aに対して傾いていてもよい。本質的なのは、オン状態のマイクロミラーの法線と基準入射面との関係である。   In the drawing, the display surface 5a of the reflective image display element 5 and the reflective surface of the micromirror in the on state are drawn in the same plane, but this is an example and the micromirror in the on state is illustrated. May be inclined with respect to the display surface 5a. What is essential is the relationship between the normal of the micromirror in the on state and the reference incident surface.

投影光学系6は、反射型画像表示素子5に照射される照明光のうち、反射型画像表示素子5のオン状態のマイクロミラーによって反射され、偏光方向回転手段4、1/4波長板3、偏光分離素子2を順次透過した光による画像をスクリーン7に向かって拡大投影する光学素子または光学素子群である。
投影光学系6の光軸50は、本実施形態では、XY平面に整列されたマイクロミラーによる反射光の反射光軸に対応して、ZX平面内で、X軸負方向側からZ軸正方向側に向かって傾斜する方向に配置されている。
The projection optical system 6 is reflected by the on-state micromirror of the reflective image display element 5 out of the illumination light irradiated on the reflective image display element 5, and the polarization direction rotating means 4, quarter wavelength plate 3, It is an optical element or an optical element group that enlarges and projects an image by light sequentially transmitted through the polarization beam splitting element 2 toward the screen 7.
In this embodiment, the optical axis 50 of the projection optical system 6 corresponds to the reflected optical axis of the reflected light by the micromirrors aligned on the XY plane, and the Z-axis positive direction from the X-axis negative direction side in the ZX plane. It arrange | positions in the direction which inclines toward the side.

本実施形態において、偏光分離素子2、1/4波長板3、偏光方向回転手段4は、照明部1と反射型画像表示素子5との間および投影光学系6と反射型画像表示素子5との間で、照明光の光路と反射型画像表示素子5で反射される反射光の光路とを偏光方向に応じて分離する偏光分離手段20を構成している。   In the present embodiment, the polarization separation element 2, the quarter wavelength plate 3, and the polarization direction rotating means 4 are provided between the illumination unit 1 and the reflection type image display element 5, and between the projection optical system 6 and the reflection type image display element 5. The polarization separating means 20 is configured to separate the optical path of the illumination light and the optical path of the reflected light reflected by the reflective image display element 5 according to the polarization direction.

次に、本実施形態の投射型画像投影装置100の作用について、偏光分離手段の作用を中心に光路に沿って説明する。以下の説明における各光線は、特に断らない限り、投射型画像投影装置100を構成する光学系の軸上主光線を表すものとする。
図3(a)、(b)は、従来技術に係る比較例の偏光分離手段の作用を説明するための斜視説明図である。図4(a)は、本発明の第1の実施形態に係る1/4波長板の作用について説明する偏光方向変化の概念図である。図4(b)は、本発明の第1の実施形態に係る1/4波長板、偏光方向回転手段の複合的な作用について説明する偏光方向変化の概念図である。
Next, the operation of the projection type image projector 100 according to the present embodiment will be described along the optical path with the operation of the polarization separation means as the center. Each light ray in the following description represents an axial principal ray of an optical system constituting the projection type image projector 100 unless otherwise specified.
FIGS. 3A and 3B are perspective explanatory views for explaining the operation of the polarization separation means of the comparative example according to the prior art. FIG. 4A is a conceptual diagram of polarization direction change for explaining the operation of the quarter-wave plate according to the first embodiment of the present invention. FIG. 4B is a conceptual diagram of polarization direction change for explaining the combined action of the quarter-wave plate and the polarization direction rotating means according to the first embodiment of the present invention.

照明部1から出射される光線Lは、図2に示すように、光軸に直交しXY平面に平行な方向に直線偏光されており、XY平面内で軸Pに対して浅い角度で傾斜した方向から、第1プリズム面2bに入射し、偏光分離面2a上の点aに到達する。点aにおいて、光線Lの偏光方向は、偏光分離面2aのs偏光の偏向面に一致するため、光線Lは偏光分離面2aにより略100%反射され、光線Lとして、第2プリズム面2c上の点bに進み、1/4波長板3に向けて出射される。
このとき、光線L、Lを含む偏光分離面2aに対する入射面は、基準入射面に対してわずかに傾斜しているため、この傾斜角に応じて、光線Lの偏光方向は基準変更のs偏光方向に対して回転する。例えば、点bにおいて、Z軸負方向から見て時計回りに角度φ(°)だけ回転する。
ここで、光線Lの偏光方向は、XY平面に対して傾いているため、光軸回りの回転角とXY平面内での回転角φとは厳密には異なるが、本実施形態では、光線Lの軸Qに対する傾斜角度が小さいため、ほとんど同様な角度になっている。
As shown in FIG. 2, the light beam L 1 emitted from the illumination unit 1 is linearly polarized in a direction perpendicular to the optical axis and parallel to the XY plane, and is inclined at a shallow angle with respect to the axis P in the XY plane. From this direction, the light enters the first prism surface 2b and reaches the point a on the polarization separation surface 2a. At point a, the polarization direction of the light beam L 1 can also correspond to the deflecting surface of the s-polarized light of the polarization separation surface 2a, light L 1 is reflected substantially 100% by the polarization separating surface 2a, as ray L 2, a second prism The light travels to a point b on the surface 2c and is emitted toward the quarter-wave plate 3.
At this time, since the incident surface with respect to the polarization separation surface 2a including the light beams L 1 and L 2 is slightly inclined with respect to the reference incident surface, the polarization direction of the light beam L 2 is changed according to the inclination angle. Rotates with respect to the s-polarization direction. For example, at the point b, it rotates by an angle φ (°) clockwise as viewed from the negative direction of the Z-axis.
Here, light polarization direction of L 2, since the inclined with respect to the XY plane, but different in a strict sense of the rotation angle φ of the optical axis of the rotation angle and the XY plane, in this embodiment, light rays since the inclination angle relative to the axis Q of L 2 is small, it has almost the same angle.

光線Lは、ZX平面内をX軸負方向側からZ軸負方向側に向かって軸Qに対して浅い角度αをなして進み、1/4波長板3、偏光方向回転手段4を透過して、反射型画像表示素子5に入射し、他の光束とともに、反射型画像表示素子5の表示面5aを照明する。
光線Lがオン状態のマイクロミラーに入射するものとすると、点dに入射角αで入射して、ZX平面内で出射角αの方向に光線Lとして反射される。そして、ZX平面内を、X軸負方向側からZ軸正方向側に向かって軸Qに対して浅い角度αをなして進み、偏光方向回転手段4、1/4波長板3を透過して、第2プリズム面2c上の点fに入射する。
すなわち、点fに到達する光線Lは、1/4波長板3、偏光方向回転手段4を往復透過したことになる。
The light beam L 2 travels in the ZX plane from the X-axis negative direction side toward the Z-axis negative direction side with a shallow angle α with respect to the axis Q, and is transmitted through the quarter-wave plate 3 and the polarization direction rotating means 4. Then, the light enters the reflective image display element 5 and illuminates the display surface 5a of the reflective image display element 5 together with other light beams.
Assuming that light L 2 is incident on the micromirrors in the ON state, and at an incident angle α in the point d, is reflected as beam L 3 in the direction of the exit angle α in the ZX plane. Then, in the ZX plane, proceed from the X-axis negative direction side to the Z-axis positive direction side with a shallow angle α with respect to the axis Q, and pass through the polarization direction rotating means 4 and the quarter-wave plate 3. , And enters the point f on the second prism surface 2c.
That is, the light beam L 3 reaching the point f has been transmitted through the quarter-wave plate 3 and the polarization direction rotating means 4 in a reciprocating manner.

ここで、1/4波長板3、偏光方向回転手段4の作用について説明する。
まず、図3(a)、(b)を参照して、1/4波長板3がない場合の例における偏光方向の変化を説明する。なお、図3(a)では、見易さのため、各光線を実際の光路である軸P、Qからずらして表示している。
図3(a)に示すように、光線Lに代えて、軸P上を進む光線L10が偏光分離素子2に入射された場合を考える。光線L10の偏光方向は、基準入射面のs偏光方向に一致されており、偏光分離面2aで略100%反射されて、光線L20として第2プリズム面2cから出射され、偏光方向を変えることなく、偏光方向回転手段4を透過し、反射型画像表示素子5で光線30として反射されて、偏光方向回転手段4を再度透過して、第2プリズム面2cに再入射する。
このとき、光線L30では、偏光方向回転手段4を往復透過することで、偏光方向が光軸まわりに90°回転され、反射偏光方向と直交する方向になっている。そのため、偏光分離面2aに到達した光線L30は、略100%透過され、光線L40として第3プリズム面2dから出射される。
したがって、略光量損失を起こすことなく、光線10の光路と光線40の光路とが偏光分離される。
Here, the operation of the quarter wavelength plate 3 and the polarization direction rotating means 4 will be described.
First, with reference to FIGS. 3A and 3B, a change in polarization direction in an example in the case where the quarter wavelength plate 3 is not provided will be described. In FIG. 3A, for the sake of easy viewing, each light beam is displayed while being shifted from the axes P and Q which are actual optical paths.
As shown in FIG. 3A, consider a case where a light beam L 10 traveling on the axis P is incident on the polarization separation element 2 instead of the light beam L 1 . The polarization direction of the light beam L 10 is matched to the s-polarization direction of the reference incident surface is reflected substantially 100% by the polarization splitting surface 2a, emitted from the second prism surface 2c as light ray L 20, changing the polarization direction Instead, the light passes through the polarization direction rotating means 4, is reflected as the light beam 30 by the reflective image display element 5, passes through the polarization direction rotating means 4 again, and reenters the second prism surface 2c.
At this time, the light beam L 30 is reciprocally transmitted through the polarization direction rotating means 4 so that the polarization direction is rotated by 90 ° around the optical axis, and is in a direction perpendicular to the reflected polarization direction. For this reason, the light beam L 30 that has reached the polarization separation surface 2 a is transmitted approximately 100%, and is emitted as the light beam L 40 from the third prism surface 2 d.
Therefore, the optical path of the light beam 10 and the optical path of the light beam 40 are polarized and separated without causing a substantial light amount loss.

図3(b)は、本実施形態から1/4波長板3のみを除去した場合の例である。この場合、光線Lが出射されるまでは、本実施形態と同様のため、光線Lは、偏光方向が、偏光分離面2aの基準入射面のs偏光方向に対して角度φだけ傾斜している。このため、光線Lが偏光方向回転手段4、反射型画像表示素子5、偏光方向回転手段4を経て光線L31として、第2プリズム面2cに到達すると、点fでの光線L31の偏光方向は、光軸まわりに90°回転され、偏光分離面2aの反射偏光方向に対して(90°−φ)だけ傾斜している。また、反射偏光方向に直交する方向に対しては、Z軸負方向から見て時計回りにφだけ回転している。
ところが、光線L、Lは、偏光分離面2aの基準入射面に対して面対称な位置関係にあるため、偏光分離面2aで最も効率的に反射される偏光方向および最も効率的に透過される偏光方向もまた基準入射面に対して面対称となる。したがって、点fで、基準入射面のs偏光方向に対してZ軸負方向から見て反時計回りにφだけ回転した偏光方向を有する偏光成分が、偏光分離面2aの点gにおいて略100%反射され、また基準入射面のs偏光にXY平面内で直交する方向(X軸方向)に対してZ軸負方向から見て反時計回りにφだけ回転した偏光方向を有する偏光成分が、略100%透過されることになる。
したがって、光線L31は、このような点gにおける偏光分離の偏光方向に対してZ軸負方向から見て時計回りに2・φだけずれた偏光方向を有することになる。そのため、図3(b)に示すように、点gにおいて、透過光L41Tと反射光L41Rに偏光分離される。この反射光L41Rは、投影光学系6に到達しないため、光量損失となってしまう。
FIG. 3B shows an example in which only the quarter wavelength plate 3 is removed from the present embodiment. In this case, since the light L 2 is emitted in the same manner as in the present embodiment, the polarization direction of the light L 2 is inclined by an angle φ with respect to the s-polarization direction of the reference incident surface of the polarization separation surface 2a. ing. Therefore, light rays L 2 is the polarization direction rotating means 4, the reflection type image display device 5, as rays L 31 through the polarization direction rotating means 4, and reaches the second prism surface 2c, the polarization of the light beam L 31 at point f The direction is rotated by 90 ° around the optical axis, and is inclined by (90 ° −φ) with respect to the reflected polarization direction of the polarization separation surface 2a. Further, with respect to the direction orthogonal to the reflected polarization direction, the rotation is clockwise by φ as viewed from the negative Z-axis direction.
However, since the light beams L 2 and L 3 are in a plane-symmetrical positional relationship with respect to the reference incident surface of the polarization separation surface 2a, the polarization direction most efficiently reflected by the polarization separation surface 2a and the most efficiently transmitted light. The polarization direction is also symmetrical with respect to the reference entrance plane. Therefore, the polarization component having the polarization direction rotated counterclockwise by φ as viewed from the negative Z-axis direction with respect to the s-polarization direction of the reference incident surface at the point f is approximately 100% at the point g of the polarization separation surface 2a. A polarization component having a polarization direction reflected and rotated by φ counterclockwise as viewed from the Z-axis negative direction with respect to the direction (X-axis direction) orthogonal to the s-polarized light of the reference incident plane in the XY plane is approximately 100% will be transmitted.
Therefore, the light beam L 31 has a polarization direction shifted by 2 · φ clockwise as viewed from the negative Z-axis direction with respect to the polarization direction of polarization separation at such a point g. Therefore, as shown in FIG. 3B, at the point g, the transmitted light L 41T and the reflected light L 41R are polarized and separated. Since this reflected light L 41R does not reach the projection optical system 6, the light amount is lost.

これに対して、本実施形態では、偏光分離素子2と偏光方向回転手段4との間の光線L、Lの間に、主軸が基準入射面のs偏光方向と同方向の1/4波長板3を配置しているため、光線Lの偏光方向が、偏光分離面2aで最も効率よく透過される偏光方向に補正される。
1/4波長板3は、直線偏光を主軸Nとのなす角度に応じて、楕円偏光または円偏光に変換し、あるいはその逆変換を行うものであるが、反射面を介して往復透過させる場合、1/2波長板と等価に働くため、直線偏光の偏光方向を主軸Nに対して折り返す作用を有する。すなわち、本実施形態で、偏光方向回転手段4を削除した場合を考えると、図4(a)に示すように、点fにおける光線Lの偏光方向p’は、点bにおける光線Lの偏光方向pを主軸Nに対して折り返すため、主軸Nに対して、Z軸負方向から見て反時計回りに角度φだけ回転したのと同様である。また、主軸Nは、基準入射面の法線方向に一致しているから、1/4波長板3は、往復透過した直線偏光を基準入射面に関して対称変換する機能を有するものである。
On the other hand, in this embodiment, between the light beams L 2 and L 3 between the polarization separation element 2 and the polarization direction rotating means 4, the main axis is 1/4 of the same direction as the s-polarization direction of the reference incident surface. due to the arrangement a wavelength plate 3, the polarization direction of the light beam L 3 is corrected in the polarization direction that is most efficiently transmitted through the polarization separation surface 2a.
The quarter wave plate 3 converts linearly polarized light into elliptically polarized light or circularly polarized light according to the angle formed with the principal axis N, or vice versa. Since it works equivalently to a half-wave plate, it has the effect of turning the polarization direction of linearly polarized light around the principal axis N. That is, in the present embodiment, considering the case where the polarization direction rotating means 4 is deleted, as shown in FIG. 4A, the polarization direction p f ′ of the light beam L 3 at the point f is the light beam L 2 at the point b. for folding the polarization direction p b to the main axis N, the main axis N, is the same as that rotate as viewed from the Z-axis negative direction counterclockwise by an angle phi. Further, since the main axis N coincides with the normal direction of the reference incident surface, the quarter wavelength plate 3 has a function of symmetrically converting the linearly polarized light transmitted and received through the reference incident surface.

本実施形態のように、1/4波長板3と反射型画像表示素子5との間に偏光方向回転手段4が入ると、この間では直線偏光でないため、あくまで概念的な説明になるが、図4(b)に示すように、偏光方向pが偏光方向回転手段4によって光軸まわりに90°回転され、主軸Nに対して折り返されることで、点fの偏光方向pが、X軸に対してZ軸負方向から見て反時計回りに角度φ回転したのと等価な偏光方向変換作用を示す。
すなわち、1/4波長板3と偏光方向回転手段4とは、偏光分離面2aで偏光分離されて反射型画像表示素子5に向かう光の偏光方向を、基準入射面に関する対称変換と光軸まわりの90°の回転変換との合成変換に相当する変換によって補正する偏光方向補正手段を構成している。
If the polarization direction rotating means 4 is inserted between the quarter-wave plate 3 and the reflective image display element 5 as in the present embodiment, since this is not linearly polarized light, it will be conceptual only. 4 (b), the polarization direction p b is rotated by 90 ° around the optical axis by the polarization direction rotating means 4 and folded back with respect to the main axis N, so that the polarization direction pf of the point f is changed to the X axis. On the other hand, the polarization direction conversion action equivalent to the rotation of the angle φ counterclockwise when viewed from the negative direction of the Z-axis is shown.
That is, the quarter-wave plate 3 and the polarization direction rotating means 4 change the polarization direction of the light that is polarized and separated by the polarization separation surface 2a toward the reflective image display element 5, and symmetrically transform the reference incident surface and the optical axis. The polarization direction correcting unit corrects the light by a conversion corresponding to a combined conversion with the 90 ° rotation conversion.

したがって、図2に示すように、本実施形態では、光線Lの偏光方向は、偏光分離面2aの点gにおいて略100%透過される偏光方向に一致し、光線Lとして、略100%透過され、第3プリズム面2dから出射される。
そして、図1に示すように、光線Lは、投影光学系6の光軸50に沿って進み、投影光学系6によってスクリーン7に投影される。
このように、投射型画像投影装置100では、偏光分離素子2の基準入射面と交差する方向から、照明光を入射しても、軸上主光線は、偏光分離素子2においてほとんど光量損失しない状態で偏光分離される。このため、例えば、図3(b)に示すような1/4波長板3を偏光分離素子2と偏光方向回転手段4との間の光路に備えない構成に比べて、光量損失を低減することができる。
Therefore, as shown in FIG. 2, in this embodiment, the polarization direction of the light beam L 3 coincides with the polarization direction that transmits approximately 100% at the point g of the polarization separation surface 2a, and is approximately 100% as the light beam L 4. The light is transmitted and emitted from the third prism surface 2d.
As shown in FIG. 1, the light beam L 4 travels along the optical axis 50 of the projection optical system 6 and is projected onto the screen 7 by the projection optical system 6.
As described above, in the projection type image projection apparatus 100, even if the illumination light is incident from the direction intersecting the reference incident surface of the polarization separation element 2, the axial principal ray hardly loses the light amount in the polarization separation element 2. Is polarized and separated. For this reason, for example, the light amount loss is reduced as compared with a configuration in which the quarter wavelength plate 3 as shown in FIG. 3B is not provided in the optical path between the polarization separation element 2 and the polarization direction rotating means 4. Can do.

なお、このような作用は、反射型画像表示素子5の反射面の法線が偏光分離素子2の基準入射面に平行となるように配置することで、軸上主光線の光路上で、偏光方向の傾きがが基準入射面に対して面対称となることを利用している。
このような位置関係が実現されない場合、そのずれ量に応じて光量損失が発生するが、光量損失が許容できる範囲であれば、反射型画像表示素子5の反射面の法線を基準入射面とわずかに傾斜させた略平行の位置関係でもよい。
Such an action is achieved by arranging the reflection surface normal of the reflective image display element 5 so as to be parallel to the reference incident surface of the polarization separation element 2, and thereby allowing polarization on the optical path of the axial principal ray. The fact that the inclination of the direction is plane-symmetric with respect to the reference incident surface is utilized.
When such a positional relationship is not realized, a light amount loss occurs according to the amount of deviation. However, if the light amount loss is in an allowable range, the normal line of the reflective surface of the reflective image display element 5 is defined as the reference incident surface. It may be a substantially parallel positional relationship slightly inclined.

また、以上の説明では、軸上主光線による1/4波長板3の作用を説明したが、軸上主光線以外の照明光において、基準入射面に交差する方向から入射する光も、同様に1/4波長板3の補正作用を受けて、光量損失が低減される。
また、以上の説明では、反射型画像表示素子5の入射面がZX平面内に設定され、基準入射面と直交する位置関係にある場合の例で説明した。反射型画像表示素子5の入射面がマイクロミラーの反射面の法線まわりに回転した斜めの状態、例えば、図3(a)の偏光分離面2a上での入射位置である点aがY軸正方向側に、点gがY軸負方向側にずれたような位置となる光路を通る光線では、偏光方向の回転は基準入射面に対称にはならないため、偏光方向の回転は完全には補正されないが、回転の程度は低減される。そのため、やはり偏光方向補正手段を備えない場合に比べて、光量損失が低減される。
In the above description, the operation of the quarter wave plate 3 by the axial principal ray has been described. However, in the illumination light other than the axial principal ray, the light incident from the direction intersecting the reference incident surface is also the same. The light quantity loss is reduced by the correction action of the quarter-wave plate 3.
In the above description, the case where the incident surface of the reflective image display element 5 is set in the ZX plane and is in a positional relationship orthogonal to the reference incident surface has been described. An oblique state in which the incident surface of the reflective image display element 5 is rotated around the normal line of the reflective surface of the micromirror, for example, a point a that is the incident position on the polarization separation surface 2a in FIG. In the light beam passing through the optical path where the point g is shifted to the Y axis negative direction side on the positive direction side, the rotation of the polarization direction is not symmetric with respect to the reference incidence plane, so the rotation of the polarization direction is completely Although not corrected, the degree of rotation is reduced. Therefore, the light amount loss is reduced as compared with the case where the polarization direction correcting means is not provided.

次に、本実施形態の第1変形例について説明する。
図5は、本発明の第1の実施形態の第1変形例に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。
Next, a first modification of the present embodiment will be described.
FIG. 5 is a perspective view showing a schematic configuration of the polarization separation means used in the projection type image projection apparatus according to the first modification of the first embodiment of the present invention.

本変形例は、上記実施形態の偏光分離素子2に代えて、基準偏光方向が透過光の方向となる偏光分離面2eを有する偏光分離素子2Aを備え、照明光の偏光方向が、基準入射面のp偏光となるようにしたものである。そのため、偏光分離面2eによって反射されて反射型画像表示素子5側に向かう光の偏光方向に合わせて、1/4波長板3の主軸NをXY平面内で90°回転して、Y軸方向に沿って配置する。
図5には、偏光分離面2eによって反射されて反射型画像表示素子5側に向かう光の偏光方向の理解を助けるため、参考として、このような基準入射面のp偏光の偏光面に沿う仮想線を破線Pとして、各光路上に示した。第2プリズム面2c上の破線Pが、1/4波長板3の主軸Nと平行であることが分かれば、図示の目的は達せられる。
This modification includes a polarization separation element 2A having a polarization separation surface 2e whose reference polarization direction is the direction of transmitted light, instead of the polarization separation element 2 of the above embodiment, and the polarization direction of the illumination light is the reference incident surface. P-polarized light. Therefore, the main axis N of the quarter-wave plate 3 is rotated by 90 ° in the XY plane in accordance with the polarization direction of the light reflected by the polarization separation surface 2e and traveling toward the reflective image display element 5, and the Y-axis direction Arrange along.
In FIG. 5, in order to help understanding of the polarization direction of the light reflected by the polarization separation surface 2e and traveling toward the reflective image display element 5, the virtual plane along the polarization plane of p-polarization of such a reference incident surface is used as a reference. A line is shown on each optical path as a broken line P p . Dashed P p on the second prism surface 2c is, knowing that is parallel to the main axis N of 1/4-wave plate 3, the purpose of illustration is achieved.

本変形例によれば、照明部1からの照明光の軸上主光線である光線L13は、YZ平面内を、Z軸正方向側からY軸負方向側に向かって軸Pと浅い角度をなして、第1プリズム面2bに入射し、偏光分離面2e上の点hに到達する。
光線L13は、p偏光光のため、偏光分離面2eで略100%反射されて、光線L23として第2プリズム面2cの点iから出射され、1/4波長板3、偏光方向回転手段4を介して、反射型画像表示素子5に到達する。そして、反射型画像表示素子5上のマイクロミラーによって光線L33として反射され、偏光方向回転手段4、1/4波長板3を再透過して、第2プリズム面2c上の点nに到達する。
ここで、点iの偏光方向はX軸方向のため、1/4波長板3の主軸Nと同方向となるため、点nの偏光方向は偏光方向回転手段4のみの作用により光軸まわりに90°回転されX軸方向となる。
そのため、光線L33は、点qにおいて偏光分離面2eを略100%透過して、第3プリズム面2dから光線L43として、光軸50に沿って投影光学系6に入射され、スクリーン7に投影される。
According to this modification, the light beam L 13 that is the axial principal ray of the illumination light from the illuminating unit 1 is shallow with the axis P in the YZ plane from the Z-axis positive direction side to the Y-axis negative direction side. And enters the first prism surface 2b and reaches the point h on the polarization separation surface 2e.
Since the light beam L 13 is p-polarized light, it is reflected almost 100% by the polarization separation surface 2e and emitted as a light beam L 23 from the point i on the second prism surface 2c. 4, and reaches the reflective image display element 5. Then, it is reflected as a light beam L 33 by the micromirror on the reflective image display element 5, retransmits the polarization direction rotating means 4 and the quarter wavelength plate 3, and reaches a point n on the second prism surface 2 c. .
Here, since the polarization direction of the point i is the X-axis direction, it is the same direction as the main axis N of the quarter-wave plate 3, so that the polarization direction of the point n is around the optical axis only by the polarization direction rotating means 4. It is rotated 90 ° and becomes the X-axis direction.
Therefore, the light beam L 33 is transmitted through the polarization splitting surface 2 e at the point q approximately 100%, enters the projection optical system 6 along the optical axis 50 as the light beam L 43 from the third prism surface 2 d, and enters the screen 7. Projected.

このように、本実施形態では、軸上主光線が偏光分離素子2Aにおいてほとんど光量損失することとなく偏光分離される。その際、軸上主光線は、基準入射面内を進むため、1/4波長板3による、偏光方向の補正作用を受けない。しかしながら、軸上主光線以外の照明光において、基準入射面に交差する方向から入射する光は、上記実施形態と同様に、偏光方向が回転するが、1/4波長板3の補正作用を受けて、光量損失が低減される。そのため、照明光全体としては、1/4波長板3の作用により、光量損失が低減される。   Thus, in the present embodiment, the axial principal ray is polarized and separated with almost no light loss in the polarization separation element 2A. At this time, since the axial principal ray travels in the reference incident plane, it is not subjected to the polarization direction correcting action by the quarter wavelength plate 3. However, in the illumination light other than the axial principal ray, the light incident from the direction intersecting the reference incident surface rotates in the polarization direction as in the above embodiment, but receives the correction action of the quarter wavelength plate 3. Thus, light loss is reduced. Therefore, as a whole illumination light, light loss is reduced by the action of the quarter-wave plate 3.

[第2の実施形態]
本発明の第2の実施形態に係る投射型画像投影装置について説明する。
図6(a)は、本発明の第2の実施形態に係る投射型画像投影装置の概略構成を示す模式的な正面図である。図6(b)は、図6(a)のB−B断面図である。図7は、本発明の第2の実施形態に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。図8は、本発明の第2の実施形態に係る1/4波長板の作用について説明する偏光方向変化の概念図である。
[Second Embodiment]
A projection type image projection apparatus according to the second embodiment of the present invention will be described.
FIG. 6A is a schematic front view showing a schematic configuration of a projection type image projection apparatus according to the second embodiment of the present invention. FIG.6 (b) is BB sectional drawing of Fig.6 (a). FIG. 7 is a perspective view showing a schematic configuration of the polarization separation means used in the projection type image projection apparatus according to the second embodiment of the present invention. FIG. 8 is a conceptual diagram of polarization direction change for explaining the operation of the quarter-wave plate according to the second embodiment of the present invention.

本実施形態の投射型画像投影装置110は、図6(a)、(b)に示すように、上記第1の実施形態の投射型画像投影装置100から1/4波長板3を削除し、偏光方向回転手段4に代えて1/4波長板9を備えるものである。偏光分離素子2と1/4波長板9とは、偏光分離手段21を構成している。以下、上記第1の実施形態と異なる点を中心に説明する。   As shown in FIGS. 6A and 6B, the projection-type image projection apparatus 110 according to the present embodiment deletes the quarter-wave plate 3 from the projection-type image projection apparatus 100 according to the first embodiment. A quarter wave plate 9 is provided instead of the polarization direction rotating means 4. The polarization separation element 2 and the quarter wavelength plate 9 constitute a polarization separation means 21. Hereinafter, a description will be given centering on differences from the first embodiment.

1/4波長板9は、照明光の波長λに対する1/4波長板であり、図7に示すように、主軸Nの方向を基準入射面のs偏光方向に対して略45°傾斜させた状態で、第2プリズム面2cのZ軸負方向側にXY平面に略平行に配置されている。   The quarter-wave plate 9 is a quarter-wave plate with respect to the wavelength λ of the illumination light, and as shown in FIG. 7, the direction of the principal axis N is inclined by approximately 45 ° with respect to the s-polarization direction of the reference incident surface. In this state, the second prism surface 2c is disposed substantially parallel to the XY plane on the Z axis negative direction side.

本実施形態の構成によれば、上記第1の実施形態では光線L、Lが1/4波長板3、偏光方向回転手段4を往復透過したところ、本実施形態では1/4波長板9を往復透過するものである。
その際、図8に示すように、光線Lは、1/4波長板9にその主軸Nに対してZ軸負方向側から見て時計回りに45°回転した偏光方向pで入射するので、光線Lは、主軸Nの方向に対して折り返された偏光方向pに補正される。そのため、偏光方向pは、基準入射面のs偏光方向に直交する方向からZ軸負方向側から見て反時計回りに角度φだけ回転されたのと同じ方向となる。したがって、この光線Lは、上記第1の実施形態と同様に、偏光分離面2aを略100%透過して、光軸50に沿って投影光学系6に入射する。
すなわち、1/4波長板9は、このような配置により、偏光分離面2aで偏光分離されて反射型画像表示素子5に向かう光の偏光方向を、基準入射面に関する対称変換と光軸まわりの90°の回転変換との合成変換に相当する変換によって補正する偏光方向補正手段を構成している。
According to the configuration of the present embodiment, when the light beams L 2 and L 3 pass through the quarter-wave plate 3 and the polarization direction rotating means 4 in the first embodiment, the quarter-wave plate is used in the present embodiment. 9 is reciprocally transmitted.
At that time, as shown in FIG. 8, the light beam L 2 is incident on the quarter-wave plate 9 with a polarization direction p b rotated clockwise by 45 ° with respect to the main axis N when viewed from the Z-axis negative direction side. since the ray L 3 is corrected to the polarization direction p f folded back against the direction of the main axis N. Therefore, the polarization direction pf is the same as the direction rotated by an angle φ counterclockwise when viewed from the Z axis negative direction side from the direction orthogonal to the s polarization direction of the reference incident surface. Therefore, the light beam L 3 is transmitted through the polarization splitting surface 2 a substantially 100% and enters the projection optical system 6 along the optical axis 50, as in the first embodiment.
That is, the quarter wavelength plate 9 changes the polarization direction of the light that is polarized and separated by the polarization separation surface 2a and travels toward the reflective image display element 5 with this arrangement, symmetrical conversion with respect to the reference incident surface, and around the optical axis. Polarization direction correction means for correcting by a conversion corresponding to a combined conversion with a 90 ° rotation conversion is configured.

なお、このような作用は、反射型画像表示素子5の反射面の法線が偏光分離素子2の基準入射面に平行となるように配置することで、軸上主光線の光路上で、偏光方向の傾きがが基準入射面に対して面対称となることを利用している。
このような位置関係が実現されない場合、往復透過により偏光方向を光軸まわりに90°回転させる偏光方向変換に1/4波長板を用いる場合のように、入射光の偏光方向と主軸Nとを45°交差させただけでは、光線Lの偏光方向が光軸まわりに90°回転し、偏光分離面2aに斜め入射する位置で、最も効率的に偏光分離する偏光方向とは一致しなくなるものである。
ただし、光量損失が許容できる範囲であれば、反射型画像表示素子5の反射面の法線を基準入射面とわずかに傾斜させた略平行の位置関係でもよい。
Such an action is achieved by arranging the reflection surface normal of the reflective image display element 5 so as to be parallel to the reference incident surface of the polarization separation element 2, and thereby allowing polarization on the optical path of the axial principal ray. The fact that the inclination of the direction is plane-symmetric with respect to the reference incident surface is utilized.
When such a positional relationship is not realized, the polarization direction of the incident light and the principal axis N are changed as in the case of using a quarter wave plate for polarization direction conversion in which the polarization direction is rotated by 90 ° around the optical axis by reciprocal transmission. If only 45 ° crosses, the polarization direction of the light beam L 3 is rotated by 90 ° around the optical axis, and at the position where it is obliquely incident on the polarization separation surface 2a, it does not coincide with the polarization direction that is most efficiently polarized and separated. It is.
However, as long as the light loss can be tolerated, a substantially parallel positional relationship in which the normal line of the reflective surface of the reflective image display element 5 is slightly inclined with respect to the reference incident surface may be used.

このように、投射型画像投影装置110では、投射型画像投影装置100と同様に、例えば、図3(b)に示すような偏光分離素子2と反射型画像表示素子5との間の光路上に、偏光方向回転手段4のみを有する構成に比べて、光量損失を低減することができる。   As described above, in the projection type image projection apparatus 110, for example, on the optical path between the polarization separation element 2 and the reflection type image display element 5 as shown in FIG. In addition, the light amount loss can be reduced as compared with the configuration having only the polarization direction rotating means 4.

[第3の実施形態]
本発明の第3の実施形態に係る投射型画像投影装置について説明する。
図9(a)は、本発明の第3の実施形態に係る投射型画像投影装置の概略構成を示す模式的な正面図である。図9(b)は、図9(a)のC−C断面図である。図9(c)は、図9(a)のD−D断面図である。図10は、本発明の第3の実施形態に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。
[Third Embodiment]
A projection type image projection apparatus according to a third embodiment of the present invention will be described.
FIG. 9A is a schematic front view showing a schematic configuration of a projection type image projection apparatus according to the third embodiment of the present invention. FIG. 9B is a cross-sectional view taken along the line C-C in FIG. FIG.9 (c) is DD sectional drawing of Fig.9 (a). FIG. 10 is a perspective view showing a schematic configuration of the polarization separation means used in the projection type image projection apparatus according to the third embodiment of the present invention.

本実施形態の投射型画像投影装置120は、図9(a)、(b)、(c)に示すように、上記第1の実施形態の投射型画像投影装置100の偏光分離素子2に代えて、ワイヤーグリッド偏光子(以下、WGP)8を備え、1/4波長板3を削除したものである。以下、上記第1の実施形態と異なる点を中心に説明する。
本実施形態では、照明部1、投影光学系6、スクリーン7は、上記第1の実施形態と同様の配置としている。ただし、照明部1からの照明光は、WGP8の透過光を反射型画像表示素子5に導くようにしているため、偏光方向回転手段4、反射型画像表示素子5は、ZX平面に平行に配置されている。
As shown in FIGS. 9A, 9 </ b> B, and 9 </ b> C, the projection type image projection apparatus 120 of the present embodiment is replaced with the polarization separation element 2 of the projection type image projection apparatus 100 of the first embodiment. In addition, a wire grid polarizer (hereinafter referred to as WGP) 8 is provided, and the quarter wavelength plate 3 is omitted. Hereinafter, a description will be given centering on differences from the first embodiment.
In the present embodiment, the illumination unit 1, the projection optical system 6, and the screen 7 are arranged in the same manner as in the first embodiment. However, since the illumination light from the illumination unit 1 guides the transmitted light of the WGP 8 to the reflection type image display element 5, the polarization direction rotating means 4 and the reflection type image display element 5 are arranged in parallel to the ZX plane. Has been.

WGP8は、図10に示すように、絶縁体からなる基板8B上に金属細線である複数の金属ワイヤー8Aを微細ピッチで平行に配列し、光の電気ベクトルが金属ワイヤー8Aの延びる方向に直交するTM偏光成分を略100%透過し、光の電気ベクトルがTM偏光成分と直交するTE偏光成分を略100%反射するようにしたものである。金属ワイヤー8Aの配列ピッチは、照明部1の照明光の波長λに応じて偏光分離の効率が良好となるように適宜設定される。
以下では、金属ワイヤー8Aの延びる方向に平行でかつ基板8Bに直交する入射面をWGP8の基準入射面と称する。
本実施形態では、基板8Bは、YZ平面に直交し、ZX平面およびXY平面にそれぞれ傾斜するように配置されており、反射型画像表示素子5の反射面の法線Vが基準入射面に平行に配置されている。すなわち、軸Vを通るTE偏光光がWGP8で反射されると、Z軸に平行な軸Uに沿って進むようになっている。
As shown in FIG. 10, the WGP 8 arranges a plurality of metal wires 8A, which are thin metal wires, in parallel at a fine pitch on a substrate 8B made of an insulator, and the electric vector of light is orthogonal to the extending direction of the metal wires 8A. The TM polarization component is transmitted through approximately 100%, and the TE polarization component whose light electric vector is orthogonal to the TM polarization component is reflected by approximately 100%. The arrangement pitch of the metal wires 8A is appropriately set according to the wavelength λ of the illumination light of the illumination unit 1 so that the polarization separation efficiency is good.
Hereinafter, an incident surface that is parallel to the extending direction of the metal wire 8A and orthogonal to the substrate 8B is referred to as a reference incident surface of the WGP 8.
In the present embodiment, the substrate 8B is disposed so as to be orthogonal to the YZ plane and inclined to the ZX plane and the XY plane, respectively, and the normal V of the reflection surface of the reflective image display element 5 is parallel to the reference incident surface. Is arranged. That is, when TE polarized light passing through the axis V is reflected by the WGP 8, it travels along the axis U parallel to the Z axis.

本実施形態において、WGP8、偏光方向回転手段4は、照明部1と反射型画像表示素子5との間および投影光学系6と反射型画像表示素子5との間で、照明光の光路と反射型画像表示素子5で反射される反射光の光路とを偏光方向に応じて分離する偏光分離手段22を構成している。   In the present embodiment, the WGP 8 and the polarization direction rotating means 4 are provided between the illumination unit 1 and the reflective image display element 5 and between the projection optical system 6 and the reflective image display element 5, and the optical path and reflection of the illumination light. The polarization separating means 22 is configured to separate the optical path of the reflected light reflected by the type image display element 5 in accordance with the polarization direction.

投射型画像投影装置120によれば、図10に示すように、X軸方向に直線偏光された照明部1からの照明光の軸上主光線である光線Lは、XY平面をX軸負方向側からY軸負方向側に向かって、基準入射面に対して傾斜して進む。
光線Lは、WGP8に対してTM偏光光となっているので、光線L24として偏光方向回転手段4側に略100%透過する。透過後の光線L24の偏光方向は、WGP8の金属ワイヤー8Aの方向なのでTM偏光が維持される。これは、透過光の偏光方向を決定するのが金属ワイヤー8Aの延びる方向のみであり、金属ワイヤー8Aに対する入射面の基準入射面に対する角度に依存しないためである。
そして、光線L24は、偏光方向回転手段4を透過し、反射型画像表示素子5のオン状態の反射面で反射され、光線L34として偏光方向回転手段4に再入射する。
偏光方向回転手段4を透過後の光線L34は、偏光方向が光軸まわりに90°回転され、TE偏光光として偏光方向回転手段4に入射する。そのため、TE偏光光となった光線L34は、WGP8で略100%反射され、光線L44として光軸50に沿って進む。光線L44は、投影光学系6に入射し、スクリーン7に投影される。このようにして、照明部1からの照明光のうち、反射型画像表示素子5のオン状態の反射面で反射された光は、WGP8でほとんど光量損失を起こすことなく、投影光学系6に入射して、スクリーン7上に投影される。
According to the projection-type image projecting apparatus 120, as shown in FIG. 10, light L 1 is an axial principal ray of the illumination light from the illumination portion 1 which is linearly polarized in the X-axis direction, the XY plane X-axis negative From the direction side toward the Y-axis negative direction side, the vehicle proceeds while being inclined with respect to the reference incident surface.
Since the light beam L 1 is TM polarized light with respect to the WGP 8, the light beam L 1 is transmitted approximately 100% to the polarization direction rotating means 4 side as the light beam L 24 . Since the polarization direction of the light beam L 24 after transmission is the direction of the metal wire 8A of the WGP 8, TM polarization is maintained. This is because only the direction in which the metal wire 8A extends determines the polarization direction of the transmitted light and does not depend on the angle of the incident surface with respect to the metal wire 8A with respect to the reference incident surface.
Then, the light beam L 24 passes through the polarization direction rotating unit 4, is reflected by the reflection surface in the ON state of the reflective image display element 5, and reenters the polarization direction rotating unit 4 as the light beam L 34 .
The light beam L 34 that has passed through the polarization direction rotating unit 4 has its polarization direction rotated by 90 ° around the optical axis, and enters the polarization direction rotating unit 4 as TE polarized light. Therefore, the light beam L 34 that has become TE-polarized light is substantially 100% reflected by the WGP 8 and travels along the optical axis 50 as the light beam L 44 . The light beam L 44 enters the projection optical system 6 and is projected onto the screen 7. In this way, the light reflected by the reflective surface of the reflective image display element 5 in the illumination light from the illumination unit 1 is incident on the projection optical system 6 with almost no light loss caused by the WGP 8. Then, it is projected on the screen 7.

このように、本実施形態の投射型画像投影装置120によれば、WGP8の基準入射面と交差する方向から、照明光を入射しても、軸上主光線は、WGP8においてほとんど光量損失しない状態で偏光分離される。このため、例えば、図3(b)に示すような偏光分離手段が、偏光分離素子2と偏光方向回転手段4のみからなる構成に比べて、光量損失を低減することができる。   As described above, according to the projection type image projector 120 of the present embodiment, the axial principal ray hardly loses light amount in the WGP 8 even when the illumination light is incident from the direction intersecting the reference incident surface of the WGP 8. Is polarized and separated. For this reason, for example, the light quantity loss can be reduced as compared with the configuration in which the polarization separation unit as shown in FIG. 3B is composed of only the polarization separation element 2 and the polarization direction rotation unit 4.

また、本実施形態のように、WGP8を偏光分離素子として用いると、偏光分離される反射光、透過光の偏光方向は、誘電体多層膜を偏光分離面として用いる場合のように入射面の基準入射面に対する傾斜角や、光線の入射角が問題とならないため、光路設定の自由度が向上される。
例えば、本実施形態の説明では、上記第1、第2の実施形態と同様に、反射型画像表示素子5のオン状態の反射面の法線が、WGP8の基準入射面に平行となっている場合の例で説明したが、本実施形態では、このような位置関係は本質的ではなく、必要に応じて種々の位置関係に変形することができる。
Further, when the WGP 8 is used as a polarization separation element as in this embodiment, the polarization direction of the reflected and transmitted light that is polarized and separated is the reference of the incident surface as in the case where the dielectric multilayer film is used as the polarization separation surface. Since the tilt angle with respect to the incident surface and the incident angle of the light beam do not matter, the degree of freedom in setting the optical path is improved.
For example, in the description of the present embodiment, as in the first and second embodiments, the normal line of the reflective surface in the ON state of the reflective image display element 5 is parallel to the reference incident surface of the WGP 8. As described in the example of the case, in the present embodiment, such a positional relationship is not essential, and can be modified into various positional relationships as necessary.

次に、本実施形態の第1変形例について説明する。
図11(a)は、本発明の第3の実施形態の第1変形例の偏光分離手段の模式的な側面図である。図11(b)は、図11(a)と比較するための本発明の第3の実施形態の偏光分離手段の模式的な側面図である。図12は、本発明の第3の実施形態およびその第1変形例の偏光分離効率について説明する模式的なグラフである。横軸は金属格子偏光分離素子に対する入射角θ、縦軸は偏光分離効率をそれぞれ示す(図14も同じ)。図13は、本発明の第3の実施形態の第1変形例の偏光分離手段の他の光路を示す模式的な側面図である。図14は、図13の光路配置の場合の偏光分離効率について説明する模式的なグラフである。
Next, a first modification of the present embodiment will be described.
FIG. 11A is a schematic side view of the polarized light separating means of the first modification of the third embodiment of the present invention. FIG. 11B is a schematic side view of the polarization separation means of the third exemplary embodiment of the present invention for comparison with FIG. FIG. 12 is a schematic graph for explaining the polarization separation efficiency of the third embodiment of the present invention and the first modification thereof. The horizontal axis represents the incident angle θ with respect to the metal grating polarization separation element, and the vertical axis represents the polarization separation efficiency (the same applies to FIG. 14). FIG. 13: is a typical side view which shows the other optical path of the polarization separation means of the 1st modification of the 3rd Embodiment of this invention. FIG. 14 is a schematic graph for explaining the polarization separation efficiency in the optical path arrangement of FIG.

本変形例は、図11(a)に示すように、上記第3の実施形態のWGP8の金属ワイヤー8Aの延びる方向を基板8B上で90°回転した配置としたものである。すなわち、上記第3の実施形態では、WGP8に入射する照明光である光線Lの入射面と、反射型画像表示素子5で反射された反射光である光線L34のWGP8における入射面とが交差しており、それら入射面の交差角を2等分するとともに、反射型画像表示素子5の反射面の法線を含む中間平面(図10の軸U、Vの張る平面)に対して、金属ワイヤー8Aが平行に延ばされているが、本変形例では、金属ワイヤー8Aをこの中間平面の法線方向に配置している。照明光の入射面と投影光の入射面とが同一平面である場合には共通の入射面の法線方向に配置する。 In this modification, as shown in FIG. 11A, the extending direction of the metal wire 8A of the WGP 8 of the third embodiment is rotated 90 ° on the substrate 8B. That is, in the third embodiment, the incident surface of the light beam L 1 that is the illumination light incident on the WGP 8 and the incident surface of the light beam L 34 that is the reflected light reflected by the reflective image display element 5 on the WGP 8. Crossing, and the angle of intersection of these incident surfaces is equally divided into two, and with respect to an intermediate plane (a plane stretched by the axes U and V in FIG. 10) including the normal line of the reflective surface of the reflective image display element 5, Although the metal wire 8A is extended in parallel, in this modification, the metal wire 8A is disposed in the normal direction of the intermediate plane. When the incident surface of the illumination light and the incident surface of the projection light are on the same plane, they are arranged in the normal direction of the common incident surface.

このため、WGP8に入射する照明光は、偏光方向を上記第3の実施形態とは光軸まわりに90°回転させた光線L15を入射させている。光線L15は、偏光方向回転手段4を透過して反射型画像表示素子5で反射され、偏光方向が光軸回りに90°回転された光線L25として、WGP8に入射し、光線L35として反射される。 For this reason, the illumination light incident on the WGP 8 is incident with the light beam L 15 whose polarization direction is rotated by 90 ° around the optical axis in the third embodiment. The light beam L 15 passes through the polarization direction rotating means 4 and is reflected by the reflective image display element 5, and enters the WGP 8 as a light beam L 25 whose polarization direction is rotated by 90 ° around the optical axis, and becomes a light beam L 35. Reflected.

この場合、上記第3の実施形態と同様にして偏光分離されるが、さらに、上記第3の実施形態に比べて偏光分離効率を向上することができる。ここで、偏光分離効率とは、偏光分離手段へ入射される照明光の光量と偏光分離手段から出射されて投影に寄与する反射型画像表示素子からの反射光の光量との比を意味する。
WGP8に対する照明光の入射角をθとすると、入射角θと、偏光分離効率との関係は図12の曲線200のように、入射角θが0°から70°まで増大する間に略平坦に近い、山なりの変化を示す。
これに対して、図11(b)に示すように、金属ワイヤー8Aを上記第3の実施形態と同様の方向に配置した場合は、図12に曲線201に示すように、射角θが0°から55°まで増大する間に略平坦な変化の後、60°以上で、偏光分離効率が悪化する。そのため、WGP8に対する入射角が大きい場合には、金属ワイヤー8Aは、本変形例の方向に設けることが好ましい。
In this case, although polarization separation is performed in the same manner as in the third embodiment, the polarization separation efficiency can be further improved as compared with the third embodiment. Here, the polarization separation efficiency means the ratio between the amount of illumination light incident on the polarization separation unit and the amount of reflected light emitted from the polarization separation unit and reflected from the reflective image display element that contributes to projection.
Assuming that the incident angle of the illumination light with respect to the WGP 8 is θ, the relationship between the incident angle θ and the polarization separation efficiency is substantially flat as the incident angle θ increases from 0 ° to 70 ° as shown by a curve 200 in FIG. It shows a close, mountain-like change.
On the other hand, when the metal wire 8A is arranged in the same direction as in the third embodiment as shown in FIG. 11B, the angle of incidence θ is 0 as shown by the curve 201 in FIG. The polarization separation efficiency deteriorates at 60 ° or more after a substantially flat change while increasing from 55 ° to 55 °. Therefore, when the incident angle with respect to WGP8 is large, it is preferable to provide the metal wire 8A in the direction of this modification.

本変形例では、図13に示すような光路も採用することができる。すなわち、WGP8と反射型画像表示素子5との間で、照明光である光線L15の光路と、WGP8で反射して偏光分離された光線L35との光路とが交差している。
この場合、光路を交差させるため、コンパクトなレイアウトとすることができる。ただし、図14に曲線202に示すように、図11(a)に示すような、光線L15、L35のそれぞれの光路が交差していない場合と比べて、全般的に偏光分離効率が劣るので、偏光分離効率をより大きくするためには、光線L15、L35が、交差しないような位置関係とすることが好ましい。
In this modification, an optical path as shown in FIG. 13 can also be employed. That is, between the WGP 8 and the reflective image display element 5, the optical path of the light beam L 15 that is illumination light and the optical path of the light beam L 35 that is reflected and separated by the WGP 8 intersect.
In this case, since the optical paths intersect, a compact layout can be achieved. However, as shown by a curve 202 in FIG. 14, the polarization separation efficiency is generally inferior compared to the case where the optical paths of the light beams L 15 and L 35 do not intersect as shown in FIG. Therefore, in order to further increase the polarization separation efficiency, it is preferable that the light rays L 15 and L 35 have a positional relationship that does not intersect.

なお、上記の第1、2の実施形態の説明では、照明光を偏光分離手段で反射して画像表示素子に入射させる場合の例で説明し、上記第3の実施形態の説明では、照明光を偏光分離手段で透過して画像表示素子に入射させる場合の例で説明したが、それぞれの光路は逆進させても偏光分離作用は変わらないため、上記偏光分離手段に関する光路は、すべて、進行方向を逆向きにした構成もすべて採用することができる。   In the description of the first and second embodiments, an example in which the illumination light is reflected by the polarization separation unit and incident on the image display element will be described. In the description of the third embodiment, the illumination light is used. However, since the polarization separation action does not change even if each optical path is reversed, all the optical paths related to the polarization separation means are traveling. All configurations with the direction reversed can also be adopted.

また、上記の説明では、簡単のため、各光路がXY、YZ、ZX平面などに沿うような場合の例で説明したが、これらは一例であって、本発明の技術的思想の範囲内で、偏光分離面、反射面の配置角度を適宜設定することにより、これらの位置関係に限定されない種々の光路において、実施することができる。   Further, in the above description, for the sake of simplicity, an example in which each optical path is along the XY, YZ, ZX plane, and the like has been described. However, these are examples, and within the scope of the technical idea of the present invention. By appropriately setting the arrangement angles of the polarization separation surface and the reflection surface, the present invention can be implemented in various optical paths that are not limited to these positional relationships.

また、上記第3の実施形態の説明では、偏光方向回転手段として偏光方向回転手段4を用いた例で説明したが、基準入射面に対して主軸を45°させた1/4波長板を用いてもよい。この場合、第2の実施形態と異なり、反射型画像表示素子5のオン状態の反射面の法線が基準入射面と平行でなくてもWGP8ではほとんど光量損失が発生しないという利点がある。   In the description of the third embodiment, the example in which the polarization direction rotating unit 4 is used as the polarization direction rotating unit has been described. However, a quarter wavelength plate whose principal axis is 45 ° with respect to the reference incident surface is used. May be. In this case, unlike the second embodiment, there is an advantage that almost no light loss occurs in the WGP 8 even if the normal line of the reflective surface of the reflective image display element 5 is not parallel to the reference incident surface.

また、上記の説明では、照明部からの照明光が波長λの場合で説明したが、例えば、赤色(R)、緑色(G)、青色(B)の波長光を照射する複数の照明部を設け、それぞれ波長光に応じて、偏光分離手段と画像表示素子とを配置し、各波長光を合成するダイクロイックプリズムなどの光路合成手段によって光路を合成してから、投影光学系に入射させるなどして、フルカラーの投射型画像投影装置としてもよい。この場合、各波長で共通利用できる偏光分離手段を用いることができる場合には、複数の照明光を1つの光路に合成する光路合成手段を設けて、偏光分離手段と画像表示素子とを各波長光で共通化する構成してもよい。   In the above description, the illumination light from the illumination unit has been described as having a wavelength λ. However, for example, a plurality of illumination units that emit red (R), green (G), and blue (B) wavelength light are provided. Provided according to each wavelength light, the polarization separation means and the image display element are arranged, the optical paths are synthesized by the optical path synthesis means such as a dichroic prism for synthesizing each wavelength light, and then incident on the projection optical system. Thus, a full-color projection type image projection apparatus may be used. In this case, when a polarization separation means that can be used in common at each wavelength can be used, an optical path synthesis means for synthesizing a plurality of illumination lights into one optical path is provided, and the polarization separation means and the image display element are arranged at each wavelength. You may make the structure shared by light.

また、上記の実施形態に記載された構成要素は、技術的に可能であれば、本発明の技術的思想の範囲内で適宜組み合わせて実施することができる。   In addition, the constituent elements described in the above embodiments can be implemented in appropriate combination within the scope of the technical idea of the present invention, if technically possible.

本発明の第1の実施形態に係る投射型画像投影装置の概略構成を示す模式的な正面図、およびそのA−A断面図である。1 is a schematic front view showing a schematic configuration of a projection type image projector according to a first embodiment of the present invention, and an AA cross-sectional view thereof. 本発明の第1の実施形態に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the polarization separation means used for the projection type image projector which concerns on the 1st Embodiment of this invention. 従来技術に係る比較例の偏光分離手段の作用を説明するための斜視説明図である。It is perspective explanatory drawing for demonstrating the effect | action of the polarization separation means of the comparative example which concerns on a prior art. 本発明の第1の実施形態に係る1/4波長板の作用について説明する偏光方向変化の概念図、および本発明の第1の実施形態に係る1/4波長板、偏光方向回転手段の複合的な作用について説明する偏光方向変化の概念図である。The conceptual diagram of the polarization direction change explaining the effect | action of the quarter wavelength plate which concerns on the 1st Embodiment of this invention, and the composite of the quarter wavelength plate and polarization direction rotation means which concern on the 1st Embodiment of this invention It is a conceptual diagram of the polarization direction change explaining a typical operation. 本発明の第1の実施形態の第1変形例に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the polarization separation means used for the projection type image projector which concerns on the 1st modification of the 1st Embodiment of this invention. 本発明の第2の実施形態に係る投射型画像投影装置の概略構成を示す模式的な正面図、およびそのB−B断面図である。It is the typical front view which shows schematic structure of the projection type image projector which concerns on the 2nd Embodiment of this invention, and its BB sectional drawing. 本発明の第2の実施形態に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the polarization separation means used for the projection type image projector which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る1/4波長板の作用について説明する偏光方向変化の概念図である。It is a conceptual diagram of the polarization direction change explaining the effect | action of the quarter wavelength plate which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る投射型画像投影装置の概略構成を示す模式的な正面図、およびそのC−C断面図、D−D断面図である。It is the typical front view which shows schematic structure of the projection type image projector which concerns on the 3rd Embodiment of this invention, its CC sectional drawing, and DD sectional drawing. 本発明の第3の実施形態に係る投射型画像投影装置に用いる偏光分離手段の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the polarization separation means used for the projection type image projector which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態の第1変形例の偏光分離手段の模式的な側面図、およびそれと比較するための本発明の第3の実施形態の偏光分離手段の模式的な側面図である。It is a typical side view of the polarization separation means of the 1st modification of the 3rd Embodiment of this invention, and a typical side view of the polarization separation means of the 3rd Embodiment of this invention for comparison with it. . 本発明の第3の実施形態およびその第1変形例の偏光分離効率について説明する模式的なグラフである。It is a typical graph explaining the polarization splitting efficiency of the 3rd Embodiment of this invention and its 1st modification. 本発明の第3の実施形態の第1変形例の偏光分離手段の他の光路を示す模式的な側面図である。It is a typical side view which shows the other optical path of the polarization separation means of the 1st modification of the 3rd Embodiment of this invention. 図13の光路配置の場合の偏光分離効率について説明する模式的なグラフである。It is a typical graph explaining the polarization splitting efficiency in the case of the optical path arrangement | positioning of FIG.

符号の説明Explanation of symbols

1 照明部
2 偏光分離素子
2a 偏光分離面
3 1/4波長板
4 偏光方向回転手段
5 反射型画像表示素子
6 投影光学系
7 スクリーン
8 WGP(金属格子偏光分離素子)
8A 金属ワイヤー
8B 基板
9 1/4波長板(偏光回転手段)
20、21、22 偏光分離手段
100、110、120 投射型画像投影装置
DESCRIPTION OF SYMBOLS 1 Illumination part 2 Polarization separation element 2a Polarization separation surface 3 1/4 wavelength plate 4 Polarization direction rotation means 5 Reflective image display element 6 Projection optical system 7 Screen 8 WGP (metal grating polarization separation element)
8A Metal wire 8B Substrate 9 1/4 wavelength plate (polarization rotating means)
20, 21, 22 Polarization separation means 100, 110, 120 Projection type image projection apparatus

Claims (7)

直線偏光された照明光を反射型画像表示素子において空間変調し、画像を表す反射光として投影するようになされた投射型画像投影装置であって、
前記照明光と前記反射型画像表示素子の表示面で反射された前記反射光とを、偏光分離面にて偏光方向に応じて透過又は反射させる偏光分離手段と、
前記偏光分離手段と前記反射型画像表示素子との間に位置決めされ、往復透過する光の偏光方向を光軸まわりに90°回転する偏光方向回転手段とを備え、
前記偏光分離手段の前記偏光分離面を透過して前記反射型画像表示素子の前記表示面に入射される前記照明光の軸上主光線と、当該表示面で反射される前記反射光の軸上主光線とでなす角度を2等分する方向と、前記偏光方向回転手段の前記光軸の方向とをほぼ一致させるように、前記偏光分離手段及び前記偏光方向回転手段を前記反射型画像表示素子に対して配置する
ことを特徴とする投射型画像投影装置。
A projection-type image projection device adapted to spatially modulate linearly polarized illumination light in a reflective image display element and project it as reflected light representing an image,
Polarization separation means for transmitting or reflecting the illumination light and the reflected light reflected by the display surface of the reflective image display element on the polarization separation surface according to the polarization direction;
A polarization direction rotating means that is positioned between the polarization separating means and the reflective image display element, and that rotates the polarization direction of light reciprocally transmitted by 90 ° around the optical axis;
An axial principal ray of the illumination light that passes through the polarization separation surface of the polarization separation means and is incident on the display surface of the reflective image display element, and an axis of the reflected light that is reflected by the display surface The polarization separation means and the polarization direction rotating means are arranged in the reflective image display element so that the direction of the angle formed by the principal ray is equally divided into the direction of the optical axis of the polarization direction rotating means. A projection-type image projector characterized by being arranged with respect to the above.
前記偏光分離手段は、
誘電体多層膜で形成され、前記偏光分離面においてs偏光光とp偏光光とを分離する偏光分離素子でなる
ことを特徴とする請求項1に記載の投射型画像投影装置。
The polarization separation means includes
The projection type image projection apparatus according to claim 1, wherein the projection type image projection apparatus is a polarization separation element that is formed of a dielectric multilayer film and separates s-polarized light and p-polarized light on the polarization separation surface.
前記偏光分離手段は、
前記反射型画像表示素子側に向かって、絶縁体上に複数の金属細線を微細ピッチで平行に配列した金属格子偏光分離素子でなる
ことを特徴とする請求項1に記載の投射型画像投影装置。
The polarization separation means includes
The projection type image projection device according to claim 1, wherein the projection type image projection device comprises a metal grating polarization separation element in which a plurality of fine metal wires are arranged in parallel at a fine pitch on an insulator toward the reflective image display element side. .
前記金属格子偏光分離素子の前記金属細線の配線方向が、前記金属格子偏光分離素子における前記照明光の軸上主光線の入射面および前記金属格子偏光分離素子における前記反射光の軸上主光線の入射面の交差角を2等分するとともに、投影方向に向けて前記反射光を反射する反射面の法線を含む中間平面の法線方向である
ことを特徴とする請求項3に記載の投射型画像投影装置。
The wiring direction of the thin metal wire of the metal grating polarization separation element is such that the incident surface of the axial principal ray of the illumination light in the metal grating polarization separation element and the axial principal ray of the reflected light in the metal grating polarization separation element are 4. The projection according to claim 3, wherein the crossing angle of the incident surface is equally divided into two and is a normal direction of an intermediate plane including a normal line of the reflection surface that reflects the reflected light toward the projection direction. Type image projector.
前記金属格子偏光分離素子を透過してから前記反射型画像表示素子の表示面に到達するまでの前記照明光の軸上主光線の光路長が、前記反射型画像表示素子の表示面を反射してから前記金属格子偏光分離素子に到達するまでの前記反射光の軸上主光線の光路長よりも短くなるように、前記金属格子偏光分離素子及び前記反射型画像表示素子を配置した
ことを特徴とする請求項3又は4に記載の投射型画像投影装置。
The optical path length of the axial principal ray of the illumination light from the transmission through the metal grating polarization separating element to the display surface of the reflective image display element reflects the display surface of the reflective image display element. The metal grating polarization separating element and the reflective image display element are arranged so that the length of the reflected light is shorter than the optical path length of the axial principal ray of the reflected light until reaching the metal grating polarization separating element. The projection type image projector according to claim 3 or 4.
前記偏光分離手段と前記偏光方向回転手段との間に位置決めされ、前記偏光分離面で分離された2つ偏光方向のうち、前記反射型画像表示素子側に向かって偏光分離される光の偏光方向と略同方向の主軸を有する1/4波長板
を更に備えることを特徴とする請求項1又は2に記載の投射型画像投影装置。
Of the two polarization directions positioned between the polarization separation means and the polarization direction rotation means and separated by the polarization separation surface, the polarization direction of light that is polarized and separated toward the reflective image display element side The projection-type image projector according to claim 1, further comprising: a quarter-wave plate having a principal axis substantially in the same direction as the projection.
前記偏光方向回転手段は、
前記偏光分離面で分離された2つ偏光方向のうち、前記反射型画像表示素子側に向かって偏光分離される光の偏光方向に対して、光軸に直交する面内で略45°傾斜した主軸を有する1/4波長板からなることを特徴とする請求項1〜5のいずれかに記載の投射型画像投影装置。
The polarization direction rotating means is
Of the two polarization directions separated by the polarization separation surface, the light is polarized approximately 45 ° in a plane perpendicular to the optical axis with respect to the polarization direction of the light that is polarized and separated toward the reflective image display element. 6. The projection type image projection apparatus according to claim 1, wherein the projection type image projection apparatus comprises a quarter wavelength plate having a main axis.
JP2006356424A 2006-12-28 2006-12-28 Projection type image projection device Pending JP2008165066A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006356424A JP2008165066A (en) 2006-12-28 2006-12-28 Projection type image projection device
KR1020070025141A KR100833246B1 (en) 2006-12-28 2007-03-14 Image projecting apparatus
US11/859,275 US20080158511A1 (en) 2006-12-28 2007-09-21 Image projecting apparatus
CNA2007101669959A CN101211016A (en) 2006-12-28 2007-11-14 Image projecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356424A JP2008165066A (en) 2006-12-28 2006-12-28 Projection type image projection device

Publications (1)

Publication Number Publication Date
JP2008165066A true JP2008165066A (en) 2008-07-17

Family

ID=39611159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356424A Pending JP2008165066A (en) 2006-12-28 2006-12-28 Projection type image projection device

Country Status (3)

Country Link
JP (1) JP2008165066A (en)
KR (1) KR100833246B1 (en)
CN (1) CN101211016A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029697A (en) * 2011-07-29 2013-02-07 Jvc Kenwood Corp Projector
WO2014050220A1 (en) * 2012-09-28 2014-04-03 株式会社Jvcケンウッド Display device
JP2015166861A (en) * 2014-02-12 2015-09-24 国立大学法人三重大学 Method for manufacturing optical device and optical device
JP2017142539A (en) * 2017-05-16 2017-08-17 ソニー株式会社 Light source device and image projection apparatus
JP2018151667A (en) * 2018-06-08 2018-09-27 ソニー株式会社 Light source device and image projection device
US10317784B2 (en) 2010-06-18 2019-06-11 Sony Corporation Illumination device and image display apparatus
JP2020013160A (en) * 2019-10-01 2020-01-23 ソニー株式会社 Light source device and image projector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471674B2 (en) * 2010-03-23 2014-04-16 セイコーエプソン株式会社 projector
CN110045306B (en) * 2019-04-29 2021-03-30 杭州电子科技大学 Faraday polarization deflection analysis method for multilayer topological insulator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349027B1 (en) * 2000-07-07 2002-08-14 엘지전자 주식회사 Color Division Device For Liquid Crystal Display Projector of Single Panel Type
KR100421859B1 (en) * 2001-03-06 2004-03-09 엘지전자 주식회사 optical system of projection-type video display appliance
JP4096356B2 (en) * 2002-10-07 2008-06-04 ソニー株式会社 Projector and phase difference plate arrangement method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317784B2 (en) 2010-06-18 2019-06-11 Sony Corporation Illumination device and image display apparatus
US10852630B2 (en) 2010-06-18 2020-12-01 Sony Corporation Illumination device and image display apparatus
US10571790B2 (en) 2010-06-18 2020-02-25 Sony Corporation Illumination device and image display apparatus
US9268171B2 (en) 2011-07-29 2016-02-23 JVC Kenwood Corporation Projection device
JP2013029697A (en) * 2011-07-29 2013-02-07 Jvc Kenwood Corp Projector
WO2013018441A1 (en) * 2011-07-29 2013-02-07 株式会社Jvcケンウッド Projector
US9235050B2 (en) 2012-09-28 2016-01-12 JVC Kenwood Corporation Display device
JP2014071225A (en) * 2012-09-28 2014-04-21 Jvc Kenwood Corp Display device
WO2014050220A1 (en) * 2012-09-28 2014-04-03 株式会社Jvcケンウッド Display device
JP2015166861A (en) * 2014-02-12 2015-09-24 国立大学法人三重大学 Method for manufacturing optical device and optical device
JP2017142539A (en) * 2017-05-16 2017-08-17 ソニー株式会社 Light source device and image projection apparatus
JP2018151667A (en) * 2018-06-08 2018-09-27 ソニー株式会社 Light source device and image projection device
JP2020013160A (en) * 2019-10-01 2020-01-23 ソニー株式会社 Light source device and image projector

Also Published As

Publication number Publication date
KR100833246B1 (en) 2008-05-28
CN101211016A (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP2008165066A (en) Projection type image projection device
JP2007025308A (en) Projection type video display apparatus and color separation unit
US9743076B2 (en) Optical systems with compact back focal lengths
WO2011030436A1 (en) Image projection device
JP2012230321A (en) Scanning type image display device
WO2013111425A1 (en) Projection-type display apparatus
JP2014048383A (en) Projection apparatus
JP2018194819A (en) Light source device and projection image display device
JP2001142141A (en) Projector
JP2006337791A (en) Projection type video display device, and optical unit and polarized beam splitting member to be used therefor
JP4539319B2 (en) Projection display
JP2000330072A (en) Projection type display device
JP2009086078A (en) Projection type image display apparatus
US20080158511A1 (en) Image projecting apparatus
JP2010181670A (en) Projector
JP5199016B2 (en) Single-panel projection display
JP2002350781A (en) Rear projector
JP4337826B2 (en) Lighting device and projector
JP2006003637A (en) Projection optical system and projection-type display device using the same
JP4788275B2 (en) Projection-type image display device
JP4158789B2 (en) projector
JP2002090874A (en) Optical device and projection-type display apparatus using the same
JP2004325854A (en) Liquid crystal projector
JP2019138940A (en) Light source device, illumination device and projector
JP2019101200A (en) Light source device and projection type video display device