JP2008164448A - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP2008164448A
JP2008164448A JP2006354536A JP2006354536A JP2008164448A JP 2008164448 A JP2008164448 A JP 2008164448A JP 2006354536 A JP2006354536 A JP 2006354536A JP 2006354536 A JP2006354536 A JP 2006354536A JP 2008164448 A JP2008164448 A JP 2008164448A
Authority
JP
Japan
Prior art keywords
wheel
wheel bearing
rolling
load
ultrasonic sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354536A
Other languages
Japanese (ja)
Inventor
Hiroshi Isobe
浩 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006354536A priority Critical patent/JP2008164448A/en
Publication of JP2008164448A publication Critical patent/JP2008164448A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing with a sensor that can compactly install a load sensor to a vehicle and accurately detect a load applied to a wheel. <P>SOLUTION: The wheel bearing 10 with the sensor includes a fixed ring 1 having a plurality of rows of rolling surfaces 4, a rotation ring 2 having a rolling surface 5 facing the rolling surface 4 of the fixed ring 1, and a plurality of rows of rolling elements 3 interposed between both facing rolling surfaces 4 and 5, and rotatably supports the wheel with respect to the vehicle body. At least one set of ultrasonic sensors 15A and 15B, two of which form one set, is disposed near the axial position having the rolling surface 4 of the fixed ring 1. The two ultrasonic sensors 15A and 15B are arranged on a plane perpendicular to the axial center of the wheel bearing 10, mutually separately by phase of nP (n: arbitrary natural number, P: rolling element pitch), symmetrically to the center axis for connecting the intersection point of the maximum load point of the rolling element to the load direction to be detected and the axial center of the wheel bearing. The wheel bearing has an estimating means 16 for estimating the action force between a tire and the road surface or the preload amount of the wheel bearing based on the echo of the two ultrasonic sensors. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。
そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。
また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。
2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are performed by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.
Therefore, it is conceivable to control the posture from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. In addition, even when the load is uneven, the load applied to each wheel is uneven. For this reason, if the load applied to the wheel can be detected at any time, the suspension control etc. is controlled in advance based on the detection result, thereby controlling the attitude during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.
In addition, when steer-by-wire is introduced in the future and the system becomes a system in which the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、車輪用軸受の外輪に超音波センサを設け、転動体と転走面の接触面積により変化するエコー比より荷重を検出する車輪用軸受が提案されている(例えば特許文献1)。
特開2006−177932号公報
As a response to such a demand, a wheel bearing has been proposed in which an ultrasonic sensor is provided on the outer ring of the wheel bearing and the load is detected from an echo ratio that varies depending on the contact area between the rolling element and the rolling surface (for example, Patent Document 1).
JP 2006-177932 A

しかし、特許文献1に開示された技術では、印加荷重が大きくなると転動体と転走面の接触面積は大きくなるが、その変化量は小さいため、荷重を正確に検出することが難しいといった問題がある。   However, with the technique disclosed in Patent Document 1, when the applied load increases, the contact area between the rolling element and the rolling surface increases, but since the amount of change is small, there is a problem that it is difficult to accurately detect the load. is there.

この発明の目的は、車両にコンパクトに荷重センサを設置できて、車輪にかかる荷重を正確に検出できるセンサ付車輪用軸受を提供することである。   An object of the present invention is to provide a sensor-equipped wheel bearing in which a load sensor can be compactly installed in a vehicle and a load applied to the wheel can be accurately detected.

この発明のセンサ付車輪用軸受は、複列の転走面が形成された固定輪と、この固定輪の転走面と対向する転走面を形成した回転輪と、対向する両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、前記固定輪における転走面が設けられた軸方向位置の付近に2つで1組となる超音波センサを少なくとも1組設け、前記2つの超音波センサは、車輪用軸受の軸心に垂直な平面内において、検出対象とする荷重方向に対する転動体の最大荷重点と前記車輪用軸受の軸心との交点を結ぶ中心軸に対して対称に、かつnP(n:任意の自然数、P:転動体ピッチ)の位相だけ離れて配置し、前記2つの超音波センサのエコーからタイヤと路面間の作用力または車輪用軸受の予圧量を推定する推定手段を設けたことを特徴とする。
例えば、垂直方向(上向き)に印加される荷重を検出する場合、前記中心軸は、前記平面内におけるタイヤと路面間の接地面に対して垂直方向の中心軸となるため、固定輪の上側に1組となる2つの超音波センサを前記中心軸に対して対称にnPの位相だけ離して配置し、推定手段では前記2つの超音波センサの出力信号である反射エコーの逆数(1/反射エコー)を求めて演算信号として波形化する。これらの演算信号は、超音波センサの設置位置に転動体が存在する状態でピーク値を持つ。一方、例えば回転輪が時計回りで回転している場合、垂直方向荷重の中心軸に対して対称に配置される2つの転動体は間隔が広がる方向に移動するため、前記2つの超音波センサのうち、右側の超音波センサが先に転動体を検出し、左側の超音波センサが遅れて転動体を検出する。したがって、推定手段は、右側の超音波センサの演算信号におけるn番目のピーク位置と、左側の超音波センサの演算信号におけるn+1番目のピーク位置とを比較することで、転動体の位相を算出することができる。このようにして算出される位相は、荷重が大きいほど大きくなるので、推定手段は、算出された位相から検出対象の荷重を正確に検出でき、この検出結果を自動車の車両制御に利用することができる。また、荷重検出のセンサの構成も簡単であるため、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。
The sensor-equipped wheel bearing according to the present invention includes a fixed wheel having a double-row rolling surface, a rotating wheel having a rolling surface facing the rolling surface of the fixed wheel, and both facing rolling surfaces. In a wheel bearing having a double row rolling element interposed therebetween and rotatably supporting the wheel with respect to the vehicle body, two in the vicinity of the axial position where the rolling surface of the fixed wheel is provided At least one set of ultrasonic sensors is provided, and the two ultrasonic sensors are arranged in a plane perpendicular to the axis of the wheel bearing and the maximum load point of the rolling element with respect to the load direction to be detected and the wheel The tire is arranged symmetrically with respect to the central axis connecting the intersection with the shaft center of the bearing and separated by a phase of nP (n: arbitrary natural number, P: rolling element pitch), and from the echoes of the two ultrasonic sensors. To estimate the acting force between the vehicle and the road surface or the preload amount of the wheel bearing Characterized in that a stage.
For example, when detecting a load applied in the vertical direction (upward), the central axis is the central axis in the vertical direction with respect to the ground contact surface between the tire and the road surface in the plane. Two sets of ultrasonic sensors are arranged symmetrically with respect to the central axis and separated by a phase of nP, and the estimation means reciprocates the reciprocal echoes (1 / reflective echoes) that are output signals of the two ultrasonic sensors. ) To obtain a waveform as a calculation signal. These calculation signals have a peak value in a state where rolling elements are present at the installation position of the ultrasonic sensor. On the other hand, for example, when the rotating wheel is rotating clockwise, the two rolling elements arranged symmetrically with respect to the central axis of the vertical load move in the direction in which the interval increases. Of these, the right ultrasonic sensor detects the rolling element first, and the left ultrasonic sensor detects the rolling element after a delay. Therefore, the estimation means calculates the phase of the rolling element by comparing the n-th peak position in the calculation signal of the right ultrasonic sensor with the n + 1-th peak position in the calculation signal of the left ultrasonic sensor. be able to. Since the phase calculated in this way increases as the load increases, the estimation means can accurately detect the load to be detected from the calculated phase, and the detection result can be used for vehicle control of the automobile. it can. In addition, since the configuration of the load detection sensor is simple, it is possible to install the load sensor in a compact manner in the vehicle, and to improve the mass productivity, thereby reducing the cost.

この発明において、n=1としても良い。この構成の場合、最も荷重を受けている転動体を用いて荷重を推定することができる。   In this invention, it is good also as n = 1. In the case of this configuration, the load can be estimated using the rolling element that receives the most load.

この発明において、前記2つの超音波センサのエコーから隣り合う転動体の位相を算出する位相算出部を設けても良い。   In this invention, you may provide the phase calculation part which calculates the phase of an adjacent rolling element from the echo of the said two ultrasonic sensors.

この発明において、前記推定手段は、前記2つの超音波センサのエコーを足し合わせ、任意のしきい値を用いてデジタル信号に変換し、そのデューティー比を算出してデューティー比から前記作用力または予圧量を推定するものとしても良い。   In the present invention, the estimating means adds the echoes of the two ultrasonic sensors, converts them into a digital signal using an arbitrary threshold value, calculates the duty ratio, and calculates the duty force or preload from the duty ratio. It is good also as what estimates quantity.

この発明において、垂直方向の中心軸に対して対称に、nP(n:自然数、P:転動体ピッチ)の位相で2つの超音波センサを少なくても1組ずつ外輪の上面と下面に配置し、前記推進手段はタイヤと路面間の垂直方向荷重を推定するものとしても良い。
タイヤと路面間に垂直方向荷重が加わった場合、外輪などの部品はほとんど変形せず、荷重を転動体で受けやすい。そのため、垂直方向の中心軸に対して対称に、nPの位相で2つで1組の超音波センサを少なくても1組ずつ外輪の上面に配置すれば、正確に垂直方向荷重を推定することができる。
In this invention, symmetrically with respect to the central axis in the vertical direction, at least two ultrasonic sensors with a phase of nP (n: natural number, P: rolling element pitch) are arranged on the upper and lower surfaces of the outer ring. The propulsion means may estimate a vertical load between the tire and the road surface.
When a vertical load is applied between the tire and the road surface, parts such as the outer ring are hardly deformed and the load is easily received by the rolling elements. Therefore, symmetrically with respect to the central axis in the vertical direction, the vertical load can be accurately estimated if at least one pair of ultrasonic sensors is arranged on the upper surface of the outer ring at nP phases. Can do.

この発明のセンサ付車輪用軸受は、複列の転走面が形成された固定輪と、この固定輪の転走面と対向する転走面を形成した回転輪と、対向する両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、前記固定輪における転走面が設けられた軸方向位置の付近に2つで1組となる超音波センサを少なくとも1組設け、前記2つの超音波センサは、車輪用軸受の軸心に垂直な平面内において、検出対象とする荷重方向に対する転動体の最大荷重点と前記車輪用軸受の軸心との交点を結ぶ中心軸に対して対称に、かつnp(n:任意の自然数、p:転動体ピッチ)の位相だけ離れて配置し、前記2つの超音波センサのエコーからタイヤと路面間の作用力または車輪用軸受の予圧量を推定する推定手段を設けたため、車両にコンパクトに荷重センサを設置できて、車輪にかかる荷重を正確に検出できる。   The sensor-equipped wheel bearing according to the present invention includes a fixed wheel having a double-row rolling surface, a rotating wheel having a rolling surface facing the rolling surface of the fixed wheel, and both facing rolling surfaces. In a wheel bearing having a double row rolling element interposed therebetween and rotatably supporting the wheel with respect to the vehicle body, two in the vicinity of the axial position where the rolling surface of the fixed wheel is provided At least one set of ultrasonic sensors is provided, and the two ultrasonic sensors are arranged in a plane perpendicular to the axis of the wheel bearing and the maximum load point of the rolling element with respect to the load direction to be detected and the wheel The tire is arranged symmetrically with respect to the central axis connecting the intersection with the shaft center of the bearing and separated by a phase of np (n: arbitrary natural number, p: rolling element pitch), from the echoes of the two ultrasonic sensors. To estimate the acting force between the vehicle and the road surface or the preload amount of the wheel bearing Because having a stage, made compact installed load sensors in the vehicle can accurately detect the load applied to the wheel.

この発明の一実施形態を図1ないし図5と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、かつ駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向外側寄りとなる側をアウトボード側と言い、車両の中央寄りとなる側をインボード側と呼ぶ。図1では、左側がアウトボード側、右側がインボード側となる。
図1のように、この車輪用軸受10は、内周に複列の転走面4が形成された外方部材1と、これら転走面4にそれぞれ対向する転走面5が形成された内方部材2と、これら複列の転走面4,5間に介在した複列の転動体3とを備える。この車輪用軸受10は、複列のアンギュラ玉軸受型とされていて、転動体3はボールからなり、各列毎に保持器6で保持されている。上記各転走面4,5は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。内外の部材2,1間に形成される環状空間のアウトボード側およびインボード側の各開口端部は、それぞれ密封装置である接触式のシール7,8で密封されている。
An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side. In FIG. 1, the left side is the outboard side and the right side is the inboard side.
As shown in FIG. 1, the wheel bearing 10 is formed with an outer member 1 in which double-row rolling surfaces 4 are formed on the inner periphery, and rolling surfaces 5 respectively facing the rolling surfaces 4. The inner member 2 and the double row rolling elements 3 interposed between the double row rolling surfaces 4 and 5 are provided. The wheel bearing 10 is a double-row angular ball bearing type, and the rolling elements 3 are formed of balls and are held by a cage 6 for each row. Each of the rolling surfaces 4 and 5 has an arc shape in cross section, and is formed so that the ball contact angle is aligned with the back surface. The open end portions on the outboard side and the inboard side of the annular space formed between the inner and outer members 2 and 1 are sealed by contact-type seals 7 and 8 which are sealing devices, respectively.

外方部材1は固定輪となるものであって、その外周に形成されたフランジ1aが車体側のナックル(図示せず)にボルトで締結される。
内方部材2は回転輪となるものであって、外周に車輪取付フランジ2aを有するハブ輪2Aと、このハブ輪2Aのインボード側の外周に嵌合した別体の内輪2Bとからなり、ハブ輪2Aには等速ジョイント11の片方の継手部材となる外輪11aが連結される。ハブ輪2Aおよび内輪2Bに、各列の転走面5がそれぞれ形成される。ハブ輪2Aは中央孔12を有し、この中央孔12に、等速ジョイント外輪11aに一体に形成されたステム13が挿通され、ステム13の先端に螺合するナット14の締め付けにより、等速ジョイント外輪11aが内方部材2に連結される。このとき、等速ジョイント外輪11aに設けられたアウトボード側に向く段面11aaが、ハブ輪2Aに圧入した内輪2Bのインボード側に向く端面に押し付けられ、等速ジョイント外輪11aとナット14とで内方部材2が幅締めされる。ハブ輪2Aの中央孔12にはスプライン溝12aが形成されており、ステム13のスプライン溝13aとスプライン嵌合する。
The outer member 1 is a fixed wheel, and a flange 1a formed on the outer periphery thereof is fastened to a knuckle (not shown) on the vehicle body side with a bolt.
The inner member 2 is a rotating wheel, and includes a hub wheel 2A having a wheel mounting flange 2a on the outer periphery, and a separate inner ring 2B fitted to the outer periphery on the inboard side of the hub wheel 2A. An outer ring 11a, which is one joint member of the constant velocity joint 11, is connected to the hub wheel 2A. Each row of rolling surfaces 5 is formed on the hub wheel 2A and the inner ring 2B. The hub wheel 2 </ b> A has a center hole 12, and a stem 13 integrally formed with the constant velocity joint outer ring 11 a is inserted into the center hole 12. The joint outer ring 11 a is connected to the inner member 2. At this time, the step surface 11aa facing the outboard provided on the constant velocity joint outer ring 11a is pressed against the end surface facing the inboard side of the inner ring 2B press-fitted into the hub wheel 2A, and the constant velocity joint outer ring 11a and the nut 14 Thus, the inner member 2 is tightened. A spline groove 12a is formed in the center hole 12 of the hub wheel 2A and is fitted to the spline groove 13a of the stem 13 by spline fitting.

この車輪用軸受10には、2つで1組となる超音波センサ15A,15Bが、荷重センサとして少なくとも1組設けられている。この場合の各1組の超音波センサ15A,15Bは、タイヤと路面間の作用力または車輪用軸受10の予圧量を、送信波や反射波のエコーの大きさに換算して検出するものであり、この実施形態ではタイヤと路面間の作用力のうち、垂直方向荷重Fzを検出するのに使用される。具体的には、図1、および図1のインボード側から見た正面図を示す図2のように、固定輪である外方部材1の外周面におけるアウトボード側およびインボード側の転走面4が設けられた各軸方向位置(各転動体列の位置)の付近に、2組の超音波センサ15A,15Bがそれぞれ設けられている。なお、図1における車輪用軸受10の断面図は、図2におけるI−O−I矢視断面図を示す。   The wheel bearing 10 is provided with at least one set of two ultrasonic sensors 15A and 15B as a load sensor. In this case, each set of ultrasonic sensors 15A and 15B detects the acting force between the tire and the road surface or the preload amount of the wheel bearing 10 in terms of the magnitude of the echo of the transmitted wave or the reflected wave. In this embodiment, it is used to detect the vertical load Fz out of the acting force between the tire and the road surface. Specifically, as shown in FIG. 1 and FIG. 2 showing a front view as seen from the inboard side of FIG. Two sets of ultrasonic sensors 15A and 15B are provided in the vicinity of each axial position (position of each rolling element row) on which the surface 4 is provided. In addition, sectional drawing of the wheel bearing 10 in FIG. 1 shows the IOO arrow sectional drawing in FIG.

各1組となる2つの超音波センサ15A,15Bは、各転動体列の断面図を示す図3のように、車輪用軸受10の軸心に垂直な平面内において、検出対象とする荷重方向(ここでは垂直方向荷重Fz)に対する転動体の最大荷重点と前記車輪用軸受の軸心との交点を結ぶ中心軸Zに対して対称に、かつnP(n:任意の自然数、P:転動体ピッチ)の位相だけ離して配置される。ここでは、固定輪1の外周面における上面部(車両に対して上側)において、1組となる2つの超音波センサ15A,15Bが前記中心軸Zに対して対称に、転動体ピッチPの位相(n=1の場合)だけ離して配置され、固定輪1の外周面における下面部(車両に対して下側)においても、他の1組となる2つの超音波センサ15A,15Bが前記中心軸Zに対して対称に、転動体ピッチPの位相だけ離して配置される。すなわち、固定輪1の上面部に配置される1組の超音波センサ15A,15Bは上向きの垂直方向荷重Fzの検出に使用され、固定輪1の下面部に配置される他の1組の超音波センサ15A,15Bは下向きの垂直方向荷重Fzの検出に使用される。
この場合、超音波センサ15A,15Bは、転動体3と転走面4の接触部に向けて設置され、後述するように転動体3の位置、および転動体3と転走面4の接触面積に応じて変化する送信波や反射波のエコーの大きさを検出する。
Each of the two ultrasonic sensors 15A and 15B in one set has a load direction as a detection target in a plane perpendicular to the axis of the wheel bearing 10 as shown in FIG. 3 showing a cross-sectional view of each rolling element row. (Here, vertical load Fz) symmetrical with respect to the central axis Z connecting the intersection of the maximum load point of the rolling elements and the axis of the wheel bearing, and nP (n: any natural number, P: rolling element) (Pitch) phase. Here, on the upper surface portion (upper side with respect to the vehicle) of the outer peripheral surface of the fixed wheel 1, a pair of two ultrasonic sensors 15A and 15B are symmetrical with respect to the central axis Z and the phase of the rolling element pitch P (When n = 1), the two ultrasonic sensors 15A and 15B, which are another set, are arranged at the center on the lower surface portion (lower side with respect to the vehicle) on the outer peripheral surface of the fixed wheel 1 as well. They are arranged symmetrically with respect to the axis Z and separated by the phase of the rolling element pitch P. That is, one set of ultrasonic sensors 15A and 15B disposed on the upper surface portion of the fixed ring 1 is used to detect the upward vertical load Fz, and another set of supersonic sensors disposed on the lower surface portion of the fixed ring 1. The acoustic wave sensors 15A and 15B are used for detecting the downward vertical load Fz.
In this case, the ultrasonic sensors 15A and 15B are installed toward the contact portion between the rolling element 3 and the rolling surface 4, and the position of the rolling element 3 and the contact area between the rolling element 3 and the rolling surface 4 as described later. The magnitude of the echo of the transmitted wave or reflected wave that changes according to the frequency is detected.

ここでは、上記したように、1組となる2つの超音波センサ15A,15Bを転動体ピッチPと同じ位相で配置しているが、転動体3の個数が多い場合などでは、nP(n=1,2,3…)の間隔で2つの超音波センサ15A,15Bを配置しても良い。n=1とした、この実施形態の場合、最も荷重を受けている転動体3を用いて荷重を推定することができる。2つで1組となる超音波センサ15A,15Bの組数については、荷重検出方向の数によっても必要組数が異なるので、特に限定しない。   Here, as described above, the two ultrasonic sensors 15A and 15B forming a pair are arranged in the same phase as the rolling element pitch P. However, when the number of the rolling elements 3 is large, nP (n = Two ultrasonic sensors 15A, 15B may be arranged at intervals of 1, 2, 3,. In this embodiment where n = 1, the load can be estimated using the rolling element 3 receiving the most load. The number of sets of ultrasonic sensors 15A and 15B that form one set of two is not particularly limited because the required number of sets differs depending on the number of load detection directions.

前記超音波センサ15A,15Bは、図1に示すように推定手段16に接続される。推定手段16は、前記2つの超音波センサ15A,15Bの検出するエコーから、タイヤと路面間の作用力または車輪用軸受10の予圧量を推定する手段であり、この実施形態では前記した垂直方向荷重Fzを推定する。この推定手段16は、2つの超音波センサ15A,15Bの検出するエコーから隣り合う転動体3の位相を算出する位相算出部17を有する。前記推定手段16は、前記2つの超音波センサ15A,15Bの検出するエコーと、前記垂直方向荷重Fzまたは予圧量の関係をテーブルまたは演算式等として設定した関係設定手段(図示せず)を有し、超音波センサ15A,15Bの検出するエコーを上記関係設定手段に設定した関係データと比較して垂直方向荷重Fzまたは予圧量を出力するものである。上記関係データは、予め、例えばこのセンサ付車輪用軸受を使用した車両のユーザによる使用よりも前に試験やシミュレーション等によって求めて設定しておく。前記位相算出部17を設けた場合、前記関係データには、前記検出エコーと、位相算出部17で検出される位相と、前記垂直方向荷重Fzまたは予圧量の関係を設定したものとする。   The ultrasonic sensors 15A and 15B are connected to the estimation means 16 as shown in FIG. The estimation means 16 is means for estimating the acting force between the tire and the road surface or the preload amount of the wheel bearing 10 from the echoes detected by the two ultrasonic sensors 15A and 15B. In this embodiment, the vertical direction described above is used. The load Fz is estimated. The estimation unit 16 includes a phase calculation unit 17 that calculates the phase of the adjacent rolling elements 3 from echoes detected by the two ultrasonic sensors 15A and 15B. The estimation unit 16 includes a relationship setting unit (not shown) in which the relationship between the echoes detected by the two ultrasonic sensors 15A and 15B and the vertical load Fz or the preload amount is set as a table or an arithmetic expression. The echoes detected by the ultrasonic sensors 15A and 15B are compared with the relationship data set in the relationship setting means, and the vertical load Fz or the preload amount is output. The relational data is obtained and set in advance by, for example, a test or a simulation before use by a vehicle user using the sensor-equipped wheel bearing. In the case where the phase calculation unit 17 is provided, the relationship data includes a relationship between the detection echo, a phase detected by the phase calculation unit 17, and the vertical load Fz or the preload amount.

次に、前記センサ付車輪用軸受10における荷重検出処理の一例について説明する。図4は、図7に示すように各転動体列において垂直方向(上向き)に荷重Fzが印加された場合の上側の2つの超音波センサ15A,15Bの出力信号を演算処理した演算信号の波形図の一例を示す。具体的には、この場合の演算信号は、超音波センサ15A,15Bの出力信号である反射エコーの逆数(1/反射エコー)を求めて波形化したものである。車輪用軸受10において、転動体3と転走面4の接触面積が大きいほど超音波は回転輪2側へ透過するため、超音波センサ15A,15Bの検出する反射エコーの大きさは小さくなる。そのため、反射エコーの逆数として求められる前記演算信号は、超音波センサ15,15Bの位置に転動体3が存在する状態でピーク値となる。   Next, an example of load detection processing in the sensor-equipped wheel bearing 10 will be described. FIG. 4 shows the waveform of the calculation signal obtained by calculating the output signals of the upper two ultrasonic sensors 15A and 15B when the load Fz is applied in the vertical direction (upward) in each rolling element row as shown in FIG. An example of the figure is shown. Specifically, the calculation signal in this case is a waveform obtained by obtaining the reciprocal of the reflected echo (1 / reflected echo) that is the output signal of the ultrasonic sensors 15A and 15B. In the wheel bearing 10, since the ultrasonic wave is transmitted to the rotating wheel 2 side as the contact area between the rolling element 3 and the rolling surface 4 is larger, the size of the reflected echo detected by the ultrasonic sensors 15A and 15B becomes smaller. Therefore, the calculation signal obtained as the reciprocal of the reflected echo has a peak value in a state where the rolling elements 3 exist at the positions of the ultrasonic sensors 15 and 15B.

図4(A)は図3における1つ目の超音波センサ15Aの演算信号の波形図を示し、図4(B)は図3における2つ目の超音波センサ15Bの演算信号の波形図を示す。
回転輪2が図3のように時計回りで回転している場合、転動体3の配置が上側に作用する垂直方向荷重Fzの中心軸Z上に重なる図7(A)の状態では、最上部の転動体3は動かない。これに対し、図7(B)のように、垂直方向荷重Fzを最も受ける上部の隣り合う2つの転動体3,3が垂直方向荷重Fzの中心軸Zに対して対称に配置される状態では、前記2つの転動体3,3は転動体ピッチPや潤滑条件により転走面4,5を滑って矢印で示すように間隔が広がる方向に移動する。
このため、1つ目の超音波センサ15Aが先に転動体3を検出し、2つ目の超音波センサ15Bが遅れて転動体3を検出する。したがって、図4(A)に示す1つ目の超音波センサ15Aの演算信号におけるn番目のピーク位置と、図4(B)に示す2つ目の超音波センサ15Bの演算信号におけるn+1番目のピーク位置とを比較すれば、転動体3の位相を算出することができる。この演算を、推定手段16における前記位相算出部17が行う。
4A shows a waveform diagram of the calculation signal of the first ultrasonic sensor 15A in FIG. 3, and FIG. 4B shows a waveform diagram of the calculation signal of the second ultrasonic sensor 15B in FIG. Show.
When the rotating wheel 2 is rotating clockwise as shown in FIG. 3, the uppermost portion is in the state of FIG. 7A in which the arrangement of the rolling elements 3 overlaps the central axis Z of the vertical load Fz acting on the upper side. The rolling element 3 of does not move. On the other hand, as shown in FIG. 7B, in the state where the two adjacent upper rolling elements 3 and 3 that receive the vertical load Fz are arranged symmetrically with respect to the central axis Z of the vertical load Fz. The two rolling elements 3 and 3 slide along the rolling surfaces 4 and 5 depending on the rolling element pitch P and the lubrication conditions, and move in a direction in which the interval increases as indicated by arrows.
For this reason, the first ultrasonic sensor 15A detects the rolling element 3 first, and the second ultrasonic sensor 15B detects the rolling element 3 with a delay. Therefore, the nth peak position in the calculation signal of the first ultrasonic sensor 15A shown in FIG. 4A and the (n + 1) th calculation signal in the calculation signal of the second ultrasonic sensor 15B shown in FIG. If the peak position is compared, the phase of the rolling element 3 can be calculated. This calculation is performed by the phase calculation unit 17 in the estimation means 16.

2つの超音波センサ15A,15Bを転動体3の位相nPだけ離して設置した場合に一般化すると、転動体3の位相nPの算出方法としては、例えば、1つ目の超音波センサ15Aの演算信号のn番目のピーク位置と、2つ目の超音波センサ15Bの演算信号のn+1番目のピーク位置とから、その間の時間T[s](ここでの時間は、図4の接触面積を考慮しない場合の時間)を求め、さらにどちらか1つの超音波センサ15A(15B)の演算信号のピークが発生する周期から転動体3の公転速度V[rps]を求め、nP=360×V×T[deg]として計算するとよい。
このようにして算出される位相は、荷重が大きいほど大きくなる。そこで、推定手段16は、算出された位相から検出対象の荷重(この実施形態では垂直方向荷重Fz)を推定する。
If the two ultrasonic sensors 15A and 15B are installed in a state where they are separated by the phase nP of the rolling element 3, the method for calculating the phase nP of the rolling element 3 is, for example, the calculation of the first ultrasonic sensor 15A. The time T [s] between the n-th peak position of the signal and the n + 1-th peak position of the calculation signal of the second ultrasonic sensor 15B (the time here considers the contact area in FIG. 4) And the revolution speed V [rps] of the rolling element 3 is obtained from the period in which the peak of the calculation signal of one of the ultrasonic sensors 15A (15B) occurs, and nP = 360 × V × T It may be calculated as [deg].
The phase calculated in this way increases as the load increases. Therefore, the estimation means 16 estimates the load to be detected (vertical load Fz in this embodiment) from the calculated phase.

さらに、図4の演算信号を同図に鎖線で示すような任意のしきい値でデジタル信号に変換し、1つ目の超音波センサ15Aの演算信号(図4(A))のn番目の立ち上がり位置と、2つ目の超音波センサ15Bの演算信号(図4(B))のn+1番目の立ち下り位置を求め、それらを1つ目の超音波センサ15Aの演算信号のn番目のピーク位置、および2つ目の超音波センサ15Bの演算信号のn+1番目のピーク位置として用いることにより、同様に転動体3の位相を演算しても良い。デジタル信号ではないが、図4の接触面積を考慮した場合の時間T1がこれに当たる。上記演算結果は、転動体3の位置だけでなく、転動体3と転走面4の接触面積を考慮した転動体3の位相となるが、荷重が大きくなると転動体3と転走面4の接触面積も大きくなることから、さらに感度が増すことになる。   Further, the arithmetic signal in FIG. 4 is converted into a digital signal with an arbitrary threshold value as indicated by a chain line in the same figure, and the nth of the arithmetic signal (FIG. 4A) of the first ultrasonic sensor 15A is converted. The rising position and the (n + 1) th falling position of the calculation signal (FIG. 4B) of the second ultrasonic sensor 15B are obtained, and these are the nth peak of the calculation signal of the first ultrasonic sensor 15A. The phase of the rolling element 3 may be similarly calculated by using the position and the n + 1-th peak position of the calculation signal of the second ultrasonic sensor 15B. Although not a digital signal, this corresponds to the time T1 when the contact area of FIG. 4 is considered. The calculation result is not only the position of the rolling element 3 but also the phase of the rolling element 3 in consideration of the contact area between the rolling element 3 and the rolling surface 4, but when the load increases, the rolling element 3 and the rolling surface 4 Since the contact area also increases, the sensitivity further increases.

次に、前記センサ付車輪用軸受10における推定手段16による荷重検出処理の他の例について、図5および図6を参照して説明する。図5は大きな荷重が印加された場合のこの荷重検出処理の説明図を、図6は小さな荷重が印加された場合のこの荷重検出処理の説明図をそれぞれ示す。
図5において、先ず2つの超音波センサ15A,15Bの出力信号から、それらの演算信号を求め(図5(A),(B))、これら2つの演算信号を足し合わせた演算信号を作る(図5(C))。次に、図5(C)の演算信号を、任意のしきい値を用いて図5(D)のような波形のデジタル信号に変換する。このデジタル信号のデューティー比(X1/(X1+X2))は荷重が大きいほど大きくなるので、推定手段16はそのデューティー比から荷重を推定することができる。
Next, another example of load detection processing by the estimating means 16 in the sensor-equipped wheel bearing 10 will be described with reference to FIGS. FIG. 5 is an explanatory diagram of the load detection process when a large load is applied, and FIG. 6 is an explanatory diagram of the load detection process when a small load is applied.
In FIG. 5, first, calculation signals are obtained from the output signals of the two ultrasonic sensors 15A and 15B (FIGS. 5A and 5B), and a calculation signal is created by adding these two calculation signals ( FIG. 5C). Next, the arithmetic signal in FIG. 5C is converted into a digital signal having a waveform as in FIG. 5D using an arbitrary threshold value. Since the duty ratio (X1 / (X1 + X2)) of the digital signal increases as the load increases, the estimation means 16 can estimate the load from the duty ratio.

荷重が小さい(ほとんど荷重が印加されていない)図6の場合も、超音波センサ15A,15Bの出力信号から求められる演算信号(図6(A),(B))は、転動体3が存在する位置でピーク値を持つが、荷重が小さいため転動体3と転走面4の接触面積が図5の場合と比較して小さくなり、波形の振幅や広がりも小さくなっている。この場合の、2つの演算信号(図6(A),(B))を足し合わせた演算信号を図6(C)に示し、この演算信号を図5の場合と同じしきい値でデジタル信号に変換した波形を図6(D)に示すが、図5(D)と比較してみても、図6(D)の方がデューティー比(X1/(X1+X2))が小さいことがわかる。   In the case of FIG. 6 where the load is small (almost no load is applied), the rolling element 3 exists in the calculation signals (FIGS. 6A and 6B) obtained from the output signals of the ultrasonic sensors 15A and 15B. However, since the load is small, the contact area between the rolling element 3 and the rolling surface 4 is smaller than in the case of FIG. 5, and the amplitude and spread of the waveform are also reduced. In this case, an arithmetic signal obtained by adding two arithmetic signals (FIGS. 6A and 6B) is shown in FIG. 6C. This arithmetic signal is a digital signal with the same threshold as in FIG. FIG. 6D shows the waveform converted into FIG. 6D, and it can be seen that the duty ratio (X1 / (X1 + X2)) is smaller in FIG. 6D than in FIG. 5D.

なお、上記した各荷重検出処理は、固定輪1の上面部に配置された超音波センサ15A,15Bの出力信号を用いて、上向きの垂直直方向荷重Fzを指定手段16で推定する例であるが、固定輪1の下面部に配置された超音波センサ15A,15Bの出力信号を用いた場合には、下向きの垂直方向荷重Fzを同様に推定することができる。また、固定輪1の上面部に配置された1組の超音波センサ15A,15Bの出力信号と、固定輪1の下面部に配置されたもう1組の超音波センサ15A,15Bの出力信号とを比較して、荷重を推定しても良い。   Each of the load detection processes described above is an example in which the designation means 16 estimates the upward vertical direct load Fz using the output signals of the ultrasonic sensors 15A and 15B disposed on the upper surface of the fixed ring 1. However, when the output signals of the ultrasonic sensors 15A and 15B arranged on the lower surface portion of the fixed ring 1 are used, the downward vertical load Fz can be estimated in the same manner. Further, the output signals of one set of ultrasonic sensors 15A and 15B arranged on the upper surface of the fixed ring 1, and the output signals of another set of ultrasonic sensors 15A and 15B arranged on the lower surface of the fixed ring 1 and May be compared to estimate the load.

また、上記した各荷重検出処理では、超音波センサ15A,15Bが検出する反射エコーの逆数(1/反射エコー)を演算信号として用いるが、超音波センサ15A,15Bの出力信号をそのまま用いることにより、推定手段16で荷重を推定しても良い。さらには、反射エコー比(転動体3が存在しない位置での反射エコーと、転動体3が存在する位置での反射エコーの比)を用いることにより、荷重を推定しても良い。   In each of the load detection processes described above, the reciprocal of the reflected echo (1 / reflected echo) detected by the ultrasonic sensors 15A and 15B is used as a calculation signal. However, by using the output signals of the ultrasonic sensors 15A and 15B as they are. The load may be estimated by the estimating means 16. Furthermore, the load may be estimated by using a reflection echo ratio (a ratio of a reflection echo at a position where the rolling element 3 does not exist to a reflection echo at a position where the rolling element 3 exists).

このように、このセンサ付車輪用軸受10では、固定輪1における転走面4が設けられた軸方向位置の付近に2つで1組となる超音波センサ15A,15Bを少なくとも1組設け、前記2つの超音波センサ15A,15Bは、車輪用軸受10の軸心に垂直な平面内において、検出対象とする荷重方向に対する転動体の最大荷重点と前記車輪用軸受の軸心との交点を結ぶ中心軸Zに対して対称に、かつnP(n:任意の自然数、P:転動体ピッチ)の位相だけ離れて配置し、推定手段16により、前記2つの超音波センサ15A,15Bの検出するエコーからタイヤと路面間の作用力を推定するようにしているので、車輪にかかる荷重を正確に検出することができ、この検出結果を自動車の車両制御に利用することができる。また、荷重検出のセンサの構成も簡単であるため、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。   Thus, in this sensor-equipped wheel bearing 10, at least one pair of ultrasonic sensors 15 </ b> A and 15 </ b> B is provided in the vicinity of the axial position where the rolling surface 4 of the fixed wheel 1 is provided, The two ultrasonic sensors 15 </ b> A and 15 </ b> B indicate the intersection of the maximum load point of the rolling element with respect to the load direction to be detected and the axis of the wheel bearing in a plane perpendicular to the axis of the wheel bearing 10. The two ultrasonic sensors 15 </ b> A and 15 </ b> B are detected by the estimation means 16 by being arranged symmetrically with respect to the connecting center axis Z and separated by a phase of nP (n: arbitrary natural number, P: rolling element pitch). Since the acting force between the tire and the road surface is estimated from the echo, the load applied to the wheel can be accurately detected, and the detection result can be used for vehicle control of the automobile. In addition, since the configuration of the load detection sensor is simple, it is possible to install the load sensor in a compact manner in the vehicle, and to improve the mass productivity, thereby reducing the cost.

また、タイヤと路面間に垂直方向荷重が加わった場合、外方部材(固定輪)1などの部品はほとんど変形せず、荷重を転動体3で受けやすい。そのため、この実施形態のように垂直方向の中心軸Zに対して対称に、nPの位相で2つで1組の超音波センサ15A,15Bを少なくても1組ずつ固定輪1の上面と下面に配置すれば、正確に垂直方向荷重Fzを推定することができる。   Further, when a vertical load is applied between the tire and the road surface, parts such as the outer member (fixed wheel) 1 are hardly deformed, and the load is easily received by the rolling elements 3. Therefore, as in this embodiment, symmetrically with respect to the central axis Z in the vertical direction, the upper surface and the lower surface of the fixed ring 1 are at least one pair of the ultrasonic sensors 15A, 15B at a phase of nP. The vertical load Fz can be estimated accurately.

また、この実施形態では、上記センサ構成により、タイヤと路面間の作用力を検出する場合について説明したが、車輪用軸受の予圧量を検出する場合にも同様に適用できる。   Moreover, although this embodiment demonstrated the case where the acting force between a tire and a road surface was detected with the said sensor structure, it is applicable similarly when detecting the preload amount of a wheel bearing.

この発明の一実施形態に係るセンサ付車輪用軸受の構成図である。It is a lineblock diagram of the wheel bearing with a sensor concerning one embodiment of this invention. 同車輪用軸受をインボード側から見た正面図である。It is the front view which looked at the bearing for the wheels from the inboard side. 同車輪用軸受における転動体列の断面図である。It is sectional drawing of the rolling element row | line | column in the wheel bearing. 同車輪用軸受における推定手段による荷重推定処理の一例の説明図である。It is explanatory drawing of an example of the load estimation process by the estimation means in the wheel bearing. 同車輪用軸受における推定手段による荷重推定処理の他の例の大きい荷重が印加された場合の説明図である。It is explanatory drawing when the big load of the other example of the load estimation process by the estimation means in the same wheel bearing is applied. 同車輪用軸受における推定手段による荷重推定処理の小さい荷重が印加された場合の説明図である。It is explanatory drawing when the small load of the load estimation process by the estimation means in the wheel bearing is applied. 同車輪用軸受における転動体列での転動体の配置状態による転動体の移動の説明図である。It is explanatory drawing of a movement of the rolling element by the arrangement state of the rolling element in the rolling element row | line | column in the wheel bearing.

符号の説明Explanation of symbols

1…外方部材(固定輪)
2…内方部材(回転輪)
3…転動体
4,5…転走面
10…センサ付車輪用軸受
15A,15B…超音波センサ
16…推定手段
17…位相算出部

1. Outer member (fixed ring)
2 ... Inward member (rotating wheel)
DESCRIPTION OF SYMBOLS 3 ... Rolling element 4, 5 ... Rolling surface 10 ... Wheel bearing 15A, 15B with a sensor ... Ultrasonic sensor 16 ... Estimation means 17 ... Phase calculation part

Claims (5)

複列の転走面が形成された固定輪と、この固定輪の転走面と対向する転走面を形成した回転輪と、対向する両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
前記固定輪における転走面が設けられた軸方向位置の付近に2つで1組となる超音波センサを少なくとも1組設け、前記2つの超音波センサは、車輪用軸受の軸心に垂直な平面内において、検出対象とする荷重方向に対する転動体の最大荷重点と前記車輪用軸受の軸心との交点を結ぶ中心軸に対して対称に、かつnP(n:任意の自然数、P:転動体ピッチ)の位相だけ離れて配置し、前記2つの超音波センサのエコーからタイヤと路面間の作用力または車輪用軸受の予圧量を推定する推定手段を設けたことを特徴としたセンサ付車輪用軸受。
A fixed wheel having a double-row rolling surface, a rotating wheel having a rolling surface facing the rolling surface of the fixed wheel, and a double-row rolling element interposed between the opposing rolling surfaces; In a wheel bearing that rotatably supports the wheel with respect to the vehicle body,
At least one set of two ultrasonic sensors is provided near the axial position of the fixed wheel where the rolling surface is provided, and the two ultrasonic sensors are perpendicular to the axis of the wheel bearing. In a plane, symmetrical with respect to the central axis connecting the intersection of the maximum load point of the rolling element with respect to the load direction to be detected and the axis of the wheel bearing, and nP (n: any natural number, P: rolling A sensor-equipped wheel provided with an estimation means that is arranged to be separated by a phase of a moving body pitch) and estimates an acting force between a tire and a road surface or a preload amount of a wheel bearing from echoes of the two ultrasonic sensors. Bearings.
請求項1において、n=1としたセンサ付車輪用軸受。   2. The wheel bearing with sensor according to claim 1, wherein n = 1. 請求項1または請求項2において、前記2つの超音波センサのエコーから隣り合う転動体の位相を算出する位相算出部を設けたセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1 or 2, wherein a phase calculation unit that calculates a phase of an adjacent rolling element from echoes of the two ultrasonic sensors is provided. 請求項1または請求項2において、前記推定手段は、前記2つの超音波センサのエコーを足し合わせ、任意のしきい値を用いてデジタル信号に変換し、そのデューティー比を算出してデューティー比から前記作用力または予圧量を推定するものとしたセンサ付車輪用軸受。   In Claim 1 or Claim 2, the said estimation means adds up the echo of said two ultrasonic sensors, converts it into a digital signal using arbitrary threshold values, calculates its duty ratio, and calculates from the duty ratio. A wheel bearing with sensor for estimating the acting force or the preload amount. 請求項1ないし請求項4のいずれか1項において、垂直方向の中心軸に対して対称に、nP(n:自然数、P:転動体ピッチ)の位相で2つの超音波センサを少なくても1組ずつ外輪の上面と下面に配置し、前記推進手段はタイヤと路面間の垂直方向荷重を推定するものとしたセンサ付車輪用軸受。
5. The ultrasonic sensor according to claim 1, wherein at least two ultrasonic sensors are arranged in a phase of nP (n: natural number, P: rolling element pitch) symmetrically with respect to the central axis in the vertical direction. A sensor-equipped wheel bearing in which pairs are arranged on the upper and lower surfaces of the outer ring, and the propulsion means estimates the vertical load between the tire and the road surface.
JP2006354536A 2006-12-28 2006-12-28 Wheel bearing with sensor Pending JP2008164448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354536A JP2008164448A (en) 2006-12-28 2006-12-28 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354536A JP2008164448A (en) 2006-12-28 2006-12-28 Wheel bearing with sensor

Publications (1)

Publication Number Publication Date
JP2008164448A true JP2008164448A (en) 2008-07-17

Family

ID=39694151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354536A Pending JP2008164448A (en) 2006-12-28 2006-12-28 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP2008164448A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255860A1 (en) * 2019-06-21 2020-12-24 ミネベアミツミ株式会社 Bearing monitoring device and bearing monitoring method
JP2021032769A (en) * 2019-08-27 2021-03-01 日本精工株式会社 State monitoring method and state monitoring device for rolling bearing
CN114166508A (en) * 2021-12-09 2022-03-11 中国铁建重工集团股份有限公司 Method for acquiring load distribution state of multi-row roller turntable bearing in real time

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255860A1 (en) * 2019-06-21 2020-12-24 ミネベアミツミ株式会社 Bearing monitoring device and bearing monitoring method
JP2021001807A (en) * 2019-06-21 2021-01-07 ミネベアミツミ株式会社 Bearing monitoring device and bearing monitoring method
US11867227B2 (en) 2019-06-21 2024-01-09 Minebea Mitsumi Inc. Bearing monitoring apparatus and method for monitoring bearing
JP2021032769A (en) * 2019-08-27 2021-03-01 日本精工株式会社 State monitoring method and state monitoring device for rolling bearing
JP7351142B2 (en) 2019-08-27 2023-09-27 日本精工株式会社 Rolling bearing condition monitoring method and condition monitoring device
CN114166508A (en) * 2021-12-09 2022-03-11 中国铁建重工集团股份有限公司 Method for acquiring load distribution state of multi-row roller turntable bearing in real time

Similar Documents

Publication Publication Date Title
JP2007046635A (en) Bearing for wheel with sensor
JP2007071280A (en) Wheel bearing with sensor
JP5019988B2 (en) Wheel bearing with sensor
JP2007057299A (en) Wheel bearing with sensor
US7874732B2 (en) Bearing device for drive wheel
JP2007057259A (en) Wheel bearing with sensor
JP2007057258A (en) Wheel bearing with sensor
JP2008164448A (en) Wheel bearing with sensor
JP2007218342A (en) Bearing device for driving wheel
JP2007153226A (en) Bearing device for wheel
JP2007057257A (en) Wheel bearing with sensor
JP2008175665A (en) Wheel bearing with sensor
JP2006258241A (en) Wheel bearing with sensor
JP5142683B2 (en) Wheel bearing with sensor
JP2008175664A (en) Bearing load detector of wheel bearing
JP2008174067A (en) Wheel bearing with sensor
JP4889548B2 (en) Wheel bearing with sensor
JP5072551B2 (en) Wheel bearing with sensor
JP4986786B2 (en) Wheel bearing with sensor
JP2008175663A (en) Wheel bearing with sensor
JP5219424B2 (en) Wheel bearing with sensor
JP2008249566A (en) Sensor-attached wheel bearing
JP2008164046A (en) Sensor-equipped bearing for wheel
JP2007205380A (en) Bearing device for drive wheel
JP5219423B2 (en) Wheel bearing with sensor