JP2008163184A - Two-photon absorption material and its application - Google Patents

Two-photon absorption material and its application Download PDF

Info

Publication number
JP2008163184A
JP2008163184A JP2006354063A JP2006354063A JP2008163184A JP 2008163184 A JP2008163184 A JP 2008163184A JP 2006354063 A JP2006354063 A JP 2006354063A JP 2006354063 A JP2006354063 A JP 2006354063A JP 2008163184 A JP2008163184 A JP 2008163184A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
photon absorption
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354063A
Other languages
Japanese (ja)
Inventor
Tsutomu Sato
勉 佐藤
Tatsuya Tomura
辰也 戸村
Takeshi Miki
剛 三樹
美樹子 ▲高▼田
Mikiko Takada
Saburo Neya
三郎 根矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006354063A priority Critical patent/JP2008163184A/en
Publication of JP2008163184A publication Critical patent/JP2008163184A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • G11B7/2492Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds neutral compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24624Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes fluorescent dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic material with a large absorption cross section which effectively absorbs two photons and sensitively realizes change of a spectrum, index of refraction or polarization, to provide a method for two-photon absorption optical recording and readout which enables readout by irradiating a recorded material with light and detecting the difference in emission intensity after recording is performed by an unrewritable method utilizing two-photon absorption of a two-photon absorption compound, to provide a two-photon absorption optical recording material capable of such the recording and readout, and further to provide a three-dimensional two-photon absorption optical recording material using the same and methods for optical recording and readout of the same. <P>SOLUTION: The two-photon absorption material comprises a porphyrin derivative having four pyrrole rings that optionally have substituents and are bound to each other either directly or via carbon atoms optionally having substituents. Here, the total number of carbon atoms optionally having substituents linking the four pyrrole rings is four, and at least two of the pyrrole rings are directly bound to each other instead of via the carbon atom. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は二光子吸収材料に関し、高い二光子吸収断面積を有する二光子吸収単分子材料もしくは高分子材料に関し、三次元メモリ材料、光制限材料、光造形用光硬化樹脂の硬化材料、光化学療法用材料、二光子蛍光顕微鏡用蛍光色素材料などの用途に応用される。   The present invention relates to a two-photon absorption material, a two-photon absorption monomolecular material or a polymer material having a high two-photon absorption cross-section, a three-dimensional memory material, a light limiting material, a curing material for a photocurable resin for stereolithography, photochemotherapy It is applied to applications such as materials for fluorescent materials and fluorescent dye materials for two-photon fluorescence microscopes.

二光子吸収材料に関する従来例として、特許文献1〜3開示のものがある。
中でも特に、ポルフィリン誘導体に関する従来例として、特許文献4〜9開示のものがある。
また、三次元メモリ媒体(材料)に関する従来例として、特許文献10〜12開示のものがある。
また、光制限素子(材料)に関する従来例として特許文献13開示のものがある。
また、光造形技術に関する従来例として、特許文献14開示のものがある。
また、二光子特性を利用した(蛍光)顕微鏡に関する従来例として、特許文献15〜17開示のものがある。また、我々は、別に二光子吸収材料に関する技術を開発し提案(特願2006−73792号明細書、特願2006−74156号明細書、特願2006−250292号明細書、特願2006−70305号明細書等)している。
As conventional examples of the two-photon absorption material, there are those disclosed in Patent Documents 1 to 3.
Among others, there are those disclosed in Patent Documents 4 to 9 as conventional examples related to porphyrin derivatives.
In addition, as conventional examples relating to a three-dimensional memory medium (material), there are those disclosed in Patent Documents 10 to 12.
Further, as a conventional example relating to an optical limiting element (material), there is one disclosed in Patent Document 13.
Moreover, there exists a thing of patent document 14 disclosure as a prior art example regarding an optical shaping technique.
Further, as conventional examples of a (fluorescence) microscope using two-photon characteristics, there are those disclosed in Patent Documents 15 to 17. We have also developed and proposed a technology related to two-photon absorption materials (Japanese Patent Application No. 2006-73792, Japanese Patent Application No. 2006-74156, Japanese Patent Application No. 2006-250292, Japanese Patent Application No. 2006-70305). Description etc.).

二光子吸収現象を利用すると、極めて高い空間分解能を特徴とする種々のデバイス等への応用が可能となるが、現時点で利用可能な二光子吸収化合物では二光子吸収能が低いため、二光子吸収を誘起する励起光源として、高価で非常に高出力のレーザーが必要となる。従って安価で小型(低出力)のレーザーを用いて二光子吸収を利用した実用用途を実現するためには、高効率の二光子吸収材料の開発が必須である。   The use of the two-photon absorption phenomenon makes it possible to apply to various devices characterized by extremely high spatial resolution, but the two-photon absorption compounds currently available have a low two-photon absorption capability, so two-photon absorption As an excitation light source for inducing light, an expensive and very high-power laser is required. Therefore, in order to realize a practical application using two-photon absorption using an inexpensive and small (low output) laser, development of a highly efficient two-photon absorption material is essential.

特開2005−213434号公報JP-A-2005-213434 特開2005−82507号公報JP 2005-82507 A 特開2004−168690号公報JP 2004-168690 A 特表2005−500394号公報Special Table 2005-500394 特開2004−16890号公報JP 2004-16890 A 特開2004−339435号公報JP 2004-339435 A 特開2005−263738号公報Japanese Patent Laying-Open No. 2005-267338 特開2006−178399号公報JP 2006-178399 A 特開2006−209059号公報JP 2006-209059 A 特開2005−100606号公報JP-A-2005-100606 特表2005−517769号公報JP 2005-517769 Gazette 特表2004−534849号公報JP-T-2004-534849 特開平08−320422号公報Japanese Patent Laid-Open No. 08-320422 特開2005−134783号公報JP 2005-134783 A 特開平09−230246号公報Japanese Patent Application Laid-Open No. 09-230246 特開平10−142507号公報JP 10-142507 A 特開2005−165212号公報JP 2005-165212 A

上記従来技術に鑑みて、本発明の目的は、スペクトル、屈折率または偏光状態の変化を、高感度に実現する、効率良く二光子を吸収する有機材料、すなわち二光子吸収断面積の大きな有機材料を提供することにある。   In view of the above prior art, an object of the present invention is to realize an organic material that efficiently absorbs two-photons, that is, an organic material having a large two-photon absorption cross-section, that realizes a change in spectrum, refractive index, or polarization state with high sensitivity. Is to provide.

さらに、本発明の目的は、二光子吸収断面積が大きい二光子吸収化合物を少なくとも有し、二光子吸収化合物の二光子吸収を利用して書き換えできない方式で記録を行った後、光を記録材料に照射してその発光強度の違いを検出することにより再生することを特徴とする二光子吸収光記録再生方法及びそのような記録再生が可能な二光子吸収光記録材料を提供することにある。さらに、それらを用いた二光子吸収三次元光記録材料及び二光子吸収三次元光記録方法及び再生方法を提供することである。   Furthermore, an object of the present invention is to have at least a two-photon absorption compound having a large two-photon absorption cross-section, and to record light in a recording material that cannot be rewritten using two-photon absorption of the two-photon absorption compound. It is intended to provide a two-photon absorption optical recording / reproducing method characterized in that reproduction is performed by irradiating a light source and detecting a difference in light emission intensity, and a two-photon absorption optical recording material capable of such recording / reproduction. Furthermore, it is to provide a two-photon absorption three-dimensional optical recording material, a two-photon absorption three-dimensional optical recording method and a reproducing method using them.

本発明者らは鋭意検討した結果、特定のポルフィリン誘導体により上記課題が解決されることを見出し、本発明に至った。
即ち、本発明によれば、(1)「置換基を有してもよい4つのピロール環が置換基を有してもよい炭素原子を介して、または直接結合した構造を有するポルフィリン誘導体において、該4つのピロール環を結ぶ置換基を有してもよい炭素原子の合計数が4つであり、かつ少なくとも一個所はピロール環が炭素原子を介さず直接結合したポルフィリン誘導体からなる二光子吸収材料」、
(2)「下記式(1)で示されるポルフィリン誘導体からなることを特徴とする前記第(1)項に記載の二光子吸収材料;
As a result of intensive studies, the present inventors have found that the above problems can be solved by a specific porphyrin derivative, and have reached the present invention.
That is, according to the present invention, (1) "in a porphyrin derivative having a structure in which four pyrrole rings which may have a substituent are bonded via a carbon atom which may have a substituent or directly, A two-photon absorption material comprising a porphyrin derivative in which the total number of carbon atoms that may have a substituent connecting the four pyrrole rings is four and at least one pyrrole ring is directly bonded without any carbon atom "
(2) “The two-photon absorption material according to item (1), which is composed of a porphyrin derivative represented by the following formula (1);

Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。」、
(3)「下記式(2)で示されるポルフィリン誘導体からなることを特徴とする前記第(1)項に記載の二光子吸収材料;
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2. "
(3) “A two-photon absorption material according to item (1), which is composed of a porphyrin derivative represented by the following formula (2);

Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。」、
(4)「下記式(3)で示されるポルフィリン誘導体からなることを特徴とする前記第(1)項に記載の二光子吸収材料;
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2. "
(4) “Two-photon absorption material according to item (1), comprising a porphyrin derivative represented by the following formula (3);

Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。」、
(5)「下記式(4)で示されるポルフィリン誘導体からなることを特徴とする前記第(1)項に記載の二光子吸収材料;
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2. "
(5) “A two-photon absorption material according to item (1), which is composed of a porphyrin derivative represented by the following formula (4);

Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。」、
(6)「下記式(5)で示されるポルフィリン誘導体からなることを特徴とする前記第(1)項に記載の二光子吸収材料;
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2. "
(6) “Two-photon absorption material according to item (1), comprising a porphyrin derivative represented by the following formula (5);

Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。」、
(7)「置換基を有してもよい4つのピロール環が置換基を有してもよい炭素原子又は窒素原子を介して結合した構造を有する下記式(6)で示されるポルフィリン誘導体からなる二光子吸収材料であって、該4つのピロール環を結ぶ置換基を有してもよい原子のうち少なくとも一個が炭素原子及び窒素原子であるポルフィリン誘導体からなる二光子吸収材料;
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2. "
(7) “consisting of a porphyrin derivative represented by the following formula (6) having a structure in which four pyrrole rings which may have a substituent are bonded via a carbon atom or a nitrogen atom which may have a substituent. A two-photon absorption material comprising a porphyrin derivative in which at least one of the atoms which may have a substituent connecting the four pyrrole rings is a carbon atom and a nitrogen atom;

Figure 2008163184
R1〜R4は、窒素原子、炭素原子を表し、そのうち少なくとも一個は窒素原子を表す。
X1〜X8はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR5)p、(OSiR678)q、(OPOR910)r、(OCOR11)sを有してもよい金属原子を表す。R5〜R11は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。」、
(8)「式(6)で示されるポルフィリン誘導体のR1〜R4のうち、1つが窒素原子であり、残りは炭素原子であるモノアザポルフィリン化合物からなることを特徴とする前記第(7)項に記載の二光子吸収材料」、
(9)「式(6)で示されるポルフィリン誘導体のR1〜R4のうち、2つが窒素原子であり、残りは炭素原子であるジアザポルフィリン化合物からなることを特徴とする前記第(7)項に記載の二光子吸収材料」、
(10)「式(6)で示されるポルフィリン誘導体のR1、Rが窒素原子であり、R、R4が炭素原子であるジアザポルフィリン化合物からなる前記第(7)項に記載の二光子吸収材料」、
(11)「前記第(1)項乃至第(10)項のいずれかに記載の化合物を含む三次元メモリ材料」、
(12)「前記第(1)項乃至第(10)項のいずれかに記載の化合物を含む光制限材料」、
(13)「前記第(1)項乃至第(10)項のいずれかに記載の化合物を含む光造形用光硬化樹脂の硬化材料」、
(14)「前記第(1)項乃至第(10)項のいずれかに記載の化合物を含む二光子蛍光顕微鏡用蛍光色素材料」、
(15)「前記第(1)項乃至第(10)項のいずれかに記載の化合物を記録層中に少なくとも1種含み入射光に対して深さ方向に記録再生可能な三次元記録媒体」、
(16)「前記第(1)項乃至第(10)項のいずれかに記載の化合物の少なくとも1種含む光制限素子」、
(17)「前記第(1)項乃至第(10)項のいずれかに記載の化合物の少なくとも1種含む光造形システム」、
(18)「前記第(1)項乃至第(10)項のいずれかに記載の化合物の少なくとも1種含む二光子蛍光顕微鏡装置」によって達成される。
Figure 2008163184
R 1 to R 4 represent a nitrogen atom or a carbon atom, and at least one of them represents a nitrogen atom.
X 1 to X 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, A substituted or unsubstituted amino group or a substituted or unsubstituted acyl group is represented.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 5 ) p, (OSiR 6 R 7 R 8 ) q, (OPOR 9 R 10 ) r represents a metal atom which may have (OCOR 11 ) s. R 5 to R 11 are independently a hydrogen atom, an aliphatic substituted or unsubstituted, an aromatic hydrocarbon group, p, q, r, s represents an integer of 0 to 2. "
(8) The above (7), wherein the porphyrin derivative represented by the formula (6) is composed of a monoazaporphyrin compound in which one of R 1 to R 4 is a nitrogen atom and the remainder is a carbon atom. ) Two-photon absorption material according to item ",
(9) The above-mentioned (7) characterized in that among the porphyrin derivatives represented by formula (6), R 1 to R 4 are diazaporphyrin compounds in which two are nitrogen atoms and the rest are carbon atoms. ) Two-photon absorption material according to item ",
(10) “The porphyrin derivative represented by the formula (6) is a diazaporphyrin compound in which R 1 and R 3 are nitrogen atoms, and R 2 and R 4 are carbon atoms,” Two-photon absorption material ",
(11) "Three-dimensional memory material containing the compound according to any one of (1) to (10)",
(12) "Optical limiting material containing the compound according to any one of (1) to (10)",
(13) “Curing material of photo-curing resin for optical modeling including the compound according to any one of (1) to (10)”,
(14) "Fluorescent dye material for a two-photon fluorescence microscope containing the compound according to any one of (1) to (10)",
(15) “Three-dimensional recording medium including at least one compound according to any one of items (1) to (10) in a recording layer and capable of recording / reproducing in the depth direction with respect to incident light” ,
(16) "Optical limiting element including at least one compound according to any one of items (1) to (10)",
(17) "Optical modeling system including at least one compound according to any one of (1) to (10)",
(18) This can be achieved by “a two-photon fluorescence microscope apparatus including at least one compound according to any one of (1) to (10)”.

即ち、本発明は、二光子吸収材料、これを用いた三次元メモリ材料、光制限材料、及び光造形用光硬化樹脂の硬化材料、二光子蛍光顕微鏡用蛍光色素材料に係わる。ここで、上記(1)〜(10)は、本発明の二光子吸収材料の基本構造を示し、(11)〜(14)は、その好適な工業的適用材料例を示し、(15)〜(18)は、本発明の化合物を含むデバイス、装置、システムの応用例を示す。   That is, the present invention relates to a two-photon absorption material, a three-dimensional memory material using the same, a light limiting material, a photocuring resin curing material, and a fluorescent dye material for a two-photon fluorescence microscope. Here, said (1)-(10) shows the basic structure of the two-photon absorption material of this invention, (11)-(14) shows the example of the suitable industrial application material, (15)- (18) shows an application example of a device, apparatus and system containing the compound of the present invention.

以下の詳細且つ具体的な説明より明らかなように、本発明により、二光子吸収の遷移効率が高い二光子吸収化合物が実現でき、小型で安価なレーザを使った実用用途(三次元メモリ材料、光制限材料、光造形用光硬化樹脂の硬化材料、光化学療法用材料、二光子蛍光顕微鏡用蛍光色素材料など)が実現可能となるという極めて優れた効果を奏するものである。   As will be apparent from the following detailed and specific description, the present invention can realize a two-photon absorption compound having a high two-photon absorption transition efficiency, and can be used in practical applications using a small and inexpensive laser (three-dimensional memory material, Light-limiting material, photocuring resin curing material, photochemotherapy material, fluorescent dye material for two-photon fluorescence microscope, etc.) can be realized.

以下、本発明について詳細に説明する。
本発明の二光子吸収材料とは、非共鳴領域の波長において分子を励起することが可能な材料で、このとき励起に用いた光子の2倍のエネルギー準位に、実励起状態が存在する材料のことである。
ところで、二光子吸収現象とは、三次の非線形光学効果の一種で、分子が二つのフォトンを同時に吸収して、基底状態から励起状態へ遷移する現象であり、古くから知られていたがJean−Luc Bredas等が1998年に分子構造とメカニズムの関係を解明して以来(Science,281,1653 (1998))、近年になって二光子吸収能を有する材料に関する研究が進むようになった。
Hereinafter, the present invention will be described in detail.
The two-photon absorption material of the present invention is a material capable of exciting a molecule at a wavelength in a non-resonant region, and a material having an actual excited state at an energy level twice that of a photon used for excitation at this time. That is.
By the way, the two-photon absorption phenomenon is a kind of third-order nonlinear optical effect, which is a phenomenon in which a molecule absorbs two photons simultaneously and transitions from a ground state to an excited state. Since Luc Bredas et al. Elucidated the relationship between molecular structure and mechanism in 1998 (Science, 281, 1653 (1998)), research on materials having two-photon absorption ability has recently advanced.

しかしながらこのような二光子同時吸収の遷移効率は、一光子吸収に較べて極めて低く、極めて大きなパワー密度の光子を必要とするため、通常に使用されるレーザー光強度では殆ど無視され、ピーク光強度(最大発光波長における光強度)が高いモード同期レーザーのようなフェムト秒程度の極超短パルスレーザーを用いると、観察されることが確認されている。
二光子吸収の遷移効率は印加する光電場の二乗に比例する(二光子吸収の二乗特性)。このため、レーザーを照射した場合、レーザースポット中心部の電界強度の高い位置でのみ二光子の吸収が起こり、周辺部の電界強度の弱い部分では二光子の吸収は全く起こらない。三次元空間においては、レーザー光をレンズで集光した焦点の電界強度の大きな領域でのみ二光子吸収が起こり、焦点から外れた領域では電界強度が弱いために二光子吸収が全く起こらない。印加された光電場の強度に比例してすべての位置で励起が起こる一光子の線形吸収に比べて、二光子吸収は、この二乗特性に由来して空間内部のピンポイントのみでしか励起が起こらないため、空間分解能が著しく向上する。
However, since the transition efficiency of such two-photon simultaneous absorption is extremely low compared to single-photon absorption and requires extremely high power density photons, it is almost neglected in the usual laser light intensity, and peak light intensity It has been confirmed that an ultra-short pulse laser of about femtosecond such as a mode-locked laser having a high (light intensity at the maximum emission wavelength) is used.
The transition efficiency of two-photon absorption is proportional to the square of the applied photoelectric field (the two-photon absorption square characteristic). For this reason, when a laser is irradiated, two-photon absorption occurs only at a position where the electric field strength is high at the center of the laser spot, and no two-photon absorption occurs at a portion where the electric field strength is weak at the peripheral portion. In the three-dimensional space, two-photon absorption occurs only in a region where the electric field strength at the focal point where the laser light is collected by the lens is large, and no two-photon absorption occurs in the region outside the focal point because the electric field strength is weak. Compared to the linear absorption of one photon where excitation occurs at all positions in proportion to the intensity of the applied photoelectric field, the two-photon absorption is excited only at a pinpoint inside the space due to this square characteristic. Therefore, the spatial resolution is significantly improved.

この特性を利用して、記録媒体の所定の位置に二光子吸収によりスペクトル変化、屈折率変化または偏光変化を生じさせ、ビットデータを記録する三次元メモリの研究が進められている。二光子吸収は、光の強度の二乗に比例して生じるため、二光子吸収を利用したメモリは、一光子吸収を利用したメモリに比べて、スポットサイズを小さくすることができ、超解像記録が可能となる。その他この二乗特性に由来する高い空間分解能の特性から、光制限材料、光造形用光硬化樹脂の硬化材料、二光子蛍光顕微鏡用蛍光色素材料などの用途への開発も進められている。   Utilizing this characteristic, research on a three-dimensional memory for recording bit data by causing a spectral change, a refractive index change or a polarization change by two-photon absorption at a predetermined position of a recording medium is underway. Since two-photon absorption occurs in proportion to the square of the intensity of light, a memory using two-photon absorption can reduce the spot size compared to a memory using one-photon absorption, and super-resolution recording. Is possible. In addition, from the characteristics of high spatial resolution derived from this square characteristic, development for applications such as a light limiting material, a cured material of a photo-curing resin for stereolithography, and a fluorescent dye material for a two-photon fluorescence microscope is being promoted.

さらに、二光子吸収を誘起する場合には、化合物の線形吸収帯が存在する波長領域よりも長波長でかつ吸収の存在しない、近赤外領域の短パルスレーザーを用いることが可能である。化合物の線形吸収帯が存在しない、いわゆる透明領域の近赤外光を用いるため、励起光が吸収や散乱を受けずに試料内部まで到達でき、かつ二光子吸収の二乗特性のために試料内部のピンポイントを高い空間分解能で励起できるため、二光子吸収及び二光子発光は生体組織の二光子造影や二光子フォトダイナミックセラピー(PDT)などの光化学療法応用面でも期待されている。また、二光子吸収、二光子発光を用いると、入射した光子のエネルギーよりも高いエネルギーの光子を取り出せるため、波長変換デバイスという観点からアップコンバージョンレージングに関する研究も報告されている。   Furthermore, in the case of inducing two-photon absorption, it is possible to use a short-pulse laser in the near-infrared region that has a longer wavelength than the wavelength region in which the linear absorption band of the compound exists and does not have absorption. Since the near-infrared light of the so-called transparent region, which does not have a linear absorption band of the compound, is used, the excitation light can reach the inside of the sample without being absorbed or scattered, and because of the square characteristic of the two-photon absorption, Since pinpoints can be excited with high spatial resolution, two-photon absorption and two-photon emission are also expected in photochemotherapy applications such as two-photon contrast and two-photon photodynamic therapy (PDT) in biological tissues. In addition, research on upconversion lasing has been reported from the viewpoint of a wavelength conversion device because photons with higher energy than the energy of incident photons can be extracted by using two-photon absorption and two-photon emission.

二光子吸収材料としてはこれまでに多数の無機材料が見出されてきた。ところが無機物においては、所望の二光子吸収特性や、素子製造のために必要な諸物性を最適化するためのいわゆる分子設計が困難であることから実用するのは非常に困難であった。一方、有機化合物は分子設計により所望の二光子吸収の最適化が可能であるのみならず、その他の諸物性のコントロールも可能であるため、実用の可能性が高く、有望な二光子吸収材料として注目を集めている。
従来の有機系二光子吸収材料としては、ローダミン、クマリンなどの色素化合物、ジチエノチオフェン誘導体、オリゴフェニレンビニレン誘導体などの化合物が知られている。しかしながら、分子あたりの二光子吸収能を示す二光子吸収断面積が小さく、特にフェムト秒パルスレーザーを用いた場合の二光子吸収断面積は、200(GM:×10-50cm4・s・molecule-1・photon-1)未満のものが殆どで工業的な実用化には至っていない。
Many inorganic materials have been found so far as two-photon absorption materials. However, inorganic materials are very difficult to put into practical use because so-called molecular design for optimizing desired two-photon absorption characteristics and various physical properties necessary for device manufacture is difficult. On the other hand, organic compounds can be optimized not only for the desired two-photon absorption by molecular design, but also for other physical properties, making it highly practical and a promising two-photon absorption material. It attracts attention.
As conventional organic two-photon absorption materials, pigment compounds such as rhodamine and coumarin, compounds such as dithienothiophene derivatives and oligophenylene vinylene derivatives are known. However, the two-photon absorption cross section showing the two-photon absorption capacity per molecule is small, especially when using a femtosecond pulse laser, the two-photon absorption cross-section is 200 (GM: × 10-50cm4 · s · molecule-1 -Most of those less than photon-1) have not been put into practical use.

<二光子吸収材料を用いた三次元多層光メモリへの応用>
最近、インターネット等のネットワークやハイビジョンTVが急速に普及している。また、HDTV(High Definition Television)の放映時期に際し、民生用途においても50GB以上、好ましくは100GB以上の画像情報を安価簡便に記録するための大容量記録媒体の要求が高まっている。さらにコンピューターバックアップ用途、放送バックアップ用途等、業務用途においては、1TB程度あるいはそれ以上の大容量の情報を高速かつ安価に記録できる光記録媒体が求められている。そのような中、DVD±Rのような従来の二次元光記録媒体は物理原理上、たとえ記録再生波長を短波長化したとしてもせいぜい25GB程度で、将来の要求に対応できる程の充分大きな記録容量が期待できるとは言えない状況である。
そのような状況の中、究極の高密度、高容量記録媒体として、三次元光記録媒体が俄然、注目されてきている。三次元光記録媒体は、三次元(膜厚)方向に何十、何百層もの記録を重ねることで、従来の二次元記録媒体の何十、何百倍もの超高密度、超高容量記録を達成しようとするものである。三次元光記録媒体を提供するためには、三次元(膜厚)方向の任意の場所にアクセスして書き込みできなければならないが、その手段として、二光子吸収材料を用いる方法とホログラフィ(干渉)を用いる方法とある。二光子吸収材料を用いる三次元光記録媒体では、上記で説明した原理に基づいて何十、何百倍にもわたる、いわゆるビット記録が可能であって、より高密度の記録が可能であり、まさに究極の高密度、高容量光記録媒体であると言える。
二光子吸収材料を用いた三次元光記録媒体としては、記録再生に蛍光性物質を用いて蛍光で読み取る方法(レウ"ィッチ、ユージーン、ポリス他、特表2001−524245号公報、パベル、ユージエン他、特表2000−512061号公報)、フォトクロミック化合物を用いて吸収または蛍光で読み取る方法(コロティーフ、ニコライ・アイ他、特表2001−522119号公報、アルセノフ、ウ"ラディミール他、特表2001−508221号公報)等が提案されているが、いずれも具体的な二光子吸収材料の提示はなく、また抽象的に提示されている二光子吸収化合物の例も二光子吸収効率の極めて小さい二光子吸収化合物を用いている。さらに、これらの特許文献に用いているフォトクロミック化合物は可逆材料であるため、非破壊読み出し、記録の長期保存性、再生のS/N比等に問題があり、光記録媒体として実用性のある方式であるとは言えない。特に非破壊読出し、記録の長期保存性等の点では、不可逆材料を用いて反射率(屈折率または吸収率)または発光強度の変化で再生するのが好ましいが、このような機能を有する二光子吸収材料を具体的に開示している例はなかった。
また、河田聡、川田善正、特開平6−28672号公報、河田聡、川田善正他、特開平6−118306号公報には、屈折率変調により三次元的に記録する記録装置、及び再生装置、読み出し方法等が開示されているが、二光子吸収三次元光記録材料を用いた方法についての記載はない。
<Application to two-dimensional multilayer optical memory using two-photon absorption material>
Recently, networks such as the Internet and high-definition TV are rapidly spreading. In addition, at the time of HDTV (High Definition Television) broadcasting, there is an increasing demand for a large-capacity recording medium for easily and inexpensively recording image information of 50 GB or more, preferably 100 GB or more, for consumer use. Furthermore, for business use such as computer backup use and broadcast backup use, an optical recording medium capable of recording large-capacity information of about 1 TB or more at high speed and at low cost is required. Under such circumstances, the conventional two-dimensional optical recording medium such as DVD ± R is about 25 GB at most even if the recording / reproducing wavelength is shortened due to the physical principle, and is sufficiently large enough to meet future requirements. It cannot be said that capacity can be expected.
Under such circumstances, a three-dimensional optical recording medium has attracted attention as an ultimate high-density, high-capacity recording medium. Three-dimensional optical recording media can be recorded in dozens or hundreds of layers in the three-dimensional (film thickness) direction, resulting in tens or hundreds of times the ultra-high density and ultra-high capacity recording of conventional two-dimensional recording media. That is what we are trying to achieve. In order to provide a three-dimensional optical recording medium, it is necessary to be able to access and write at an arbitrary place in the three-dimensional (film thickness) direction. As a means for this, a method using a two-photon absorption material and holography (interference) There is a method of using. In a three-dimensional optical recording medium using a two-photon absorbing material, so-called bit recording can be performed over tens or hundreds of times based on the principle described above, and higher density recording is possible. It can be said that this is the ultimate high-density, high-capacity optical recording medium.
As a three-dimensional optical recording medium using a two-photon absorption material, a method of reading with fluorescence using a fluorescent substance for recording and reproduction (Lewitch, Eugene, Police, etc., JP 2001-524245 A, Pavel, Eugene, etc.) , JP 2000-520261 A), a method of reading by absorption or fluorescence using a photochromic compound (Korotif, Nikolai Eye et al., JP 2001-522119 JP, Arsenoff, U "Radimir et al., JP 2001-508221 A However, there is no specific two-photon absorption material presented, and examples of two-photon absorption compounds presented abstractly are two-photon absorption compounds with extremely low two-photon absorption efficiency. Is used. Further, since the photochromic compounds used in these patent documents are reversible materials, there are problems in non-destructive reading, long-term storage stability of recording, S / N ratio of reproduction, and the like, a method that is practical as an optical recording medium I can't say that. In particular, in terms of non-destructive readout, long-term storage stability of recording, etc., it is preferable to reproduce by changing the reflectance (refractive index or absorptivity) or emission intensity using an irreversible material, but a two-photon having such a function. There was no example that specifically disclosed the absorbent material.
Also, Kawada Jun, Kawada Yoshimasa, JP-A-6-28672, Kawada Jun, Kawada Yoshimasa et al., JP-A-6-118306 discloses a recording apparatus and a reproducing apparatus for three-dimensional recording by refractive index modulation, Although a reading method and the like are disclosed, there is no description about a method using a two-photon absorption three-dimensional optical recording material.

上に述べたように、非共鳴二光子吸収により得た励起エネルギーを用いて反応を起こし、その結果レーザー焦点(記録)部と非焦点(非記録)部で光を照射した際の発光強度を書き換えできない方式で変調することができれば、三次元空間の任意の場所に極めて高い空間分解能で発光強度変調を起こすことができ、究極の高密度記録媒体と考えられる三次元光記録媒体への応用が可能となる。さらに、非破壊読み出しが可能で、かつ不可逆材料であるため良好な保存性も期待でき実用的である。
しかし、現時点で利用可能な二光子吸収化合物では、二光子吸収能が低いため、光源として非常に高出力のレーザーが必要であり、かつ記録時間も長くかかる。特に三次元光記録媒体に使用するためには、速い転送レート達成のために、高感度にて発光能の違いによる記録を二光子吸収により行うことができる二光子吸収三次元光記録材料の構築が必須である。そのためには、高効率に二光子を吸収し励起状態を生成することができる二光子吸収化合物と、二光子吸収化合物励起状態を用いて何らかの方法にて二光子吸収光記録材料の発光能の違いを効率的に形成できる記録成分を含む材料が有力であるが、そのような材料は今までほとんど開示されておらず、そのような材料の構築が望まれていた。
As mentioned above, the reaction is caused by the excitation energy obtained by non-resonant two-photon absorption, and as a result, the emission intensity when light is irradiated at the laser focus (recording) part and the non-focus (non-recording) part If modulation is possible with a method that cannot be rewritten, it is possible to cause emission intensity modulation with extremely high spatial resolution in any place in three-dimensional space, and it can be applied to three-dimensional optical recording media that are considered to be the ultimate high-density recording medium. It becomes possible. Furthermore, since non-destructive readout is possible and the material is an irreversible material, it can be expected to have good storage stability and is practical.
However, the currently available two-photon absorption compounds have a low two-photon absorption capability, so that a very high-power laser is required as a light source and a long recording time is required. Especially for use in three-dimensional optical recording media, construction of a two-photon absorption three-dimensional optical recording material that can perform recording with two-photon absorption with high sensitivity to achieve a fast transfer rate. Is essential. For that purpose, the difference between the two-photon absorption compound that can absorb two-photons with high efficiency and generate an excited state, and the two-photon absorption optical recording material using a two-photon absorption compound excited state in some way. Although a material containing a recording component that can efficiently form a thin film is effective, such a material has hardly been disclosed so far, and it has been desired to construct such a material.

本発明の二光子吸収光記録材料は、スピンコーター、ロールコーターまたはバーコーターなどを用いることによって基板上に直接塗布することも、あるいはフィルムとしてキャストしついで通常の方法により基板にラミネートすることもでき、それらにより2光子吸収光記録材料とすることができる。
ここで、「基板」とは、任意の天然又は合成支持体、好適には柔軟性又は剛性フィルム、シートまたは板の形態で存在することができるものを意味する。
基板として好ましくは、ポリエチレンテレフタレート、樹脂下塗り型ポリエチレンテレフタレート、火炎又は静電気放電処理されたポリエチレンテレフタレート、セルロースアセテート、ポリカーボネート、ポリメチルメタクリレート、ポリエステル、ポリビニルアルコール、ガラス等である。また、この基板にはあらかじめ、トラッキング用の案内溝やアドレス情報が付与されたものであっても良い。
使用した溶媒は乾燥時に蒸発除去することができる。蒸発除去には加熱や減圧を用いても良い。
The two-photon absorption optical recording material of the present invention can be applied directly on the substrate by using a spin coater, roll coater or bar coater, or can be cast as a film and laminated on the substrate by a usual method. Thus, a two-photon absorption optical recording material can be obtained.
Here, “substrate” means any natural or synthetic support, preferably one that can exist in the form of a flexible or rigid film, sheet or plate.
The substrate is preferably polyethylene terephthalate, resin-undercoated polyethylene terephthalate, polyethylene terephthalate treated with flame or electrostatic discharge, cellulose acetate, polycarbonate, polymethyl methacrylate, polyester, polyvinyl alcohol, glass or the like. The substrate may be provided with a guide groove for tracking and address information in advance.
The solvent used can be removed by evaporation during drying. Heating or reduced pressure may be used for evaporation removal.

さらに、二光子吸収光記録材料の上に、酸素遮断や層間クロストーク防止のための保護層(中間層)を形成してもよい。保護層(中間層)は、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンテレフタレートまたはセロファンフィルムなどのプラスチック製のフィルムまたは板を静電的な密着、押し出し機を使った積層等により貼合わせるか、前記ポリマーの溶液を塗布してもよい。また、ガラス板を貼合わせてもよい。また、保護層と感光膜の間および/または、基材と感光膜の間に、気密性を高めるために粘着剤または液状物質を存在させてもよい。さらに感光膜間の保護層(中間層)にもあらかじめ、トラッキング用の案内溝やアドレス情報が付与されたものであっても良い。   Furthermore, a protective layer (intermediate layer) for blocking oxygen and preventing interlayer crosstalk may be formed on the two-photon absorption optical recording material. The protective layer (intermediate layer) is made of a plastic film or plate such as polyolefin such as polypropylene or polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene terephthalate or cellophane film, and is attached electrostatically using an extruder. Alternatively, the layers may be laminated together or the polymer solution may be applied. Further, a glass plate may be bonded. In addition, an adhesive or a liquid substance may be present between the protective layer and the photosensitive film and / or between the base material and the photosensitive film in order to improve airtightness. Further, the protective layer (intermediate layer) between the photosensitive films may be provided with tracking guide grooves and address information in advance.

上述した三次元多層光記録媒体の任意の層に焦点を合わせ、記録再生を実施することで、本発明の三次元記録媒体として機能する。また、層間を保護層(中間層)で区切っていなくとも、二光子吸収色素特性から深さ方向の三次元記録が可能である。   By focusing on an arbitrary layer of the above-described three-dimensional multilayer optical recording medium and performing recording and reproduction, it functions as the three-dimensional recording medium of the present invention. Further, even if the layers are not separated by a protective layer (intermediate layer), three-dimensional recording in the depth direction is possible from the two-photon absorption dye characteristics.

以下、三次元多層光メモリの好ましい実施形態(具体例)を示すが、本発明はこれらの実施形態により何ら限定されず、三次元記録(平面及び膜厚方向に記録)が可能な構造であれば、他にどのような構造であっても構わない。三次元多層光メモリの記録/再生のシステム概略図を図1(a)に、記録媒体の概略断面図を図1(b)に示す。
図中(b)の記録媒体においては、平らな支持体(基板(1))に本発明の二光子吸収化合物を用いた記録層(3)と、クロストーク防止用の中間層(4)(保護層)が交互に50層ずつ積層され、各層はスピンコート法により成膜されている。記録層(3)の厚さは0.01〜0.5μ、中間層(4)の厚さは0.1μ〜5μが好ましく、この構造であれば、現在普及しているCD/DVDと同じディスクサイズで、テラバイト級の超高密度光記録が実現できる。更にデータの再生方法(透過/或いは反射型)により、基板(1)と同様の基板(2)(保護層)、或いは高反射率材料からなる反射層が構成される。
記録時は単一ビーム(5)が使用され、この場合フェムト秒オーダーの超短パルス光を利用することができる。また再生時は、データ記録に使用するビーム(5)とは異なる波長、或いは低出力の同波長の光(6)を用いることもできる。記録及び再生は、ビット単位/ページ単位のいずれにおいても実行可能であり、面光源や二次元検出器(7)等を利用する並行記録/再生は、転送レートの高速化に有効である。
なお、本発明に従い同様に形成される三次元多層光メモリの形態としては、カード状、プレート状、テープ状、ドラム状等が考えられる。
Hereinafter, preferred embodiments (specific examples) of the three-dimensional multilayer optical memory will be described. However, the present invention is not limited to these embodiments, and any structure capable of three-dimensional recording (recording in a plane and a film thickness direction) can be used. Any other structure may be used. A schematic diagram of a recording / reproducing system of a three-dimensional multilayer optical memory is shown in FIG. 1A, and a schematic sectional view of a recording medium is shown in FIG.
In the recording medium (b) in the drawing, a recording layer (3) using the two-photon absorption compound of the present invention on a flat support (substrate (1)), and an intermediate layer (4) for preventing crosstalk ( 50 protective layers) are alternately stacked, and each layer is formed by spin coating. The recording layer (3) preferably has a thickness of 0.01 to 0.5 [mu], and the intermediate layer (4) preferably has a thickness of 0.1 [mu] to 5 [mu]. Terabyte-class ultra-high-density optical recording can be realized with disk size. Further, a substrate (2) (protective layer) similar to the substrate (1) or a reflective layer made of a high reflectance material is formed by a data reproduction method (transmission / or reflection type).
A single beam (5) is used during recording, and in this case, ultrashort pulsed light in the femtosecond order can be used. At the time of reproduction, it is also possible to use a light (6) having a wavelength different from that of the beam (5) used for data recording or the same wavelength with a low output. Recording and reproduction can be performed in either bit units or page units, and parallel recording / reproduction using a surface light source, a two-dimensional detector (7), or the like is effective in increasing the transfer rate.
Note that a three-dimensional multilayer optical memory similarly formed according to the present invention may have a card shape, a plate shape, a tape shape, a drum shape, or the like.

<二光子吸収材料を用いた光制限素子への応用>
光通信や光情報処理では、情報等の信号を光で搬送するためには変調、スイッチング等の光制御が必要になる。この種の光制御には、電気信号を用いた電気−光制御方法が従来採用されている。しかし電気−光制御方法は、電気回路のようなCR時定数による帯域制限、素子自体の応答速度や電気信号と光信号との間の速度の不釣合いで処理速度が制限されることなどの制約があり、光の利点である広帯域性や高速性を十分に生かすためには、光信号によって光信号を制御する光−光制御技術が非常に重要になってくる。この要求に応えるものとして本発明の二光子吸収材料を加工して作製した光学素子は、光を照射することで引き起こされる透過率や屈折率、吸収係数などの光学的変化を利用し、電子回路技術を用いずに光の強度や周波数を変調することで、光通信、光交換、光コンピュータ、光インターコネクション等における光スイッチなどに応用することが可能である。
二光子吸収による光学特性変化を利用する本発明の光制限素子は、通常の半導体材料により形成される光制限素子や、一光子励起によるものに比べ、応答速度にはるかに優れた素子を提供することができる。また高感度ゆえに、S/N比の高い信号特性に優れた光制限素子を提供することができる。
<Application to optical limiting element using two-photon absorption material>
In optical communication and optical information processing, optical control such as modulation and switching is required to carry signals such as information with light. For this type of light control, an electro-light control method using an electric signal has been conventionally employed. However, the electro-optical control method has limitations such as a band limitation due to a CR time constant as in an electric circuit, a processing speed being limited due to a response speed of the element itself and a speed mismatch between an electric signal and an optical signal. In order to make full use of the broadband and high speed, which are the advantages of light, light-light control technology for controlling an optical signal with an optical signal becomes very important. An optical element manufactured by processing the two-photon absorption material of the present invention in response to this requirement utilizes an optical change such as transmittance, refractive index, absorption coefficient, etc. caused by irradiating light, and an electronic circuit. By modulating the intensity and frequency of light without using technology, it can be applied to optical switches in optical communication, optical exchange, optical computers, optical interconnections, and the like.
The optical limiting element of the present invention that utilizes the change in optical characteristics due to two-photon absorption provides an optically limiting element that is formed from a normal semiconductor material and an element that has a much higher response speed than those based on one-photon excitation. be able to. Further, because of the high sensitivity, it is possible to provide an optical limiting element excellent in signal characteristics with a high S / N ratio.

図2は、本発明の二光子吸収材料を、二光子励起し得る波長の制御光により二光子励起させることによって、一光子励起し得る波長の信号光を光スイッチングする光制御素子(21)の一例である。保護層で狭持された二光子吸収材料の形態を示すが、この構成が本発明を限定するものではない。   FIG. 2 shows an optical control element (21) that optically switches signal light having a wavelength that can be excited by one photon by exciting the two-photon absorbing material of the present invention with control light having a wavelength that can be excited by two photons. It is an example. Although the form of the two-photon absorption material sandwiched between the protective layers is shown, this configuration does not limit the present invention.

本発明における光制限素子を理解するのに有益な公知文献として特開平8−320422号公報が挙げられる。これによると光照射により屈折率が変化する光屈折率材料に、その屈折率が変化する波長の光を照射してフォーカシングを行い、屈折率分布を形成する光導波路として用いることが開示されている。すなわち、本発明の高い二光子吸収能を有した材料、薄膜、もしくは光硬化性樹脂等に分散させた固体物を光学素子として配置し、ひとつの波長(λ1)の光で励起状態に励起され、さらにその状態から他の波長(λ2)の光で他の状態に励起されることにより波長による屈折率変化分布を利用した光導波路の設計が可能となる。また、二光子吸収材料はその多くが蛍光を有するものが多く、光デバイスの一方の出射端またはその近傍に蛍光物質を配置し、他方から励起光(λ1)を出射させ、励起光(λ1)と蛍光(λ2)で屈折率分布を形成することもできる。この場合、通常蛍光の方が励起光より弱いので、感度は蛍光の波長において大きくすることが望ましい。蛍光物質としては、蛍光色素を光硬化性物質や種々の樹脂等に分散させたものなどが例示される。   JP-A-8-320422 is known as a known document useful for understanding the light limiting element in the present invention. According to this, it is disclosed that a light refractive index material whose refractive index is changed by light irradiation is irradiated with light having a wavelength whose refractive index changes to perform focusing, and used as an optical waveguide for forming a refractive index distribution. . That is, a solid material dispersed in a material having a high two-photon absorption ability, a thin film, or a photocurable resin according to the present invention is arranged as an optical element, and is excited to an excited state by light of one wavelength (λ1). Further, by being excited from the state to another state with light of another wavelength (λ2), it becomes possible to design an optical waveguide using a refractive index change distribution according to the wavelength. Many of the two-photon absorption materials have fluorescence, and a fluorescent substance is disposed at one of the emission ends of the optical device or in the vicinity thereof, and excitation light (λ1) is emitted from the other, thereby exciting light (λ1). And a refractive index distribution can be formed by fluorescence (λ2). In this case, since the fluorescence is usually weaker than the excitation light, it is desirable to increase the sensitivity at the fluorescence wavelength. Examples of the fluorescent substance include those obtained by dispersing a fluorescent dye in a photocurable substance or various resins.

<光造形用材料への応用>
二光子光造形法の装置の概略図を図3に示し、以下に説明する。
近赤外パルスレーザ光源(31)から発し、過光量を時間的にコントロールするシャッター(32)、NDフィルター(33)、光束(光強度)の大きさを所望程度に制御する光束変換系(34a)を経た光を、ミラースキャナー(34)を通した後、集光レンズ(35)を用いて光硬化性樹脂液(39)中に集光させレーザスポットを走査し、二光子吸収を誘起することによって焦点近傍のみにおいて樹脂を硬化させて任意の三次元構造を形成する二光子マイクロ光造形方法である。図中、符号(36)はZステージ、(38)はこれら装置制御のためのコンピュータのモニタである。
パルスレーザ光をレンズ(35)で集光して、集光点近傍にフォトンの密度の高い領域を形成する。このときビームの各断面を通過するフォトンの総数は一定なので、焦点面内でビームを二次元的に走査した場合、各断面における光強度の総和は一定である。しかしながら、二光子吸収の発生確率は、光強度の二乗に比例するため、光強度の大きい集光点近傍にのみ、二光子吸収の発生の高い領域が形成される。このように、パルスレーザ光をレンズによって集光させ二光子吸収を誘起することで、集光点近傍に光吸収を限定し、ピンポイント的に樹脂を硬化させることが可能となる。集光点はZステージ(36)とガルバノミラーによって光硬化樹脂液内を自由に移動させることができるため、光硬化性樹脂液内において目的とする三次元加工物を自在に形成することができる。
<Application to stereolithography materials>
A schematic diagram of a two-photon stereolithography apparatus is shown in FIG. 3 and described below.
A shutter (32), an ND filter (33) that controls the amount of light emitted from the near-infrared pulse laser light source (31) in time, and a light beam conversion system (34a) that controls the size of the light beam (light intensity) to a desired level. ) Is passed through a mirror scanner (34), then condensed into a photocurable resin liquid (39) using a condenser lens (35), and a laser spot is scanned to induce two-photon absorption. This is a two-photon micro stereolithography method in which the resin is cured only in the vicinity of the focal point to form an arbitrary three-dimensional structure. In the figure, reference numeral 36 denotes a Z stage, and reference numeral 38 denotes a computer monitor for controlling these devices.
The pulse laser beam is condensed by the lens (35), and a region with high photon density is formed in the vicinity of the condensing point. At this time, since the total number of photons passing through each cross section of the beam is constant, when the beam is scanned two-dimensionally within the focal plane, the total light intensity in each cross section is constant. However, since the probability of occurrence of two-photon absorption is proportional to the square of the light intensity, a region where the generation of two-photon absorption is high is formed only near the condensing point where the light intensity is high. Thus, by condensing the pulsed laser light with the lens and inducing two-photon absorption, it is possible to limit the light absorption near the condensing point and to cure the resin in a pinpoint manner. Since the condensing point can be freely moved in the photocurable resin liquid by the Z stage (36) and the galvanometer mirror, a desired three-dimensional workpiece can be freely formed in the photocurable resin liquid. .

二光子光造形法の特徴としては、以下の項目が挙げられる。
1)回折限界をこえる加工分解能:二光子吸収の光強度に対する非線形性によって、光の回折限界を超えた加工分解能を実現できる。
2)超高速造形:二光子吸収を利用した場合、焦点以外の領域では、光硬化性樹脂が原理的にも硬化しない。このため照射させる光強度を大きくし、ビームのスキャン速度を速くすることができる。このため、造形速度を約10倍向上することができる。
3)三次元加工:光硬化性樹脂は、二光子吸収を誘起する近赤外光に対して透明である。したがって焦点光を樹脂の内部へ深く集光した場合でも、内部硬化が可能である。従来のSIHでは、ビームを深く集光した場合、光吸収によって集光点の光強度が小さくなり、内部硬化が困難になる問題点が、本発明ではこうした問題点を確実に解決することができる。
4)高い歩留り:従来法では樹脂の粘性や表面張力によって造形物が破損、変形するという問題があったが、本手法では、樹脂の内部で造形を行うのでこうした問題は解消される。
5)大量生産への適用:超高速造形を利用することによって、短時間に、連続的に多数個の部品あるいは可動機構の製造が可能である。
The features of the two-photon stereolithography include the following items.
1) Processing resolution exceeding the diffraction limit: Processing resolution exceeding the diffraction limit of light can be realized by the nonlinearity of the two-photon absorption with respect to the light intensity.
2) Ultra-high speed modeling: When two-photon absorption is used, the photocurable resin does not cure in principle in the region other than the focal point. For this reason, the light intensity to be irradiated can be increased, and the beam scanning speed can be increased. For this reason, modeling speed can be improved about 10 times.
3) Three-dimensional processing: The photocurable resin is transparent to near-infrared light that induces two-photon absorption. Therefore, even when the focused light is condensed deeply into the resin, internal curing is possible. In the conventional SIH, when the beam is condensed deeply, the light intensity at the condensing point is reduced by light absorption, and the internal curing becomes difficult. In the present invention, these problems can be solved reliably. .
4) High yield: In the conventional method, there is a problem that the molded object is damaged or deformed due to the viscosity or surface tension of the resin. However, in this method, the problem is solved because the modeling is performed inside the resin.
5) Application to mass production: By using ultra-high speed modeling, it is possible to manufacture a large number of parts or movable mechanisms continuously in a short time.

二光子光造形用光硬化性樹脂とは、光を照射することにより二光子重合反応を起こし、液体から固体へと変化するという特性を持った樹脂である。主成分はオリゴマーと反応性希釈剤からなる樹脂成分と光重合開始剤(必要に応じ光増感材料を含む)である。オリゴマーは重合度が2〜20程度の重合体であり、末端に多数の反応基を持つ。さらに、粘度、硬化性等を調整するため、反応性希釈剤が加えられている。光を照射すると、重合開始剤または光増感材料がこれを二光子吸収し、重合開始剤から直接または光増感材料を介して反応種が発生し、オリゴマー、反応性希釈剤の反応基に反応し、重合を開始させる。その後これらの間で連鎖的重合反応を起こし三次元架橋が形成され、短時間のうちに三次元網目構造を持つ固体樹脂へと変化する。   The photocurable resin for two-photon stereolithography is a resin having a characteristic of causing a two-photon polymerization reaction when irradiated with light and changing from a liquid to a solid. The main components are a resin component consisting of an oligomer and a reactive diluent and a photopolymerization initiator (including a photosensitizing material as required). An oligomer is a polymer having a degree of polymerization of about 2 to 20, and has a large number of reactive groups at its ends. Further, a reactive diluent is added to adjust the viscosity, curability and the like. When irradiated with light, the polymerization initiator or photosensitizing material absorbs this two-photon, and a reactive species is generated directly from the polymerization initiator or through the photosensitizing material, to the reactive group of the oligomer or reactive diluent. React and initiate polymerization. Thereafter, a chain polymerization reaction takes place between them to form a three-dimensional cross-link, and in a short time, a solid resin having a three-dimensional network structure is formed.

光硬化性樹脂は光硬化インキ、光接着剤、積層式立体造形などの分野で使用されており、様々な特性を持つ樹脂が開発されている。特に、積層式立体造形においては
(1)反応性が良好であること、
(2)硬化時の堆積収縮が小さいこと、
(3)硬化後の機械特性が優れていること、
等が重要である。これらの特性は本手法においても同様に重要であり、そのため、積層式立体造形用に開発された樹脂で二光子吸収特性を有するものは本手法の二光子光造形用光硬化性樹脂としても使用できる。その具体的な例としては、アクリレート系及びエポキシ系の光硬化性樹脂が良く用いられ、特にウレタンアクリレート系の光硬化性樹脂が好ましい。
Photocurable resins are used in fields such as photocurable inks, photoadhesives, and layered three-dimensional modeling, and resins having various characteristics have been developed. Especially in layered 3D modeling (1) Reactivity is good,
(2) Deposition shrinkage during curing is small,
(3) Excellent mechanical properties after curing,
Etc. are important. These characteristics are equally important in this method. Therefore, resins developed for layered three-dimensional modeling that have two-photon absorption characteristics are also used as photocurable resins for two-photon photofabrication in this method. it can. As specific examples, acrylate-based and epoxy-based photocurable resins are often used, and urethane acrylate-based photocurable resins are particularly preferable.

本発明における光造形を理解するのに有益な公知文献として特開2005−134873号公報が挙げられる。これによると感光性高分子膜の表面に、パルスレーザー光を、マスクを介さずに干渉露光させている。前記パルスレーザー光としては、前記感光性高分子膜に感光性機能を発揮させる波長領域のパルスレーザー光であることが重要である。従って、パルスレーザー光としては、感光性高分子の種類、または、感光性高分子における感光性機能を発揮する基又は部位の種類などに応じて、その波長領域を適宜選択することができる。特に、光源から発光されるパルスレーザー光の波長が、感光性高分子膜に感光性機能を発揮させる波長領域でなくても、パルスレーザー光の照射に際して、多光子吸収過程を利用することにより、感光性高分子膜に感光性機能を発揮させることが可能となる。具体的には、光源から発光されるパルスレーザー光を集光して、集光されたパルスレーザー光を照射すると、多光子の吸収(例えば、二光子の吸収、三光子の吸収、四光子の吸収、五光子の吸収など)が生じ、これにより、光源から発光されるパルスレーザー光の波長が、感光性高分子膜に感光性機能を発揮させる波長領域でなくても、感光性高分子膜には、実質的に、感光性高分子膜に感光性機能を発揮させる波長領域のパルスレーザー光が照射されたことになる。このように、干渉露光するパルスレーザー光は、実質的に、感光性高分子膜に感光性機能を発揮させる波長領域となるパルスレーザー光であればよく、照射条件などにより、その波長を適宜選択することができる。たとえば、本発明の高効率二光子吸収材料を光増感材料とし、紫外線硬化樹脂等に分散し、感光物固体としこの感光物固体の二光子吸収能を利用して焦点スポットのみが硬化する特性を利用した超精密三次元造形物を得ることが可能となる。   Japanese Patent Application Laid-Open No. 2005-134873 is a known document useful for understanding the optical modeling in the present invention. According to this, pulsed laser light is subjected to interference exposure on the surface of the photosensitive polymer film without passing through a mask. It is important that the pulsed laser beam is a pulsed laser beam in a wavelength region that allows the photosensitive polymer film to exhibit a photosensitive function. Therefore, the wavelength region of the pulsed laser light can be appropriately selected according to the type of the photosensitive polymer or the type of group or site that exhibits the photosensitive function in the photosensitive polymer. In particular, even if the wavelength of the pulsed laser light emitted from the light source is not in a wavelength region that causes the photosensitive polymer film to exhibit a photosensitive function, by utilizing a multiphoton absorption process upon irradiation with the pulsed laser light, The photosensitive polymer film can exhibit a photosensitive function. Specifically, when the pulsed laser light emitted from the light source is condensed and irradiated with the condensed pulsed laser light, multiphoton absorption (for example, two-photon absorption, three-photon absorption, four-photon absorption, Photosensitive polymer film even if the wavelength of the pulsed laser light emitted from the light source is not in a wavelength region that causes the photosensitive polymer film to perform a photosensitive function. Is substantially irradiated with a pulsed laser beam in a wavelength region that causes the photosensitive polymer film to exhibit a photosensitive function. As described above, the pulsed laser beam for the interference exposure may be substantially a pulsed laser beam in a wavelength region that causes the photosensitive polymer film to exhibit the photosensitive function, and the wavelength is appropriately selected depending on the irradiation conditions. can do. For example, the high-efficiency two-photon absorbing material of the present invention is used as a photosensitizing material, dispersed in an ultraviolet curable resin, etc., and a photosensitive solid, and only the focal spot is cured using the two-photon absorption ability of the photosensitive solid. It is possible to obtain an ultra-precise three-dimensional structure using

本発明の二光子吸収材料は、二光子吸収重合開始剤または二光子吸収光増感材料として用いることが出来る。従来の二光子吸収材料(二光子吸収重合開始剤または二光子吸収光増感材料)に比較し、二光子吸収感度が高いため、高速造形が可能で、励起光源としても小型で安価なレーザ光源が使用できるため、大量生産可能な実用用途への展開が可能となる。   The two-photon absorption material of the present invention can be used as a two-photon absorption polymerization initiator or a two-photon absorption photosensitizer. Compared to conventional two-photon absorption materials (two-photon absorption polymerization initiators or two-photon absorption photosensitizers), the two-photon absorption sensitivity is high, so high-speed modeling is possible, and the laser light source is small and inexpensive as an excitation light source. Can be used for practical applications that can be mass-produced.

<二光子吸収材料を用いた二光子蛍光顕微鏡への応用>
二(多)光子励起レーザ走査顕微鏡とは、近赤外パルスレーザを標本面上に集光し走査させて、そこでの二(多)光子吸収により励起されて発生する蛍光を検出することにより像を得る顕微鏡である。
<Application to two-photon fluorescence microscope using two-photon absorption material>
A two (multi) photon excitation laser scanning microscope collects and scans a near-infrared pulse laser on the sample surface, and detects fluorescence generated by excitation by two (multi) photon absorption there. It is a microscope to obtain

二光子励起レーザ走査顕微鏡の基本構成の概略図を図4に示す。
近赤外域波長のサブピコ秒の単色コヒーレント光パルスを発するレーザ光源(41)と、レーザ光源からの光束を所望の大きさに変える光束変換光学系(42)と、光束変換光学系で変換された光束を対物レンズの像面に集光し走査させる走査光学系(43)と、集光された上記変換光束を標本面(45)上に投影する対物レンズ系(44)と、ダイクロミックミラー(46)と、光検出器(47)を備えている。
パルスレーザー光をダイクロイックミラー(46)を経て、光束変換光学系(42)、対物レンズ系(44)により集光して、標本面(45)で焦点を結ばせることにより、標本内にある二光子吸収蛍光材料に二光子吸収により誘起された蛍光を生じさせる。標本面をレーザービームで走査し、各場所での蛍光強度を光検出器(47)などの光検出装置で検出して、得られた位置情報に基づいて、コンピュータでプロットすることにより、三次元蛍光像が得られる。走査機構としては、例えば、ガルバノミラーなどの可動ミラーを用いてレーザービームを走査しても良く、或いはステージ上に置かれた二光子吸収材料を含む標本を移動させても良い。
このような構成により、二光子吸収そのものの非線形効果を利用して、光軸方向の高分解能を得ることができる。加えて、共焦点ピンホール板を用いれば、さらなる高分解能(面内、光軸方向共)が得られる。
A schematic diagram of the basic configuration of the two-photon excitation laser scanning microscope is shown in FIG.
Laser light source (41) that emits sub-picosecond monochromatic coherent light pulses of near-infrared wavelength, light beam conversion optical system (42) that changes the light beam from the laser light source to a desired size, and light beam conversion optical system A scanning optical system (43) for condensing and scanning the light beam on the image plane of the objective lens, an objective lens system (44) for projecting the collected converted light beam onto the sample surface (45), and a dichroic mirror ( 46) and a photodetector (47).
The pulse laser beam passes through the dichroic mirror (46), is condensed by the light beam conversion optical system (42) and the objective lens system (44), and is focused on the sample surface (45). Fluorescence induced by two-photon absorption is generated in the photon-absorbing fluorescent material. The sample surface is scanned with a laser beam, the fluorescence intensity at each location is detected by a light detection device such as a light detector (47), and plotted on a computer based on the obtained position information. A fluorescent image is obtained. As the scanning mechanism, for example, a laser beam may be scanned using a movable mirror such as a galvanometer mirror, or a sample including a two-photon absorption material placed on a stage may be moved.
With such a configuration, it is possible to obtain high resolution in the optical axis direction by utilizing the nonlinear effect of two-photon absorption itself. In addition, if a confocal pinhole plate is used, higher resolution (both in-plane and in the optical axis direction) can be obtained.

二光子蛍光顕微鏡用蛍光色素は、標本を染色、又は標本に分散させることにより使用され、工業用途のみならず、生体系の細胞等の三次元画像マイクロイメージングにも用いることができ、高い二光子吸収断面積を持つ化合物が望まれている   Fluorescent dyes for two-photon fluorescence microscopy are used by staining or dispersing specimens, and can be used not only for industrial applications but also for three-dimensional imaging microimaging of biological cells, etc. Compounds with absorption cross sections are desired

本発明における光子蛍光顕微鏡を理解するのに有益な公知文献として特開平9−230246号公報が挙げられる。たとえば走査型蛍光顕微鏡は、所望の大きさに拡大されたコリメート光を発するレーザ照射光学系と、複数の集光素子が形成された基板とを備え、該集光素子の集光位置が対物レンズ系の像位置に一致するように配され、かつ、前記の集光素子が形成された基板と対物レンズ系との間に、長波長を透過し短波長を反射するビームスプリッタが配され、標本面で多光子吸収による蛍光を発生させることを特徴とするものである。このような構成により、多光子吸収そのものの非線形効果を利用して、光軸方向の高分解能を得ることができる。加えて、共焦点ピンホール板を用いれば、さらなる高分解能(面内、光軸方向共)が得られる。このような二光子光学素子は上述の光制御素子と全く同様に本発明の高い二光子吸収能を有した材料、薄膜、もしくは光硬化性樹脂等に分散させた固体物を光学素子として用いることが可能である。   JP-A-9-230246 is a known document useful for understanding the photon fluorescence microscope of the present invention. For example, a scanning fluorescent microscope includes a laser irradiation optical system that emits collimated light expanded to a desired size, and a substrate on which a plurality of condensing elements are formed. A beam splitter that transmits a long wavelength and reflects a short wavelength is disposed between the substrate on which the light condensing element is formed and the objective lens system, so as to coincide with the image position of the system. The surface is characterized by generating fluorescence by multiphoton absorption. With such a configuration, it is possible to obtain high resolution in the optical axis direction by utilizing the nonlinear effect of multiphoton absorption itself. In addition, if a confocal pinhole plate is used, higher resolution (both in-plane and in the optical axis direction) can be obtained. Such a two-photon optical element uses, as the optical element, a solid material dispersed in a material having a high two-photon absorption ability, a thin film, or a photocurable resin of the present invention, just like the above-described light control element. Is possible.

本発明の二光子吸収材料は二光子励起レーザ走査顕微鏡用の二光子吸収蛍光材料として用いることが出来る。従来の二光子吸収蛍光材料に比較し、大きな二光子吸収断面積を有しているので、低濃度で高い二光子吸収特性を発揮する。従って、本発明によれば、高感度な二光子吸収材料が得られるだけでなく、材料に照射する光の強度を強くする必要がなくなり、材料の劣化、破壊を抑制することができ、材料中の他成分の特性に対する悪影響も低下させることができる。
本発明の二光子吸収材料はそれそのもの単独もしくは各種の樹脂との混合の薄膜、あるいはバルクで種々のデバイスへの応用が可能である。
例えば、光ディスクでは上記薄膜が基板と接しており、その基板材料はポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエステル、ポリビニルアルコール、ガラス等である。また、積層する場合であれば、中間層(仕切層)に該薄膜表面が接している。中間層の具体例としてはポリプロピレン、ポリエチレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンテレフタレートまたはセロファンフィルムなどのプラスチック製のフィルムまたは種々の光硬化樹脂等が挙げられる。
The two-photon absorption material of the present invention can be used as a two-photon absorption fluorescent material for a two-photon excitation laser scanning microscope. Compared to conventional two-photon absorption fluorescent materials, it has a large two-photon absorption cross-sectional area, so that it exhibits high two-photon absorption characteristics at a low concentration. Therefore, according to the present invention, not only a highly sensitive two-photon absorption material can be obtained, but there is no need to increase the intensity of light applied to the material, and deterioration and destruction of the material can be suppressed. The adverse effect on the properties of other components can also be reduced.
The two-photon absorption material of the present invention can be applied to various devices by itself or in a thin film mixed with various resins, or in bulk.
For example, in an optical disc, the thin film is in contact with a substrate, and the substrate material is polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyester, polyvinyl alcohol, glass or the like. In the case of stacking, the surface of the thin film is in contact with the intermediate layer (partition layer). Specific examples of the intermediate layer include polyolefins such as polypropylene and polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, plastic films such as polyethylene terephthalate or cellophane film, and various photo-curing resins.

次に、各種光学デバイス、光造形デバイスに応用するにしても、各種樹脂に混合されているか、光硬化樹脂に混合され用いる。
従って、本発明の二光子吸収材料の使用要件としては、該材料が各種樹脂、またはガラスに混合されているか、二光子吸収材料層界面が各種樹脂、またはガラスに接していることである。
言い換えれば、本発明の二光子吸収材料はミクロレベル、又はマクロレベルで各種樹脂、又はガラスに接している構成となっている。
Next, even when applied to various optical devices and optical modeling devices, they are mixed with various resins or mixed with a photocurable resin.
Accordingly, the use requirement of the two-photon absorption material of the present invention is that the material is mixed with various resins or glass, or the interface of the two-photon absorption material layer is in contact with various resins or glass.
In other words, the two-photon absorption material of the present invention is in contact with various resins or glass at the micro level or the macro level.

本発明のポルフィリン誘導体について述べる。
これらのポルフィリン誘導体は、ポルフィリンと同様に大きな芳香族環である。
ポルフィリンは、4つの置換基を有してもよいピロール環がそれぞれ置換基を有してもよい炭素原子(メソ位炭素原子)1つによって結合された化合物であるが、本発明の第一の特定のポルフィリン誘導体は、4つのピロール環を結ぶ置換基を有してもよい炭素原子の合計数が4つであり、かつ少なくとも一個所はピロール環が炭素原子を介さず直接結合した構造を有する化合物である。
いま置換基を有してもよいピロール環を結合させる4個所の置換基を有してもよい炭素原子の数を[ a , b , c , d ]であらわすと、本発明で用いる化合物は[ a , b , c , d ] = 4であり、a,b,c,dのうちいずれかが0となる(ポルフィリンの場合は[ 1 , 1 , 1 , 1 ] = 4)。
この表記方法に従えば、本発明の請求項1に記載の化学式(1)の化合物は[ 2 , 0 , 2 , 0 ]、化学式(2)の化合物は[ 2 , 1 , 1 , 0 ]、化学式(3)の化合物は[ 2 , 1 , 0 , 1 ]、化学式(4)の化合物は[ 3 , 0 , 1 , 0 ]、化学式(5)の化合物は[ 3 , 0 , 1 , 0 ]である。
化学式(1)〜(5)の式中、R1〜R8およびX1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
The porphyrin derivative of the present invention will be described.
These porphyrin derivatives are large aromatic rings like porphyrins.
Porphyrin is a compound in which each pyrrole ring, which may have four substituents, is bonded by one carbon atom (meso position carbon atom) which may have a substituent. The specific porphyrin derivative has a structure in which the total number of carbon atoms that may have a substituent connecting four pyrrole rings is four, and at least one part has a structure in which the pyrrole ring is directly bonded without intervening carbon atoms. A compound.
When the number of carbon atoms that may have 4 substituents to which the pyrrole ring that may have substituents is bonded is represented by [a, b, c, d], the compound used in the present invention is [ a, b, c, d] = 4, and any of a, b, c, d is 0 ([1, 1, 1, 1] = 4 in the case of porphyrin).
According to this notation method, the compound of the chemical formula (1) according to claim 1 of the present invention is [2, 0, 2, 0], the compound of the chemical formula (2) is [2, 1, 1, 0], The compound of formula (3) is [2, 1, 0, 1], the compound of formula (4) is [3, 0, 1, 0], and the compound of formula (5) is [3, 0, 1, 0]. It is.
In the formulas (1) to (5), R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, halogen atom, nitro group, cyano group, hydroxyl group, carboxyl group, substituted or unsubstituted alkyl. A group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group;
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2.

本発明の第二の特定のポルフィリン誘導体は、置換基を有してもよい4つのピロール環が置換基を有してもよい炭素原子又は窒素原子を介して結合した構造で示されるポルフィリン誘導体であり、該4つのピロール環を結ぶ置換基を有してもよい原子のうち少なくとも一個が炭素原子及び窒素原子である化合物である。
R1〜R4は、窒素原子、炭素原子を表し、そのうち少なくとも一個が炭素原子及び窒素原子を表す。
The second specific porphyrin derivative of the present invention is a porphyrin derivative represented by a structure in which four pyrrole rings which may have a substituent are bonded via a carbon atom or a nitrogen atom which may have a substituent. A compound in which at least one of the atoms which may have a substituent connecting the four pyrrole rings is a carbon atom and a nitrogen atom.
R 1 to R 4 represent a nitrogen atom or a carbon atom, and at least one of them represents a carbon atom and a nitrogen atom.

化学式(6)の式中、X1〜X8はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR5)p、(OSiR678)q、(OPOR910)r、(OCOR11)sを有してもよい金属原子を表す。R5〜R11は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
In formula (6), X 1 to X 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, A substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group is represented.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 5 ) p, (OSiR 6 R 7 R 8 ) q, (OPOR 9 R 10 ) r represents a metal atom which may have (OCOR 11 ) s. R 5 to R 11 are independently a hydrogen atom, an aliphatic substituted or unsubstituted, an aromatic hydrocarbon group, p, q, r, s represents an integer of 0 to 2.

未置換のアルキル基、および未置換のアルコキシ基中のアルキル基としては、直鎖状もしくは分岐鎖状のアルキル基が挙げられ、置換アルキル基、および置換アルコキシ基中の置換アルキル基としては、2−ヒドロキシエチル基、3−ヒドロキシプロピル基、4−ヒドロキシブチル基、2−ヒドロキシプロピル基等のヒドロキシ置換アルキル基;カルボキシメチル基、2−カルボキシエチル基、3−カルボキシプロピル基等のカルボキシ置換アルキル基;2−シアノエチル基、シアノメチル基などのシアノ置換アルキル基;2−アミノエチル基などのアミノ置換アルキル基;2−クロロエチル基、3−クロロプロピル基、2−クロロプロピル基、2,2,2−トリフルオロエチル基などのハロゲン原子置換アルキル基;ベンジル基、p−クロロベンジル基、2−フェニルエチル基などのフェニル置換アルキル基;2−メトキシエチル基、2−エトキシエチル基、2−(n)プロポキシエチル基、2−(iso)プロポキシエチル基、2−(n)ブトキシエチル基、2−(iso)ブトキシエチル基、2−(2−エチルヘキシルオキシ)エチル基、3−メトキシプロピル基、4−メトキシブチル基、2−メトキシプロピル基等のアルコキシ置換アルキル基;2−(2−メトキシエトキシ)エチル基、2−(2−エトキシエトキシ)エチル基、2−(2−(n)プロポキシエトキシ)エチル基、2−(2−(iso)プロポキシエトキシ)エチル基、2−(2−(n)ブトキシエトキシ)エチル基、2−(2−(iso)ブトキシエトキシ)エチル基、2−{2−(2−エチルヘキシルオキシ)エトキシ}エチル基等のアルコキシアルコキシ置換アルキル基;アリルオキシエチル基、2−フェノキシエチル基、2−ベンジルオキシエチル基等の置換アルキル基;2−アセチルオキシエチル基、2−プロピオニルオキシエチル基、2−(n)ブチリルオキシエチル基、2−(iso)ブチリルオキシエチル基、2−トリフルオロアセチルオキシエチル基等のアシルオキシ置換アルキル基;メトキシカルボニルメチル基、エトキシカルボニルメチル基、(n)プロポキシカルボニルメチル基、(iso)プロポキシカルボニルメチル基、(n)ブトキシカルボニルメチル基、(iso)ブトキシカルボニルメチル基、2−エチルヘキシルオキシカルボニルメチル基、ベンジルオキシカルボニルメチル基、フルフリルオキシカルボニルメチル基、テトラヒドロフルフリルオキシカルボニルメチル基、2−メトキシカルボニルエチル基、2−エトキシカルボニルエチル基、2−(n)プロポキシカルボニルエチル基、2−(iso)プロポキシカルボニルエチル基、2−(n)ブトキシカルボニルエチル基、2−(iso)ブトキシカルボニルエチル基、2−(2−エチルヘキシルオキシカルボニル)エチル基、2−ベンジルオキシカルボニルエチル基、2−フルフリルオキシカルボニルエチル基等の置換もしくは非置換のアルコキシカルボニル置換アルキル基;2−メトキシカルボニルオキシエチル基、2−エトキシカルボニルオキシエチル基、2−(n)プロポキシカルボニルオキシエチル基、2−(iso)プロポキシカルボニルオキシエチル基、2−(n)ブトキシカルボニルオキシエチル基、2−(iso)ブトキシカルボニルオキシエチル基、2−(2−エチルヘキシルオキシカルボニルオキシ)エチル基、2−ベンジルオキシカルボニルオキシエチル基、2−フルフリルオキシカルボニルオキシエチル基等の置換もしくは非置換のアルコキシカルボニルオキシ置換アルキル基;フルフリル基、テトラヒドロフルフリル基等のヘテロ環置換アルキル基等が挙げられる。
また、シクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
Examples of the unsubstituted alkyl group and the alkyl group in the unsubstituted alkoxy group include a linear or branched alkyl group. The substituted alkyl group and the substituted alkyl group in the substituted alkoxy group include 2 -Hydroxy-substituted alkyl groups such as hydroxyethyl group, 3-hydroxypropyl group, 4-hydroxybutyl group and 2-hydroxypropyl group; carboxy-substituted alkyl groups such as carboxymethyl group, 2-carboxyethyl group and 3-carboxypropyl group Cyano-substituted alkyl groups such as 2-cyanoethyl group and cyanomethyl group; amino-substituted alkyl groups such as 2-aminoethyl group; 2-chloroethyl group, 3-chloropropyl group, 2-chloropropyl group, 2,2,2- Halogen atom-substituted alkyl groups such as trifluoroethyl group; benzyl group, p-chloro Phenyl-substituted alkyl groups such as benzyl group and 2-phenylethyl group; 2-methoxyethyl group, 2-ethoxyethyl group, 2- (n) propoxyethyl group, 2- (iso) propoxyethyl group, 2- (n) Alkoxy-substituted alkyl groups such as butoxyethyl group, 2- (iso) butoxyethyl group, 2- (2-ethylhexyloxy) ethyl group, 3-methoxypropyl group, 4-methoxybutyl group, 2-methoxypropyl group; (2-methoxyethoxy) ethyl group, 2- (2-ethoxyethoxy) ethyl group, 2- (2- (n) propoxyethoxy) ethyl group, 2- (2- (iso) propoxyethoxy) ethyl group, 2- (2- (n) butoxyethoxy) ethyl group, 2- (2- (iso) butoxyethoxy) ethyl group, 2- {2- (2-ethylhexyl) Xoxy) alkoxyalkoxy-substituted alkyl groups such as ethoxy} ethyl group; substituted alkyl groups such as allyloxyethyl group, 2-phenoxyethyl group, 2-benzyloxyethyl group; 2-acetyloxyethyl group, 2-propionyloxyethyl group , 2- (n) butyryloxyethyl group, 2- (iso) butyryloxyethyl group, 2-trifluoroacetyloxyethyl group and other acyloxy-substituted alkyl groups; methoxycarbonylmethyl group, ethoxycarbonylmethyl group, (n ) Propoxycarbonylmethyl group, (iso) propoxycarbonylmethyl group, (n) butoxycarbonylmethyl group, (iso) butoxycarbonylmethyl group, 2-ethylhexyloxycarbonylmethyl group, benzyloxycarbonylmethyl group, furfuryloxycarbonyl Methyl group, tetrahydrofurfuryloxycarbonylmethyl group, 2-methoxycarbonylethyl group, 2-ethoxycarbonylethyl group, 2- (n) propoxycarbonylethyl group, 2- (iso) propoxycarbonylethyl group, 2- (n) Substituted or unsubstituted butoxycarbonylethyl group, 2- (iso) butoxycarbonylethyl group, 2- (2-ethylhexyloxycarbonyl) ethyl group, 2-benzyloxycarbonylethyl group, 2-furfuryloxycarbonylethyl group, etc. Alkoxycarbonyl-substituted alkyl group; 2-methoxycarbonyloxyethyl group, 2-ethoxycarbonyloxyethyl group, 2- (n) propoxycarbonyloxyethyl group, 2- (iso) propoxycarbonyloxyethyl group, 2- (n) butoxyca Substitution of bonyloxyethyl group, 2- (iso) butoxycarbonyloxyethyl group, 2- (2-ethylhexyloxycarbonyloxy) ethyl group, 2-benzyloxycarbonyloxyethyl group, 2-furfuryloxycarbonyloxyethyl group, etc. Or an unsubstituted alkoxycarbonyloxy-substituted alkyl group; a heterocyclic-substituted alkyl group such as a furfuryl group and a tetrahydrofurfuryl group; and the like.
Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.

アルキル基およびアルコキシ基中のアルキル基の具体例としては、例えば、次のものが挙げられる。なお、これらのアルキル基は、ハロゲン原子等の置換基で置換されていてもよい。メチル基、エチル基、n−プロピル基、n−ブチル基、イソブチル基、n−ペンチル基、ネオペンチル基、イソアミル基、2−メチルブチル基、n−ヘキシル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、2−エチルブチル基、n−ヘプチル基、2−メチルヘキシル基、3−メチルヘキシル基、4−メチルヘキシル基、5−メチルヘキシル基、2−エチルペンチル基、3−エチルペンチル基、n−オクチル基、2−メチルヘプチル基、3−メチルヘプチル基、4−メチルヘプチル基、5−メチルヘプチル基、2−エチルヘキシル基、3−エチルヘキシル基、n−ノニル基、n−デシル基、n−ドデシル基等の一級アルキル基;イソプロピル基、sec−ブチル基、1−エチルプロピル基、1−メチルブチル基、1,2−ジメチルプロピル基、1−メチルヘプチル基、1−エチルブチル基、1,3−ジメチルブチル基、1,2−ジメチルブチル基、1−エチル−2−メチルプロピル基、1−メチルヘキシル基、1−エチルヘプチル基、1−プロピルブチル基、1−イソプロピル−2−メチルプロピル基、1−エチル−2−メチルブチル基、1−プロピル−2−メチルプロピル基、1−メチルヘプチル基、1−エチルヘキシル基、1−プロピルペンチル基、1−イソプロピルぺンチル基、1−イソプロピル−2−メチルブチル基、1−イソプロピル−3−メチルブチル基、1−メチルオクチル基、1−エチルヘプチル基、1−プロピルヘキシル基、1−イソブチル−3−メチルブチル基等の二級アルキル基;tert−ブチル基、tert−ヘキシル基、tert−アミル基、tert−オクチル基等の三級アルキル基;シクロヘキシル基、4−メチルシクロヘキシル基、4−エチルシクロヘキシル基、4−tert−ブチルシクロヘキシル基、4−(2−エチルヘキシル)シクロヘキシル基、ボルニル基、イソボルニル基、アダマンタン基等のシクロアルキル基等が挙げられる。
またアリール基としてはフェニル基、メチルフェニル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、tert-ブチルフェニル基、ジ(tert-ブチル)フェニル基、ブチルフェニル基、メトキシフェニル基、ジメトキシフェニル基、トリメトキシフェニル基、ブトキシフェニル基などが挙げられ、またこれらのアリール基はハロゲン等の置換基で置換されていてもよい。
Specific examples of the alkyl group in the alkyl group and the alkoxy group include the following. In addition, these alkyl groups may be substituted with a substituent such as a halogen atom. Methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, neopentyl group, isoamyl group, 2-methylbutyl group, n-hexyl group, 2-methylpentyl group, 3-methylpentyl Group, 4-methylpentyl group, 2-ethylbutyl group, n-heptyl group, 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 2-ethylpentyl group, 3- Ethylpentyl group, n-octyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 2-ethylhexyl group, 3-ethylhexyl group, n-nonyl group, n- Primary alkyl group such as decyl group, n-dodecyl group; isopropyl group, sec-butyl group, 1-ethylpropyl group, 1-methylbutyl group, , 2-dimethylpropyl group, 1-methylheptyl group, 1-ethylbutyl group, 1,3-dimethylbutyl group, 1,2-dimethylbutyl group, 1-ethyl-2-methylpropyl group, 1-methylhexyl group, 1-ethylheptyl group, 1-propylbutyl group, 1-isopropyl-2-methylpropyl group, 1-ethyl-2-methylbutyl group, 1-propyl-2-methylpropyl group, 1-methylheptyl group, 1-ethylhexyl Group, 1-propylpentyl group, 1-isopropylpentyl group, 1-isopropyl-2-methylbutyl group, 1-isopropyl-3-methylbutyl group, 1-methyloctyl group, 1-ethylheptyl group, 1-propylhexyl group Secondary alkyl groups such as 1-isobutyl-3-methylbutyl group; tert-butyl group, tert-hexyl group, Tertiary alkyl groups such as ert-amyl group and tert-octyl group; cyclohexyl group, 4-methylcyclohexyl group, 4-ethylcyclohexyl group, 4-tert-butylcyclohexyl group, 4- (2-ethylhexyl) cyclohexyl group, bornyl And cycloalkyl groups such as an isobornyl group and an adamantane group.
As the aryl group, phenyl group, methylphenyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, tert-butylphenyl group, di (tert-butyl) phenyl group, butylphenyl group, methoxyphenyl group, dimethoxyphenyl group , Trimethoxyphenyl group, butoxyphenyl group and the like, and these aryl groups may be substituted with a substituent such as halogen.

化学式(1)〜(5)中、Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
具体的にMとしては、Ib族,IIa族,IIb族,IIIa族,IVa族,IVb族,Vb族,VIb族,VIIb族,VIII族の金属、これらの金属の酸化物、これらの金属のハロゲン化物またはこれらの金属の水酸化物などがあり、さらに、上記金属で置換基を有するものがある
In the chemical formulas (1) to (5), M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom that may have oxygen or halogen, or (OR 9 ) p, (OSiR). 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r, (OCOR 15 ) s represents a metal atom which may have. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2.
Specifically, as M, Ib group, IIa group, IIb group, IIIa group, IVa group, IVb group, Vb group, VIb group, VIIb group, VIII metal, oxides of these metals, There are halides or hydroxides of these metals, and there are those having the above-mentioned substituents

上記の金属としては、Cu,Zn,Mg,Al,Ge,Ti,Sn,Pb,Cr,Mo,Mn,Fe,Co,Ni,In,Pt,Pd等があり、酸化物としては、TiO,VO等があり、ハロゲン化物としては、AlCl,GeCl2,SiCl2,FeCl,SnCl2,InCl等があり、水酸化物としてはAl(OH),Si(OH)2,Ge(OH)2,Sn(OH)2等がある。
さらに、金属が置換基を有する場合に、金属としては、Al,Ti,Si,Ge,Sn等があり、置換基としては、アリールオキシル基,アルコキシル基,トリアルキルシロキシル基,トリアリールシロキシル基,トリアルコキシシロキシル基,トリアリールオキシシロキシル基,トリチルオキシル基又はアシロキシル基等がある。
Examples of the metal include Cu, Zn, Mg, Al, Ge, Ti, Sn, Pb, Cr, Mo, Mn, Fe, Co, Ni, In, Pt, and Pd. As the oxide, TiO, VO and the like, halides include AlCl, GeCl 2 , SiCl 2 , FeCl, SnCl 2 , InCl and the like, and hydroxides include Al (OH), Si (OH) 2 , Ge (OH) 2 , Sn (OH) 2 and the like.
Further, when the metal has a substituent, the metal includes Al, Ti, Si, Ge, Sn, etc., and the substituent includes an aryloxyl group, an alkoxyl group, a trialkylsiloxyl group, and a triarylsiloxyl. Group, trialkoxysiloxyl group, triaryloxysiloxyl group, trityloxyl group or acyloxyl group.

本発明で用いるポルフィリン誘導体例を下記に示す。   Examples of porphyrin derivatives used in the present invention are shown below.

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

Figure 2008163184
Figure 2008163184

これらポルフィリン異性体自体及びその合成方法自体は、従来公知であり、例えばAngew. Chem. Int. Ed. Engl. 1993,32,No.11,pp.1600-1604に記載の方法を用いることにより合成することができる。   These porphyrin isomers themselves and their synthesis methods are known in the art, for example, by using the method described in Angew. Chem. Int. Ed. Engl. 1993, 32, No. 11, pp. 1600-1604. can do.

Figure 2008163184
Figure 2008163184

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、これら実施例によって制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples unless it exceeds the gist.

(実施例1)
上記ポルフィリン誘導体例[化7]のジメチルホルムアミド溶液を作成し、下記の二光子吸収断面積の評価方法により、その二光子吸収断面積を測定した。
二光子吸収断面積の測定結果を表2に、その二光子吸収スペクトルを図6に示す。
(Example 1)
A dimethylformamide solution of the above porphyrin derivative example [Chemical Formula 7] was prepared, and the two-photon absorption cross section was measured by the following two-photon absorption cross-section evaluation method.
The measurement results of the two-photon absorption cross section are shown in Table 2, and the two-photon absorption spectrum is shown in FIG.

(実施例2〜5)
同様にして、[化10]、[化15]、[化28]、[化30]その二光子吸収断面積を測定した。
二光子吸収断面積の測定結果を表2に、その二光子吸収スペクトルを図7〜10に示す。
(Examples 2 to 5)
Similarly, the two-photon absorption cross sections of [Chemical Formula 10], [Chemical Formula 15], [Chemical Formula 28], and [Chemical Formula 30] were measured.
The measurement result of the two-photon absorption cross section is shown in Table 2, and the two-photon absorption spectrum is shown in FIGS.

(実施例6〜10)
同様にして、[化9]、[化12]、[化24]、[化32]、[化36]その二光子吸収断面積を測定した。
二光子吸収断面積の測定結果を表2に示す。
(Examples 6 to 10)
Similarly, the two-photon absorption cross sections of [Chemical 9], [Chemical 12], [Chemical 24], [Chemical 32], and [Chemical 36] were measured.
Table 2 shows the measurement results of the two-photon absorption cross section.

(比較例1)
以下の式(比1)で示した化合物のテトラヒドロフラン溶液を作成し、下記の二光子吸収断面積の評価方法により、その二光子吸収断面積を測定した。
その測定結果を表2に示す。
(Comparative Example 1)
A tetrahydrofuran solution of the compound represented by the following formula (ratio 1) was prepared, and the two-photon absorption cross section was measured by the following two-photon absorption cross-section evaluation method.
The measurement results are shown in Table 2.

Figure 2008163184
Figure 2008163184

(比較例2)
通常の代表的なポルフィリン構造である(比2)で示した化合物のジメチルホルムアミドを作成し、同様にその二光子吸収断面積を測定した。
その測定結果を表2に示す。
(Comparative Example 2)
Dimethylformamide of a compound represented by (ratio 2), which is a typical typical porphyrin structure, was prepared, and its two-photon absorption cross section was measured in the same manner.
The measurement results are shown in Table 2.

Figure 2008163184
Figure 2008163184

[二光子吸収断面積の評価方法]
測定システム概略図を図5に示す。
測定光源:フェムト秒チタンサファイアレーザ
波長 :720〜920nm パルス幅:100fs
繰り返し:80MHz 光パワー:800mW
測定方法:Zスキャン法
光源波長 :780〜900nm キュベット内径:1mm
測定光パワー :約500mW 繰り返し周波数:80MHz
集光レンズ :f=75mm 集光径 :〜40μm
集光されている光路部分に試料溶液を充填した石英セルを置き、その位置を光路に沿って移動させることによりZ-scan測定を実施した。
[Evaluation method of two-photon absorption cross section]
A schematic diagram of the measurement system is shown in FIG.
Measurement light source: Femtosecond titanium sapphire laser Wavelength: 720-920nm Pulse width: 100fs
Repeat: 80MHz Optical power: 800mW
Measurement method: Z scan method Light source wavelength: 780-900nm Cuvette inner diameter: 1mm
Measurement optical power: Approximately 500mW Repeat frequency: 80MHz
Condensing lens: f = 75mm Condensing diameter: ~ 40μm
A quartz cell filled with the sample solution was placed in the collected optical path portion, and Z-scan measurement was performed by moving the position along the optical path.

透過率を測定し、その結果から下記理論式(I)により非線形吸収係数を求めた。   The transmittance was measured, and the nonlinear absorption coefficient was determined from the result by the following theoretical formula (I).

Figure 2008163184

(上記式中、Tは透過率(%)、I0は励起光密度[GW/cm]、L0は試料セル長[cm]、βは非線形吸収係数[cm/GW]を示す。)
Figure 2008163184

(In the above formula, T represents transmittance (%), I 0 represents excitation light density [GW / cm 2 ], L 0 represents sample cell length [cm], and β represents nonlinear absorption coefficient [cm / GW].)

この非線形吸収係数から、下記式(II)により二光子吸収断面積σ2を求めた。
(σ2の単位は1GM=1×10−50cm・s・photon−1である。)
From this nonlinear absorption coefficient, a two-photon absorption cross-sectional area σ2 was determined by the following formula (II).
(The unit of σ2 is 1GM = 1 × 10 −50 cm 4 · s · photon −1 .)

Figure 2008163184
(上記式中、hはプランク定数[J・s]、νは入射レーザ光の振動数[s−1]、NAはアボガドロ数、Cは溶液濃度[mol/L]を示す。)
Figure 2008163184
(In the above formula, h represents Planck's constant [J · s], ν represents the frequency [s −1 ] of incident laser light, NA represents the Avogadro number, and C represents the solution concentration [mol / L].)

<評価結果> <Evaluation results>

Figure 2008163184

■ 二光子吸収の遷移効率が従来材料に比較し、二桁高い二光子吸収化合物が得られた。
■ 通常のポルフィリン構造では二光子吸収能を示さないが、本発明のポルフィリン誘導体では大きな二光子吸収断面積が得られる。
■ 本発明の優れた二光子吸収特性を有する化合物を適用すれば、より高品位の三次元メモリ材料、光制限材料、光造形用光硬化樹脂の硬化材料、光化学療法用材料、二光子蛍光顕微鏡用蛍光色素材料が実現できる。
Figure 2008163184

■ A two-photon absorption compound with a transition efficiency of two-photon absorption that is two orders of magnitude higher than conventional materials was obtained.
(2) Although the ordinary porphyrin structure does not show the two-photon absorption ability, the porphyrin derivative of the present invention provides a large two-photon absorption cross section.
■ If the compound having excellent two-photon absorption characteristics of the present invention is applied, a higher-quality three-dimensional memory material, light-limiting material, photocuring resin curing material for photofabrication, photochemotherapy material, two-photon fluorescence microscope Fluorescent dye material can be realized.

(a)は三次元多層光メモリの記録/再生のシステム概略図であり、(b)は記録媒体の概略断面図である。(A) is a schematic diagram of a recording / reproducing system of a three-dimensional multilayer optical memory, and (b) is a schematic sectional view of a recording medium. 本発明の二光子吸収材料を、二光子励起し得る波長の制御光により二光子励起させることによって、一光子励起し得る波長の信号光を光スイッチングする光制御素子の一例を示した図である。It is the figure which showed an example of the optical control element which optically switches the signal light of the wavelength which can carry out one-photon excitation by carrying out the two-photon excitation of the two-photon absorption material of this invention with the control light of the wavelength which can carry out two-photon excitation. . 二光子光造形法の装置の概略図である。It is the schematic of the apparatus of the two-photon stereolithography. 二光子励起レーザー走査顕微鏡の基本構成の概略図である。It is the schematic of the basic composition of a two-photon excitation laser scanning microscope. 本発明で用いられる測定システム概略図である。1 is a schematic diagram of a measurement system used in the present invention. 本発明の[化7]で用いられる二光子吸収スペクトルを示した図である。It is the figure which showed the two-photon absorption spectrum used by [Chemical Formula 7] of this invention. 本発明の[化10]で用いられる二光子吸収スペクトルを示した図である。It is the figure which showed the two-photon absorption spectrum used by [Chemical Formula 10] of this invention. 本発明の[化15]で用いられる二光子吸収スペクトルを示した図である。It is the figure which showed the two-photon absorption spectrum used by [Chemical 15] of this invention. 本発明の[化28]で用いられる二光子吸収スペクトルを示した図である。It is the figure which showed the two-photon absorption spectrum used by [Chemical Formula 28] of this invention. 本発明の[化30]で用いられる二光子吸収スペクトルを示した図である。It is the figure which showed the two-photon absorption spectrum used by [Chemical 30] of this invention.

符号の説明Explanation of symbols

1 支持体(基板)
2 基板(保護層)
3 記録層
4 中間層
5 記録用単一光ビーム
6 再生(読出)用単一光ビーム
7 二次元検出器
21 光制御素子
30 光造形物
31 光硬化樹脂液に対して透明性を有する近赤外パルスレーザー光の光源
32 過光量を時間的にコントロールするシャッター
33 NDフィルター
34 ミラースキャナー
34a 光束(光強度)の大きさを所望程度に制御する光束変換系
35 集光手段としてのレンズ
36 Zステージ
37 モニター
38 コンピューター
39 光硬化性樹脂液
41 レーザ光源
42 光束変換光学系
43 走査光学系
44 対物レンズ系
45 標本面
46 ダイクロイックミラー
47 光検出器

1 Support (substrate)
2 Substrate (protective layer)
3 Recording layer 4 Intermediate layer 5 Single light beam for recording 6 Single light beam for reproduction (reading) 7 Two-dimensional detector 21 Light control element 30 Light modeling object 31 Near-red having transparency to photocurable resin liquid Light source 32 of external pulsed laser light Shutter 33 for controlling excess light temporally ND filter 34 Mirror scanner 34a Light flux conversion system 35 for controlling the magnitude of light flux (light intensity) to a desired level Lens 36 as a focusing means Z stage 37 monitor 38 computer 39 photocurable resin liquid 41 laser light source 42 light beam conversion optical system 43 scanning optical system 44 objective lens system 45 sample surface 46 dichroic mirror 47 photodetector

Claims (18)

置換基を有してもよい4つのピロール環が置換基を有してもよい炭素原子を介して、または直接結合した構造を有するポルフィリン誘導体において、該4つのピロール環を結ぶ置換基を有してもよい炭素原子の合計数が4つであり、かつ少なくとも一個所はピロール環が炭素原子を介さず直接結合したポルフィリン誘導体からなる二光子吸収材料。 In a porphyrin derivative having a structure in which four pyrrole rings which may have a substituent are bonded to each other via a carbon atom which may have a substituent, or have a substituent which connects the four pyrrole rings A two-photon absorption material comprising a porphyrin derivative in which the total number of carbon atoms may be four and at least one pyrrole ring is directly bonded without carbon atoms. 下記式(1)で示されるポルフィリン誘導体からなることを特徴とする請求項1記載の二光子吸収材料。
Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
The two-photon absorption material according to claim 1, comprising a porphyrin derivative represented by the following formula (1).
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2.
下記式(2)で示されるポルフィリン誘導体からなることを特徴とする請求項1に記載の二光子吸収材料。
Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
It consists of a porphyrin derivative shown by following formula (2), The two-photon absorption material of Claim 1 characterized by the above-mentioned.
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2.
下記式(3)で示されるポルフィリン誘導体からなることを特徴とする請求項1に記載の二光子吸収材料。
Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
It consists of a porphyrin derivative shown by following formula (3), The two-photon absorption material of Claim 1 characterized by the above-mentioned.
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2.
下記式(4)で示されるポルフィリン誘導体からなることを特徴とする請求項1に記載の二光子吸収材料。
Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
It consists of a porphyrin derivative shown by following formula (4), The two-photon absorption material of Claim 1 characterized by the above-mentioned.
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2.
下記式(5)で示されるポルフィリン誘導体からなることを特徴とする請求項1に記載の二光子吸収材料。
Figure 2008163184
式中、R1〜R8、X1〜X4はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR9)p、(OSiR101112)q、(OPOR1314)r、(OCOR15)sを有してもよい金属原子を表す。R9〜R15は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
It consists of a porphyrin derivative shown by following formula (5), The two-photon absorption material of Claim 1 characterized by the above-mentioned.
Figure 2008163184
In the formula, R 1 to R 8 and X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group. Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, or a substituted or unsubstituted acyl group.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 9 ) p, (OSiR 10 R 11 R 12 ) q, (OPOR 13 R 14 ) r represents a metal atom which may have (OCOR 15 ) s. R 9 to R 15 independently represent a hydrogen atom, a substituted or unsubstituted aliphatic or aromatic hydrocarbon group, and p 1, q 2, r 3 and s represent an integer of 0 to 2.
置換基を有してもよい4つのピロール環が置換基を有してもよい炭素原子又は窒素原子を介して結合した構造を有する下記式(6)で示されるポルフィリン誘導体からなる二光子吸収材料であって、該4つのピロール環を結ぶ置換基を有してもよい原子のうち少なくとも一個が炭素原子及び窒素原子であるポルフィリン誘導体からなる二光子吸収材料。
Figure 2008163184
R1〜R4は、窒素原子、炭素原子を表し、そのうち少なくとも一個は窒素原子を表す。
X1〜X8はそれぞれ独立に水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリール基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基を表す。
Mは2個の水素原子、または酸素、ハロゲンを有してもよい2価、3価、もしくは4価の金属原子、または(OR5)p、(OSiR678)q、(OPOR910)r、(OCOR11)sを有してもよい金属原子を表す。R5〜R11は独立に水素原子、置換もしくは未置換の脂肪族、芳香族炭化水素基を表し、p , q , r , sは0〜2の整数を表す。
Two-photon absorption material comprising a porphyrin derivative represented by the following formula (6) having a structure in which four pyrrole rings which may have a substituent are bonded via a carbon atom or a nitrogen atom which may have a substituent A two-photon absorption material comprising a porphyrin derivative in which at least one of the atoms which may have a substituent connecting the four pyrrole rings is a carbon atom and a nitrogen atom.
Figure 2008163184
R 1 to R 4 represent a nitrogen atom or a carbon atom, and at least one of them represents a nitrogen atom.
X 1 to X 8 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a carboxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, A substituted or unsubstituted amino group or a substituted or unsubstituted acyl group is represented.
M is two hydrogen atoms, or a divalent, trivalent, or tetravalent metal atom which may have oxygen or halogen, or (OR 5 ) p, (OSiR 6 R 7 R 8 ) q, (OPOR 9 R 10 ) r represents a metal atom which may have (OCOR 11 ) s. R 5 to R 11 are independently a hydrogen atom, an aliphatic substituted or unsubstituted, an aromatic hydrocarbon group, p, q, r, s represents an integer of 0 to 2.
式(6)で示されるポルフィリン誘導体のR1〜R4のうち、1つが窒素原子であり、残りは炭素原子であるモノアザポルフィリン化合物からなることを特徴とする請求項7に記載の二光子吸収材料。 8. The two-photon according to claim 7, wherein one of R 1 to R 4 of the porphyrin derivative represented by the formula (6) is a monoazaporphyrin compound in which one is a nitrogen atom and the remainder is a carbon atom. Absorbing material. 式(6)で示されるポルフィリン誘導体のR1〜R4のうち、2つが窒素原子であり、残りは炭素原子であるジアザポルフィリン化合物からなることを特徴とする請求項7に記載の二光子吸収材料。 8. The two-photon according to claim 7, wherein two of R 1 to R 4 of the porphyrin derivative represented by the formula (6) are diazaporphyrin compounds in which two are nitrogen atoms and the rest are carbon atoms. Absorbing material. 式(6)で示されるポルフィリン誘導体のR1、Rが窒素原子であり、R、R4が炭素原子であるジアザポルフィリン化合物からなる請求項7に記載の二光子吸収材料。 The two-photon absorption material according to claim 7, comprising a diazaporphyrin compound in which R 1 and R 3 of the porphyrin derivative represented by the formula (6) are nitrogen atoms and R 2 and R 4 are carbon atoms. 請求項1乃至10のいずれかに記載の化合物を含む三次元メモリ材料。 A three-dimensional memory material comprising the compound according to claim 1. 請求項1乃至10のいずれかに記載の化合物を含む光制限材料。 The light limiting material containing the compound in any one of Claims 1 thru | or 10. 請求項1乃至10のいずれかに記載の化合物を含む光造形用光硬化樹脂の硬化材料。 The hardening material of the photocurable resin for optical modeling containing the compound in any one of Claims 1 thru | or 10. 請求項1乃至10のいずれかに記載の化合物を含む二光子蛍光顕微鏡用蛍光色素材料。 A fluorescent dye material for a two-photon fluorescence microscope, comprising the compound according to claim 1. 請求項1乃至10のいずれかに記載の化合物を記録層中に少なくとも1種含み入射光に対して深さ方向に記録再生可能な三次元記録媒体。 A three-dimensional recording medium comprising at least one type of the compound according to any one of claims 1 to 10 in a recording layer and capable of recording and reproducing in the depth direction with respect to incident light. 請求項1乃至10のいずれかに記載の化合物の少なくとも1種含む光制限素子。 The optical limiting element containing at least 1 sort (s) of the compound in any one of Claims 1 thru | or 10. 請求項1乃至10のいずれかに記載の化合物の少なくとも1種含む光造形システム。 An optical modeling system comprising at least one compound according to any one of claims 1 to 10. 請求項1乃至10のいずれかに記載の化合物の少なくとも1種含む二光子蛍光顕微鏡装置。


The two-photon fluorescence microscope apparatus containing at least 1 sort (s) of the compound in any one of Claims 1 thru | or 10.


JP2006354063A 2006-12-28 2006-12-28 Two-photon absorption material and its application Pending JP2008163184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354063A JP2008163184A (en) 2006-12-28 2006-12-28 Two-photon absorption material and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354063A JP2008163184A (en) 2006-12-28 2006-12-28 Two-photon absorption material and its application

Publications (1)

Publication Number Publication Date
JP2008163184A true JP2008163184A (en) 2008-07-17

Family

ID=39693090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354063A Pending JP2008163184A (en) 2006-12-28 2006-12-28 Two-photon absorption material and its application

Country Status (1)

Country Link
JP (1) JP2008163184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205144A (en) * 2008-02-01 2009-09-10 Ricoh Co Ltd Two-photon absorption material and its use
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084594A (en) * 1999-09-16 2001-03-30 Ricoh Co Ltd Optical recording medium and recording method thereon
JP2001180117A (en) * 1999-12-27 2001-07-03 Ricoh Co Ltd Optical information recording medium
JP2003248974A (en) * 2002-02-21 2003-09-05 Ricoh Co Ltd Optical recording medium and its record reproduction method
JP2005132763A (en) * 2003-10-30 2005-05-26 National Institute Of Advanced Industrial & Technology Two-photon absorbing material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084594A (en) * 1999-09-16 2001-03-30 Ricoh Co Ltd Optical recording medium and recording method thereon
JP2001180117A (en) * 1999-12-27 2001-07-03 Ricoh Co Ltd Optical information recording medium
JP2003248974A (en) * 2002-02-21 2003-09-05 Ricoh Co Ltd Optical recording medium and its record reproduction method
JP2005132763A (en) * 2003-10-30 2005-05-26 National Institute Of Advanced Industrial & Technology Two-photon absorbing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205144A (en) * 2008-02-01 2009-09-10 Ricoh Co Ltd Two-photon absorption material and its use
EP2159227A1 (en) 2008-08-26 2010-03-03 Ricoh Company, Ltd. Two-photon absorption material and application thereof
US8207330B2 (en) 2008-08-26 2012-06-26 Ricoh Company, Ltd. Two-photon absorption material and application thereof

Similar Documents

Publication Publication Date Title
JP5117679B2 (en) Dye material using multiphoton absorption material, method for producing dye material, multiphoton absorption reaction material, reaction product of multiphoton absorption reaction material, multiphoton absorption reaction aid, and dye solution
JP5157284B2 (en) Photosensitized composite material and three-dimensional memory material and recording medium, light limiting material and element, photocurable material and stereolithography system, fluorescent material and apparatus for multiphoton fluorescence microscope
EP2159227B1 (en) Two-photon absorption material and application thereof
JP2009221563A (en) Gold nanorod, method for producing the same, electromagnetic wave absorber using the nanorod, color material, optical recording material, and two photon reaction material
JP4906371B2 (en) Two-photon absorbing material and its use
JP2010217579A (en) Two-photon absorbing material and application therefor
JP5229521B2 (en) π-conjugated compounds and their uses, and elements and devices using them
JP5458471B2 (en) Two-photon absorbing material, optical function imparting method, optical function detecting method, optical recording / reproducing method, optical recording material, and three-dimensional optical recording medium
JP4963367B2 (en) Two-photon absorption material
JP2008163184A (en) Two-photon absorption material and its application
JP5339242B2 (en) Two-photon absorption materials and their applications
JP5047651B2 (en) Two-photon absorption materials and their applications
JP5105808B2 (en) Distyrylbenzene derivative and three-dimensional memory material, light limiting material, photocuring resin curing material for stereolithography, and fluorescent dye material for two-photon fluorescence microscope using the same.
JP4605796B2 (en) Multi-photon absorption functional material, optical recording medium using the same, optical limiting element, and optical modeling system
JP2008058209A (en) Composite metal nano particle, multiphoton absorbing reaction material containing composite metal nano particle, reaction product and multiphoton absorbing reaction aid containing composite metal nano particle
JP2013241415A (en) Two-photon absorption material and application thereof
JP5042513B2 (en) Two-photon absorption materials and their applications
JP2007246422A (en) Two-photon absorbing material and application of the same
JP5453818B2 (en) Two-photon absorption materials and their applications
JP5505748B2 (en) π-conjugated compounds and their uses, and elements and devices using them
JP5578455B2 (en) π-conjugated compounds and their uses, and elements and devices using them
JP4969881B2 (en) Two-photon absorption materials and their applications
JP5321941B2 (en) Two-photon absorption materials and their applications
JP5151124B2 (en) Light limiting element and stereolithography system
JP5610114B2 (en) Composite member, stereolithography system equipped with composite member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090907

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122