JP2008164584A - Raman spectrometer and raman spectral method using same - Google Patents

Raman spectrometer and raman spectral method using same Download PDF

Info

Publication number
JP2008164584A
JP2008164584A JP2007241782A JP2007241782A JP2008164584A JP 2008164584 A JP2008164584 A JP 2008164584A JP 2007241782 A JP2007241782 A JP 2007241782A JP 2007241782 A JP2007241782 A JP 2007241782A JP 2008164584 A JP2008164584 A JP 2008164584A
Authority
JP
Japan
Prior art keywords
sample
raman
substance
measured
scattering device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007241782A
Other languages
Japanese (ja)
Inventor
Naoki Murakami
直樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007241782A priority Critical patent/JP2008164584A/en
Priority to US11/951,574 priority patent/US20080137081A1/en
Publication of JP2008164584A publication Critical patent/JP2008164584A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable Raman spectrum analysis with high sensitivity by effectively drawing an object substance to be measured in a sample cell to the surface of a Raman scattering device in the vicinity thereof in a Raman spectrometer. <P>SOLUTION: The Raman spectrometer 1 includes a sample cell 10; a scattering device 20 arranged so as to be in contact with a sample S in the sample cell 10, for irradiating measuring light L1 to a sample contacting surface 20s and thereby generating Raman scattering light; a measurement light irradiation optical system 30 for irradiating the measuring light L1 to the sample contacting surface 20s of the Raman scattering device 20; and a detecting unit 40 for detecting the Raman scattering light. The device 1 performs measurement by filling or flowing down the sample S including the object substance that has electrophoresis or is previously adjusted so as to have electrophoresis, in the sample cell 10; and includes a voltage applying unit 50 for electrophoresing the object substance in the sample S to the sample contacting surface 20s of the device 20, via the sample cell 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被測定物質を含む試料を、測定光が照射されラマン散乱光を生じさせるラマン散乱デバイスと接触させて、ラマン散乱光の検出を実施する装置及び方法に関するものである。   The present invention relates to an apparatus and method for detecting Raman scattered light by bringing a sample containing a substance to be measured into contact with a Raman scattering device that is irradiated with measurement light to generate Raman scattered light.

ラマン分光分析は、物質に単波長光を照射して得られる散乱光を分光して、ラマン散乱光のスペクトル(ラマンスペクトル)を得る分析法であり、物質の同定等に利用されている。ラマン散乱光は微弱な光であるが、金属体、特に表面に微細な凹凸を有する金属体に物質を接触させた状態で光を照射すると、ラマン散乱光の強度が増強されることが知られている。この効果は、表面増強ラマン散乱(SERS)効果と称される。   The Raman spectroscopic analysis is an analysis method for obtaining a spectrum of Raman scattered light (Raman spectrum) by dispersing scattered light obtained by irradiating a substance with single wavelength light, and is used for identification of the substance. Although Raman scattered light is weak light, it is known that the intensity of Raman scattered light is enhanced when light is irradiated in a state where a substance is in contact with a metal body, particularly a metal body having fine irregularities on the surface. ing. This effect is referred to as the surface enhanced Raman scattering (SERS) effect.

一般に、SERS効果を有するラマン散乱デバイスを用いてラマン分光分析を行う場合、試料中の被測定物質がラマン散乱デバイスの表面又はそのごく近傍に位置した状態で分析を行う必要があり、試料中の被測定物質がラマン散乱デバイスの表面に吸着した状態で分析を行うことが特に好ましい。これは、被測定物質がラマン散乱デバイスから離れるにつれて、SERS効果が低減するからである。   In general, when performing a Raman spectroscopic analysis using a Raman scattering device having the SERS effect, it is necessary to perform an analysis in a state where a substance to be measured in the sample is located at or near the surface of the Raman scattering device. It is particularly preferable to perform the analysis in a state where the substance to be measured is adsorbed on the surface of the Raman scattering device. This is because the SERS effect decreases as the substance to be measured moves away from the Raman scattering device.

例えば、表面プラズモンセンサの分野では、あらかじめ表面プラズモンが発生する金属膜上に被測定物質と特異結合するリガンドを固定しておき、金属膜表面に試料中の被測定物質を固定して、センシングを行うことがなされている。しかしながら、かかる方法では、リガンドと被測定物質との反応を充分に待たなければ、充分な量の結合量を確保できず、測定を迅速に実施することが難しい。しかも、リガンドと結合する物質は限られており、被測定物質の種類が限定されてしまう。   For example, in the field of surface plasmon sensors, a ligand that specifically binds to a substance to be measured is immobilized on a metal film where surface plasmon is generated in advance, and the substance to be measured in the sample is immobilized on the surface of the metal film to perform sensing. To be done. However, in such a method, a sufficient amount of binding cannot be secured unless the reaction between the ligand and the substance to be measured is sufficiently waited, and it is difficult to carry out the measurement quickly. In addition, substances that bind to the ligand are limited, and the types of substances to be measured are limited.

一方、蛋白質、ペプチド、及びアミノ酸等の被測定物質が複数含まれた試料の微量分析を行う際に被測定物質を分離する方法として、電気泳動法が知られている。電気泳動法の中では、試料の量が微量で済み、試料のジュール熱による対流の影響を無視できることから、キャピラリー電気泳動法が好ましい。   On the other hand, electrophoresis is known as a method for separating a substance to be measured when performing a microanalysis of a sample containing a plurality of substances to be measured such as proteins, peptides, and amino acids. Among the electrophoresis methods, the capillary electrophoresis method is preferable because the amount of the sample is very small and the influence of convection due to the Joule heat of the sample can be ignored.

特許文献1,2には、キャピラリー電気泳動法による試料分離と分離された試料のラマン分光分析とを同時に行える装置が開示されている。   Patent Documents 1 and 2 disclose an apparatus that can simultaneously perform sample separation by capillary electrophoresis and Raman spectroscopic analysis of the separated sample.

特許文献1には、被測定物質を電気泳動させるキャピラリー内にファイバ状のSERS活性微小電極を挿入することで、キャピラリー電気泳動によってSERS活性微小電極の周りに、分離された被測定物質を層状に集めることができ、SERS活性微小電極に測定光を照射して分離された被測定物質のラマン分光分析を行う装置が開示されている(段落0008及び図1等を参照)。   In Patent Document 1, a fiber-like SERS active microelectrode is inserted into a capillary for electrophoresis of a substance to be measured, so that the separated substance to be measured is layered around the SERS active microelectrode by capillary electrophoresis. An apparatus for performing Raman spectroscopic analysis of a substance to be measured separated by irradiating measurement light onto a SERS active microelectrode that can be collected has been disclosed (see paragraph 0008 and FIG. 1 and the like).

特許文献2には、キャピラリー電気泳動によって分離された複数の被測定物質をSERS活性基体の異なる箇所に析出させ、析出物のラマン分光分析を行う装置が開示されている(請求項7及び図4等を参照)。
特開平9-281076号公報 特表2003-511666号公報
Patent Document 2 discloses an apparatus for depositing a plurality of substances to be measured separated by capillary electrophoresis at different locations on the SERS active substrate and performing Raman spectroscopic analysis of the precipitate (claims 7 and 4). Etc.).
Japanese Patent Laid-Open No. 9-281076 Special Table 2003-511666

特許文献1,2に記載の装置では、SERS効果を有するラマン散乱デバイス上に被測定物質を集めることができる。
しかしながら、特許文献1に記載の装置では、ラマン散乱デバイスを電気泳動用のキャピラリー内に挿入可能なファイバ状に加工する必要があり、ラマン散乱デバイスの加工が非常に複雑である。
特許文献2に記載の装置では、キャピラリー電気泳動によって分離された複数の被測定物質をSERS効果を有するラマン散乱デバイス上に析出させる必要があるため、1つ1つの被測定物質の析出処理に手間と時間を要する。しかも、キャピラリー電気泳動によって分離された複数の被測定物質をラマン散乱デバイスの異なる箇所に析出させる処理が必要であるため、被測定物質の数だけ析出操作に多くの手間と時間を要する。
In the apparatuses described in Patent Documents 1 and 2, the substance to be measured can be collected on the Raman scattering device having the SERS effect.
However, in the apparatus described in Patent Document 1, it is necessary to process the Raman scattering device into a fiber shape that can be inserted into a capillary for electrophoresis, and the processing of the Raman scattering device is very complicated.
In the apparatus described in Patent Document 2, since it is necessary to deposit a plurality of substances to be measured separated by capillary electrophoresis on a Raman scattering device having the SERS effect, it is troublesome to deposit each substance to be measured. And takes time. In addition, since a plurality of substances to be measured separated by capillary electrophoresis need to be deposited at different locations of the Raman scattering device, the deposition operation requires as much work and time as the number of substances to be measured.

また、一般のラマン分光装置では試料セルは非キャピラリー状であるが、非キャピラリー状の試料セル中の被測定物質をラマン散乱デバイス上に集める方法については、提案されていない。   Further, in a general Raman spectroscopic apparatus, the sample cell has a non-capillary shape, but a method for collecting the substance to be measured in the non-capillary sample cell on the Raman scattering device has not been proposed.

本発明は上記事情に鑑みてなされたものであり、試料セルの形状に関係なく、試料セル中の被測定物質をラマン散乱デバイスの表面又はその近傍に効果的に引き寄せて、高感度なラマン分光分析を行うことができ、しかも装置構成が簡易で、分析を容易かつ迅速に実施できるラマン分光装置、及びこれを用いたラマン分光方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and regardless of the shape of the sample cell, the substance to be measured in the sample cell is effectively attracted to the surface of the Raman scattering device or in the vicinity thereof, and high-sensitivity Raman spectroscopy is achieved. It is an object of the present invention to provide a Raman spectroscopic device that can perform analysis, has a simple apparatus configuration, and can perform analysis easily and quickly, and a Raman spectroscopic method using the same.

本発明のラマン分光装置は、
試料セルと、
該試料セル内の試料に接触するように配置され、試料接触面に測定光が照射されてラマン散乱光を生じるラマン散乱デバイスと、
該ラマン散乱デバイスの前記試料接触面に前記測定光を照射する測定光照射光学系と、
前記ラマン散乱光を検出する検出手段とを備えたラマン分光装置において、
前記試料セル内に、電気泳動性を有する、若しくは電気泳動性を有するようあらかじめ調整された被測定物質を含む流動性を有する試料が充填又は流下されて、測定が行われるものであり、
前記試料セルに、前記試料に対して電圧を印加して、該試料中の前記被測定物質を前記ラマン散乱デバイスの前記試料接触面側に電気泳動させる電圧印加手段が備えられていることを特徴とするものである。
The Raman spectrometer of the present invention is
A sample cell;
A Raman scattering device disposed so as to contact the sample in the sample cell, and the sample contact surface being irradiated with measurement light to generate Raman scattered light;
A measurement light irradiation optical system for irradiating the sample contact surface of the Raman scattering device with the measurement light;
In a Raman spectroscopic device provided with a detecting means for detecting the Raman scattered light,
The sample cell has an electrophoretic property, or a fluid sample containing a substance to be measured that has been adjusted in advance to have an electrophoretic property is filled or flowed down, and measurement is performed.
Voltage application means is provided for applying a voltage to the sample cell to the sample cell so that the substance to be measured in the sample is electrophoresed on the sample contact surface side of the Raman scattering device. It is what.

「被測定物質が電気泳動性を有する」とは、被測定物質が荷電状態にあり、電場によって移動できる性質を有することを意味する。
試料は、試料セル内全体に充填又は流下されてもよいし、試料セル内の一部に充填又は流下されてもよい。
"The substance to be measured has electrophoretic properties" means that the substance to be measured is in a charged state and has a property that can be moved by an electric field.
The sample may be filled or flowed down in the entire sample cell, or may be filled or flowed down in a part of the sample cell.

参考までに、ラマン分光装置とは分野が異なるが、表面プラズモンセンサの分野においては、非キャピラリー状の試料セル内の試料に対して電圧を印加して、試料中の被測定物質を表面プラズモンが発生する金属膜側に電気泳動させて、被測定物質の検出を行うことが開示されている(特開平9-304339号公報の請求項1及び図1等)。   For reference, the field is different from that of Raman spectrometers, but in the field of surface plasmon sensors, a voltage is applied to a sample in a non-capillary sample cell, and the surface plasmon It is disclosed that a substance to be measured is detected by electrophoresis on the generated metal film side (Claim 1 and FIG. 1, etc. of JP-A-9-304339).

前記ラマン散乱デバイスは、電極と、該電極上に順次形成された誘電体と前記試料に接触させられ表面増強ラマン散乱を生じさせる金属体とを備えたものであり、
前記電圧印加手段は、前記ラマン散乱デバイスの一部である前記電極と、前記試料を介して前記ラマン散乱デバイスに対して対向配置された対向電極とを備えたものであることが好ましい。
The Raman scattering device includes an electrode, a dielectric sequentially formed on the electrode, and a metal body that is brought into contact with the sample and causes surface enhanced Raman scattering.
It is preferable that the voltage application unit includes the electrode that is a part of the Raman scattering device and a counter electrode that is disposed to face the Raman scattering device via the sample.

前記ラマン散乱デバイスは、前記試料に接触させられ表面増強ラマン散乱を生じさせる金属体からなり、それ自身が電極として機能するものであり、
前記電圧印加手段は、前記ラマン散乱デバイスからなる電極と、前記試料を介して前記ラマン散乱デバイスに対して対向配置された対向電極とを備えたものであってもよい。
The Raman scattering device is made of a metal body that is brought into contact with the sample to cause surface-enhanced Raman scattering, and functions as an electrode itself.
The voltage application unit may include an electrode made of the Raman scattering device and a counter electrode disposed to face the Raman scattering device through the sample.

本明細書において、「対向電極」は、ラマン散乱デバイスに対して正面対向でも斜め対向でも構わない。また、ラマン散乱デバイスと対向電極との間に試料が存在するのであれば、対向電極の位置は特に制限されない。したがって、対向電極は試料中には配置されずに試料セルに取り付けられてもよいし、試料中に配置されてもよい。   In the present specification, the “counter electrode” may be front facing or diagonally facing the Raman scattering device. In addition, the position of the counter electrode is not particularly limited as long as a sample exists between the Raman scattering device and the counter electrode. Therefore, the counter electrode may be attached to the sample cell without being arranged in the sample, or may be arranged in the sample.

表面増強ラマン散乱を生じさせる前記金属体は、前記測定光の波長よりも小さい凹凸構造を有することが好ましい。
本明細書において、「測定光の波長よりも小さい凹凸構造」とは、凹凸構造をなす凸部及び凹部の平均的な大きさと平均的なピッチが測定光の波長よりも小さいことを意味する。凹部に金属はあってもなくてもよい。
It is preferable that the metal body that causes surface-enhanced Raman scattering has a concavo-convex structure that is smaller than the wavelength of the measurement light.
In this specification, “an uneven structure smaller than the wavelength of the measurement light” means that the average size and the average pitch of the protrusions and recesses forming the uneven structure are smaller than the wavelength of the measurement light. There may or may not be metal in the recess.

前記金属体の主成分は、Au、Ag、Cu、Al、Pt、Ni、Ti、及びこれらの合金からなる群より選択される少なくとも1種の金属であることが好ましい。
本明細書において、「主成分」は、含量90質量%以上の成分と定義する。
The main component of the metal body is preferably at least one metal selected from the group consisting of Au, Ag, Cu, Al, Pt, Ni, Ti, and alloys thereof.
In the present specification, the “main component” is defined as a component having a content of 90% by mass or more.

前記試料セルは、一端が前記ラマン散乱デバイスの前記試料接触面に接し、他端が前記対向電極に接したキャピラリー状セルであることが好ましい。   The sample cell is preferably a capillary cell having one end in contact with the sample contact surface of the Raman scattering device and the other end in contact with the counter electrode.

前記ラマン散乱デバイスは、前記試料接触面に、前記被測定物質とイオン結合する表面修飾、及び/又は前記被測定物質と共有結合する表面修飾が施されたものであることが好ましい。   In the Raman scattering device, it is preferable that the sample contact surface is subjected to surface modification that is ionically bonded to the substance to be measured and / or surface modification that is covalently bonded to the substance to be measured.

本発明の第1のラマン分光方法は、試料を、測定光が照射されラマン散乱光を生じさせるラマン散乱デバイスと接触させ、前記ラマン散乱光を検出するラマン分光方法において、前記試料として、電気泳動性を有する、若しくは電気泳動性を有するようあらかじめ調整された被測定物質を含む流動性を有する試料を用意し、前記試料を前記ラマン散乱デバイスと接触させた状態で、該試料に対して電圧を印加して、該試料中の前記被測定物質を前記ラマン散乱デバイスの前記試料接触面側に電気泳動により引き寄せ、前記被測定物質を引き寄せた状態で、前記ラマン散乱光の検出を実施することを特徴とするものである。   According to a first Raman spectroscopy method of the present invention, a sample is brought into contact with a Raman scattering device that is irradiated with measurement light to generate Raman scattered light, and the Raman scattered light is detected in the Raman spectroscopy method in which the Raman scattered light is detected. A sample having fluidity or fluidity containing a substance to be measured that has been adjusted in advance to have electrophoretic properties is prepared, and a voltage is applied to the sample while the sample is in contact with the Raman scattering device. Applying the measurement, the substance to be measured in the sample is attracted to the sample contact surface side of the Raman scattering device by electrophoresis, and the Raman scattered light is detected in a state in which the substance to be measured is attracted. It is a feature.

本発明の第2のラマン分光方法は、試料を、測定光が照射されラマン散乱光を生じさせるラマン散乱デバイスと接触させ、前記ラマン散乱光を検出するラマン分光方法において、前記試料として、電気的に両性を有する被測定物質を含む流動性を有する試料を用意し、前記試料のpHを調整して、前記被測定物質を正荷電状態又は負荷電状態に調整し、
前記試料を前記ラマン散乱デバイスと接触させた状態で、該試料に対して電圧を印加して、該試料中の前記被測定物質を前記ラマン散乱デバイスの前記試料接触面側に電気泳動により引き寄せ、前記被測定物質を引き寄せた状態で、前記ラマン散乱光の検出を実施することを特徴とするものである。
According to a second Raman spectroscopy method of the present invention, in the Raman spectroscopy method in which a sample is brought into contact with a Raman scattering device that is irradiated with measurement light to generate Raman scattered light, and the Raman scattered light is detected. Preparing a fluid sample containing a substance to be measured having amphotericity, adjusting the pH of the sample, adjusting the substance to be measured to a positively charged state or a negatively charged state,
With the sample in contact with the Raman scattering device, a voltage is applied to the sample, and the substance to be measured in the sample is attracted to the sample contact surface side of the Raman scattering device by electrophoresis, The Raman scattered light is detected in a state in which the substance to be measured is attracted.

本発明の第1及び第2のラマン分光方法において、前記ラマン散乱デバイスが、前記試料接触面に前記被測定物質と共有結合又はイオン結合する表面修飾が施されたものであり、該表面修飾と前記電気泳動により引き寄せられた前記被測定物質とを共有結合又はイオン結合させて前記ラマン散乱光の検出を実施してもよい。また、かかる方法では、前記表面修飾と前記被測定物質とを共有結合又はイオン結合させた後、前記電圧印加を停止して前記ラマン散乱光の検出を実施することが好ましい。   In the first and second Raman spectroscopic methods of the present invention, the Raman scattering device is obtained by subjecting the sample contact surface to surface modification that is covalently or ionically bonded to the substance to be measured. The Raman scattered light may be detected by covalently or ionically bonding the substance to be measured attracted by the electrophoresis. In this method, it is preferable that the surface modification and the substance to be measured are covalently bonded or ionically bonded, and then the voltage application is stopped to detect the Raman scattered light.

また、前記表面修飾と前記被測定物質とを共有結合又はイオン結合させた後、前記ラマン散乱光の検出を実施する前に不純物を除去することが好ましい。
ここで「不純物」とは、ラマン散乱デバイスと接触させた試料のうち、表面修飾と共有結合又はイオン結合された被測定物質を除いたものを意味する。
In addition, it is preferable to remove impurities before the detection of the Raman scattered light after the surface modification and the substance to be measured are covalently bonded or ionically bonded.
Here, the “impurity” means a sample obtained by removing a sample to be measured which has been covalently bonded or ionically bonded to the surface modification from the sample brought into contact with the Raman scattering device.

本発明のラマン分光装置は、試料セル内の試料に対して電圧を印加して、試料中の被測定物質をラマン散乱デバイスの試料接触面側に電気泳動させる電圧印加手段を備えた構成を有している。   The Raman spectroscopic apparatus of the present invention has a configuration including voltage applying means for applying a voltage to a sample in a sample cell and causing a substance to be measured in the sample to be electrophoresed on the sample contact surface side of the Raman scattering device. is doing.

本発明のラマン分光装置によれば、電気泳動性を有する、若しくは電気泳動性を有するようあらかじめ調整された被測定物質を含む流動性を有する試料を用い、電気泳動によって試料中の被測定物質をラマン散乱デバイスの試料接触面側に引き寄せることができる。   According to the Raman spectroscopic apparatus of the present invention, a sample having a fluidity including an analyte or a fluid to be measured that has been adjusted in advance to have an electrophoretic property is used. It can be drawn toward the sample contact surface side of the Raman scattering device.

本発明のラマン分光装置では、試料セルの形状に関係なく、被測定物質のラマン散乱デバイスの表面又はその近傍への引き寄せ効果が得られる。本発明のラマン分光装置では、ラマン散乱デバイスの表面又はその近傍に充分な量の被測定物質が存在した状態で、確実に分析を行うことができ、表面増強ラマン散乱効果も効果的に得られるので、高感度な分析を安定して実施することができる。本発明のラマン分光装置は装置構成が簡易で、分析を容易かつ迅速に実施できる装置である。   In the Raman spectroscopic device of the present invention, the effect of attracting the substance to be measured to the surface of the Raman scattering device or its vicinity can be obtained regardless of the shape of the sample cell. In the Raman spectroscopic apparatus of the present invention, the analysis can be performed reliably in a state where a sufficient amount of the substance to be measured exists on the surface of the Raman scattering device or in the vicinity thereof, and the surface enhanced Raman scattering effect can be effectively obtained. Therefore, highly sensitive analysis can be performed stably. The Raman spectroscopic device of the present invention is a device that has a simple device configuration and can perform analysis easily and quickly.

本発明のラマン分光装置ではまた、必要に応じて、印加電圧を調整することで、ラマン散乱デバイスの表面又はその近傍に引き寄せられる被測定物質の量等も調整することができる。   In the Raman spectroscopic apparatus of the present invention, the amount of the substance to be measured that is attracted to the surface of the Raman scattering device or the vicinity thereof can be adjusted by adjusting the applied voltage as necessary.

ラマン散乱デバイスが試料接触面に被測定物質と結合する表面修飾を有している場合には、上記引き寄せ効果によって、ラマン散乱デバイスと被測定物質との結合を促進することができ、ラマン散乱デバイス表面への被測定物質の吸着量を増加させることができる。また、この場合は測定においてノイズとなる試料を除去してからラマン散乱光の検出を実施することができるため、高感度な分析を安定して実施することができる。   When the Raman scattering device has a surface modification that binds to the substance to be measured on the sample contact surface, the above-described pulling effect can promote the binding between the Raman scattering device and the substance to be measured. The amount of the substance to be measured adsorbed on the surface can be increased. In this case, since the detection of Raman scattered light can be carried out after removing the sample that causes noise in the measurement, highly sensitive analysis can be carried out stably.

「第1実施形態」
図面を参照して、本発明に係る第1実施形態のラマン分光装置の構成、及びこれを用いたラマン分光方法について、説明する。図1は装置の全体図、図2,図3はラマン散乱デバイスの好適な例を示す図である。
“First Embodiment”
A configuration of a Raman spectroscopic device according to a first embodiment of the present invention and a Raman spectroscopic method using the same will be described with reference to the drawings. FIG. 1 is an overall view of the apparatus, and FIGS. 2 and 3 are views showing a suitable example of a Raman scattering device.

本実施形態のラマン分光装置1は、試料セル10と、試料セル10内の試料Sに接触するように配置され、試料接触面20sに測定光L1が照射されてラマン散乱光を生じる板状のラマン散乱デバイス20と、ラマン散乱デバイス20の試料接触面20sに測定光L1を照射する測定光照射光学系30と、ラマン散乱光を検出する検出手段40とを備えたものである。   The Raman spectroscopic device 1 according to the present embodiment is arranged so as to be in contact with the sample cell 10 and the sample S in the sample cell 10, and is irradiated with the measurement light L1 on the sample contact surface 20s to generate a Raman scattered light. A Raman scattering device 20, a measurement light irradiation optical system 30 that irradiates the sample contact surface 20 s of the Raman scattering device 20 with the measurement light L 1, and a detection means 40 that detects Raman scattering light are provided.

測定光照射光学系30は、試料接触面20sに対して特定の単波長光である測定光L1を照射する光学系であり、レーザ等の光源31、及び必要に応じて光源31から出射される光を導光するミラー,レンズ等の導光系(図示略)により構成されている。   The measurement light irradiation optical system 30 is an optical system that irradiates the sample contact surface 20s with the measurement light L1 that is a specific single wavelength light, and is emitted from the light source 31 such as a laser and, if necessary, the light source 31. A light guide system (not shown) such as a mirror and a lens for guiding light is used.

検出手段40は、測定光L1の照射によってラマン散乱デバイス20の試料接触面20sで生じる反射光と散乱光とを含む検出光L2が入射し、検出光L2を分光してラマン散乱光を検出し、ラマンスペクトルを得る分光検出器である。   The detection means 40 receives detection light L2 including reflected light and scattered light generated on the sample contact surface 20s of the Raman scattering device 20 by irradiation with the measurement light L1, and detects the Raman scattered light by dispersing the detection light L2. This is a spectroscopic detector for obtaining a Raman spectrum.

試料セル10は、互いに対向して離間配置された底板11及び上板12を備えた角型等の箱状セルである。試料セル10は、絶縁性材料により構成されている。試料セル10の上下は便宜上定めたものであり、試料セル10の上下は適宜設計できる。   The sample cell 10 is a rectangular cell or the like having a bottom plate 11 and an upper plate 12 that are spaced apart from each other. The sample cell 10 is made of an insulating material. The upper and lower sides of the sample cell 10 are determined for convenience, and the upper and lower sides of the sample cell 10 can be designed as appropriate.

本実施形態において、試料セル10には、試料Sに対して電圧を印加して、試料S中の上記被測定物質をラマン散乱デバイス20の試料接触面20s側に電気泳動させる電圧印加手段50が備えられている。   In the present embodiment, the sample cell 10 has a voltage applying means 50 that applies a voltage to the sample S and causes the substance to be measured in the sample S to be electrophoresed on the sample contact surface 20 s side of the Raman scattering device 20. Is provided.

本実施形態において、ラマン散乱デバイス20は、電極21と、電極21上に順次形成された誘電体22と試料Sに接触させられ表面増強ラマン散乱(SERS)を生じさせる金属体23とからなるデバイスである。ラマン散乱デバイス20は、試料接触面20sである金属体23の表面が試料セル10内の試料Sに接触するよう、電極21が試料セル10の底板11に嵌め込まれて、試料セル10に固定されている。ラマン散乱デバイス20の試料セル10への固定態様については、適宜設計できる。   In the present embodiment, the Raman scattering device 20 is a device including an electrode 21, a dielectric 22 sequentially formed on the electrode 21, and a metal body 23 that is brought into contact with the sample S and generates surface enhanced Raman scattering (SERS). It is. In the Raman scattering device 20, the electrode 21 is fitted into the bottom plate 11 of the sample cell 10 so that the surface of the metal body 23 that is the sample contact surface 20 s contacts the sample S in the sample cell 10, and is fixed to the sample cell 10. ing. About the fixation aspect to the sample cell 10 of the Raman scattering device 20, it can design suitably.

試料セル10の上板12には、試料Sを介してラマン散乱デバイス20に対して正面に対向配置された対向電極51が嵌め込まれている。試料セル10の外側に、ラマン散乱デバイス20の一部をなす電極21と対向電極51とに電圧を印加するための電源52及び配線53が配設されている。   A counter electrode 51 is disposed on the upper plate 12 of the sample cell 10 so as to be opposed to the Raman scattering device 20 in front of the sample S. A power source 52 and wiring 53 for applying a voltage to the electrode 21 and the counter electrode 51 that form a part of the Raman scattering device 20 are disposed outside the sample cell 10.

本実施形態では、ラマン散乱デバイス20の一部をなす電極21と対向電極51と電源52と配線53とにより、電圧印加手段50が構成されている。   In the present embodiment, the voltage application means 50 is configured by the electrode 21, the counter electrode 51, the power supply 52, and the wiring 53 that form part of the Raman scattering device 20.

ラマン散乱光の増強効果が大きいことから、ラマン散乱デバイス20をなす金属体23は、測定光L1の波長よりも小さい凹凸構造を有することが好ましい。   Since the enhancement effect of the Raman scattered light is large, the metal body 23 forming the Raman scattering device 20 preferably has an uneven structure smaller than the wavelength of the measurement light L1.

図2及び図3を参照して、ラマン散乱デバイス20の好適な態様20A〜20Fについて説明する。図2(a),(b)は斜視図、図2(c)及び図3(a)〜(c)は断面図である。   With reference to FIG.2 and FIG.3, the suitable aspects 20A-20F of the Raman scattering device 20 are demonstrated. 2 (a) and 2 (b) are perspective views, and FIG. 2 (c) and FIGS. 3 (a) to 3 (c) are cross-sectional views.

図2(a)に示すラマン散乱デバイス20Aは、平坦な電極21と平坦な誘電体22との積層体の上に、複数の金属粒子23aがアレイ状に固着されたデバイスである。この例では、金属体23は、複数の金属粒子23aからなる金属粒子層である。
金属粒子23aの配列パターンは適宜設計でき、略規則的であることが好ましい。かかる構成では、個々の金属粒子23aが凸部であり、金属粒子23aの平均的な径及びピッチが測定光Lの波長よりも小さく設計される。
A Raman scattering device 20A shown in FIG. 2A is a device in which a plurality of metal particles 23a are fixed in an array on a laminated body of a flat electrode 21 and a flat dielectric 22. In this example, the metal body 23 is a metal particle layer composed of a plurality of metal particles 23a.
The arrangement pattern of the metal particles 23a can be designed as appropriate, and is preferably substantially regular. In such a configuration, the individual metal particles 23 a are convex portions, and the average diameter and pitch of the metal particles 23 a are designed to be smaller than the wavelength of the measurement light L.

図2(b)に示すラマン散乱デバイス20Bは、平坦な電極21と平坦な誘電体22との積層体の上に、金属細線23bが格子状にパターン形成された金属パターン層からなる金属体23が形成されたデバイスである。金属パターン層のパターンは適宜設計でき、略規則的であることが好ましい。かかる構成では、金属細線23bの平均的な線幅及びピッチが測定光Lの波長よりも小さく設計される。   A Raman scattering device 20B shown in FIG. 2B has a metal body 23 composed of a metal pattern layer in which fine metal wires 23b are formed in a lattice pattern on a laminate of a flat electrode 21 and a flat dielectric 22. Is a device formed. The pattern of the metal pattern layer can be designed as appropriate and is preferably substantially regular. In such a configuration, the average line width and pitch of the fine metal wires 23b are designed to be smaller than the wavelength of the measurement light L.

図2(c)に示すラマン散乱デバイス20Cは、図4(a)〜(c)に製造プロセスを示すように、被陽極酸化金属体(Al等)60の一部を陽極酸化して金属酸化物体(Al等)62とし、陽極酸化の過程で形成される金属酸化物体62の複数の微細孔62a内に各々金属23cをメッキ等により成長させて得られたデバイスである。このデバイスでは、金属酸化物体62の微細孔62a内に、頭部が金属酸化物体62の表面より突出するまで金属23cをマッシュルーム状に成長させてある(特開2005-172569号公報を参照)。微細孔62aを略規則的なパターンで開孔させることができるので、金属23cは略規則的なパターンで配列させることができる。図4(a),(b)は斜視図、図4(c)は断面図である。 The Raman scattering device 20C shown in FIG. 2 (c) is formed by anodizing a part of the anodized metal body (Al, etc.) 60 and oxidizing the metal as shown in FIGS. 4 (a) to 4 (c). This is a device obtained by growing a metal 23c by plating or the like into a plurality of fine holes 62a of a metal oxide body 62 formed as an object (Al 2 O 3 or the like) 62 in the process of anodization. In this device, the metal 23c is grown in a mushroom shape in the fine holes 62a of the metal oxide body 62 until the head protrudes from the surface of the metal oxide body 62 (see Japanese Patent Laid-Open No. 2005-172569). Since the fine holes 62a can be opened in a substantially regular pattern, the metals 23c can be arranged in a substantially regular pattern. 4A and 4B are perspective views, and FIG. 4C is a cross-sectional view.

図2(c)に示すラマン散乱デバイス20Cでは、電極21が被陽極酸化金属体の非陽極酸化部分(Al等)61からなり、誘電体22が被陽極酸化金属体60の一部を陽極酸化して得られる金属酸化物体62からなり、金属体23が陽極酸化の過程で形成される金属酸化物体62の複数の微細孔62a内に成長させた複数のマッシュルーム状の金属23cにより構成されている。   In the Raman scattering device 20C shown in FIG. 2 (c), the electrode 21 is made of a non-anodized portion (Al, etc.) 61 of an anodized metal body, and the dielectric 22 anodizes a part of the anodized metal body 60. And the metal body 23 is composed of a plurality of mushroom-like metals 23c grown in the plurality of fine holes 62a of the metal oxide body 62 formed in the process of anodization. .

図2(c)に示す例では、マッシュルーム状の金属23cの頭部が粒子状であり、デバイスの表面から見れば、誘電体22の表面に金属粒子層が形成された構造になっている。かかる構成では、マッシュルーム状の金属23cの頭部が凸部であり、その平均的な径及びピッチが測定光Lの波長よりも小さく設計される。   In the example shown in FIG. 2C, the head of the mushroom-like metal 23c is in the form of particles, and when viewed from the surface of the device, the metal particle layer is formed on the surface of the dielectric 22. In such a configuration, the head portion of the mushroom-like metal 23c is a convex portion, and the average diameter and pitch thereof are designed to be smaller than the wavelength of the measurement light L.

ラマン散乱デバイス20は、試料Sに接触させられ表面増強ラマン散乱を生じさせる金属体23のみにより構成されてもよい。   The Raman scattering device 20 may be composed only of the metal body 23 that is brought into contact with the sample S and causes surface-enhanced Raman scattering.

図3(a)に示すラマン散乱デバイス20Dは、図4(a),(b)に示すように陽極酸化を実施し、陽極酸化により形成された金属酸化物体62を除去して、被陽極酸化金属体の非陽極酸化部分61のみを残したデバイスである(特開2006-250924号公報を参照)。かかるデバイスでは、金属体23が表面に複数のディンプル状の凹部23dを有する非陽極酸化部分61により構成される。   The Raman scattering device 20D shown in FIG. 3A performs anodic oxidation as shown in FIGS. 4A and 4B, removes the metal oxide body 62 formed by anodic oxidation, and performs anodic oxidation. This is a device in which only the non-anodized portion 61 of the metal body is left (see Japanese Patent Laid-Open No. 2006-250924). In such a device, the metal body 23 is constituted by a non-anodized portion 61 having a plurality of dimple-like recesses 23d on the surface.

図3(b)に示すラマン散乱デバイス20Eは、上記ラマン散乱デバイス20Dの表面に、その凹凸形状に沿って金属層63を成膜したものである(特開2006-250924号公報を参照)。   A Raman scattering device 20E shown in FIG. 3B is obtained by forming a metal layer 63 on the surface of the Raman scattering device 20D along the uneven shape (see JP-A-2006-250924).

図3(c)に示すラマン散乱デバイス20Fは、上記ラマン散乱デバイス20Eの金属層63をアニール処理により粒子化して、被陽極酸化金属体の非陽極酸化部分61上に金属粒子64を形成したものである(特願2006-198009号(本件特許出願時において未公開)を参照)。   In the Raman scattering device 20F shown in FIG. 3C, the metal layer 63 of the Raman scattering device 20E is made into particles by annealing treatment, and metal particles 64 are formed on the non-anodized portion 61 of the anodized metal body. (See Japanese Patent Application No. 2006-198009 (unpublished at the time of filing this patent application)).

図2及び図3に示したラマン散乱デバイス20A〜20Fでは、略規則的な凹凸構造の金属体23が得られるので、SERS効果がデバイスの面全体でばらつきなく得られ、好ましい。   In the Raman scattering devices 20A to 20F shown in FIG. 2 and FIG. 3, since the metal body 23 having a substantially regular concavo-convex structure is obtained, the SERS effect can be obtained without variation over the entire surface of the device, which is preferable.

金属体23は、表面が粗面化された金属層により構成してもよい。粗面化方法としては、酸化還元等を利用した電気化学的な方法等が挙げられる。その他、ラマン散乱デバイス20としては、SERS効果を有する公知のデバイスを用いることができる。例えば、J.AM.CHEM.SOC. 2005, Vol.127, 14992-14993, ”Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates”には、ITO基板上に、CTAB(cetyltrimethylammonium bromide)で表面修飾した複数のAu粒子を配列させたラマン散乱デバイスが記載されている。特開2005-233637号公報には、基板上に金ナノロッド薄膜を形成したラマン散乱デバイスが開示されている。   The metal body 23 may be composed of a metal layer whose surface is roughened. Examples of the roughening method include an electrochemical method using oxidation reduction and the like. In addition, as the Raman scattering device 20, a known device having the SERS effect can be used. For example, J.AM.CHEM.SOC. 2005, Vol. 127, 14992-14993, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates”, CTAB (cetyltrimethylammonium A Raman scattering device in which a plurality of Au particles whose surfaces are modified with bromide) is arranged is described. Japanese Unexamined Patent Publication No. 2005-233637 discloses a Raman scattering device in which a gold nanorod thin film is formed on a substrate.

本実施形態のラマン分光装置1では、試料セル10内に、電気泳動性を有する、若しくは電気泳動性を有するようあらかじめ調整された被測定物質を含む流動性を有する試料Sが充填又は流下されて、測定が行われる。試料Sは流動性を有していればよく、その状態としては液状、ゲル状、及びゾル状等が挙げられる。   In the Raman spectroscopic device 1 of the present embodiment, the sample cell 10 is filled or flowed with a sample S having electrophoretic properties or fluidity including a substance to be measured that has been adjusted in advance to have electrophoretic properties. Measurements are made. The sample S only needs to have fluidity, and examples of the state thereof include liquid, gel, and sol.

本実施形態では、試料Sをラマン散乱デバイス20と接触させた状態で、試料Sに対して電圧を印加して、試料S中の被測定物質をラマン散乱デバイス20の試料接触面20s側に電気泳動させ、ラマン散乱デバイス20の試料接触面20s側に被測定物質を引き寄せた状態で、ラマン散乱光の検出を実施することができる。   In the present embodiment, a voltage is applied to the sample S in a state where the sample S is in contact with the Raman scattering device 20, and the substance to be measured in the sample S is electrically supplied to the sample contact surface 20 s side of the Raman scattering device 20. The detection of the Raman scattered light can be carried out in a state where the substance to be measured is attracted to the sample contact surface 20s side of the Raman scattering device 20 after the electrophoresis.

蛋白質、ペプチド、アミノ酸等の電気的に両性を有する被測定物質であれば、試料SのpHを調整して、被測定物質を正荷電状態又は負荷電状態に調整することができる。電極21が陽極であれば被測定物質を負荷電状態に調整し、電極21が陰極であれば被測定物質を正荷電状態に調整すれば、ラマン散乱デバイス20の試料接触面20s側に被測定物質を引き寄せることができる。   If the substance to be measured is an amphoteric substance such as protein, peptide, amino acid, etc., the pH of the sample S can be adjusted to adjust the substance to be measured to a positively charged state or a negatively charged state. If the electrode 21 is an anode, the substance to be measured is adjusted to a negatively charged state, and if the electrode 21 is a cathode, the substance to be measured is adjusted to a positively charged state to measure the sample on the sample contact surface 20s side of the Raman scattering device 20. Can attract material.

本実施形態でのラマン分光装置1では、複数の被測定物質を含む試料Sの測定も可能である。この場合には、電気泳動速度の違いを利用して試料を分離し、ラマン散乱デバイス20の試料接触面20sに引き寄せられた順に測定を実施することができる。かかる測定を実施する場合には、1種の被測定物質の測定を終えるごとに、ラマン散乱デバイス20を取り出して、試料接触面20sの洗浄を実施することが好ましい。   In the Raman spectroscopic device 1 according to the present embodiment, it is also possible to measure the sample S including a plurality of substances to be measured. In this case, the sample can be separated using the difference in the electrophoresis speed, and the measurement can be performed in the order in which the sample is attracted to the sample contact surface 20 s of the Raman scattering device 20. When carrying out such measurement, it is preferable to take out the Raman scattering device 20 and clean the sample contact surface 20s every time measurement of one kind of substance to be measured is completed.

ラマン散乱デバイス20は、試料接触面20sに被測定物質とイオン結合する表面修飾又は共有結合する表面修飾が施されたものであることが好ましい。かかる構成では、被測定物質がイオン結合又は共有結合によって試料接触面20sに対して強固に吸着され、好ましい。かかる場合には、試料接触面20sにおける被測定物質の濃度が高くなり、好ましい。   The Raman scattering device 20 is preferably a device in which the sample contact surface 20s is subjected to a surface modification that ionically bonds to a substance to be measured or a surface modification that covalently bonds. Such a configuration is preferable because the substance to be measured is firmly adsorbed to the sample contact surface 20s by ionic bonds or covalent bonds. In such a case, the concentration of the substance to be measured on the sample contact surface 20s becomes high, which is preferable.

被測定物質が蛋白質、ペプチド、及びアミノ酸からなる群より選ばれた少なくとも1種である場合、被測定物質とイオン結合する表面修飾としては、被測定物質と反対荷電を有する表面修飾基を用いることができ、カルボキシ基、スルホン酸基、リン酸基、アミノ基、4級アンモニウム基、イミダゾール基、グアニジニウム基、及びこれらの誘導体基等の表面修飾基を有するものが挙げられる。試料接触面20sは、これらの表面修飾基を2種以上有していてもよい。   When the substance to be measured is at least one selected from the group consisting of a protein, a peptide, and an amino acid, a surface modifying group having a charge opposite to that of the substance to be measured is used as the surface modification that ionically binds to the substance to be measured. And those having a surface modifying group such as a carboxy group, a sulfonic acid group, a phosphoric acid group, an amino group, a quaternary ammonium group, an imidazole group, a guanidinium group, and a derivative group thereof. The sample contact surface 20s may have two or more of these surface modification groups.

被測定物質が蛋白質、ペプチド、及びアミノ酸からなる群より選ばれた少なくとも1種である場合、被測定物質と共有結合する表面修飾としては、N−ヒドロキシスクニンイミジルエステル等の反応性エステル基、カルボジイミド基、1−ヒドロキシベンゾトリアゾール基、ヒドラジド基、チオール基、反応性ジスルフィド基、マレイミド基、アルデヒド基、エポキシド基、(メタ)アクリレート基、ヒドロキシル基、イソシアネート基、イソチオシアネート基、及びこれらの誘導体基等の表面修飾基を有するものが挙げられる。試料接触面20sは、これらの表面修飾基を2種以上有していてもよい。
例示した表面修飾基の中でも、反応性エステル基、ヒドラジド基、チオール基、及び反応性ジスルフィド基等が好ましい。
上記記載中、「反応性」とは被測定物質と反応性を有することを意味する。
When the substance to be measured is at least one selected from the group consisting of a protein, a peptide, and an amino acid, the surface modification that is covalently bonded to the substance to be measured includes a reactive ester group such as N-hydroxysuccinimidyl ester, Carbodiimide group, 1-hydroxybenzotriazole group, hydrazide group, thiol group, reactive disulfide group, maleimide group, aldehyde group, epoxide group, (meth) acrylate group, hydroxyl group, isocyanate group, isothiocyanate group, and derivatives thereof And those having a surface modifying group such as a group. The sample contact surface 20s may have two or more of these surface modification groups.
Among the exemplified surface modifying groups, a reactive ester group, a hydrazide group, a thiol group, and a reactive disulfide group are preferable.
In the above description, “reactivity” means having reactivity with the substance to be measured.

ラマン散乱デバイス20は、試料接触面20sに被測定物質とイオン結合する表面修飾及び共有結合する表面修飾が施されたものであることが、特に好ましい。
この場合、試料接触面20sに対して、被測定物質とイオン結合する表面修飾と、被測定物質と共有結合する表面修飾とを同時に施してもよいし、これらの表面修飾を順次実施しても構わない。また、これらの表面修飾の表面修飾位置は特に制限されず、これらの表面修飾同士が互いに結合していてもよいし、これらの表面修飾は互いに独立して試料接触面20sに結合していてもよい。
It is particularly preferable that the Raman scattering device 20 has a sample contact surface 20 s that has been subjected to surface modification that ionically bonds to the substance to be measured and surface modification that covalently bonds.
In this case, the surface modification that ion-bonds to the substance to be measured and the surface modification that covalently bonds to the substance to be measured may be simultaneously applied to the sample contact surface 20s, or these surface modifications may be performed sequentially. I do not care. Further, the surface modification positions of these surface modifications are not particularly limited, and these surface modifications may be bonded to each other, or these surface modifications may be bonded to the sample contact surface 20s independently of each other. Good.

試料接触面20sに対して、被測定物質とイオン結合する表面修飾を施し、さらにこの表面修飾を、被測定物質と共有結合する表面修飾で活性化することが特に好ましい。この場合、被測定物質とイオン結合する表面修飾と、被測定物質と共有結合する表面修飾とが互いに近接しており、1つ1つの被測定物質がイオン結合及び共有結合によって試料接触面20sに対して強固に吸着されることとなり、好ましい。   It is particularly preferable to subject the sample contact surface 20s to surface modification that ionically bonds with the substance to be measured, and to activate this surface modification by surface modification that covalently bonds to the substance to be measured. In this case, the surface modification that ionically bonds to the substance to be measured and the surface modification that covalently bonds to the substance to be measured are close to each other, and each substance to be measured is attached to the sample contact surface 20s by ionic bonding and covalent bonding. On the other hand, it is adsorbed firmly, which is preferable.

例えば、はじめに試料接触面20sに被測定物質とイオン結合するカルボキシ基を導入し、さらに導入したカルボキシ基を反応性エステル基、ヒドラジド基、チオール基、及び反応性ジスルフィド基等の被測定物質と共有結合する官能基の形態に誘導して、活性化することが好ましい。   For example, first, a carboxy group that ion-bonds with the substance to be measured is introduced into the sample contact surface 20s, and the introduced carboxy group is shared with the substance to be measured such as a reactive ester group, a hydrazide group, a thiol group, and a reactive disulfide group. It is preferable to activate by inducing the form of the functional group to be bound.

被測定物質とイオン結合する表面修飾基と、被測定物質と共有結合する表面修飾基とを両方備えた表面修飾物質としては、
4,4−ジチオジブチル酸(DDA)、10−カルボキシ−1−デカンチオール、11−アミノ−1−ウンデカンチオール、7−カルボキシ−1−へプタンチオール、16−メルカプトヘキサデカン酸、11,11’−チオジウンデカン酸等の自己組織化膜を形成する分子;
アガロース、デキストラン、カラゲナン、アルギン酸、デンプン、及びセルロース等のヒドロゲル、又はこれらの誘導体(例えばカルボキシメチル誘導体);
ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、及びポリエチレングリコール等の水膨潤性有機ポリマー等が挙げられる。
As a surface modification substance that has both a surface modification group that ionically bonds to the substance to be measured and a surface modification group that covalently bonds to the substance to be measured,
4,4-dithiodibutyric acid (DDA), 10-carboxy-1-decanethiol, 11-amino-1-undecanethiol, 7-carboxy-1-heptanethiol, 16-mercaptohexadecanoic acid, 11,11′- Molecules that form self-assembled films such as thiodiundecanoic acid;
Hydrogels such as agarose, dextran, carrageenan, alginic acid, starch, and cellulose, or derivatives thereof (eg, carboxymethyl derivatives);
Examples thereof include water-swellable organic polymers such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, and polyethylene glycol.

例えば被測定物質がアデニンの場合、被測定物質とイオン結合する表面修飾基と、被測定物質と共有結合する表面修飾基とを両方備えた表面修飾物質としては、4,4−ジチオジブチル酸(DDA)、及びカルボキシメチルデキストラン(CMD)等が好ましく用いられる。   For example, when the substance to be measured is adenine, the surface modifying substance having both a surface modifying group that ionically bonds to the substance to be measured and a surface modifying group that covalently bonds to the substance to be measured includes 4,4-dithiodibutyric acid ( DDA), carboxymethyl dextran (CMD) and the like are preferably used.

ラマン散乱デバイス20として、上記のような試料接触面20sに被測定物質とイオン結合する表面修飾又は共有結合する表面修飾が施されたものを用いる場合は、試料接触面20sに被測定物質が化学結合によって吸着されているので、表面修飾と被測定物質とを共有結合又はイオン結合させた後、電圧印加を止めてからラマン散乱光の検出を実施しても高感度な測定を安定して実施することができる。   When the sample contact surface 20s as described above is subjected to surface modification that is ion-bonded or covalently bonded to the measured substance as described above, the measured substance is chemically attached to the sample contact surface 20s. Because it is adsorbed by bonding, highly sensitive measurement can be performed stably even if surface scattering and the substance to be measured are covalently bonded or ionically bonded and then detection of Raman scattered light is detected after voltage application is stopped. can do.

上記のように電圧印加を止めることができれば、ラマン散乱光の検出を実施する前に、ノイズとなる試料液を除去してからラマン散乱光の検出を実施することも可能である。ラマン散乱光の検出の際、試料液中で測定を実施する場合は、試料液中の測定対象ではない物質や溶媒のラマン散乱ピークが、被測定物質のラマン散乱ピークと重なって検出されることがあり、この場合、これら被測定物質以外のラマン散乱光はノイズとなるため、S/N比が低下してしまう。従って、表面修飾と被測定物質とを共有結合又はイオン結合させた後に、試料液が除去された状態でラマン散乱光の検出が実施される方が、高感度な検出をより安定して実施することが可能となり、好ましい。   If the voltage application can be stopped as described above, the Raman scattered light can be detected after removing the sample liquid which becomes noise before detecting the Raman scattered light. When detecting Raman scattered light, if the measurement is performed in the sample liquid, the Raman scattering peak of the substance or solvent that is not the measurement target in the sample liquid must be overlapped with the Raman scattering peak of the measured substance. In this case, since the Raman scattered light other than these substances to be measured becomes noise, the S / N ratio is lowered. Therefore, it is more stable to perform highly sensitive detection by detecting the Raman scattered light in a state where the sample liquid is removed after the surface modification and the substance to be measured are covalently or ionically bonded. Is possible and preferable.

試料液の除去は、試料接触面20sに被測定物質を結合させた後、電圧印加を止める前に実施してもよいし、止めた後に実施してもよい。   The removal of the sample liquid may be performed after the substance to be measured is bonded to the sample contact surface 20s and before the voltage application is stopped, or after the stop.

試料液の除去後のラマン散乱光の検出方法は、被測定物質と表面修飾との結合が切れない方法であれば特に制限されない。例えば、試料液を除去後、そのまま試料セル10に液体のない状態でラマン散乱光の検出を実施してもよいし、溶液を除去した後、試料セル10及び試料接触面20sを1回以上洗浄してからラマン散乱光の検出を実施してもよい。   The method for detecting the Raman scattered light after removing the sample liquid is not particularly limited as long as it does not break the bond between the substance to be measured and the surface modification. For example, after removing the sample liquid, detection of Raman scattered light may be performed in a state where there is no liquid in the sample cell 10, or after removing the solution, the sample cell 10 and the sample contact surface 20s are washed once or more. Then, detection of Raman scattered light may be performed.

洗浄の方法としては、超音波洗浄やラマン非活性かつ被測定物質に対して反応性を有さない溶媒を用いて洗浄する方法等が挙げられる。超音波洗浄を行う際は、被測定物質と表面修飾間の結合が切れない条件となるように注意する必要がある。ラマン非活性かつ被測定物質に対して反応性を有さない溶媒としては純水等が挙げられる。ここで、「ラマン非活性」とは、ラマン散乱ピークが、被測定物質のラマン散乱ピークと重ならないことを意味する。   Examples of the cleaning method include ultrasonic cleaning and a method of cleaning using a solvent that is inactive to Raman and has no reactivity with the substance to be measured. When performing ultrasonic cleaning, care must be taken so that the bond between the substance to be measured and the surface modification is not broken. Examples of the solvent which is inactive to Raman and has no reactivity with the substance to be measured include pure water. Here, “Raman inactivity” means that the Raman scattering peak does not overlap with the Raman scattering peak of the substance to be measured.

洗浄後のラマン散乱光の検出は、試料セル10に液体のない状態で実施してもよいし、試料セル10をラマン非活性かつ被測定物質に対して反応性を有さない溶媒を注入してから実施してもよい。   The detection of the Raman scattered light after washing may be performed in a state where there is no liquid in the sample cell 10, or a solvent that is not Raman-active and has no reactivity with the substance to be measured is injected into the sample cell 10. You may implement after.

本実施形態のラマン分光装置1は、以上のように構成されている。
本実施形態のラマン分光装置1は、試料セル10内の試料に対して電圧を印加して、試料中の被測定物質をラマン散乱デバイス20の試料接触面20s側に電気泳動させる電圧印加手段50を備えた構成を有している。
The Raman spectroscopic device 1 of the present embodiment is configured as described above.
The Raman spectroscopic apparatus 1 according to the present embodiment applies a voltage to the sample in the sample cell 10 to cause the substance to be measured in the sample to be electrophoresed on the sample contact surface 20 s side of the Raman scattering device 20. It has the composition provided with.

本実施形態のラマン分光装置1によれば、電気泳動性を有する、若しくは電気泳動性を有するようあらかじめ調整された被測定物質を含む流動性を有する試料Sを用い、電気泳動によって試料S中の被測定物質をラマン散乱デバイス20の試料接触面20s側に引き寄せることができる。   According to the Raman spectroscopic device 1 of the present embodiment, a sample S having electrophoretic properties or fluidity including a substance to be measured that has been adjusted in advance so as to have electrophoretic properties is used. The substance to be measured can be drawn toward the sample contact surface 20 s side of the Raman scattering device 20.

本実施形態のラマン分光装置1では、試料セル10の形状に関係なく、被測定物質のラマン散乱デバイス20の表面又はその近傍への引き寄せ効果が得られる。本実施形態のラマン分光装置1では、ラマン散乱デバイス20の表面又はその近傍に充分な量の被測定物質が存在した状態で、確実に分析を行うことができ、SERS効果も効果的に得られるので、高感度な分析を安定して実施することができる。   In the Raman spectroscopic apparatus 1 of the present embodiment, an effect of attracting the substance to be measured to the surface of the Raman scattering device 20 or the vicinity thereof is obtained regardless of the shape of the sample cell 10. In the Raman spectroscopic apparatus 1 of the present embodiment, analysis can be performed reliably in a state where a sufficient amount of a substance to be measured exists on the surface of the Raman scattering device 20 or in the vicinity thereof, and the SERS effect can also be obtained effectively. Therefore, highly sensitive analysis can be performed stably.

本実施形態のラマン分光装置1ではまた、必要に応じて、印加電圧を調整することで、ラマン散乱デバイス20の表面又はその近傍に引き寄せられる被測定物質の量等も調整することができる。   In the Raman spectroscopic apparatus 1 of the present embodiment, the amount of the substance to be measured that is attracted to the surface of the Raman scattering device 20 or the vicinity thereof can be adjusted by adjusting the applied voltage as necessary.

ラマン散乱デバイス20が試料接触面20sに被測定物質と結合する表面修飾を有している場合には、上記引き寄せ効果によって、ラマン散乱デバイス20と被測定物質との結合を促進することができ、ラマン散乱デバイス20表面への被測定物質の吸着量を増加させることができる。この場合も、高感度な分析を安定して実施することができる。   When the Raman scattering device 20 has a surface modification that binds to the substance to be measured on the sample contact surface 20s, the above-described pulling effect can promote the binding between the Raman scattering device 20 and the substance to be measured. The amount of the substance to be measured adsorbed on the surface of the Raman scattering device 20 can be increased. Also in this case, highly sensitive analysis can be performed stably.

「背景技術」の項に挙げた特許文献1に記載の装置では、ラマン散乱デバイスを電気泳動用のキャピラリー内に挿入可能なファイバ状に加工する必要があるが、本実施形態の装置1では、ラマン散乱デバイスを特殊形状に加工する必要がない。
また、特許文献1,2では、通常のキャピラリー電気泳動法によって試料分離を行うため、緩衝液を充填した2つの容器を用意し、これらの容器にそれぞれキャピラリーの一端と他端を浸漬させ、キャピラリー内に緩衝液を充填した後、キャピラリーの一端に試料を注入し、緩衝液を充填した2つの容器間に電圧を印加して、電気泳動を行う必要がある。本実施形態のラマン分光装置1では、緩衝液及びそれを充填する容器を必要とせず、試料セル10内に試料Sを充填又は流下させて、試料Sに電圧を印加するだけでよい。
したがって、本実施形態のラマン分光装置1は装置構成が簡易で、分析を容易かつ迅速に実施できる装置である。
In the apparatus described in Patent Document 1 listed in the section of “Background Art”, it is necessary to process the Raman scattering device into a fiber shape that can be inserted into a capillary for electrophoresis. In the apparatus 1 of this embodiment, There is no need to process the Raman scattering device into a special shape.
In Patent Documents 1 and 2, in order to perform sample separation by ordinary capillary electrophoresis, two containers filled with a buffer solution are prepared, and one end and the other end of the capillary are immersed in these containers, respectively. After the buffer solution is filled therein, it is necessary to perform electrophoresis by injecting a sample into one end of the capillary and applying a voltage between the two containers filled with the buffer solution. In the Raman spectroscopic device 1 of this embodiment, a buffer solution and a container for filling the buffer solution are not required, and the sample S may be filled or flowed down in the sample cell 10 and a voltage may be applied to the sample S.
Therefore, the Raman spectroscopic device 1 of the present embodiment is a device that has a simple device configuration and can perform analysis easily and quickly.

(第1実施形態の設計変更例)
第1実施形態では、試料セルが箱状セルである場合について説明したが、図5に示すように、試料セル10は一端がラマン散乱デバイス20の試料接触面20sに接し、他端が対向電極51に接したキャピラリー状セルであってもよい。
かかる構成においても、第1実施形態と同様に測定を実施することができ、同様の効果が得られる。かかる構成では、試料の量が微量で済み、試料のジュール熱による対流の影響を無視でき、好ましい。
(Design change example of the first embodiment)
In the first embodiment, the case where the sample cell is a box-shaped cell has been described. However, as shown in FIG. 5, one end of the sample cell 10 is in contact with the sample contact surface 20s of the Raman scattering device 20, and the other end is a counter electrode. A capillary cell in contact with 51 may be used.
Even in such a configuration, measurement can be performed in the same manner as in the first embodiment, and the same effect can be obtained. Such a configuration is preferable because the amount of the sample is small and the influence of convection due to the Joule heat of the sample can be ignored.

「第2実施形態」
図面を参照して、本発明に係る第2実施形態のラマン分光装置の構成、及びこれを用いたラマン分光方法について、説明する。図6は装置の全体図である。本実施形態の装置は顕微ラマン分光装置であり、第1実施形態と同じ構成要素には同じ参照符号を付してある。
“Second Embodiment”
A configuration of a Raman spectroscopic device according to a second embodiment of the present invention and a Raman spectroscopic method using the same will be described with reference to the drawings. FIG. 6 is an overall view of the apparatus. The apparatus of this embodiment is a microscopic Raman spectroscopic apparatus, and the same reference numerals are given to the same components as those of the first embodiment.

本実施形態のラマン分光装置2は、第1実施形態と同様、試料セル10と、試料セル10内の試料Sに接触するように配置され、試料接触面20sに測定光L1が照射されてラマン散乱光を生じる板状のラマン散乱デバイス20と、ラマン散乱デバイス20の試料接触面20sに測定光L1を照射する測定光照射光学系30と、ラマン散乱光を検出する検出手段40とを備えたものである。   Similar to the first embodiment, the Raman spectroscopic device 2 of the present embodiment is disposed so as to contact the sample cell 10 and the sample S in the sample cell 10, and the sample contact surface 20s is irradiated with the measurement light L1 to cause Raman. A plate-shaped Raman scattering device 20 that generates scattered light, a measurement light irradiation optical system 30 that irradiates the sample contact surface 20s of the Raman scattering device 20 with the measurement light L1, and a detection means 40 that detects the Raman scattered light. Is.

本実施形態では、試料Sの顕微観察を行うために、試料セル10上に対物レンズ71が配置されている。対物レンズ71は、試料セル10に対して図示x−y方向に2次元的に相対移動可能とされている。対物レンズ71は、試料セル10に対して図示z方向にも相対移動可能とされている。   In the present embodiment, in order to perform microscopic observation of the sample S, an objective lens 71 is disposed on the sample cell 10. The objective lens 71 is two-dimensionally movable relative to the sample cell 10 in the xy direction shown in the drawing. The objective lens 71 is movable relative to the sample cell 10 also in the z direction shown in the figure.

本実施形態において、測定光照射光学系30は、レーザ等の光源31、及び光分離素子32により構成されている。光分離素子32は、光源31から出射された測定光L1を対物レンズ71及び試料セル10側に導き、ラマン散乱デバイス20の試料接触面20sで生じる反射光と散乱光とを含む検出光L2を検出手段40に導く光学素子である。測定光照射光学系30は必要に応じて、測定光L1の光路に、他のミラー,レンズ等の導光系(図示略)を備えていてもよい。   In the present embodiment, the measurement light irradiation optical system 30 includes a light source 31 such as a laser and a light separation element 32. The light separation element 32 guides the measurement light L1 emitted from the light source 31 to the objective lens 71 and the sample cell 10 side, and generates detection light L2 including reflected light and scattered light generated on the sample contact surface 20s of the Raman scattering device 20. It is an optical element that leads to the detection means 40. The measurement light irradiation optical system 30 may include a light guide system (not shown) such as other mirrors and lenses in the optical path of the measurement light L1 as necessary.

検出手段40は、第1実施形態と同様、測定光L1の照射によってラマン散乱デバイス20の試料接触面20sで生じる検出光L2が入射し、検出光L2を分光してラマン散乱光を検出し、ラマンスペクトルを得る分光検出器である。本実施形態には、試料Sの顕微画像モニタも備えられている(図示略)。   As in the first embodiment, the detection means 40 receives the detection light L2 generated on the sample contact surface 20s of the Raman scattering device 20 by irradiation with the measurement light L1, and spectrally detects the detection light L2 to detect the Raman scattered light. It is a spectroscopic detector for obtaining a Raman spectrum. In this embodiment, a microscopic image monitor of the sample S is also provided (not shown).

試料セル10は、第1実施形態と同様の箱状セルであり、試料セル10の底板11に第1実施形態と同様のラマン散乱デバイス20が嵌め込まれている。   The sample cell 10 is a box-shaped cell similar to that of the first embodiment, and a Raman scattering device 20 similar to that of the first embodiment is fitted into the bottom plate 11 of the sample cell 10.

本実施形態においても、試料セル10には、試料Sに対して電圧を印加して、試料S中の被測定物質をラマン散乱デバイス20の試料接触面20s側に電気泳動させる電圧印加手段50が備えられている。ただし、本実施形態では、対向電極51は、対物レンズ71とラマン散乱デバイス20との間の光路を空けるように、試料セル10中にラマン散乱デバイス20に対して、斜めに対向配置されている。   Also in the present embodiment, the sample cell 10 has a voltage applying means 50 that applies a voltage to the sample S and causes the substance to be measured in the sample S to be electrophoresed on the sample contact surface 20 s side of the Raman scattering device 20. Is provided. However, in the present embodiment, the counter electrode 51 is disposed obliquely opposite the Raman scattering device 20 in the sample cell 10 so as to open an optical path between the objective lens 71 and the Raman scattering device 20. .

本実施形態のラマン分光装置2は、以上のように構成されている。試料Sの顕微観察を実施しながら、ラマン分光分析の測定を実施できることを除けば、測定は第1実施形態と同様である。本発明は顕微ラマン分光装置2にも適用することができ、第1実施形態と同様の効果が得られる。   The Raman spectroscopic device 2 of the present embodiment is configured as described above. The measurement is the same as that of the first embodiment except that the Raman spectroscopic analysis can be performed while performing the microscopic observation of the sample S. The present invention can also be applied to the microscopic Raman spectroscopic apparatus 2, and the same effects as those of the first embodiment can be obtained.

本発明の技術は、物質に単波長光を照射して得られる散乱光を分光してラマンスペクトルを得、物質の同定等を行うラマン分光装置に適用できる。   The technology of the present invention can be applied to a Raman spectroscopic device that obtains a Raman spectrum by spectroscopically analyzing scattered light obtained by irradiating a substance with single wavelength light, and identifies the substance.

本発明に係る第1実施形態のラマン分光装置の全体図1 is an overall view of a Raman spectroscopic device according to a first embodiment of the present invention. (a)〜(c)はラマン散乱デバイスの好適な例を示す図(A)-(c) is a figure which shows the suitable example of a Raman scattering device. (a)〜(c)はラマン散乱デバイスの好適な例を示す図(A)-(c) is a figure which shows the suitable example of a Raman scattering device. (a)〜(c)は図2(c)に示すラマン散乱デバイスの製造プロセス図(A)-(c) is a manufacturing process figure of the Raman scattering device shown in FIG.2 (c). 図1のラマン分光装置の設計変更例Example of design change of the Raman spectrometer shown in FIG. 本発明に係る第2実施形態のラマン分光装置(顕微ラマン分光装置)の全体図Overall view of a Raman spectroscopic device (microscopic Raman spectroscopic device) according to a second embodiment of the present invention.

符号の説明Explanation of symbols

1、2 ラマン分光装置
10 試料セル
20、20A〜20C ラマン散乱デバイス
20s 試料接触面
21 電極
22 誘電体
23 金属体
20D〜20F 自身が電極として機能するラマン散乱デバイス
30 測定光照射光学系
40 検出手段
50 電圧印加手段
51 対向電極
S 試料
L1 測定光
L2 検出光
DESCRIPTION OF SYMBOLS 1, 2 Raman spectroscopy apparatus 10 Sample cell 20, 20A-20C Raman scattering device 20s Sample contact surface 21 Electrode 22 Dielectric body 23 Metal body 20D-20F Raman scattering device which itself functions as an electrode 30 Measurement light irradiation optical system 40 Detection means 50 Voltage application means 51 Counter electrode S Sample L1 Measurement light L2 Detection light

Claims (15)

試料セルと、
該試料セル内の試料に接触するように配置され、試料接触面に測定光が照射されてラマン散乱光を生じるラマン散乱デバイスと、
該ラマン散乱デバイスの前記試料接触面に前記測定光を照射する測定光照射光学系と、
前記ラマン散乱光を検出する検出手段とを備えたラマン分光装置において、
前記試料セル内に、電気泳動性を有する、若しくは電気泳動性を有するようあらかじめ調整された被測定物質を含む流動性を有する試料が充填又は流下されて、測定が行われるものであり、
前記試料セルに、前記試料に対して電圧を印加して、該試料中の前記被測定物質を前記ラマン散乱デバイスの前記試料接触面側に電気泳動させる電圧印加手段が備えられていることを特徴とするラマン分光装置。
A sample cell;
A Raman scattering device disposed so as to contact the sample in the sample cell, and the sample contact surface being irradiated with measurement light to generate Raman scattered light;
A measurement light irradiation optical system for irradiating the sample contact surface of the Raman scattering device with the measurement light;
In a Raman spectroscopic device provided with a detecting means for detecting the Raman scattered light,
The sample cell has an electrophoretic property, or a fluid sample containing a substance to be measured that has been adjusted in advance to have an electrophoretic property is filled or flowed down, and measurement is performed.
Voltage application means is provided for applying a voltage to the sample cell to the sample cell so that the substance to be measured in the sample is electrophoresed on the sample contact surface side of the Raman scattering device. A Raman spectrometer.
前記ラマン散乱デバイスは、電極と、該電極上に順次形成された誘電体と前記試料に接触させられ表面増強ラマン散乱を生じさせる金属体とを備えたものであり、
前記電圧印加手段は、前記ラマン散乱デバイスの一部である前記電極と、前記試料を介して前記ラマン散乱デバイスに対して対向配置された対向電極とを備えたものであることを特徴とする請求項1に記載のラマン分光装置。
The Raman scattering device includes an electrode, a dielectric sequentially formed on the electrode, and a metal body that is brought into contact with the sample and causes surface enhanced Raman scattering.
The voltage application means includes the electrode that is a part of the Raman scattering device, and a counter electrode that is arranged to face the Raman scattering device via the sample. Item 11. The Raman spectroscopic device according to Item 1.
前記ラマン散乱デバイスは、前記試料に接触させられ表面増強ラマン散乱を生じさせる金属体からなり、それ自身が電極として機能するものであり、
前記電圧印加手段は、前記ラマン散乱デバイスからなる電極と、前記試料を介して前記ラマン散乱デバイスに対して対向配置された対向電極とを備えたものであることを特徴とする請求項1に記載のラマン分光装置。
The Raman scattering device is made of a metal body that is brought into contact with the sample to cause surface-enhanced Raman scattering, and functions as an electrode itself.
The said voltage application means is provided with the electrode which consists of the said Raman scattering device, and the counter electrode arrange | positioned facing the said Raman scattering device through the said sample, The Claim 1 characterized by the above-mentioned. Raman spectrometer.
前記金属体は、前記測定光の波長よりも小さい凹凸構造を有することを特徴とする請求項2又は3に記載のラマン分光装置。   The Raman spectroscopic apparatus according to claim 2, wherein the metal body has an uneven structure that is smaller than a wavelength of the measurement light. 前記金属体の主成分は、Au、Ag、Cu、Al、Pt、Ni、Ti、及びこれらの合金からなる群より選択される少なくとも1種の金属であることを特徴とする請求項2〜4のいずれかに記載のラマン分光装置。   The main component of the metal body is at least one metal selected from the group consisting of Au, Ag, Cu, Al, Pt, Ni, Ti, and alloys thereof. The Raman spectroscopic apparatus according to any one of the above. 前記試料セルは、一端が前記ラマン散乱デバイスの前記試料接触面に接し、他端が前記対向電極に接したキャピラリー状セルであることを特徴とする請求項2〜5のいずれかに記載のラマン分光装置。   6. The Raman cell according to claim 2, wherein the sample cell is a capillary cell having one end in contact with the sample contact surface of the Raman scattering device and the other end in contact with the counter electrode. Spectrometer. 前記ラマン散乱デバイスは、前記試料接触面に前記被測定物質とイオン結合する表面修飾が施されたものであることを特徴とする請求項1〜6のいずれかに記載のラマン分光装置。   The Raman spectroscopic apparatus according to claim 1, wherein the Raman scattering device is a surface of the sample contact surface that is surface-modified to ionically bond to the substance to be measured. 前記被測定物質が蛋白質、ペプチド、及びアミノ酸からなる群より選ばれた少なくとも1種であり、
前記被測定物質とイオン結合する前記表面修飾が、カルボキシ基、スルホン酸基、リン酸基、アミノ基、4級アンモニウム基、イミダゾール基、及びグアニジニウム基からなる群より選ばれた少なくとも1種の基を有するものであることを特徴とする請求項7に記載のラマン分光装置。
The substance to be measured is at least one selected from the group consisting of a protein, a peptide, and an amino acid;
At least one group selected from the group consisting of a carboxy group, a sulfonic acid group, a phosphoric acid group, an amino group, a quaternary ammonium group, an imidazole group, and a guanidinium group is used as the surface modification that ionically bonds to the substance to be measured. The Raman spectroscopic apparatus according to claim 7, wherein:
前記ラマン散乱デバイスは、前記試料接触面に前記被測定物質と共有結合する表面修飾が施されたものであることを特徴とする請求項1〜8のいずれかに記載のラマン分光装置。   The Raman spectroscopic apparatus according to claim 1, wherein the Raman scattering device has a surface modification that is covalently bonded to the substance to be measured on the sample contact surface. 前記被測定物質が蛋白質、ペプチド、及びアミノ酸からなる群より選ばれた少なくとも1種であり、
前記被測定物質と共有結合する前記表面修飾が、反応性エステル基、ヒドラジド基、チオール基、及び反応性ジスルフィド基からなる群より選ばれた少なくとも1種の基を有するものであることを特徴とする請求項9に記載のラマン分光装置。
The substance to be measured is at least one selected from the group consisting of a protein, a peptide, and an amino acid;
The surface modification covalently bonded to the substance to be measured has at least one group selected from the group consisting of a reactive ester group, a hydrazide group, a thiol group, and a reactive disulfide group. The Raman spectroscopic device according to claim 9.
試料を、測定光が照射されラマン散乱光を生じさせるラマン散乱デバイスと接触させ、前記ラマン散乱光を検出するラマン分光方法において、
前記試料として、電気泳動性を有する、若しくは電気泳動性を有するようあらかじめ調整された被測定物質を含む流動性を有する試料を用意し、
前記試料を前記ラマン散乱デバイスと接触させた状態で、該試料に対して電圧を印加して、該試料中の前記被測定物質を前記ラマン散乱デバイスの前記試料接触面側に電気泳動により引き寄せ、
前記被測定物質を引き寄せた状態で、前記ラマン散乱光の検出を実施することを特徴とするラマン分光方法。
In a Raman spectroscopy method in which a sample is brought into contact with a Raman scattering device that is irradiated with measurement light to generate Raman scattered light, and the Raman scattered light is detected.
As the sample, prepare a sample having electrophoretic properties or fluidity containing a substance to be measured that has been adjusted in advance to have electrophoretic properties,
With the sample in contact with the Raman scattering device, a voltage is applied to the sample, and the substance to be measured in the sample is attracted to the sample contact surface side of the Raman scattering device by electrophoresis,
A Raman spectroscopy method, wherein the Raman scattered light is detected in a state in which the substance to be measured is attracted.
試料を、測定光が照射されラマン散乱光を生じさせるラマン散乱デバイスと接触させ、前記ラマン散乱光を検出するラマン分光方法において、
前記試料として、電気的に両性を有する被測定物質を含む流動性を有する試料を用意し、
前記試料のpHを調整して、前記被測定物質を正荷電状態又は負荷電状態に調整し、
前記試料を前記ラマン散乱デバイスと接触させた状態で、該試料に対して電圧を印加して、該試料中の前記被測定物質を前記ラマン散乱デバイスの前記試料接触面側に電気泳動により引き寄せ、
前記被測定物質を引き寄せた状態で、前記ラマン散乱光の検出を実施することを特徴とするラマン分光方法。
In a Raman spectroscopy method in which a sample is brought into contact with a Raman scattering device that is irradiated with measurement light to generate Raman scattered light, and the Raman scattered light is detected.
As the sample, a fluid sample containing a substance to be measured that is electrically amphoteric is prepared,
Adjusting the pH of the sample to adjust the substance to be measured to a positively charged state or a negatively charged state;
With the sample in contact with the Raman scattering device, a voltage is applied to the sample, and the substance to be measured in the sample is attracted to the sample contact surface side of the Raman scattering device by electrophoresis,
A Raman spectroscopy method, wherein the Raman scattered light is detected in a state in which the substance to be measured is attracted.
前記ラマン散乱デバイスが、前記試料接触面に前記被測定物質と共有結合又はイオン結合する表面修飾が施されたものであり、
該表面修飾と前記電気泳動により引き寄せられた前記被測定物質とを共有結合又はイオン結合させて前記ラマン散乱光の検出を実施することを特徴とする請求項11又は12に記載のラマン分光方法。
The Raman scattering device has been subjected to a surface modification that covalently or ionically bonds with the substance to be measured on the sample contact surface,
The Raman spectroscopic method according to claim 11 or 12, wherein the Raman scattered light is detected by covalently or ionically bonding the surface modification and the substance to be measured attracted by the electrophoresis.
前記表面修飾と前記被測定物質とを共有結合又はイオン結合させた後、前記ラマン散乱光の検出を実施する前に前記電圧印加を停止することを特徴とする請求項13に記載のラマン分光方法。   The Raman spectroscopic method according to claim 13, wherein the voltage application is stopped after the surface modification and the substance to be measured are covalently bonded or ionically bonded before the detection of the Raman scattered light. . 前記表面修飾と前記被測定物質とを共有結合又はイオン結合させた後、前記ラマン散乱光の検出を実施する前に不純物を除去することを特徴とする請求項14に記載のラマン分光方法。   The Raman spectroscopic method according to claim 14, wherein after the surface modification and the substance to be measured are covalently bonded or ionically bonded, impurities are removed before the detection of the Raman scattered light is performed.
JP2007241782A 2006-12-08 2007-09-19 Raman spectrometer and raman spectral method using same Withdrawn JP2008164584A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007241782A JP2008164584A (en) 2006-12-08 2007-09-19 Raman spectrometer and raman spectral method using same
US11/951,574 US20080137081A1 (en) 2006-12-08 2007-12-06 Method and system for raman spectroscopy with arbitrary sample cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006331607 2006-12-08
JP2007241782A JP2008164584A (en) 2006-12-08 2007-09-19 Raman spectrometer and raman spectral method using same

Publications (1)

Publication Number Publication Date
JP2008164584A true JP2008164584A (en) 2008-07-17

Family

ID=39694273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241782A Withdrawn JP2008164584A (en) 2006-12-08 2007-09-19 Raman spectrometer and raman spectral method using same

Country Status (1)

Country Link
JP (1) JP2008164584A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048756A (en) * 2008-08-25 2010-03-04 Fujifilm Corp Detection method, detection device, detecting sample cell and kit
WO2010104520A1 (en) * 2009-03-13 2010-09-16 Hewlett-Packard Development Company, L.P. Broad band structures for surface enhanced raman spectroscopy
KR101006165B1 (en) * 2008-12-29 2011-01-06 주식회사 신한세라믹 Simultaneous measurement apparatus of brightness and photocurrent characteristics for long-lasting phosphors and measuring method of the same
JP2012220396A (en) * 2011-04-12 2012-11-12 Seiko Epson Corp Detector
WO2012157254A1 (en) * 2011-05-17 2012-11-22 富士フイルム株式会社 Raman scattering measurement method and device
JP2013019747A (en) * 2011-07-11 2013-01-31 Seiko Epson Corp Optical device and detection device using the same
CN104165882A (en) * 2014-08-29 2014-11-26 四川九高科技有限公司 Gas input device and Raman spectrometer comprising gas input device
KR101495809B1 (en) 2011-11-25 2015-02-25 고쿠리츠다이가쿠호진 군마다이가쿠 Reaction vessel for raman spectrophotometry, and raman spectrophotometry method using same
WO2015025756A1 (en) * 2013-08-23 2015-02-26 株式会社右近工舎 Substrate for surface-enhanced raman scattering spectroscopy, and device using same
JP2018515767A (en) * 2015-07-29 2018-06-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Surface-enhanced light-emitting electric field generating substrate
CN109001180A (en) * 2018-08-10 2018-12-14 青岛启明生物科技有限公司 A kind of Raman spectrum combination artificial intelligence high throughput single cell analysis identification method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048756A (en) * 2008-08-25 2010-03-04 Fujifilm Corp Detection method, detection device, detecting sample cell and kit
KR101006165B1 (en) * 2008-12-29 2011-01-06 주식회사 신한세라믹 Simultaneous measurement apparatus of brightness and photocurrent characteristics for long-lasting phosphors and measuring method of the same
WO2010104520A1 (en) * 2009-03-13 2010-09-16 Hewlett-Packard Development Company, L.P. Broad band structures for surface enhanced raman spectroscopy
US8810788B2 (en) 2009-03-13 2014-08-19 Hewlett-Packard Development Company, L.P. Broad band structures for surface enhanced raman spectroscopy
JP2012220396A (en) * 2011-04-12 2012-11-12 Seiko Epson Corp Detector
WO2012157254A1 (en) * 2011-05-17 2012-11-22 富士フイルム株式会社 Raman scattering measurement method and device
JP2012242167A (en) * 2011-05-17 2012-12-10 Fujifilm Corp Raman spectroscopic method and apparatus
CN103534579A (en) * 2011-05-17 2014-01-22 富士胶片株式会社 Raman scattering measurement method and device
US9304086B2 (en) 2011-05-17 2016-04-05 Fujifilm Corporation Raman spectrometry method and Raman spectrometry apparatus
JP2013019747A (en) * 2011-07-11 2013-01-31 Seiko Epson Corp Optical device and detection device using the same
KR101495809B1 (en) 2011-11-25 2015-02-25 고쿠리츠다이가쿠호진 군마다이가쿠 Reaction vessel for raman spectrophotometry, and raman spectrophotometry method using same
EP2784488A4 (en) * 2011-11-25 2015-07-15 Univ Gunma Nat Univ Corp Reaction vessel for raman spectrophotometry, and raman spectrophotometry method using same
WO2015025756A1 (en) * 2013-08-23 2015-02-26 株式会社右近工舎 Substrate for surface-enhanced raman scattering spectroscopy, and device using same
GB2532356A (en) * 2013-08-23 2016-05-18 Ukon Craft Science Substrate for surface-enhanced raman scattering spectroscopy, and device using same
JPWO2015025756A1 (en) * 2013-08-23 2017-03-02 株式会社右近工舎 Surface-enhanced Raman scattering spectroscopic substrate and apparatus using the same
US10359366B2 (en) 2013-08-23 2019-07-23 Ukon Craft Science Ltd. Substrate for surface enhanced Raman scattering spectroscopy and devices using same
GB2532356B (en) * 2013-08-23 2020-04-15 Ukon Craft Science Ltd Substrate for surface-enhanced raman scattering spectroscopy, and device using same
CN104165882A (en) * 2014-08-29 2014-11-26 四川九高科技有限公司 Gas input device and Raman spectrometer comprising gas input device
JP2018515767A (en) * 2015-07-29 2018-06-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Surface-enhanced light-emitting electric field generating substrate
CN109001180A (en) * 2018-08-10 2018-12-14 青岛启明生物科技有限公司 A kind of Raman spectrum combination artificial intelligence high throughput single cell analysis identification method
CN109001180B (en) * 2018-08-10 2021-01-01 青岛启明生物科技有限公司 Raman spectrum combined artificial intelligence high-throughput single cell analysis and identification method

Similar Documents

Publication Publication Date Title
JP2008164584A (en) Raman spectrometer and raman spectral method using same
JP5925854B2 (en) Biopolymer optical analysis apparatus and method
US20220341872A1 (en) Method and apparatus for detecting particles, like biological macromolecules or nanoparticles
US9915614B2 (en) Microfluidic systems and devices for molecular capture, manipulation, and analysis
US20140110259A1 (en) Method and device for optical analysis of biopolymer
Li et al. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications
JP2009270852A (en) Raman spectrum detecting method and raman spectrum detector
US20080137081A1 (en) Method and system for raman spectroscopy with arbitrary sample cell
EP3382063A2 (en) A method of depositing metal nanoparticles on a surface in an electrochemical process, the surface obtained by this method and its application
KR102581662B1 (en) Probe manufacturing method and probe
US20180164205A1 (en) Apparatus and method
US20130196449A1 (en) Electrically driven devices for surface enhanced raman spectroscopy
US10067061B2 (en) Patch clamp technique with complementary raman spectroscopy
JP2009222483A (en) Inspection chip producing method and specimen detecting method
EP1586659A1 (en) Surface enhanced raman spectroscopy for biosensor systems and methods for determining the presence of biomolecules
JP5097590B2 (en) Raman signal measuring method and Raman signal measuring apparatus
JP2009042112A (en) Sensing device and sensing method using it
El-Said et al. SERS Application for Analysis of Live Single Cell
Bai et al. Emerging Strategies in Surface-Enhanced Raman Scattering (SERS) for Single-Molecule Detection and Biomedical Applications
JP2009222484A (en) Specimen detecting method and specimen detecting device
JP2015096829A (en) Raman spectrometer
JP2008145369A (en) Sensing method, sensor for the same, and sensing apparatus
Guo Surface-enhanced Raman Spectroscopy for Single Molecule Analysis and Biological Application
KR20220105846A (en) 3D plasmonic-hydrogel bicontinuous composite substrate and fabricating method of the same and in-situ analyzing method using the same
WO2023187217A1 (en) Optically transparent microelectrode arrays for electrochemical and electrophysiological measurements or stimulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100226

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120110